
A Generic Personal Assistant Agent Model
for Support in Demanding Tasks

Tibor Bosse1, Rob Duell2, Mark Hoogendoorn1, Michel Klein1, Rianne van

Lambalgen1, Andy van der Mee2, Rogier Oorburg2, Alexei Sharpanskykh1, Jan Treur1,
and Michael de Vos2

1Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{tbosse, mhoogen, mcaklein, rm.van.lambalgen, sharp, treur}@few.vu.nl
2Force Vision Lab, Barbara Strozzilaan 362a, 1083 HN Amsterdam, The Netherlands

{rob, andy, rogier, michael}@forcevisionlab.nl

Abstract. Human task performance may vary depending on the characteristics
of the human, the task and the environment over time. To ensure high
effectiveness and efficiency of the execution of tasks, automated personal
assistance may be provided to task performers. A personal assistant agent may
constantly monitor the human’s state and task execution, analyse the state of the
human and task, and intervene when a problem is detected. This paper proposes
a generic design for a Personal Assistant agent model which can be deployed in
a variety of domains. Application of the Personal Assistant model is illustrated
by a case study from the naval domain.

1 Introduction

Human task performance can degrade over time when demanding tasks are being
performed. Such degradation can for instance be caused by available resources being
exceeded [1]. Furthermore, the effectiveness and efficiency of the task execution are
often dependent on the capabilities, experience, and condition of the actor performing
the task. Different actors may require different degrees of assistance and various
resources for the task execution. High effectiveness and efficiency levels are of
particular importance for critical tasks. Furthermore, as a longer term aim, the human
should remain healthy during the processes of task execution. To overcome the
limitations of human cognition (e.g. in attention span, working memory and problem
solving), the term augmented cognition (AugCog) has been proposed, which can be
defined as a research field that aims at supporting humans by development of
computational systems that ‘extend’ their cognition [2].

As examples of AugCog, intelligent personal assistants exist that support humans
during the execution of tasks (see e.g. [3], [4]). Such personal assistants usually
include models that represent the state of the human and his or her tasks at particular
time points, which can be utilized to determine when intervention is needed. An
example of such a model addresses the cognitive load of the human (see e.g. [5]). The
considered aspect of human behaviour and of the execution of tasks is unique. The
existing models proposed for personal assistants focus on a certain domain and hence

are not generic. This paper presents a generic design for a Personal Assistant agent
model. The Personal Assistant can use specific dynamical models to monitor and
analyse the current processes of the human. Specific sensors measure the human’s
psychophysiological state (e.g., heart rate) and the state of the environment (e.g.,
noise) to detect a possible problem and to test hypotheses. If needed, intervention
actions are selected for the specific state, domain and task.

The paper is organized as follows. The generic model for a Personal Assistant
agent which performs monitoring and guidance is described in Section 2. A scenario
realised in a prototype implementation is described in Section 3. The multi-agent
context for the Personal Assistant agent is described in Section 4. Finally, Section 5
concludes the paper.

2 The Generic Personal Assistant Agent Model

The personal assistant agent (PA) supports a human during the execution of a task. A
personal assistant’s main function is monitoring and guidance of the human to whom
it is related. Personal assistants also interact with the physical world by performing
observations (e.g., of the human’s actions and their effects).The agent model for PA
was designed based on the component-based Generic Agent Model (GAM) presented
in [6]. Within the Generic Agent Model the component World Interaction
Management takes care of interaction with the world, the component Agent
Interaction Management takes care of communication with other agents. Moreover,
the component Maintenance of World Information maintains information about the
world, and the component Maintenance of Agent Information maintains information
about other agents. The component Own Process Control initiates and coordinates the
internal agent processes. In the component Agent Specific Task, domain-specific tasks
were modelled, in particular monitoring and guidance. At the highest abstraction level
the component consists of 5 subcomponents: Coordination, Monitoring, Analysis,
Plan Determination, and Plan Execution Preparation.

