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ABSTRACT   
 

This paper reports a comparative evaluation of population-based 

simulation in comparison to agent-based simulation for different 

numbers of agents. Population-based simulation, such as for 

example in the classical approaches to predator-prey modelling 

and modelling of epidemics, has computational advantages over 

agent-based modelling with larger numbers of agents. Therefore 

the latter approaches can be considered useful only when the 

results are expected to deviate from the results of population-

based simulation, and are considered more realistic. However, 

there is sometimes also a silent assumption that for larger 

numbers of agents, agent-based simulations approximate 

population-based simulations, which would indicate that agent-

based simulation just can be replaced by population-based 

simulation. The paper evaluates this assumption by a detailed 

comparative case study in epidemics. 
 

 

1. INTRODUCTION 
 

The classical approaches to simulation of processes in 

which groups of larger numbers of agents are involved are 

population-based: a number of groups are distinguished 

(populations) and each of these populations is represented 

by a numerical variable indicating their number or density 

(within a given area) at a certain time point. The 

simulation model takes the form of a system of difference 

or differential equations expressing temporal relationships 

for the dynamics of these variables. Wellknown classical 

examples of such population-based models are systems of 

difference or differential equations for predator-prey 

dynamics (e.g., Lotka, 1924; Volterra, 1926, 1931; 

Maynard Smith, 1974; Burghes and Borrie, 1981) and the 

dynamics of epidemics (e.g., Ross, 1916; Kermack and 

McKendrick, 1927; Burghes and Borrie, 1981; Anderson 

and May, 1992; Ellner and Guckenheimer, 2006). Such 

models can be studied by simulation and by using analysis 

techniques from mathematics and  dynamical systems 

theory. 

From the more recently developed agent system area it 

is often taken as a presupposition that simulations based 

on individual agents are a more natural or faithful way of 

modellling, and thus will provide better results (e.g., 

Davidsson, Gasser, Logan, and Takadama, 2005; Sichman 

and Antunes, 2006; Antunes and Takadama, 2007). 

Although for larger numbers of agents such agent-based 

modelling approaches are more expensive computationally 

than population-based modelling approaches, such a 

presupposition may provide a justification of preferring 

their use over population-based modelling approaches, in 

spite of the computational disadvantages. In other words 

agent-based approaches with larger numbers of agents are 

justified because the results are expected to deviate from 

the results of population-based simulation, and are 

considered more realistic.  

 However, in contrast there is another silent assumption 

sometimes made, namely that for larger numbers of agents 

(in the limit), agent-based simulations approximate 

population-based simulations. This would indicate that 

agent-based simulation just can be replaced by population-

based simulation, which would weaken the justification 

for agent-based simulation discussed above. In this paper, 

by a case study in epidemics, these considerations are 

explored in more detail. Comparative simulation 

experiments have been conducted based on different 

simulation models, both agent-based (for different 

numbers of agents), and population-based. The results are 

analysed and related to the presupposition and assumption 

discussed above. 

 

2.   THE DOMAIN OF EPIDEMICS  
 

Microbes such as viruses, bacteria, fungi and parasites, 

may have disturbing effects when they enter the human 

body. Not seldom humans suffer from such infections and 

in the mean time propagate them to each other. Examples 

of types of infectious diseases are influenza, chlamydia, 

HIV, hepatitis, tuberculosis, and many others. The battle 

against such infections takes place both at the biological 

level in the body, and at the behavioural and social level. 

At the behavioural and social level, humans sometimes try 

to adapt their interaction behaviour to prevent propagation 

of infections from one human to another one. This paper 

focuses on the propagation of infections in populations, in 

relation to the interaction behaviour, in particular the 

frequency and intensity of contacts that individuals have in 

the population.  

 Agents within a population can be in different states: 

susceptible (not infected yet), infective, or recovered 

(immune and not infectious). When an agent who is 

infective, has contact with another, susceptible agent then 

there is a chance that the other agent will also be infected 

due to this contact. This chance depends on the intensity of 

the contact. The overall chance that a susceptible agent is 

infected, also depends on the number of contacts with 
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infective agents. An example of a possible pattern, for 

example, for an easy transmittable infection such as 

influenza, is that the propagation goes so fast that only in a 

few weeks time almost the whole population is infected. In 

such a case the term epidemic is used to indicate the 

spreading of the infection over the population. For other 

types of infections, for example HIV or chlamydia, more 

intensive contacts (which usually occur less frequently) 

are needed for transmission, and therefore propagation 

may proceed slower. 

