
A Labeled Graph Approach to Analyze
Organizational Performance

Mark Hoogendoorn1, Jan Treur1, and Pınar Yolum2
1Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{mhoogen, treur}@cs.vu.nl

2Bogazici University, Department of Computer Engineering,
TR-34342 Bebek, Istanbul, Turkey

pinar.yolum@boun.edu.tr

Abstract

Determining the performance of an organization is

a must for both human and multi-agent organizations.
The performance analysis enables organizations to
uncover unexpected properties of organizations and
allow them to reconsider their internal workings. To
perform such an analysis, this paper represents
organizations as labeled graphs that capture, not only
the interactions of the entities, but also the
characteristics of those interactions, such as their
content, frequency, and so on through labels in the
graph. Algebraic representation and manipulations of
the labels enable analysis of a given organization.
Hence, well-known phenomena, such as overloading of
participants or asymmetric distribution of workload
among participants can easily be detected. Finally, a
case study is performed within the domain of incident
management.

1. Introduction

Multi-agent organizations consist of agents that
interact to carry out their tasks. Current models of
multi-agent organizations usually represent
organizations as consisting of roles that agents adopt.
An organization model then specifies the structure and
behavior of the organization in terms of the relations
between the roles. An analysis of such an organization
model could check if the model satisfies desired
properties such as the possibility of completing a
desired task given that all agents comply with the
requirements of the organization. Whereas such an
analysis is useful, it is not sufficient to analyze an
executing organization. The main reason is that many

design-time choices become concrete during execution.
Agents choose who they want to interact with as well as
how often they want to do so during run-time. For
example, among two agents that enact a merchant role,
one might be preferred over the other because the agent
has better capabilities, more work capacity, and so on.
These subtle interactions of agents at run-time can give
rise to interesting situations that can only be detected
during execution. That is, as a result of previous
decision, one merchant agent will be more loaded than
the second merchant will be. Further, the agents that
participate in an organization might be designed and
developed by independent parties, which requires them
to interoperate and execute intelligently at run-time. In
other words, such facts about the workings of a multi-
agent organization cannot be discovered from a static
representation of an organization during design time,
but can only be analyzed during the execution time.

Whereas there is a vast literature in the design of
multi-agent organizations, there is little work on the
analysis of executing multi-agent systems [9, 10]. For
this reason, this paper provides a complementary
treatment of multi-agent organizations, where in
addition to existing design time dynamics of the
organizations, a graph representation is used to analyze
executing organizations. Executing multi-agent
organizations are analyzed by logging the performance
of the organization in traces. Graph representations are
useful for analyzing organizations; for example for
understanding the structure of an organization through
theoretical concepts.

This paper presents a formal specification language
based on a graph representation. The directed graph
captures the relationships between participants in the
organization and the labels give semantics to the

relationships. Once the labeled graphs are constructed,
they can be used to analyze the functioning of the
organization at runtime, i.e. analyze traces of the
execution of the multi-agent system. Organization
designers or analyzers can study the graph to
understand the shortcomings of the organizations and
to restructure the organization as they see fit. This
paper further shows that rules related to the
organizations can be developed and automatically
checked against the labeled graphs. As a concrete
example, detection of overloaded agents is used.

The rest of this paper is organized as follows.
Section 2 gives a representation of organizations as
labeled graphs. Sections 3 discusses the usage of the
graph for external analysis. Section 4 presents a case-
study and Section 5 discusses the relevant literature.

2. Organizations as Labeled Graphs

A directed graph G = (V, E) constitutes the basis of
the description of an organization in this paper. V
denotes the set of nodes, which represent agents that
enact a role. E denotes the edges in the graph, which
represent the interactions between agents. Graph-based
representations are typically used to model processes in
areas such as (distributed) workflow management,
business process design, organization modeling and
organizational performance measurement. Usually the
graphs have no labels or simple labels; such as a
number that denotes the strength of a link. However, in
real organizations edges denote different types of
relationships with different properties. To represent
such relationships, this paper provides a more complex
structure of the labels and formalizes the structure with
an algebra.

The example organizations considered here contain
agents that fulfill tasks, assign subtasks to other agents,
and thus run a business together. There are two
primitive concepts we consider: workloads and
capacities. An edge e connecting u and v means in this
particular application that u requires some work to be
done by v; i.e., edge e denotes a request for workload.
As in real life, u could request different tasks to be
performed by v. A label on an edge specifies the task
type and the strength of the task (i.e., how intensive the
work is). The label also includes a list consisting of
tasks the current task at hand originates from.