2.1 Coordination

The initial inputs for the process are the goals provided from PA’s Own Process
Control component, which are refined within the Coordination component into more
specific criteria that should hold for the human’s functioning (e.g., 80% of certain
objects on a radar screen should be identified within 30 seconds). Note that goal
refinement may also occur after the initialization phase based on the results of
particular observations. For example, based on the acceptance observation of a task by
the human, the criteria for particular task execution states may be generated from task-
related goals. More specifically, for the Personal Assistant agent a set of prioritized
general goals is defined, which it strives to achieve. Some of these goals are related to
the quality of the task execution, others concern the human’s well-being (see Table 1).
Goals of two types are distinguished:

(1) achievement goals (e.g., goals 1-3 in Table 3) that express that some state is
required to be achieved at (or until) some time point, specified by

has_goal(agent, achieve(state, time))

 (2) maintenance goals (e.g., goals 4-7 in Table 3) that express that some state is
required to be maintained during a time interval specified by

has_goal(agent, maintain(state, begin_time, end_time))

A role description may contain role-specific goals that are added to general goals.
Although refinement may be defined for some general goals of the personal

assistant agent, most of them remain rather abstract. Using the information about the
human and the assigned tasks, some goals of the personal assistant agent may be
refined and instantiated into more specific, operational goals. This is done by the Own
Process Control component of the personal assistant agent. For example, one of the
subgoals of goal 7 (‘It is required to maintain a satisfactory health condition’)
expresses ‘It is required to maintain the human’s heart rate within the acceptable
range’. Based on the available information about the physical characteristics of the
human (e.g., the acceptable heart rate range is 80-100 beats per minute), this goal may
be instantiated as ‘It is required to maintain the human’s heart rate 80-100 beats per
minute’. Also the task-related generic goals can be refined into more specific goals
related to the particular tasks from the provided package (e.g., ‘It is required to
achieve the timely execution of the task repair sensor TX324’). New goals resulting
from refinement and instantiation are provided by the Own Process Control
component to the Agent Specific Task component of the Personal Assistant agent,
which is responsible for checking if the generated goals are satisfied. The criteria are
fed to the Monitoring component, which is discussed below.

Table 1. General goals defined for the Personal Assistant agent

Goal
1 It is required to achieve the timely task execution
2 It is required to achieve a high degree of effectiveness and efficiency of the task execution
3 It is required to achieve a high degree of safety of the task execution
4 It is required to maintain the compliance to a workflow for an assigned task
5 It is required to maintain an acceptable level of experienced pressure during the task execution
6 It is required to maintain the human’s health condition appropriate for the task execution
7 It is required to maintain a satisfactory health condition of the human

2.2 Monitoring

Within the Monitoring component, it is determined what kinds of observation foci are
needed to be able to verify whether the criteria hold. In the object identification
example, this could be “identification” (i.e. the event that the human identified an
object).

The identified observation foci are translated into a number of concrete sensors
being activated. As a form of refinement it is determined how specific information of a
desired type can be obtained. For this a hierarchy of information types and types of

sensors is used, as is information about the availability of sensors. For example, if the
observation focus “identification” is established, the monitoring component could
refine this into two more specific observation foci “start identification” and “stop
identification”. For the first observation an eye tracker could be turned on, while the
second could be observed by looking at the events generated by a specific software
component. Finally, Monitoring combines the detailed observations and reports the
higher-level observation to Analysis.

2.3 Analysis

If the Analysis component infers (based on a conflict between the criteria and the
observations) that there is a problem, it aims to find a cause of the problem. Based on
an appropriate dynamic model, hypotheses about the causes are generated using
forward and backward reasoning methods (cf. [7]). First, temporal backward
reasoning rules are used to derive a possible hypothesis regarding the cause of the
problem:

if problem(at(S:STATE, I1:integers), pos)
then derivable_backward_state(at(S:STATE, I1:integers));

 if leads_to_after(M:MODEL, S1:STATE, S2:STATE, I2:integers,pos)
 and derivable_backward_state(at(S2:STATE, I1:integers)) and I3:integers = I1:integers - I2:integers
then derivable_backward_state(at(S1:STATE, I3:integers));

if intermediate_state(S:STATE) and derivable_backward_state(at(S:STATE, I:integers))
then possible_hypothesis(at(S:STATE, I:integers))

