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Abstract. Human task performance may vary depending on the characteristics 
of the human, the task and the environment over time. To ensure high 
effectiveness and efficiency of the execution of tasks, automated personal 
assistance may be provided to task performers. A personal assistant agent may 
constantly monitor the human’s state and task execution, analyse the state of the 
human and task, and intervene when a problem is detected. This paper proposes 
a generic design for a Personal Assistant agent model which can be deployed in 
a variety of domains. Application of the Personal Assistant model is illustrated 
by a case study from the naval domain. 

1 Introduction 

Human task performance can degrade over time when demanding tasks are being 
performed. Such degradation can for instance be caused by available resources being 
exceeded [1]. Furthermore, the effectiveness and efficiency of the task execution are 
often dependent on the capabilities, experience, and condition of the actor performing 
the task. Different actors may require different degrees of assistance and various 
resources for the task execution. High effectiveness and efficiency levels are of 
particular importance for critical tasks. Furthermore, as a longer term aim, the human 
should remain healthy during the processes of task execution. To overcome the 
limitations of human cognition (e.g. in attention span, working memory and problem 
solving), the term augmented cognition (AugCog) has been proposed, which can be 
defined as a research field that aims at supporting humans by development of 
computational systems that ‘extend’ their cognition [2].  

As examples of AugCog, intelligent personal assistants exist that support humans 
during the execution of tasks (see e.g. [3], [4]). Such personal assistants usually 
include models that represent the state of the human and his or her tasks at particular 
time points, which can be utilized to determine when intervention is needed. An 
example of such a model addresses the cognitive load of the human (see e.g. [5]). The 
considered aspect of human behaviour and of the execution of tasks is unique. The 
existing models proposed for personal assistants focus on a certain domain and hence 



are not generic. This paper presents a generic design for a Personal Assistant agent 
model. The Personal Assistant can use specific dynamical models to monitor and 
analyse the current processes of the human. Specific sensors measure the human’s 
psychophysiological state (e.g., heart rate) and the state of the environment (e.g., 
noise) to detect a possible problem and to test hypotheses. If needed, intervention 
actions are selected for the specific state, domain and task. 

The paper is organized as follows. The generic model for a Personal Assistant 
agent which performs monitoring and guidance is described in Section 2. A scenario 
realised in a prototype implementation is described in Section 3. The multi-agent 
context for the Personal Assistant agent is described in Section 4. Finally, Section 5 
concludes the paper. 

2 The Generic Personal Assistant Agent Model 

The personal assistant agent (PA) supports a human during the execution of a task. A 
personal assistant’s main function is monitoring and guidance of the human to whom 
it is related. Personal assistants also interact with the physical world by performing 
observations (e.g., of the human’s actions and their effects).The agent model for PA 
was designed based on the component-based Generic Agent Model (GAM) presented 
in [6]. Within the Generic Agent Model the component World Interaction 
Management takes care of interaction with the world, the component Agent 
Interaction Management takes care of communication with other agents. Moreover, 
the component Maintenance of World Information maintains information about the 
world, and the component Maintenance of Agent Information maintains information 
about other agents. The component Own Process Control initiates and coordinates the 
internal agent processes. In the component Agent Specific Task, domain-specific tasks 
were modelled, in particular monitoring and guidance. At the highest abstraction level 
the component consists of 5 subcomponents: Coordination, Monitoring, Analysis, 
Plan Determination, and Plan Execution Preparation. 

2.1 Coordination  

The initial inputs for the process are the goals provided from PA’s Own Process 
Control component, which are refined within the Coordination component into more 
specific criteria that should hold for the human’s functioning (e.g., 80% of certain 
objects on a radar screen should be identified within 30 seconds). Note that goal 
refinement may also occur after the initialization phase based on the results of 
particular observations. For example, based on the acceptance observation of a task by 
the human, the criteria for particular task execution states may be generated from task-
related goals. More specifically, for the Personal Assistant agent a set of prioritized 
general goals is defined, which it strives to achieve. Some of these goals are related to 
the quality of the task execution, others concern the human’s well-being (see Table 1). 
Goals of two types are distinguished:  



(1) achievement goals (e.g., goals 1-3 in Table 3) that express that some state is 
required to be achieved at (or until) some time point, specified by  

 

has_goal(agent, achieve(state, time)) 
 

 (2) maintenance goals (e.g., goals 4-7 in Table 3) that express that some state is 
required to be maintained during a time interval specified by  

 

has_goal(agent, maintain(state, begin_time, end_time))  
 