Example 1. Consider the organization in Figure 1. The
figure gives a simplified representation of the disaster
prevention organization in case of a plane crash in the
Netherlands in the form of a labeled graph. Four agents
enact the roles as shown in Figure 1: First of all, the
airport role is present. This role takes care of the

communication with airplanes and is the one that
receives the mayday calls. After it has received a
mayday call from a plane above the sea, it will contact
the coastguard immediately to start a rescue task. The
call causes the coastguard a lot of work, as they are in
charge of the entire fleet of rescue ships. For possible
precautions or backup from the land, the coastguard
can contact the alarm center role which will arrange
this type of help. The press is also represented as a role
as they often request information regarding the number
of casualties, information about the cause of the crash,
and so on. The coastguard is responsible for fulfilling
this task, which is called Inform.

Each agent in the organization has a certain capacity
for each of the tasks that it can perform. Hence, the
nodes of the graph are also labeled to denote the
capacities of agents. First, a description of a formal
language for the labels is given. Next, the capacities of
the nodes will be discussed. Finally, the workload is
defined.

2.1. Formal Specification Language

The formal language presented in this Section is
based on many-sorted algebra. The sorts of the label
specification language are shown and explained in
Table 1. Based on these sorts, functions are defined to
combine these sorts into labels. Statements of this
language are equations as the examples accompanying
the function definitions show. Throughout the text,
when sorts and functions of the algebra are meant, they
are denoted in Courier font.

 First of all, a function is defined to construct a list
containing pairs of subtasks. In general, the relation
between tasks could be more general than the subtask
relationship; for example, by incorporating information
on the alternative tasks as well. However, the focus
here is on dividing a task into smaller pieces that will
be performed by agents. Hence, only concentrating on
the subtask relationship.

taskSubtaskPair: Task x TaskSubtaskList �
TaskSubtaskList

Figure 1. An example organization graph

Considering Example 1 one could express that the
Rescue task has as a subtask LandOp which includes
the operations that take place on land. Formally this
can be expressed as follows:
tS=taskSubtaskPair(Rescue,

taskSubtaskPair(LandOp, null))

Besides that, another function is specified which
expresses a regular list of tasks without the subtask
relationship between them.

taskList: Task x TaskList � TaskList

For example, a list containing the tasks that can be
performed by the coastguard:
 tL = taskList(Rescue, taskList(Inform, null))

For expressing the load three sorts are used: (i) the list
which specifies the task from which this task originates,
(ii) the node that carries the load, and (iii) the time
interval for which this all holds. Intuitively, a load
captures the intensity of the task a node has to do in a
given time interval.

loadFor: TaskSubtaskList x Node x
TimeInterval � Load

In the running example, the load for the coastguard can
be expressed for TimeInterval I (for example 8
hours) and the Rescue task:

 L = loadFor(tS, Coastguard, I)

A load is accompanied by a value expressing the
amount of work caused by the load.

loadValuePair: Load x Value � LoadValue

For the Load defined above the value is set to 5:
 LV = loadValuePair(L, 5)

Constructing a list from these LoadValue pairs can
be done by means of a function. A communication
from a role to another role can cause different kinds of
load, therefore there is a need to express more than one
load for each edge.

loadValuePairList: LoadValue x
LoadValueList � LoadValueList

In the case of the example, only one LoadValue is
present:
 LVL = loadValuePairList(LV, null)

Now that the load caused by a connection in a graph
can be fully specified it is combined with a label
identifier.

loadLabel: LoadValueList x Label �
LabeledLoad

The label specified above is now called L1:
 LL = loadLabel(LVL, L1)

Now a label identifier is associated with an edge.

labeledEdge: Edge x Label � LabeledEdge

 LE = labeledEdge(e1, L1)

Finally, at runtime an edge will be activated a certain
number of times over a certain period, which can also
be expressed in the algebra:

edgeActivation: Edge x TimeInterval x
Value � EdgeActivation

For example, the edge E1 was activated 2 times
during TimeInterval I:
 EA = edgeActivation(e1, I, 2)

Capacities can also be expressed by means of the
functions. Capacities belong to nodes, as they are the
ones that need to carry the load. The next Section will
go into more detail on expressing the capacities. The
capacity of a node is the amount of task it can do in a
certain time period. The amount of task is denoted by
a TaskList and the time period is denoted by a
TimeInterval.