Hereby, the first rule indicates that in case a problem is detected (a state S holding
at a particular time point I1), then this is a derivable backward state. The second rule
states that if a causal rule specifies that from state S1 state S2 can be derived after
duration I2 with a specific model (represented via the leads_to_after predicate), and the
state S2 has been marked as a derivable backward state (at I1), then S1 is also a
derivable backward state, which holds at I1 – I2. Finally, if something is a derivable
backward state, and it is an internal state (which are the ones used as causes of
problems), then this state is a possible hypothesis. Using such abductive reasoning of
course does not guarantee that such hypotheses are correct (e.g. it might also be
possible to derive J from another state). Therefore, the analysis component assumes
one hypothesis (based upon certain heuristic knowledge, see e.g. [7]) and starts to
reason forwards to derive the consequences of the hypothesis (i.e. the expected
observations):

if possible_hypothesis(at(S:STATE, I:integers))
then derivable_forward_state_from(at(S:STATE, I:integers), at(S:STATE, I:integers));

if leads_to_after(M:MODEL, S1:STATE, S2:STATE, I1:integers, pos)
 and derivable_forward_state_from(at(S1:STATE, I2:integers),at(S3:STATE, I3:integers))
 and I4:integers = I2:integers + I1:integers
then derivable_forward_state_from(at(S2:STATE, I4:integers), at(S3:STATE, I3:integers));

if observable_state(S1:STATE)
 and derivable_forward_state_from(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers))
then predicted_for(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers));

The predictions are verified by a request from the Monitoring component to
perform these observations. For example, if a hypothesis based on a cognitive model
is that the undesired function is caused by an experienced pressure that is too high,

then the observation focus will be set on the heart rate. The monitoring component
selects the sensors to measure this. After these observation results come in, the
selected hypothesis can be rejected in case the observations do not match the
predicted observations. An example rule thereof is specified below:

if observation_result(at(S1:STATE, I1:integers), neg)
 and selected_hypothesis(at(S2:STATE, I2:integers))
 and predicted_for(at(S1:STATE, I1:integers), at(S2:STATE, I2:integers))
then to_be_rejected(S2:STATE);

Eventually, this leads to the identification of one or more specific causes of the
problems, which are communicated to Plan Determination.

2.4 Plan Determination

Within Plan Determination, based on the identified causes of undesired functioning,
plans are determined to remedy these causes. This makes use of causal relations
between aspects in a dynamic model that can be affected and the (internal) states
identified as causes of the undesired functioning. Hereby, backward reasoning
methods (as explained for the Analysis component) are used. These use the specific
cause of the problem as input, and derive what actions would remedy this cause. To
decide which actions are best, the Plan Determination component also uses
knowledge about the compatibility of solutions, their effectiveness and their side
effects. See [7] for more a detailed overview of possible selection strategies. In the
example, this component could conclude that the “noise level” should be reduced to
lower the experienced pressure. The analysis component monitors the effectiveness of
this measure. If it does not solve the problem, or causes undesired side effects, this
will be considered as a new problem, which will be handled through the same process.

2.5 Plan Execution Preparation

Finally, within Plan Execution Preparation the plan is refined by relating it more
specifically to certain actions that have to be executed at certain time points. For
example, reducing the noise level could be achieved by reducing the power of an
engine, or closing a door.

3 An Example Scenario

A prototype of the system has been implemented in the modelling and prototyping
environment for the component-based agent design method DESIRE [8]. This
prototype has been used to evaluate the model for a specific scenario as specified by
domain experts of the Royal Netherlands Navy. The scenario concerns the mechanic
Dave, who works on a ship of the Navy:

Dave just started his shift when he got an alarm that he had to do a regular check in the
machine room; he accepted the alarm and walked towards the room. There he heard a
strange sound and went to sit down to find the solution. However, he could not
immediately identify the problem. At the same time, Dave received a critical alarm on his
PDA: the close-in weapon system (CIWS) of the ship was broken. He immediately accepted
the alarm, however continued to work on the engine problem, resulting in the more critical
task to fix the close-in weapon system not being performed according to schedule.

To apply the approach presented in this paper for this scenario, a number of models
have been specified. First of all, the workflow models for the two tasks from the
mechanic’s task package have been specified. For the sake of brevity, these models
are not shown, but specified in [9]. Furthermore, a cognitive model concerning the
experienced pressure is specified, which is shown in Figure 1. Hereby, the nodes
indicate states and the arrows represent causal relationships between these states.