 An important question, especially for the more harmful 

infections, in a society is whether by measures at the 

behavioural and social level, it is possible to keep the 

number of infected persons in a population limited. And if 

so, how far should such measures go? It is clear that by 

avoiding any contact between agents, propagation can be 

stopped, but that is often not a realistic option. On the 

other hand, if there are still some contacts between agents, 

will at the end the infection not be spread (perhaps by very 

slow propagation) over the whole population? Such 

questions are addressed in this paper by two types of 

models: population-based models (with populations of 

susceptible, infectives and recovered agents, respectively) 

and agent-based models.  

  

3.   A POPULATION-BASED MODEL 
 

This section describes the population-based model. The 

analysis of epidemics has a long history, going back, for 

example, to (Ross, 1916; Kermack and McKendrick, 

1927). More recent presentations can be found in 

(Anderson and May, 1992) and (Ellner and Guckenheimer, 

2006, Ch. 6, pp. 183-215). First of all, a distinction is 

made between the population of susceptibles vs. the 

population of infectives, the latter of which are infectious 

for the former. A third population consists of those that 

already were infected, but have recovered and therefore 

are immune and not infectious anymore, based on a 

recovery rate indicating the fraction of infectives that 

recovers per day. Furthermore the frequency of contacts 

(per day, the time unit chosen) plays a main role; the 

chance that in a contact infection transmission occurs 

depends on the contact intensity.  
 

Figure 1  Dynamic relationships in the model 
 

 

 

 

 

 

 

 

 

 

 

 

 

The populations can be described by their sizes, but often 

they are characterised by their densities: size divided by 

area. As the area is considered fixed, the sizes (numbers) 

will be used to characterize the populations. The dynamic 

relationships between these concepts are depicted in 

Figure 1. For a mathematical formalisation usually the 

contact frequency times the contact intensity divided by 

the overall size of the populations together is combined in 

one parameter, called the contact rate. Thus the following 

variables and parameters are used. 
 

size of the population of susceptible individuals  S 

size of the population of infective individuals I 

size of the population of recovered individuals  R 

size of all populations together N 

contact rate β 

recovery rate  γ 

threshold ρ 
 

Here β = ContactFrequency*ContactIntensity/N. Note that 

for given values of contact frequency and contact 

intensity, this parameter β  depends on the overall 

population size. The dynamics of these concepts involve 

temporal relationships, which are analysed in more detail 

below. Each susceptible person has (per day) a number of 

contacts indicated by ContactFrequency. From these 

contacts a fraction  I(t)/N  is with infective individuals, 

where N  is the size of the three populations together 

(assumed fixed). Therefore the number of relevant 

contacts per day is: RelevantContacts(t)  =   

ContactFrequency*S(t)*I(t)/N. Moreover, in a fraction of 

the contacts the infection is transmitted. This fraction is 

indicated by ContactIntensity; therefore the number of 

new  infections per day is: Infections(t) =   

ContactIntensity*RelevantContacts(t) =   

ContactIntensity* ContactFrequency*S(t)*I(t)/N =   

β*S(t)*I(t). Given the number of infections Infections(t) 

per time unit, in a time interval between t and t+∆t  the 

number of (new) infections is Infections(t)*∆t. This is 

subtracted from the susceptible population, and added to 

the infective population. Furthermore, γ indicates the 

fraction of the infective population per day that becomes 

recovered (and not infective anymore): over the interval 

between t and t+∆t a number of γ*I(t)*∆t  is taken from 

the infective population and added to the recovered 

population. Therefore the following temporal relationships 

are used. 