capacityOf: TaskList x Node x TimeInterval
� Capacity

A value can be added to the capacity, for example,
during the time-interval for which the capacity is
specified, one man-hour is available for rescuing.

capacityValue: Capacity x Value �
CapacityValue

Besides a capacity for specific tasks, a node also has an
overall capacity. This overall capacity exists
independent of types of tasks it can do.

overallCapacity: Node x TimeInterval �
OverallCapacity

A value can again be added to this kind of capacity. It
can for example say that during the time-interval of a

Sort Description
Value Sort for real values.
Timepoint Sort for moments.
TimeInterval Sort for names of intervals that contain

two time-points of sort Timepoint.
Node Sort to identify a node.
Edge Sort to identify an edge.
Task Sort to identify tasks.
Load Sort to identify loads.
LoadValue Sort for a Load Value pair.
LoadValueList Sort for a list of LoadValue pairs.
Label Sort to identify a label.
LabeledLoad Sort for a pair containing a

LoadValueList and a Label.
TaskSubtaskList Sort for a list of tasks with a subtask

relationship between them.
TaskList Sort for a list of tasks.
Capacity Sort to identify a capacity.
CapacityValue Sort for a pair containing the Capacity

and a Value.
OverallCapacity Sort to identify the overall capacity.
OverallCapacity
Value

Sort for a pair containing the
OverallCapacity and a Value.

EdgeActivation Sort for specifying the Value of the
amount of activations of an Edge during
a certain TimeInterval

 Table 1. Sorts used in the label algebra

day a maximum of 8 man-hours are available for a
specific node.

Using the basic ontology of this algebra, its relations
can be expressed, and logical relationships can be
defined: The primitive terms used in the label algebra
are defined by a many-sorted signature. The signature
takes into account symbols for sorts, constants,
functions and relations, including the equality relation.
Among the relations, the equality relation has a special
position: the identities (equations) between algebraic
term expressions. Further relations can be defined by a
relation symbol instantiated with term expressions.
Logical relationships involve conditional statements
involving relations, both the equality relation and other
relations. For simplicity these logical relationships are
assumed to be in a clausal format. Examples of
constants are names of values, examples of function
symbols are +, x, examples of relation symbols are =
and <. Examples of logical relationships are

if t1 < t2 then f(t1) < f(t2)
if t1 < t2 then f(t1 + t2) = f(t2)

If no other relations than the equality relation occur, the
algebra is called functional.

2.2. Capacities

The capacity of a node should be represented flexibly
so that realistic situations can be modeled. The
following scenarios are seen frequently. For these
scenarios, it is assumed that the unit of capacity is man-
hours. The maximum man-hours available is fixed: in
this case to eight man-hours.
1. Fixed Capacities: An agent has a fixed number of

hours it can spend on each task as dictated by its
role. The sum of these hours should not be more than
the maximum amount available.

2. Constant Task-Specific Capacities: This time an
agent is told how many hours it can spend on each
individual task. For example, if the role enacted by
this agent has two tasks, coordinating the rescue
operations and informing the press, then a possible
restriction could state that the agent playing the role
can spend at most 5 hours on the rescue operations
and 5 hours on informing the press. Of course,
working on the rescue operations task for 5 hours
still leaves 3 hours for the informing the press task.
That is, the maximum number of hours is still
constant.

3. Group-Restricted Capacities: This time the
restriction is not on individual tasks but on sets of

tasks. For example, a role can spend a maximum 5
hours on the rescue operations and informing the
press and maximum of 4 hours on writing reports.
The choice of distributing the 5 hours between the
rescue operations task and the informing the press
task is up to the agent that plays the role. However,
the time spent on the rescue operations and
informing the press together cannot exceed 5 hours.

4. Flexible Capacities: An agent can decide to work
any number of hours on any of its tasks, as long as a
certain maximum is not exceeded during the time-
interval for which this capacity holds.

It is actually easy to see that both Scenarios 1 and 4 can
be modeled in terms of Scenario 2. To model the first
scenario, the only thing that needs to be ensured is that
the total of the fixed capacities adds up to the
maximum. This already defines the scenario in terms of
constant task-specific capacities. For the fourth
scenario, the individual restriction for each individual
work has to be set to the maximum 8 hours.
Additionally, Scenario 2 can be modeled a special case
of Scenario 3 where each set consists of one task.
Hence, accommodating Scenario 3 enables
accommodating the remaining scenarios. For the sake
of simplicity, disjoint sets of tasks are assumed for a
specification of the capacity.