A role description may contain role-specific goals that are added to general goals.  
Although refinement may be defined for some general goals of the personal 

assistant agent, most of them remain rather abstract. Using the information about the 
human and the assigned tasks, some goals of the personal assistant agent may be 
refined and instantiated into more specific, operational goals. This is done by the Own 
Process Control component of the personal assistant agent. For example, one of the 
subgoals of goal 7 (‘It is required to maintain a satisfactory health condition’) 
expresses ‘It is required to maintain the human’s heart rate within the acceptable 
range’. Based on the available information about the physical characteristics of the 
human (e.g., the acceptable heart rate range is 80-100 beats per minute), this goal may 
be instantiated as ‘It is required to maintain the human’s heart rate 80-100 beats per 
minute’. Also the task-related generic goals can be refined into more specific goals 
related to the particular tasks from the provided package (e.g., ‘It is required to 
achieve the timely execution of the task repair sensor TX324’). New goals resulting 
from refinement and instantiation are provided by the Own Process Control 
component to the Agent Specific Task component of the Personal Assistant agent, 
which is responsible for checking if the generated goals are satisfied. The criteria are 
fed to the Monitoring component, which is discussed below. 

Table 1. General goals defined for the Personal Assistant agent 

# Goal 
1 It is required to achieve the timely task execution 
2 It is required to achieve a high degree of effectiveness and efficiency of the task execution 
3 It is required to achieve a high degree of safety of the task execution  
4 It is required to maintain the compliance to a workflow for an assigned task 
5 It is required to maintain an acceptable level of experienced pressure during the task execution 
6 It is required to maintain the human’s health condition appropriate for the task execution 
7 It is required to maintain a satisfactory health condition of the human  

 

2.2 Monitoring  

Within the Monitoring component, it is determined what kinds of observation foci are 
needed to be able to verify whether the criteria hold. In the object identification 
example, this could be “identification” (i.e. the event that the human identified an 
object).  

The identified observation foci are translated into a number of concrete sensors 
being activated. As a form of refinement it is determined how specific information of a 
desired type can be obtained. For this a hierarchy of information types and types of 



sensors is used, as is information about the availability of sensors. For example, if the 
observation focus “identification” is established, the monitoring component could 
refine this into two more specific observation foci “start identification” and “stop 
identification”. For the first observation an eye tracker could be turned on, while the 
second could be observed by looking at the events generated by a specific software 
component. Finally, Monitoring combines the detailed observations and reports the 
higher-level observation to Analysis.   

2.3 Analysis 

If the Analysis component infers (based on a conflict between the criteria and the 
observations) that there is a problem, it aims to find a cause of the problem. Based on 
an appropriate dynamic model, hypotheses about the causes are generated using 
forward and backward reasoning methods (cf. [7]). First, temporal backward 
reasoning rules are used to derive a possible hypothesis regarding the cause of the 
problem: 

 

if   problem(at(S:STATE, I1:integers), pos)   
then  derivable_backward_state(at(S:STATE, I1:integers)); 

 if   leads_to_after(M:MODEL, S1:STATE, S2:STATE, I2:integers,pos) 
   and  derivable_backward_state(at(S2:STATE, I1:integers))  and I3:integers = I1:integers - I2:integers 
then  derivable_backward_state(at(S1:STATE, I3:integers)); 

if     intermediate_state(S:STATE)   and derivable_backward_state(at(S:STATE, I:integers)) 
then  possible_hypothesis(at(S:STATE, I:integers)) 
 

Hereby, the first rule indicates that in case a problem is detected (a state S holding 
at a particular time point I1), then this is a derivable backward state. The second rule 
states that if a causal rule specifies that from state S1 state S2 can be derived after 
duration I2 with a specific model (represented via the leads_to_after predicate), and the 
state S2 has been marked as a derivable backward state (at I1), then S1 is also a 
derivable backward state, which holds at I1 – I2. Finally, if something is a derivable 
backward state, and it is an internal state (which are the ones used as causes of 
problems), then this state is a possible hypothesis. Using such abductive reasoning of 
course does not guarantee that such hypotheses are correct (e.g. it might also be 
possible to derive J from another state). Therefore, the analysis component assumes 
one hypothesis (based upon certain heuristic knowledge, see e.g. [7]) and starts to 
reason forwards to derive the consequences of the hypothesis (i.e. the expected 
observations): 