  S(t+∆t) =   S(t)  -  Infections(t)*∆t   

  I(t+∆t) =   I(t)  +  (Infections(t)  -  γ* I(t)) *∆t 

  R(t+∆t) =   R(t)  + γ* I(t) *∆t 

Note that by these relationships the sum of the three 

populations always remains the same: what adds to the 

recovered population subtracts from the infective 

population, and what subtracts from the susceptible 

population adds to the infective population. In the more 

usual notation, by replacing Infections(t) the equations can 

be written as: 

contact 

frequency 

susceptibles 

 

relevant 

contacts 

recovery rate 

recovered 

 

contact 

intensity 

infectives 

 

infections 
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  S(t+∆t)    =   S(t)  -  β*S(t)*I(t)*∆t   

  I(t+∆t) =   I(t)  +  (β*S(t)*I(t) -  γ* I(t)) *∆t 

  R(t+∆t) =   R(t)  + γ* I(t) *∆t 

In differential equation form they are represented in the 

following manner; for example, see also in (Kermack and 

McKendrick, 1927; Burghes and Borrie, 1981; Anderson 

and May, 1992; Ellner and Guckenheimer, 2006): 

  
��(�)

��
   =  -  β*S(t)*I(t)  

��(�)

��
    =   β*S(t)*I(t) 

-  γ* I(t)  
��(�)

��
  =   γ* I(t)  

Note again, that the parameter β in principle depends on 

the overall population size. This means that to do 

experiments with different overall population sizes, 

different values for β may have to be used. Based on these 

equations the following analysis has been made: 
 

(a)  Threshold for increase/decrease of infective 

population 

Increase and decrease of the size of the population of 

infectives are characterised by 
��(�)

��
  ≥ 0      ⇔  β*S(t)*I(t) -  γ* I(t) ≥ 0 

��(�)

��
  

≤ 0      ⇔   β*S(t)*I(t) -  γ* I(t) ≤ 0 

This can be characterised by the size of the population of 

susceptibles as follows with ρ = γ /β: 

I(t)  increasing   ⇔    S(t) ≥ ρ  I(t)  

decreasing   ⇔    S(t) ≤ ρ 

This shows that the usual pattern is that the size of the 

population of infectives will increase until the size of the 

population of susceptibles has become lower than the 

threshold ρ, after which it will decrease. In particular, 

when the initial size S(0) is already less than this threshold 

ρ, then the number of infectives will decrease right from 

the start. This is called the epidemic threshold law with 

threshold ρ. 
 

(b)  Equilibria 

An equilibrium occurs if and only if   
��(�)

��
  =  

��(�)

��
  =  

��(�)

��
  =  0 , which is characterised by 

β*S(t)*I(t) =  β*S(t)*I(t) -  γ* I(t) = γ* I(t) = 0. This is 

equivalent to I(t) = 0. Notice that by itself this does not 

put any constraint on S(t) or R(t). Equilibria may depend 

on initial values as well. However, taken together with a) 

in the usual pattern in an equilibrium state S(t) will have 

become below ρ. So, when ρ is rather small (e.g., 

individuals remain infective for a long time, or contact 

intensity is high), the number of individuals that never 

become infected will also be small, or even zero. These 

observations are illustrated by simulations in the next 

section. 
 

(c) Relation between equilibria and initial values 

From the set of differential equations, in particular the first 

and third one, it can be derived that 

��(�)

��
   =  -  β*S(t)*I(t)  = - 

�

ρ
 S(t)  

��(�)

��
   or   

��(�)

��
  =  - 

ρ

�(�) 
  

��(�)

��
  . By integration, using the natural logarithm, it 

follows for all t it holds R(t)  =  C - ρ log(S(t)) with C a 

constant. Assuming R(0) = 0, it holds  C = ρ log(S(0)). 

Therefore  

  R(t) = ρ log(S(0)) - ρ log(S(t)) = ρ log(S(0)/S(t)).  

Equivalent forms are:  
�(�)/ρ = S(0)/S(t) S(t) =  S(0) 


��(�)/ρ  S(0) =  S(t) 
�(�)/ρ. Now, according to (a) for an 

equilibrium occurs if and only if I(t) = 0, which is 

equivalent to S(t) + R(t) = N. Filled in the above formula 

this obtains: S(0) =  (N - R(t)) 
�(�)/ρ or S(0) =  S(t) 


(��(�))/ρ. This shows a relation between the population 

sizes in an equilibrium state and the initial values; note 

that S(0) = N – I(0).  Note that conversely, each of these 

relations also implies that S(t) + R(t) = N, hence I(0) = 0 

and an equilibrium state occurs. So, these relations provide 

if and only if criteria for an equilibrium to occur. 

4.  Population-Based Simulations 
A number of population-based simulation experiments 

have been performed using standrad simulation software. 

