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Abstract 

 
Determining the performance of an organization is 

a must for both human and multi-agent organizations. 
The performance analysis enables organizations to 
uncover unexpected properties of organizations and 
allow them to reconsider their internal workings.  To 
perform such an analysis, this paper represents 
organizations as labeled graphs that capture, not only 
the interactions of the entities, but also the 
characteristics of those interactions, such as their 
content, frequency, and so on through labels in the 
graph. Algebraic representation and manipulations of 
the labels enable analysis of a given organization. 
Hence, well-known phenomena, such as overloading of 
participants or asymmetric distribution of workload 
among participants can easily be detected. Finally, a 
case study is performed within the domain of incident 
management. 
 

1. Introduction 
 

Multi-agent organizations consist of agents that 
interact to carry out their tasks. Current models of 
multi-agent organizations usually represent 
organizations as consisting of roles that agents adopt. 
An organization model then specifies the structure and 
behavior of the organization in terms of the relations 
between the roles. An analysis of such an organization 
model could check if the model satisfies desired 
properties such as the possibility of completing a 
desired task given that all agents comply with the 
requirements of the organization. Whereas such an 
analysis is useful, it is not sufficient to analyze an 
executing organization. The main reason is that many 

design-time choices become concrete during execution. 
Agents choose who they want to interact with as well as 
how often they want to do so during run-time. For 
example, among two agents that enact a merchant role, 
one might be preferred over the other because the agent 
has better capabilities, more work capacity, and so on. 
These subtle interactions of agents at run-time can give 
rise to interesting situations that can only be detected 
during execution. That is, as a result of previous 
decision, one merchant agent will be more loaded than 
the second merchant will be. Further, the agents that 
participate in an organization might be designed and 
developed by independent parties, which requires them 
to interoperate and execute intelligently at run-time.  In 
other words, such facts about the workings of a multi-
agent organization cannot be discovered from a static 
representation of an organization during design time, 
but can only be analyzed during the execution time. 

Whereas there is a vast literature in the design of 
multi-agent organizations, there is little work on the 
analysis of executing multi-agent systems [9, 10]. For 
this reason, this paper provides a complementary 
treatment of multi-agent organizations, where in 
addition to existing design time dynamics of the 
organizations, a graph representation is used to analyze 
executing organizations. Executing multi-agent 
organizations are analyzed by logging the performance 
of the organization in traces. Graph representations are 
useful for analyzing organizations; for example for 
understanding the structure of an organization through 
theoretical concepts. 

This paper presents a formal specification language 
based on a graph representation.  The directed graph 
captures the relationships between participants in the 
organization and the labels give semantics to the 



relationships. Once the labeled graphs are constructed, 
they can be used to analyze the functioning of the 
organization at runtime, i.e. analyze traces of the 
execution of the multi-agent system. Organization 
designers or analyzers can study the graph to 
understand the shortcomings of the organizations and 
to restructure the organization as they see fit. This 
paper further shows that rules related to the 
organizations can be developed and automatically 
checked against the labeled graphs.  As a concrete 
example, detection of overloaded agents is used.   

The rest of this paper is organized as follows. 
Section 2 gives a representation of organizations as 
labeled graphs. Sections 3 discusses the usage of the 
graph for external analysis. Section 4 presents a case-
study and Section 5 discusses the relevant literature. 
 

2. Organizations as Labeled Graphs 
 

A directed graph G = (V, E) constitutes the basis of 
the description of an organization in this paper.  V 
denotes the set of nodes, which represent agents that 
enact a role. E denotes the edges in the graph, which 
represent the interactions between agents.  Graph-based 
representations are typically used to model processes in 
areas such as (distributed) workflow management, 
business process design, organization modeling and 
organizational performance measurement. Usually the 
graphs have no labels or simple labels; such as a 
number that denotes the strength of a link.  However, in 
real organizations edges denote different types of 
relationships with different properties.  To represent 
such relationships, this paper provides a more complex 
structure of the labels and formalizes the structure with 
an algebra. 

The example organizations considered here contain 
agents that fulfill tasks, assign subtasks to other agents, 
and thus run a business together.  There are two 
primitive concepts we consider: workloads and 
capacities. An edge e connecting u and v means in this 
particular application that u requires some work to be 
done by v; i.e., edge e denotes a request for workload. 
As in real life, u could request different tasks to be 
performed by v. A label on an edge specifies the task 
type and the strength of the task (i.e., how intensive the 
work is). The label also includes a list consisting of 
tasks the current task at hand originates from. 