 

if       possible_hypothesis(at(S:STATE, I:integers)) 
then  derivable_forward_state_from(at(S:STATE, I:integers), at(S:STATE, I:integers)); 

if        leads_to_after(M:MODEL, S1:STATE, S2:STATE, I1:integers, pos) 
 and   derivable_forward_state_from(at(S1:STATE, I2:integers),at(S3:STATE, I3:integers)) 
 and  I4:integers = I2:integers + I1:integers 
then derivable_forward_state_from(at(S2:STATE, I4:integers), at(S3:STATE, I3:integers)); 

if       observable_state(S1:STATE) 
 and  derivable_forward_state_from(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers)) 
then  predicted_for(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers)); 
 

The predictions are verified by a request from the Monitoring component to 
perform these observations. For example, if a hypothesis based on a cognitive model 
is that the undesired function is caused by an experienced pressure that is too high, 



then the observation focus will be set on the heart rate. The monitoring component 
selects the sensors to measure this. After these observation results come in, the 
selected hypothesis can be rejected in case the observations do not match the 
predicted observations. An example rule thereof is specified below: 

 

if       observation_result(at(S1:STATE, I1:integers), neg)   
 and  selected_hypothesis(at(S2:STATE, I2:integers)) 
 and  predicted_for(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers)) 
then  to_be_rejected(S2:STATE); 

Eventually, this leads to the identification of one or more specific causes of the 
problems, which are communicated to Plan Determination.  

2.4 Plan Determination  

Within Plan Determination, based on the identified causes of undesired functioning, 
plans are determined to remedy these causes. This makes use of causal relations 
between aspects in a dynamic model that can be affected and the (internal) states 
identified as causes of the undesired functioning. Hereby, backward reasoning 
methods (as explained for the Analysis component) are used. These use the specific 
cause of the problem as input, and derive what actions would remedy this cause. To 
decide which actions are best, the Plan Determination component also uses 
knowledge about the compatibility of solutions, their effectiveness and their side 
effects. See [7] for more a detailed overview of possible selection strategies. In the 
example, this component could conclude that the “noise level” should be reduced to 
lower the experienced pressure. The analysis component monitors the effectiveness of 
this measure. If it does not solve the problem, or causes undesired side effects, this 
will be considered as a new problem, which will be handled through the same process. 

2.5 Plan Execution Preparation  

Finally, within Plan Execution Preparation the plan is refined by relating it more 
specifically to certain actions that have to be executed at certain time points. For 
example, reducing the noise level could be achieved by reducing the power of an 
engine, or closing a door. 

3 An Example Scenario  

A prototype of the system has been implemented in the modelling and prototyping 
environment for the component-based agent design method DESIRE [8]. This 
prototype has been used to evaluate the model for a specific scenario as specified by 
domain experts of the Royal Netherlands Navy. The scenario concerns the mechanic 
Dave, who works on a ship of the Navy: 

 



Dave just started his shift when he got an alarm that he had to do a regular check in the 
machine room; he accepted the alarm and walked towards the room. There he heard a 
strange sound and went to sit down to find the solution. However, he could not 
immediately identify the problem. At the same time, Dave received a critical alarm on his 
PDA: the close-in weapon system (CIWS) of the ship was broken. He immediately accepted 
the alarm, however continued to work on the engine problem, resulting in the more critical 
task to fix the close-in weapon system not being performed according to schedule. 
 

To apply the approach presented in this paper for this scenario, a number of models 
have been specified. First of all, the workflow models for the two tasks from the 
mechanic’s task package have been specified. For the sake of brevity, these models 
are not shown, but specified in [9]. Furthermore, a cognitive model concerning the 
experienced pressure is specified, which is shown in Figure 1. Hereby, the nodes 
indicate states and the arrows represent causal relationships between these states. 

 
 
 
 
 
 
 
 
 

Figure 1: Simplified cognitive model for experienced task pressure 
 

In the agent model, relations between the states have been represented using the 
leads_to_after predicate, specified by means of four parameters: the model name, a 
condition state, a consequence state, and a delay between the two. For instance, the 
relation 

leads_to_after(cogn1, and(normal_exp_pressure, normal_vitality), high_perf_quality, 1) 

indicates that a normal experienced pressure combined with normal vitality leads to a 
high performance quality of the task in one step. 