In Figures 2 and 3 results are shown of one of them, with 

time scale in days. In the first simulation shown in Figure 

2 the whole population gets infected; it used the following 

parameter settings: 
 N  100  

 ContactFrequency 0.8  

 ContactIntensity  0.5 

 β  0.004 

 γ  0.05 

 ρ  12.5 

Initially the size of the infective population is 1. Given the 

analysis above, in this case it may be expected that the size 

of the population of susceptibl-es will become below 12.5. 

Note that in this and next figures the scales on the 

vertical axis differ. 

   
Figure 2 Pattern in which the whole population gets infected 
 

The size of the susceptibles decreases to zero, while the 

size of the infective population increases until day 20 and 

decreases after this day. The size of the recovered 

population shows a logistic growth pattern with the whole 

susceptible 

recovered 

infective 



population of 100 as limit. Notice that the maximal size of 

the population of infectives is taken at the time point that 

the size of the susceptibles population is around 

which is the value of the threshold ρ. 

 In the second simulation, shown in Figure 4, only part 

of the population gets infected; parameter settings were:
  N  100  
  ContactFrequency 0.6  

  ContactIntensity 0.2 

  β  0.0012 

  γ  0.1 

  ρ  83.3 

Here initially the size of the infective population is 10. 

Apparently here the contact frequency and intensity were 

low enough to let the infection die out: 

population is never infected. The logistic growth pattern of 

the (infected and) recovered population has its limit 

around 50. Nevertheless, the individuals still did not bring 

their contacts down to zero, or even close to zero.

Figure 3  Only part gets infected, starting with 10
 

This shows that by relatively small differences in 

behaviour at the individual level, relatively big differences 

at the collective level can be realised. Notice that 

case the maximal size of the population

the time point that the size of the susceptibles population 

is around 83, which is the value of the thershold

5.  AN AGENT-BASED MODEL  
 

To obtain a model at the level of individual agents

distinct agents and L distinct locations are introduced. 

every time point each agent is at some location, at random. 

Contacts between agents are modelled as being at the same 

location. By taking the number L of locations (numbered 

by 1, 2, …, L) lower or higher, a specific 

is modelled. Each agent is in precisely one of

infection states (susceptible, infective, recovered). 

 The number of locations has a relationship with the 

contact frequency in the following manner. If 

number of locations, and N the number of 

average number of agents at one location is 

average number of contacts of one agent

is N/L – 1. This is equal to the contact frequency. 

4 

 

Notice that the maximal size of 

ken at the time point that 

the size of the susceptibles population is around 12.5, 

In the second simulation, shown in Figure 4, only part 

parameter settings were: 

Here initially the size of the infective population is 10. 

Apparently here the contact frequency and intensity were 

low enough to let the infection die out: around 50% of the 

population is never infected. The logistic growth pattern of 

the (infected and) recovered population has its limit 

. Nevertheless, the individuals still did not bring 

close to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

infected, starting with 10 

This shows that by relatively small differences in 

behaviour at the individual level, relatively big differences 

 Notice that for this 

the maximal size of the population of infectives is at 

the time point that the size of the susceptibles population 

the thershold ρ. 

To obtain a model at the level of individual agents, N 

distinct locations are introduced. At 

is at some location, at random. 

s are modelled as being at the same 

of locations (numbered 

) lower or higher, a specific contact frequency 

is in precisely one of three 

, recovered).  

The number of locations has a relationship with the 

contact frequency in the following manner. If L is the 

the number of agents, then the 

s at one location is N/L, so the 

agent at such a location 

equal to the contact frequency. 

Therefore ContactFrequency = N/L  

between number of locations and contact fr

able to compare this model at the 

at the population level, it is convenient to have contact 

frequency as a basic parameter.  To this end, the relation 

between the number of locations and contact frequency 

shown above is used in an inverse manner to determine the 

number of locations for a given value of the contact 

frequency: L = N/ (ContactFrequency + 1)

For a given contact frequency, this 

for the number of locations: the locations are ind

the natural numbers k with 

locations of the agents are determined at random, using 

this bound L by taking at random one of the natural 

numbers between 1 and L. 