 

Example 1. Consider the organization in Figure 1. The 
figure gives a simplified representation of the disaster 
prevention organization in case of a plane crash in the 
Netherlands in the form of a labeled graph. Four agents 
enact the roles as shown in Figure 1: First of all, the 
airport role is present. This role takes care of the 

communication with airplanes and is the one that 
receives the mayday calls. After it has received a 
mayday call from a plane above the sea, it will contact 
the coastguard immediately to start a rescue task. The 
call causes the coastguard a lot of work, as they are in 
charge of the entire fleet of rescue ships. For possible 
precautions or backup from the land, the coastguard 
can contact the alarm center role which will arrange 
this type of help. The press is also represented as a role 
as they often request information regarding the number 
of casualties, information about the cause of the crash, 
and so on. The coastguard is responsible for fulfilling 
this task, which is called Inform. 

Each agent in the organization has a certain capacity 
for each of the tasks that it can perform.  Hence, the 
nodes of the graph are also labeled to denote the 
capacities of agents. First, a description of a formal 
language for the labels is given. Next, the capacities of 
the nodes will be discussed. Finally, the workload is 
defined. 
 
2.1. Formal Specification Language 
 

The formal language presented in this Section is 
based on many-sorted algebra. The sorts of the label 
specification language are shown and explained in 
Table 1. Based on these sorts, functions are defined to 
combine these sorts into labels. Statements of this 
language are equations as the examples accompanying 
the function definitions show. Throughout the text, 
when sorts and functions of the algebra are meant, they 
are denoted in Courier font. 

 First of all, a function is defined to construct a list 
containing pairs of subtasks. In general, the relation 
between tasks could be more general than the subtask 
relationship; for example, by incorporating information 
on the alternative tasks as well.  However, the focus 
here is on dividing a task into smaller pieces that will 
be performed by agents.  Hence, only concentrating on 
the subtask relationship. 
 

taskSubtaskPair: Task x TaskSubtaskList �  
TaskSubtaskList 

 

Figure 1. An example organization graph 



 

Considering Example 1 one could express that the 
Rescue task has as a subtask LandOp which includes 
the operations that take place on land. Formally this 
can be expressed as follows: 
tS=taskSubtaskPair(Rescue,  

taskSubtaskPair(LandOp, null)) 

Besides that, another function is specified which 
expresses a regular list of tasks without the subtask 
relationship between them. 
 

taskList: Task x TaskList �  TaskList 
 

For example, a list containing the tasks that can be 
performed by the coastguard: 
 tL = taskList(Rescue, taskList(Inform, null)) 

For expressing the load three sorts are used: (i) the list 
which specifies the task from which this task originates, 
(ii) the node that carries the load, and (iii) the time 
interval for which this all holds. Intuitively, a load 
captures the intensity of the task a node has to do in a 
given time interval.  
 

loadFor: TaskSubtaskList x Node x 
TimeInterval �  Load 

In the running example, the load for the coastguard can 
be expressed for TimeInterval I (for example 8 
hours) and the Rescue task: 
 

 L = loadFor(tS, Coastguard, I) 

A load is accompanied by a value expressing the 
amount of work caused by the load.  
 

loadValuePair: Load x Value �  LoadValue 
 

For the Load defined above the value is set to 5: 
 LV = loadValuePair(L, 5) 

Constructing a list from these LoadValue pairs can 
be done by means of a function. A communication 
from a role to another role can cause different kinds of 
load, therefore there is a need to express more than one 
load for each edge. 
 

loadValuePairList: LoadValue x 
LoadValueList �  LoadValueList 

 

In the case of the example, only one LoadValue is 
present: 
 LVL = loadValuePairList(LV, null) 

Now that the load caused by a connection in a graph 
can be fully specified it is combined with a label 
identifier. 
 

loadLabel: LoadValueList x Label �  
LabeledLoad 

 

The label specified above is now called L1: 
  LL = loadLabel(LVL, L1) 

Now a label identifier is associated with an edge. 
 

labeledEdge: Edge x Label �  LabeledEdge 
  

    LE = labeledEdge(e1, L1) 

Finally, at runtime an edge will be activated a certain 
number of times over a certain period, which can also 
be expressed in the algebra: 
 

edgeActivation: Edge x TimeInterval  x 
Value �  EdgeActivation 

 

For example, the edge E1 was activated 2 times 
during TimeInterval I: 
   EA = edgeActivation(e1, I, 2) 

Capacities can also be expressed by means of the 
functions. Capacities belong to nodes, as they are the 
ones that need to carry the load. The next Section will 
go into more detail on expressing the capacities. The 
capacity of a node is the amount of task it can do in a 
certain time period.  The amount of task is denoted by 
a TaskList and the time period is denoted by a 
TimeInterval. 
 