Example 2. To give an example, consider the node
Coastguard, having capacity for tasks Rescue and
Inform. The capacity of the Coastguard
concerning the Rescue task in the TimeInterval
I is 8. For the Inform task this maximum is set to 2.
Combined however, the overall capacity is set to 8,
meaning that for the Inform and Rescue tasks
together the time spent can not exceed 8. According to
the formal notation as introduced in Section 2.1, the
example can be formalized as shown below.

c1 = capacityOf(taskList(rescue, null),
 Coastguard, I)
cval1 = capacityValue(c1, 8)
c2 = capacityOf(taskList(inform, null),
 Coastguard, I)
cval2 = capacityValue(c2, 2)
co = overallCapacity(Coastguard, I)
coval = overallCapacityValue(cO, 8)

2.3. Workloads

A workload of a node is the amount of work it is
required to do. Much work has been done to define the
concept of workload more precisely, however there is
still little consensus on a single definition. In [4] the
‘human workload’ is described as follows: “The
intrinsic difficulty of the activities that an operator must
perform establishes the target or nominal level of
workload. The difficulty of a particular task may be

overallCapacityValue: OverallCapacity x
Value � OverallCapacityValue

influenced by any one or several of the following
factors: (1) the goals and performance criteria set for a
particular task; (2) the structure of the task; (3) the
quality, format, and modality in which information is
presented; (4) the cognitive processing required; (5) the
characteristics of the response devices.”

In operations management [8] research has been
performed to define the time required to do a job in
order to generate a unit of output, which is called work
measurement. The initiator of this type of measurement
was F.W. Taylor with his scientific management
approach. It has however fallen into disfavor because if
focuses on routine, repetitive tasks, but recently the
labor-intensive service companies have resulted in a
new popularity.

The workload of an agent in this paper is determined
based on the tasks assigned to it now, how often these
assignments take place, and how much of these tasks
are delegated to other agents. In general, the agent
would perform a percentage of the tasks on its own and
assign the remaining tasks to other agents; i.e., create
workloads for others. In principle, the newly created
workload should be less than that of the initial
workload of the agent. The workload of an agent is
only determined during execution. Hence, it is not
possible to know the workloads exactly during design
time and distribute work accordingly.

3. Specification for labels with respect to
loads

As has been mentioned before, labeled organization
graphs can be used to analyze an organization. It can
first be used to model the capacities and the workloads,
and thereafter can be applied to analyze a trace
representing the state of affairs within a multi-agent
system during a certain period.

3.1. Calculations for values of loads

The workload of a node v during an interval I for a
task t can be calculated in the following way: Let
workload(e,t) be the workload for task t caused upon
one activation of edge e. This number can be derived
from the labeled algebra. First, look up the
taskSubtaskList associated with this Task t:
taskSubtaskList(t, TSL). Thereafter get the
label for edge e: labeledEdge(e,L1). Now, look
up the identifier of the LoadValueList via the
Label: loadLabel(LVL, L1) and scan all entries
of the LoadValueList for a Load in which the
TaskSubtaskList starts with an element in TSL or
starts with t, and holds for TimeInterval I.

Finally, sum up the Value for each of these Load
elements. Furthermore, for each of these edges, get the
amount of activations, during TimeInterval I,
then the workload can be calculated as shown in
Definition 1:

Definition 1. Workload(v, t, I) =
�e ∈ incomingEdges(v) a1 x workload(e, t)

 where edgeActivation(e, I, a1)
- �e ∈ outgoingEdges(v) a2 x workload(e, t)
 where edgeActivation(e, I, a2)

Which entails summing up the workload caused by all
incoming nodes, and subtracting from that the
workloads distributed through the outgoing edges. The
calculation of the overall workload of a node (for all
tasks t) is simply summing up all separate workloads,
as shown in Definition 2.