 When a suceptible agen

probability that infection takes place depends on the 

contact intensity, but also on the number 

agents present at that location. 

model, contact intensity may be taken as depend

agent or even on the pair of agents involved in a contact, 

for reasons of comparability with the population

model the contact intensities are taken uniform: in any 

contact between any susceptible agent 

agent B, the probability that 

ContactIntensity. Given this assumption, t

that agent A will not be infected by 

agent at the same location

Assuming independence of 

probability that a will not be infected by any of the

infective agents present at that location

ContactIntensity)
k
. Therefore the probability that 

infected at that location (at that time point) is

ContactIntensity)
k. 

 The following relationships describe the changes of the 

infection state of an agent

independent random numbers between 

time point, but refreshed at new time points. 

susceptible agent is at a location wher

infective agents are present, the transmission of the 

infection at that time point has a probability given by the 

contact intensity. Moreover, for someone who is infective 

there is a probability of recovery given by the recovery 

rate. This is modelled by:

infective if InfectionState(A, 

are k infective agents at the same location as 

– (1 – ContactIntensity)
k 

or 

and   r2 ≥ RecoveryRate. Moreover,

= recovered if InfectionState

RecoveryRate  or InfectionState

other cases InfectionState(A

6.  AGENT-BASED SIMULATIONS
 

Similar simulation experiments as the ones described 

above have been performed using the model at the level of 

the individuals. As this model is based on random choices, 

ContactFrequency = N/L  - 1 gives the relation 

between number of locations and contact frequency. To be 

able to compare this model at the agent level to the model 

level, it is convenient to have contact 

frequency as a basic parameter.  To this end, the relation 

of locations and contact frequency 

shown above is used in an inverse manner to determine the 

number of locations for a given value of the contact 

L = N/ (ContactFrequency + 1). 

For a given contact frequency, this L is taken as a bound 

mber of locations: the locations are indexed by 

with 1≤k≤L. At each time point 

s are determined at random, using 

by taking at random one of the natural 

agent A is at a certain location, the 

probability that infection takes place depends on the 

contact intensity, but also on the number k of infective 

agents present at that location. Although in an agent-based 

model, contact intensity may be taken as depending on the 

agent or even on the pair of agents involved in a contact, 

for reasons of comparability with the population-based 

model the contact intensities are taken uniform: in any 

contact between any susceptible agent A and any infective 

ability that A will be infected is 

. Given this assumption, the probability 

will not be infected by a specific infective 

agent at the same location is 1 – ContactIntensity. 

Assuming independence of these probabilities, the 

ability that a will not be infected by any of the 

infective agents present at that location is (1 – 

Therefore the probability that A will be 

infected at that location (at that time point) is  1 – (1 – 

The following relationships describe the changes of the 

an agent A. Here r1 and r2 are two 

independent random numbers between 0 and 1: fixed per 

time point, but refreshed at new time points. When a 

is at a location where one or more 

are present, the transmission of the 

infection at that time point has a probability given by the 

contact intensity. Moreover, for someone who is infective 

there is a probability of recovery given by the recovery 

modelled by: InfectionState(A, t+1) =  

, t) =  susceptible   and   there 

infective agents at the same location as A  and r1 < 1 

 InfectionState(A, t) = infective  

Moreover, InfectionState(A, t+1) 

InfectionState(A, t) = infective and  r2 < 

InfectionState(A, t) = recovered. In all 

A, t+1) =  susceptible. 

BASED SIMULATIONS 

Similar simulation experiments as the ones described 

above have been performed using the model at the level of 

the individuals. As this model is based on random choices, 
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the patterns can vary. In Figure 4 two example traces based on the following parameter settings are shown. 
  N  10  

  ContactFrequency 0.8  

  ContactIntensity 0.5 

  RecoveryRate 0.05 

  β = 0.04   γ =  0.05   ρ = 1.25 

 N   10  

 ContactFrequency 0.6  

 ContactIntensity  0.2 

 RecoveryRate  0.1 

 β = 0.012  γ = 0.1  ρ  = 8.3 

The infection states are indicated by numbers 0 

(susceptible), 1 (infective) and 2 (recovered). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 4  Pattern in which the whole population gets infected 
 

These settings correspond to the ones for the trace shown 

in Figure 2. Initially one agent is infective. In the upper 

graph it is shown how individuals get infected one after 

the other. At the start A2 is infective. Already from the 

second day on, A4, A7 and A10 get infected. After that 

A8, A5 and A6 follow, and finally A1, A9 and A3 get 

infected. In the second graph in Figure 4 the aggregated 

number of susceptibles is shown, in the third graph the 

number of infectives, and in the lower graph the number of 

recovered individuals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5  Pattern in which part of the population gets infected 

 

The pattern is similar to the pattern shown in Figure 2. 