Figure 1: Simplified cognitive model for experienced task pressure

In the agent model, relations between the states have been represented using the
leads_to_after predicate, specified by means of four parameters: the model name, a
condition state, a consequence state, and a delay between the two. For instance, the
relation

leads_to_after(cogn1, and(normal_exp_pressure, normal_vitality), high_perf_quality, 1)

indicates that a normal experienced pressure combined with normal vitality leads to a
high performance quality of the task in one step.

The presented scenario has been simulated within the prototype of the proposed
architecture. Below, a brief overview of the steps the system takes is presented. When
the system is started, the mechanic’s task package that comprises two task types
maintain_engine and solve_ciws_problem is provided to Own Process Control of PA. The
mechanic is characterized by the default profile with standard characteristics (e.g., the
heart rate range is 60-100 beats per minute). Furthermore, a set of generic goals
provided to Own Process Control is defined to achieve timely task execution for each
task, and to maintain a good health for the human it supports. The goal related to the
mechanic’s health is further refined stating that the experienced pressure and the
vitality should remain normal:

own_characteristic(has_goal(PA, achieve(ontime_task_execution, -1))
own_characteristic(has_goal(PA, maintain(good_health_condition, 0, -1)))
own_characteristic(has_goal(PA, maintain(normal_exp_pressure, 0, -1)))
own_characteristic(has_goal(PA , maintain(normal_vitality, 0, -1)))

Here, ‘-1’ indicates infinite time. Based on the goals related to the mechanic’s
health condition, the query for a cognitive model with the value normal_exp_pressure of
the parameter states is generated and communicated by Own Process Control to MMA.

As a result of this query, the model annotated by the corresponding parameters is
indeed retrieved from MMA, and stored within the component MAI within PA:

maintenance of agent information (PA)
input: belief(leads_to_after(cogn1, and(normal_exp_pressure, normal_vitality), high_perf_quality, 1), pos)
 etc.
output: see input

The workflow models for the assigned tasks are extracted from MMA in a similar
manner.

Eventually, the models and the goals are also received by the Coordination
component in Agent Specific Task. Based on this input Coordination generates
specific criteria. In particular, based on the goals to maintain normal_exp_pressure and
normal_vitality, the criteria to maintain the medium heart rate and the high performance
quality are generated using the cognitive model. The generated criteria are provided to
the Monitoring component, which sets the observation foci corresponding for these
criteria.

After this has all been done, a new assignment of a task is received from the World
component, namely that a task of type maintain_engine has been assigned to the
mechanic:

physical world
input: -
output: observation_result(at(assigned_task_at(maintain_engine, 3), 3), pos))

Based on this information Coordination generates new criteria using the workflow
model corresponding to the task. Most of these criteria establish the time points at
which the execution states from the workflow should hold, for example:

achieve(walk_to_engine, 4)

These criteria are again sent to the Monitoring component within Agent Specific
Task. Therefore, the component sets the observation foci to the states within the
workflow. If no goal violation is detected, no actions are undertaken by the agent.
After a while however, a new task is assigned, namely the task to fix the close-in
weapon system (of type solve_ciws_problem), which is outputted by the world:

observation_result(at(assigned_task_at(solve_ciws_problem, 23), 23), pos))

Again, the appropriate criteria are derived based on the corresponding workflow
model. The Monitoring component continuously observes whether the criteria are
being violated, and at time point 66 (when the mechanic should walk to the close-in
weapon system) it observes that this is not the case. Therefore, a criterion violation is
derived by the Monitoring component.

monitoring (AST - PA)
input: observation_result(at(walk_to_ciws, 66), neg); etc.
output: criterion_violation(walk_to_ciws) etc.