Definition 2. workload(v, I) = �t ∈ tasks workload(v, t, I)

Example 3. Consider the organization as presented in
Example 1 and 2. Imagine the following scenario
(during an interval I): A Dakota airplane has crashed in
the sea, the airport forwards this crash message to the
coastguard (causing a load of 5), who in turn delegates
the land operations to the alarm center (causing them a
load of 1). Besides that, the press starts asking
questions about the crash (causing a load of 1 each
time), as they have observed the plane crashing in the
sea. They request information 40 times, and the
Coastguard replies the same number of times (causing
the press a load of 0.8 each time). The workload
calculation is as follows: workload(coastguard, rescue,
I) = (1 * 5) – (1 * 1) = 4 man-hours during interval T
for the rescue task workload(coastguard, inform, I) =
(40 * 1) – (40 * 0.8)=8 man-hours during interval I for
the inform task.

As the calculation for the workload has been
explained, the workload of a node can be compared
with the capacity of a node, this is referred to as the
load of a node. Two different types of loads have been
distinguished. First of all, the load for a specific task t
can be calculated. To calculate this load, first
remember that the capacities are defined for a list of
tasks, let l be the list of which t is an element. As it is
impossible to calculate loads for individual tasks, loads
can only be calculated in terms of these lists of tasks,
therefore the calculation of a load for a task t is done
by means of the list l the task is part of. Let v be a
node, t be a task and I be an interval and let capacity(v,
l, I) be the capacity of the node v for task list l, during
interval I. This can be derived from the labeled algebra
as follows: Get the capacity for TaskList L in
which task t is defined for node v during interval I: C =

capacityOf(L,v,I). Thereafter, look up the
Value CV of this capacity:
capacityValue(C,CV). Now the load is defined
as shown in Definition 3.

This defines that the load for a task is calculated by
summing up all workload within the list l (so for every
task within l) and dividing it by the capacity defined for
that list.

The load can also be calculated for the node as a
whole, this is simply done by taking the workload of
the node, and dividing it by the overall capacity,
capacity(v, I), which can be found using the algebra:
CA = overallCapacity(v,I) after which the
Value OCV can be looked up:
overallCapacityValue(CA,OCV). The load is
now calculated as shown in Definition 4.

Definition 4. load(v, I) = workload(v, I)/ capacity(v, I))

An example of an interesting type of information
that can be derived from the load is the load
distributions among the nodes in the graph. An
organization with evenly balanced nodes is typically
preferable over a very uneven distribution of loads.

Example 4. Picture the organization in case of an
airplane crash in the North-Sea, the Netherlands again.
Following the capacity example as given in Section 2.2
the coastguard has a capacity of 8 man-hours during I
for the rescue task, and a capacity of 2 man-hours for
the inform task, during that same period. Another
capacity that is part of this organization is that of the
press. The capacity of the press (which is not shown in
a formalization) is defined as being 50 during the time-
interval I in which the incident management occurs.
The load of the coastguard and the press nodes can be
calculated: The general load for the coastguard is:
load(coastguard, I) = (12 / 8) = 1.5. More specifically,
for the task rescue the load is 0.5 and for the inform
task the load is 4.0. For the press, the workload is only
caused by the information coming from the coastguard,
which can not be distributed elsewhere. Therefore the
workload of the press is 40 x 0.8 = 32. As they only
have one task, the load of the press, load (press, I), is
equal to 0.64. Based on this, it can be seen that the
press has a relatively low load compared to the
coastguard. By means of this information, a person that
is analyzing an organization could suggest that the
press should reduce the requests for information to the
coastguard and try getting most of their information

within the press organization, as they still have
sufficient capacity.

3.2. Overloading

As the load for a node has been defined, the
definition of a node being overloaded can be given. A
certain role is overloaded in case one, or both of the
following situations hold: (1) There exists a task t for
which the load is greater than 1.0; (2) The load for the
entire node, load(v, I) exceeds 1.0. A formal definition
is presented below. Please note that due to the choice
of representing the capacities by group restricted
capacities it can occur that the loads for the individual
group are not overloaded whereas the overall load is.

Definition 5: overloaded(v, I) =
∃t:Task (load(v,t,I) > 1.0) ∨ (load(v,I) > 1.0)

Example 5. Following from example 4, it can be seen
that the role of coastguard is heavily overloaded, for
one of the tasks (inform) the load is 4.0, which means 4
times the capacity. The press however is not
overloaded as it has a load value of 0.64.

4. Case-Study: Dakota Incident

This Section presents details regarding the
implementation of the labeled graph approach into a
software tool, and shows an empirical evaluation using
a trace obtained from the domain of incident
management.