Note that also here the maximal number of infectives is 

reached at the time point that the number of susceptibles 

drops under ρ. Initially 1 agent is infective. In the upper 

graph it is shown how three individuals get infected. At 

the start A2 is infective. Soon A6 gets infected but 

recovers already in two days. Since A2 takes longer to 

recover, A8 is infected on day 5. After 6 days A8 recovers, 

and in the meantime also A2 recovered. No further 

agent infection states 

susceptibles 

infectives 

recovered 

agent infection 

states 

susceptibles 

infectives 

recovered 
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infections took place. The pattern is similar to the pattern 

shown in Figure 4. Note that also here the maximal 

number of infectives coincides with the number of 

susceptibles dropping below the threshold ρ. 

 From other simulations it was found out that this 

example trace is a bit exceptional for this setting. Most 

traces of the individual model show either only one or two 

infectives, after which the epidemic dies out, or (almost) 

all individuals become infected. See Figure 6 for an 

overview of 100, resp. 1000 experiments with the model 

for 10 agents. The average number of recovered agents for 

this sample is 5.71. Note that this means that the model at 

the collective level shows a kind of average pattern that 

for the model at the individual level for 10 agents almost 

never occurs.  
 

 
 

Figure 6 Numbers recovered for 100, resp. 1000 runs for 10 

agents with 10% initially infected 

 

Under similar experimental configurations simulations for 

larger population has been conducted through simulation 

software developed in the C++ language. Figure 7 shows 

the results of 1000 simulations conducted for both 

populations of 100 and 1000 agents carrying 10 percent 

initially infected. In these simulations the agent-based 

model shows a different pattern. Rather than an average 

pattern as for the case of 10 agents; see Figure 6, it shows 

single peak towards the higher number of recovered agents 

with an average of (approximately) 93 percent recovered 

agents in both cases. Variation in number of recovered 

agents for 1000 samples in case of population count 100 

and 1000 was 31 and 9 percent respectively, which is 

much lower then 90 percent variation in all samples 

observed in population count 10. Moreover, the average 

on all simulations were also close to the peak that differs a 

lot from both the outcome of agent based model at low 

population as 10 agents; See Table 1, and the population-

based model. 
 

 

Figure 7 Numbers recovered for 1000 runs for 100, resp. 1000 

agents with 10% initially infected. 

 

Total Population 10 100 1000 

Initial Susceptible  

Initial Infected 

Average Recovered 

9 

1 

61.62 

90 

10 

93.50 

900 

100 

93.83 

Min Recovered 10.00 69.00 88.20 

Max Recovered 100.00 100.00 97.30 

Variation in Samples 90.00 31.00 9.10 
 

Table 1 Average Percentage of min, max and average recovered 

in the sample of 1000 simulations for 10, 100 and 1000 agents 

respectively with 10% initially infected. 
  

In Fig. 8 the results for similar populations have been 

shown with 1% initially infected. In these simulations for 

a population of overall size 100 an average of 60.5% 

recovered and 99% variation in all samples was observed 

which is somewhat similar in behaviour as of population 

count 10; see Fig. 6, that also shows two peaks with nearly 

average pattern. But the population of overall size 1000 

has shown a graph almost similar to an average of 92.98% 

and 8.40% variation in all samples as that has been seen 

for 10% initially infected for the same population count; 

see Fig. 7. To further investigate this behaviour change as 

seen in a population of overall size 100 with a change of 

percentage of initially infected, simulations were 

performed for 0.1% initially infected for a population 

count of 1000. These simulations have confirmed the 

graph change pattern observed in case of population count 

100; see Fig. 9. 
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Figure 8 Numbers of recovered agents for a sample of 1000 

simulations for 100 and 1000 agents respectively with 1 percent 

[1 and 10 agents respectively] initially infected. 
 

From the above simulations it is evident that in agent-

based simulations for epidemics the percentage of the 

initially infected population is not the factor to be taken 

same for similar experimental configuration for different 

population sizes but it is the number of initially infected 

agents that should be taken same; see also Table 2.  
 

Table 2 Average Percentage of min, max and average recovered 

in the sample of 1000 simulations for 10, 100 and 1000 agents 

respectively with 1 agent initially infected. 
 