This criterion violation is received by the component Analysis, which is triggered to
start analysing why the mechanic did not perform the task in a timely fashion. This
analysis is performed using the cognitive model. The first hypothesis which is
generated is that the cause is that the experienced pressure is normal, but the vitality

abnormal. The Analysis component derives that a low heart rate must be observed to
confirm this hypothesis (an observation that is not available yet):

analysis (AST - PA)
input: observation_result(at(walk_to_ciws, 66), neg);
 criterion_violation(walk_to_ciws)
output: selected_hypothesis(at(and(normal_exp_pressure, abnormal_vitality), 65);
 to_be_observed(low_heart_rate))

Since the heart rate is not observed to be low, but high, the Analysis component
selects another hypothesis that is confirmed by the observation results that are now
present (after the heart rate has been received). The resulting hypothesis is abnormal
experienced pressure, and normal vitality. This hypothesis is passed on to the Plan
Determination component within Agent Specific Task of the PA agent. Agent Specific
Task derives that the task level should be adjusted:

plan determination (AST - PA)
input: selected_hypothesis(at(and(abnormal_exp_pressure, normal_vitality), 65)
output: to_be_adjusted(abnormal_task_level)

To achieve this adjustment, the mechanic is informed that the maintenance task is not
so important, and that the mechanic should focus on the close-in weapon system task.
This eventually results in a normal task level of the mechanic.

4 The Multi-Agent Context for the Personal Assistant Agent

The Personal Assistant agent PA functions within the context of a multi-agent system
consisting of different types of agents. In addition to the Personal Assistant itself the
following agents are involved; models for all of them were designed based on the
component-based Generic Agent Model (GAM) presented in [6]. The Model
Maintenance Agent (MMA) contains a library of four types of models: monitoring and
guidance models, cognitive models, workflow models and dialogue models. Models
can be provided to PA upon request; to facilitate this process, each model is annotated
with specific parameters. The State Maintenance Agent (SMA) maintains
characteristics, states and histories of other agents, of the physical world and of the
workflows. Information can be requested by the PA’s, using a specific element (i.e.
agent, physical world, a workflow), an aspect (i.e. state, history) and a time interval
for which information should be provided. In addition, the Mental Operations Agent
(MOA) represents the mental part of the human. MOA is connected to the human’s
physical body, which can act in the physical worlds. The Task Execution Support
Agent (TESA) is used by the human as an (active) tool during the execution of a task.

For each human that needs to be supported during the task execution a Personal
Assistant agent is created. Initially, the Personal Assistant agent contains generic
components only. The configuration of it is performed based on the role that needs to
be supported by the agent, on the characteristics of a human who is assigned to this
role, and on the goals defined for the Personal Assistant agent.

The configuration of the self-maintaining personal assistant agent begins with the
identification of the suitable monitoring and guidance task model(s) that need(s) to be
requested from the model maintenance agent. To this end, the model parameters are
identified by the Own Process Control component based on the goals of the personal
assistant agent. For example, to establish if the human complies with a workflow

model, diagnosis of the human’s state may need to be performed. Thus, a query to the
model maintenance agent is given which includes the parameter type of analysis with
value diagnosis. When a query is specified, the function model_query(query_id, param,

list_of_values) is used, where the first argument indicates a query identifier, the second
argument indicates a parameter and the third argument indicates a list of parameter
values.

The choice of cognitive models is guided by the goals that concern internal states
of the human. From the goals in Table 1 and their refinements and instantiations, a
number of internal states can be identified, among which experienced pressure and heart

rate. For such states and for each task the appropriate cognitive, workflow and
dialogue models are extracted from the model maintenance agent. By matching
queries received from the personal assistant agent with the annotations of the
maintained models, the model maintenance agent identifies the most suitable
model(s), which is (are) communicated to the requestor. The provided models are
stored in the Maintenance of Agent Information component of the personal assistant.

More details about the multi-agent context of the personal assistant agent can be
found in [10].

5 Conclusions

In every organisation a set of critical tasks exists that greatly influence the satisfaction
of important organisational goals. Thus, it is required to ensure effective and efficient
execution of such tasks. To this end, automated personalized assistance for the task
performers may be used. In this paper, a generic agent model for personal support
during task execution has been proposed. This agent model allows the use of
dynamical models and information about the assigned goals and tasks. The personal
assistant agent performs monitoring and analysis of the behaviour of the supported
human in his/her environment. In case a known problem is detected, the agent tries to
identify and execute an appropriate repair action. The fact that the architecture is
generic differentiates the approach from other personal assistants such as presented in
[5; 6]. Besides being generic, the proposed personal assistant agent has an advantage
of being relatively lightweight, as it only maintains and processes those models that
are actually needed for the performance of the tasks. It can therefore run upon for
instance a PDA or cell phone. To provide the required functionality for personal
assistant agents, the multi-agent context in which it functions includes model
maintenance and state maintenance agents.