4.1. Implementation

In order to be able to use the algebra and
calculations for analyzing multi-agent organizations, a
software tool has been created. First, the algebra
presented in Section 2 has been implemented in
PROLOG [1], including the calculations that are
presented in Section 3. For a comparative study of
translating an algebraic specification into a PROLOG
program, see [2]. A specific interval can be specified
over which the calculations of the organizational
performance are done. Thereafter, in order to make the
calculations of the workloads and loads for the nodes
more insightful for e.g. domain experts to evaluate, a
visualization tool has been created that graphically
shows how much work is being transferred between
different nodes within the graph, and represents the
load for each of these nodes. Figure 2 shows a screen-
shot of the visualization tool. The radius of a node is
increased in case the load increases, so the bigger the
node the heavier the load on that specific node. Further,

Definition 3. load(v, t, I) =
(�task∈l workload(v, task, I))/ capacity(v, l, I) where t∈l

communication channels that are intensively used (i.e.
edges that are activated many times during a particular
time interval) are highlighted as well by turning red in
case of a lot of activity (or in case of a huge amount of
activity purple).

4.2. Empirical Evaluation

In order to evaluate the functioning of the
implementation and the approach itself, a case study
has been performed in the incident management
domain. The case-study itself is based upon reports of a
plane crash which occurred in the Netherlands in 1996.
A trace of the events that occurred during the rescue of
the passengers on board of the plane has been obtained
from domain experts and logs that have been made of
the communications that took place during the incident
management in 1996. The examples used in Sections 2
and 3 include simplifications used for this case study.
To enable an analysis, the organization, including the
roles and the communications that took place, has been
translated to a graph. Thereafter, a domain expert has
labeled the graph with the values he thinks are
appropriate values for workload caused by activation of
a communication line (i.e. an edge). Furthermore, the
expert has set capacities for the roles (i.e. nodes) within
the incident management organization. According to
the experts in the field (written down in incident
management reports) the role of the coastguard
(abbreviated in the figure to KWC) was heavily
overloaded due to too many requests for information of
the press, regional alarm center (RAC) and the military
airport (MVKK). This indeed showed in the
visualization, based on the capacities and workloads set
in the graph. The coastguard has a large capacity for
handling all the work, but is unable to handle all

incoming requests. This shows that the analysis using
the labeled graph approach is indeed in line with the
manual expert evaluations.

5. Discussion

This paper has presented a formal language for
specifying organizations. The specification is based on
a graph formalism. The nodes of the graph represent
agents and the edges between the nodes are labeled to
denote why those edges exist. This allows us to
represent the interactions between the agents in an
expressive way. It has been shown that using this
organization structure properties of executing
organizations can be detected, such as the cases where
the organization hosts overloaded agents, successfully.

Operations research is a closely related field to the
research presented in this paper, see e.g. [5]. Many
theories have been developed in that field of research
to enable a proper functioning of the organization as a
whole, creating a planning for these operations, etc.
The research presented in this paper is meant to
monitor the performance of these organizations, not to
design these operations within the organization.

Another related field is workflow management, in
which tools exist that measure and analyze the
execution of processes so that continuous
improvements can be made. The approach in workflow
management can be used as a support tool to analyze
the execution, however workflow management systems
constitute a huge system which is put into the
organization to measure the performance, whereas the
approach in this paper simply needs traces of the events
and values for the capacities of nodes and workloads
regarding tasks. This also enables the presented
approach to be used for analyzing occurrences in the
past and organizations in which introducing a workflow
management system is not feasible.

There is a vast literature on designing multi-agent
organizations. Zambonelli et al. develop a design
methodology, GAIA [11]. GAIA identifies roles,
organization rules, environment, and so on as necessary
organizational abstractions. Using these constructs,
GAIA methodology helps a system designer build its
system in a systematic way. Padgham and Winikoff
develop Prometheus, an agent-based software
development methodology [7]. It consists of a system
specification, architectural design, and detailed design
phases. While these approaches are useful for
designing multi-agent systems, they do not provide any
mechanisms for analyzing executing organizations.
That is, these methodologies only care for the design
phase, but are not targeted for analyzing the multi-

Figure 2. Screenshot of the visualization tool

agent system during execution, which is the case for the
methodology presented in this paper.