The presented scenario has been simulated within the prototype of the proposed 
architecture. Below, a brief overview of the steps the system takes is presented. When 
the system is started, the mechanic’s task package that comprises two task types 
maintain_engine and solve_ciws_problem is provided to Own Process Control of PA. The 
mechanic is characterized by the default profile with standard characteristics (e.g., the 
heart rate range is 60-100 beats per minute). Furthermore, a set of generic goals 
provided to Own Process Control is defined to achieve timely task execution for each 
task, and to maintain a good health for the human it supports. The goal related to the 
mechanic’s health is further refined stating that the experienced pressure and the 
vitality should remain normal: 

 

own_characteristic(has_goal(PA, achieve(ontime_task_execution, -1)) 
own_characteristic(has_goal(PA, maintain(good_health_condition, 0, -1))) 
own_characteristic(has_goal(PA, maintain(normal_exp_pressure, 0, -1))) 
own_characteristic(has_goal(PA , maintain(normal_vitality, 0, -1))) 

 

Here, ‘-1’ indicates infinite time. Based on the goals related to the mechanic’s 
health condition, the query for a cognitive model with the value normal_exp_pressure of 
the parameter states is generated and communicated by Own Process Control to MMA. 



As a result of this query, the model annotated by the corresponding parameters is 
indeed retrieved from MMA, and stored within the component MAI within PA: 

 

maintenance of agent information (PA) 
input: belief(leads_to_after(cogn1, and(normal_exp_pressure, normal_vitality), high_perf_quality, 1), pos)    
 etc. 
output:  see input 

 

The workflow models for the assigned tasks are extracted from MMA in a similar 
manner. 

Eventually, the models and the goals are also received by the Coordination 
component in Agent Specific Task. Based on this input Coordination generates 
specific criteria. In particular, based on the goals to maintain normal_exp_pressure and 
normal_vitality, the criteria to maintain the medium heart rate and the high performance 
quality are generated using the cognitive model. The generated criteria are provided to 
the Monitoring component, which sets the observation foci corresponding for these 
criteria.  

After this has all been done, a new assignment of a task is received from the World 
component, namely that a task of type maintain_engine has been assigned to the 
mechanic: 

 

physical world  
input:  -   
output:  observation_result(at(assigned_task_at(maintain_engine, 3), 3), pos)) 

 

Based on this information Coordination generates new criteria using the workflow 
model corresponding to the task. Most of these criteria establish the time points at 
which the execution states from the workflow should hold, for example:  

 

achieve(walk_to_engine, 4) 
 

These criteria are again sent to the Monitoring component within Agent Specific 
Task. Therefore, the component sets the observation foci to the states within the 
workflow. If no goal violation is detected, no actions are undertaken by the agent. 
After a while however, a new task is assigned, namely the task to fix the close-in 
weapon system (of type solve_ciws_problem), which is outputted by the world: 

 

observation_result(at(assigned_task_at(solve_ciws_problem, 23), 23), pos)) 
 

Again, the appropriate criteria are derived based on the corresponding workflow 
model. The Monitoring component continuously observes whether the criteria are 
being violated, and at time point 66 (when the mechanic should walk to the close-in 
weapon system) it observes that this is not the case. Therefore, a criterion violation is 
derived by the Monitoring component. 

monitoring (AST - PA) 
input:  observation_result(at(walk_to_ciws, 66), neg);  etc.    
output:  criterion_violation(walk_to_ciws)   etc. 

 
 

This criterion violation is received by the component Analysis, which is triggered to 
start analysing why the mechanic did not perform the task in a timely fashion. This 
analysis is performed using the cognitive model. The first hypothesis which is 
generated is that the cause is that the experienced pressure is normal, but the vitality 



abnormal. The Analysis component derives that a low heart rate must be observed to 
confirm this hypothesis (an observation that is not available yet): 

analysis (AST - PA) 
input:    observation_result(at(walk_to_ciws, 66), neg);    
 criterion_violation(walk_to_ciws) 
output:   selected_hypothesis(at(and(normal_exp_pressure, abnormal_vitality), 65);   
 to_be_observed(low_heart_rate)) 

Since the heart rate is not observed to be low, but high, the Analysis component 
selects another hypothesis that is confirmed by the observation results that are now 
present (after the heart rate has been received). The resulting hypothesis is abnormal 
experienced pressure, and normal vitality. This hypothesis is passed on to the Plan 
Determination component within Agent Specific Task of the PA agent. Agent Specific 
Task derives that the task level should be adjusted: 

plan determination (AST - PA) 
input:  selected_hypothesis(at(and(abnormal_exp_pressure, normal_vitality), 65) 
output:  to_be_adjusted(abnormal_task_level) 

To achieve this adjustment, the mechanic is informed that the maintenance task is not 
so important, and that the mechanic should focus on the close-in weapon system task. 
This eventually results in a normal task level of the mechanic. 