When performing a task, especially in highly demanding circumstances, human
performance can be degraded due to increased cognitive workload. A possible
negative effect of high cognitive workload is that it leads to a reduction in attention
and situation awareness [11]. Situation awareness refers to the picture that people
have of the environment (e.g., [12]). In case of low situation awareness this picture is
wrong, which will often lead to wrong decision making (e.g., [13]). In the literature, it
is known that automated systems can also impose a negative effect on cognitive
workload or situation awareness [14]. Therefore, systems have been designed that are
adaptive, e.g. in only providing aiding when it is necessary [5]. For this, a human’s

cognitive state should be assessed online; since this is difficult, often adaptive systems
like this are based on psychophysiological measurements, like brain activity and eye
movements (e.g. [15], [5]). The personal assistant model described in this paper
makes use of such measurements, but in addition uses models of cognitive states and
dynamics, and the current workflow to be able to assess the online state of the human.
This allows for an optimal support of the human.

References

1. Posner, M. I., and Boies, S. J. Components of attention. Psychological Bulletin 78, 1971,
391-408.

2. Schmorrow, D.D., & Reeves, L.M. 21st century human-system computing: augmented
cognition for improved human performance. Aviat Space Environ Med 2007, 78(5,
Suppl.), B7-11.

3. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D.L., Morley, D.,
Pfeffer, A., Pollack, M., and Tambe, M., An Intelligent Personal Assistant for Task and
Time Management. AI Magazine, Summer 2007, pp. 47-61.

4. Modi, P.J., Veloso, M., Smith S.F., and Oh, J., CMRadar: A Personal Assistant Agent for
Calendar Management. In: Bresciani, P. et al. (eds.), AOIS II, LNCS 3508, Springer,
2005, pp. 169-181.

5. Wilson, G.F., & Russell, C.A. Performance enhancement in an uninhabited air vehicle
task using psychophysiologically determined adaptive aiding. Human Factors, 49(6),
2007, 1005-1018.

6. Brazier, F.M.T., Jonker, C.M., and Treur, J. Compositional Design and Reuse of a Generic
Agent Model. Applied AI Journal, vol. 14, 2000, pp. 491-538.

7. Duell, R., Hoogendoorn, M., Klein, M.C.A., and Treur, J. An Ambient Intelligent Agent
Model using Controlled Model-Based Reasoning to Determine Causes and Remedies for
Monitored Problems. In: Proceedings of the Second International Workshop on Human
Aspects in Ambient Intelligence, HAI'08. IEEE Computer Society Press, 2008.

8. Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

9. http://www.cs.vu.nl/~wai/PersonalAssistant/Models.pdf
10. Bosse, T., Duell, R., Hoogendoorn, M., Klein, M.C.A., Lambalgen, R. van, Mee, A. van

der, Oorburg, R., Sharpanskykh, A., Treur, J., and Vos, M. de. A Multi-Agent System
Architecture for Personal Support During Demanding Tasks. In: Proc. of the 22nd Int.
Conf. on Industrial, Engineering & Other Applications of Applied Intelligent Systems,
IEA/AIE'09. Studies in Computational Intelligence, Springer Verlag, 2009, to appear.

11. Wickens, C.D. Situation awareness and workload in aviation. Current Directions in
Psych. Science, 11, 2002, 128-133.

12. Endsley, M.R. Theoretical underpinnings of situation awareness. In M.R. Endsley & D.J.
Garland (Eds.) Situation awareness analysis and measurement (pp. 1-21). Mahwah,
NJ:Erlbaum, 2000.

13. Endsley, M.R. The role of situation awareness in naturalistic decision making. In C.
Zsambok & G. Klein (Eds.), Naturalistic decision making: 269-284. Mahwah, NJ:
Erlbaum, 1997.

14. Parasuraman, R., & Riley, V. Humans and automation: use, misuse, disuse, abuse. Human
Factors, 39(2), 1997, 230-253.

15. Prinzel, L.J., Freeman, F.G., Scerbo, M.W., Mikulka, P.J., Pope, A.T. A closed-loop
system for examining psychophysiological measures for adaptive task allocation. Int.
Journal of Aviation Psychology, 10(4), 2000, 393-410.