Total Population 10 100 1000 

Initial Susceptible  

Initial Infected 

Average Recovered 

9 

1 

61.62 

99 

1 

60.4 

999 

1 

58.5 

Min Recovered 10.00 1.00 0.10 

Max Recovered 100.00 100.00 96.40 

Variation in Samples 90.00 99.00 96.30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 Numbers of recovered agents for a sample of 1000 

simulations for 1000 agents respectively with 0.1 percent [1 

agent] initially infected  
 

From above it is found that in population-based modelling 

of epidemics a similar percentage of initially infected 

population yields in a similar percentage of recovered 

population for all total population sizes; see Table 3. But 

in case of agent-based modelling the initial count of the 

infected population the (approximately) yields a similar 

percentage of recovered population for all total population 

sizes; see Table 4. 
 N 10 100 1000 

I (0)      

10%  55.620 55.620 55.620 

1%  34.910 34.910 34.910 

0.10%  27.070 27.070 27.070 
 

Table 3 Percentage of recovered population in total population 

count [N] 10, 100 and 1000 agents respectively with 10, 1 and 

0.1 percent initially infected [I(0)] in population based 

simulation. 

 N 10 100 1000 

I (0)     

1  61.620 60.485 58.502 

10  100.00 93.506 92.982 

100  ----- 100.00 93.830 
 

Table 4 Average Percentage of recovered in the sample of 1000 

simulations for total population count [N] 10, 100 and 1000 

agents respectively with 1, 10 and 100 initially infected agents 

[I(0)] in agent based simulation. 

 

Taking this number of initially infected agents rather then 

percentage of initially infected population as a parameter 

for similar experimental configuration is yet another subtle 

difference between population-based and agent-based 

simulation results of epidemics; see Table 3 and Table 4. 

  

7.  DISCUSSION 
 

Papers addressing agent-based simulation of epidemics 

usually do not make a comparison between population-

based models and agent-based models; see for example 

(Emrich, Suslov, Judex, 2007).  Although in (Bagni, 

Berchi, and Cariello, 2002), a number of different types of 

models are briefly discussed, these models have not been 

compared by applying them to certain scenarios. 

 The comparative exploration of population-based 

simulation and agent-based simulation reported in this 

paper shows different phenomena that were not directly 

easy to predict. For the settings that were used as an 

illustration, a large number of agent-based simulations 

based on only 10 agents provided an average of infected 

and recovered persons around 5 that is not far from the 

results of the population-based model with the same 

settings. However, the variation was very wide. It was 

very rare that the simulation came up with a result that is 

close to the average. On the contrary, almost half of them 

ended up in 1, and almost the other half in the maximal 

number of 10 recovered persons. For higher numbers of 

agents (100 and 1000) the outcome is completely different. 
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For these cases the outcomes concentrate on the maximal 

number of infected and recovered persons; the variation is 

very low for these cases. Furthermore, the averages are 

also close to the maximal number of persons and therefore 

deviate a lot (around 100%) from the outcome of the 

population-based model with the same settings with 

average around 5. 

 Based on the results of this comparative case study the 

following can be noted: 
 

• Average outcomes do not match well 

The assumption that a population-based model shows the 

same results as the average of agent-based models only 

holds for the smaller number of agents, not for the larger 

numbers; this is the opposite as is sometimes assumed: 

that for larger numbers of agents the averages will 

approximate the outcome of a population-based 

simulation. This assumption is refuted by the simulation 

experiments. 
 

• Variation low for large numbers of agents 

However, for small numbers of agents the variation is so 

high that the average number gets less meaning.  
 

• Agent-based simulations more faithful? 

The answer on this question can be yes or don’t know. Yes 

because a real difference is shown, so probably the agent-

based model will be closer to reality. The answer can also 

be ‘don’t know’ because it is not clear at forehand which 

of the two different outcomes is closer to reality. Possibly 

reality is even in between the two outcomes. To verify 

this, detailed empirical data have to be analysed, which 

was not (yet) performed for this first explorative study. 
 

• The threshold law 

The threshold law shows in both the agent-based and 

population-based simulations. 
 

Further work would be to take empirical data and compare 

the two types of models with these data. Moreover, the 

relationship between equilibria and the initial values for 

susceptibles and infectives can be explored further in the 

context of empirical data. 
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