4 The Multi-Agent Context for the Personal Assistant Agent 

The Personal Assistant agent PA functions within the context of a multi-agent system 
consisting of different types of agents. In addition to the Personal Assistant itself the 
following agents are involved; models for all of them were designed based on the 
component-based Generic Agent Model (GAM) presented in [6]. The Model 
Maintenance Agent (MMA) contains a library of four types of models: monitoring and 
guidance models, cognitive models, workflow models and dialogue models. Models 
can be provided to PA upon request; to facilitate this process, each model is annotated 
with specific parameters. The State Maintenance Agent (SMA) maintains 
characteristics, states and histories of other agents, of the physical world and of the 
workflows. Information can be requested by the PA’s, using a specific element (i.e. 
agent, physical world, a workflow), an aspect (i.e. state, history) and a time interval 
for which information should be provided. In addition, the Mental Operations Agent 
(MOA) represents the mental part of the human. MOA is connected to the human’s 
physical body, which can act in the physical worlds. The Task Execution Support 
Agent (TESA) is used by the human as an (active) tool during the execution of a task.  

For each human that needs to be supported during the task execution a Personal 
Assistant agent is created. Initially, the Personal Assistant agent contains generic 
components only. The configuration of it is performed based on the role that needs to 
be supported by the agent, on the characteristics of a human who is assigned to this 
role, and on the goals defined for the Personal Assistant agent.  

The configuration of the self-maintaining personal assistant agent begins with the 
identification of the suitable monitoring and guidance task model(s) that need(s) to be 
requested from the model maintenance agent. To this end, the model parameters are 
identified by the Own Process Control component based on the goals of the personal 
assistant agent. For example, to establish if the human complies with a workflow 



model, diagnosis of the human’s state may need to be performed. Thus, a query to the 
model maintenance agent is given which includes the parameter type of analysis with 
value diagnosis. When a query is specified, the function model_query(query_id, param, 

list_of_values) is used, where the first argument indicates a query identifier, the second 
argument indicates a parameter and the third argument indicates a list of parameter 
values.  

The choice of cognitive models is guided by the goals that concern internal states 
of the human. From the goals in Table 1 and their refinements and instantiations, a 
number of internal states can be identified, among which experienced pressure and heart 

rate. For such states and for each task the appropriate cognitive, workflow and 
dialogue models are extracted from the model maintenance agent. By matching 
queries received from the personal assistant agent with the annotations of the 
maintained models, the model maintenance agent identifies the most suitable 
model(s), which is (are) communicated to the requestor. The provided models are 
stored in the Maintenance of Agent Information component of the personal assistant. 

More details about the multi-agent context of the personal assistant agent can be 
found in [10]. 

5 Conclusions  

In every organisation a set of critical tasks exists that greatly influence the satisfaction 
of important organisational goals. Thus, it is required to ensure effective and efficient 
execution of such tasks. To this end, automated personalized assistance for the task 
performers may be used. In this paper, a generic agent model for personal support 
during task execution has been proposed. This agent model allows the use of 
dynamical models and information about the assigned goals and tasks. The personal 
assistant agent performs monitoring and analysis of the behaviour of the supported 
human in his/her environment. In case a known problem is detected, the agent tries to 
identify and execute an appropriate repair action. The fact that the architecture is 
generic differentiates the approach from other personal assistants such as presented in 
[5; 6]. Besides being generic, the proposed personal assistant agent has an advantage 
of being relatively lightweight, as it only maintains and processes those models that 
are actually needed for the performance of the tasks. It can therefore run upon for 
instance a PDA or cell phone. To provide the required functionality for personal 
assistant agents, the multi-agent context in which it functions includes model 
maintenance and state maintenance agents. 

When performing a task, especially in highly demanding circumstances, human 
performance can be degraded due to increased cognitive workload. A possible 
negative effect of high cognitive workload is that it leads to a reduction in attention 
and situation awareness [11]. Situation awareness refers to the picture that people 
have of the environment (e.g., [12]). In case of low situation awareness this picture is 
wrong, which will often lead to wrong decision making (e.g., [13]). In the literature, it 
is known that automated systems can also impose a negative effect on cognitive 
workload or situation awareness [14]. Therefore, systems have been designed that are 
adaptive, e.g. in only providing aiding when it is necessary [5]. For this, a human’s 



cognitive state should be assessed online; since this is difficult, often adaptive systems 
like this are based on psychophysiological measurements, like brain activity and eye 
movements (e.g. [15], [5]). The personal assistant model described in this paper 
makes use of such measurements, but in addition uses models of cognitive states and 
dynamics, and the current workflow to be able to assess the online state of the human. 
This allows for an optimal support of the human.  
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