Handley and Levis create a model to evaluate the
effect of organizational adaptation by means of colored
Petri nets [4]. The Petri nets are used to represent
external interaction of decision makers as well as
internal algorithms the decision maker must perform,
and are equipped with labels. In this model the
workload of the decision makers is monitored and is
used as a performance indicator. The concept of
entropy is used to measure the total activity value
(which is linked to the workload) of a decision maker.
When an overload of a decision maker occurs, the
execution time of the internal algorithm has a delay of
one additional time point. Decision makers can also
base decisions on who to forward an output to on the
total activity of the decision maker that can be chosen.
Their approach differs from the approach in this paper
in the sense that they specify the entire process within
the organization, and use the Petri nets to actually
simulate an organization. Therefore, their aim is more
towards the decision process and the evaluation thereof
whereas the approach presented here is more intended
as a separate method for evaluating the performance of
an organization from an external viewpoint.

Fink et al. develop a visualization system to help
monitor the performance of businesses [3]. The focus
of their work is on presenting a tool that can
incorporate different performance metrics from
different sources. The aim of the approach presented
here is to analyze workings of a business automatically.
In this sense, the work of Fink et al. is complementary
to the work in this paper. Once certain properties are
detected by the approach in this paper, they could be
feed into a visualization tool to ease the exposure.

The work presented in this paper is open for further
improvements. Whereas this paper mainly deals with
calculating the effect of an edge on its endpoints, it is
also possible to calculate the effects of an edge on
nodes that are not immediate endpoints. This can be
regarded as calculating the cascading effects of
interactions on third parties. Similarly, the
representation can be made richer by adding capacities
or workflows for groups of agents to model the smaller
units in an organization. Ideas developed in this paper
can also be used to help agents model others and
reason about others’ workloads to manage their
interactions more efficiently. Such reasoning could
possibly even result in change of an organization in
case the workload simply cannot be handled, see [6] for
more extensive results on this. Furthermore,
investigations on how well the approach scales up to
large scale multi-agent systems will need to be

performed in the future. One important possibility to
note here is that of specifying such a system on
multiple aggregation levels, whereby the analysis can
take place at the highest level (e.g. the workload
between departments) while at the lower level focus on
parts of the organization (e.g. the workload within a
department).

6. References

[1] Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P.,
Un Système de Communication Homme-Machine en
Français. Groupe de Recherche en Intelligence Artificielle,
Université d’Aix-Marseille, Lumini, 1971.

[2] Drosten, K., Translating algebraic specifications to Prolog
programs: a comparative study. In: J. Grabowski, P.
Lescanne, and W. Wechler, eds., Algebraic and Logic
Programming, LNCS 343, pp 137–146, Springer, 1988.

[3] Fink G., Krishnamoorthy S., and Kanade A., Naval Crew
Workload Monitoring and Visualization. In: First Annual
Conf. on Systems Integration, NJ, 2003

[4] Handley, H., and Levis, A., A Model to Evaluate the
Effect of Organizational Adaptation. Computational &
Mathematical Organization Theory 7(1) pp 5–44, 2001.

[5] Hillier, F.S. and Lieberman, G.J., Introduction to
Operations Research, McCraw-Hill, SF, 2002.

[6] Hoogendoorn, M., Adaptation of Organizational Models
for Multi-Agent Systems based on Max Flow Networks, In:
Proceedings of IJCAI 2007, Morgan Kaufmann Publishers,
To Appear, 2007.

[7] Padgham, L. and Winikoff, M. Prometheus: A
Methodology for Developing Intelligent Agents. In: F.
Giunchiglia et al. (eds.) Proc. of the AOSE Workshop, LNCS
2585, pp. 174–185, 2003.

[8] Russell, R.S., and Taylor, B.W., Operations Management,
Prentice Hall, New Jersey, 2003.

[9] Shehory O, Sturm A: Evaluation of modeling techniques
for agent-based systems. Proceedings of the Intl. Conf. on
Autonomous Agents, pa 624–631, ACM Press 2001.

[10] Sudeikat J., Braubach L, Pokahr A., and Lamersdorf
W. Evaluation of Agent Oriented Software Methodologies
Examination of the Gap between Modeling and Platform.
Preproceedings of the AOSE Workshop, 2004.

[11] Zambonelli F., Jennings N.R., Wooldridge M. J.,
Developing Multiagent Systems: The Gaia Methodology,
ACM Transactions on Software Engineering and
Methodology, 12(3), September 2003.