 

capacityOf: TaskList x Node x TimeInterval 
�  Capacity 

 

A value can be added to the capacity, for example, 
during the time-interval for which the capacity is 
specified, one man-hour is available for rescuing. 
 

capacityValue: Capacity x Value �  
CapacityValue 

 

Besides a capacity for specific tasks, a node also has an 
overall capacity.  This overall capacity exists 
independent of types of tasks it can do. 
 

overallCapacity: Node x TimeInterval �  
OverallCapacity 

 

A value can again be added to this kind of capacity. It 
can for example say that during the time-interval of a 

Sort Description 
Value Sort for real values. 
Timepoint Sort for moments. 
TimeInterval Sort for names of intervals that contain 

two time-points of sort Timepoint. 
Node Sort to identify a node. 
Edge Sort to identify an edge. 
Task Sort to identify tasks. 
Load Sort to identify loads. 
LoadValue Sort for a Load Value pair. 
LoadValueList Sort for a list of LoadValue pairs. 
Label Sort to identify a label. 
LabeledLoad Sort for a pair containing a 

LoadValueList and a Label. 
TaskSubtaskList Sort for a list of tasks with a subtask 

relationship between them. 
TaskList Sort for a list of tasks. 
Capacity Sort to identify a capacity. 
CapacityValue Sort for a pair containing the Capacity 

and a Value. 
OverallCapacity Sort to identify the overall capacity. 
OverallCapacity  
Value 

Sort for a pair containing the 
OverallCapacity and a Value. 

EdgeActivation Sort for specifying the Value of the 
amount of activations of an Edge during 
a certain TimeInterval 

  Table 1. Sorts used in the label algebra 



day a maximum of 8 man-hours are available for a 
specific node. 
 

 

Using the basic ontology of this algebra, its relations 
can be expressed, and logical relationships can be 
defined: The primitive terms used in the label algebra 
are defined by a many-sorted signature. The signature 
takes into account symbols for sorts, constants, 
functions and relations, including the equality relation. 
Among the relations, the equality relation has a special 
position: the identities (equations) between algebraic 
term expressions. Further relations can be defined by a 
relation symbol instantiated with term expressions. 
Logical relationships involve conditional statements 
involving relations, both the equality relation and other 
relations. For simplicity these logical relationships are 
assumed to be in a clausal format. Examples of 
constants are names of values, examples of function 
symbols are +, x, examples of relation symbols are = 
and <. Examples of logical relationships are  
 

if  t1 < t2 then f(t1) < f(t2) 
if  t1 < t2 then f(t1 + t2) = f(t2) 
 

If no other relations than the equality relation occur, the 
algebra is called functional. 
 
2.2. Capacities 
 
The capacity of a node should be represented flexibly 
so that realistic situations can be modeled. The 
following scenarios are seen frequently. For these 
scenarios, it is assumed that the unit of capacity is man-
hours. The maximum man-hours available is fixed: in 
this case to eight man-hours. 
1.  Fixed Capacities: An agent has a fixed number of 

hours it can spend on each task as dictated by its 
role. The sum of these hours should not be more than 
the maximum amount available.  

2. Constant Task-Specific Capacities: This time an 
agent is told how many hours it can spend on each 
individual task. For example, if the role enacted by 
this agent has two tasks, coordinating the rescue 
operations and informing the press, then a possible 
restriction could state that the agent playing the role 
can spend at most 5 hours on the rescue operations 
and 5 hours on informing the press. Of course, 
working on the rescue operations task for 5 hours 
still leaves 3 hours for the informing the press task. 
That is, the maximum number of hours is still 
constant. 

3. Group-Restricted Capacities: This time the 
restriction is not on individual tasks but on sets of 

tasks. For example, a role can spend a maximum 5 
hours on the rescue operations and informing the 
press and maximum of 4 hours on writing reports. 
The choice of distributing the 5 hours between the 
rescue operations task and the informing the press 
task is up to the agent that plays the role. However, 
the time spent on the rescue operations and 
informing the press together cannot exceed 5 hours.  

4. Flexible Capacities: An agent can decide to work 
any number of hours on any of its tasks, as long as a 
certain maximum is not exceeded during the time-
interval for which this capacity holds. 

It is actually easy to see that both Scenarios 1 and 4 can 
be modeled in terms of Scenario 2. To model the first 
scenario, the only thing that needs to be ensured is that 
the total of the fixed capacities adds up to the 
maximum. This already defines the scenario in terms of 
constant task-specific capacities. For the fourth 
scenario, the individual restriction for each individual 
work has to be set to the maximum 8 hours. 
Additionally, Scenario 2 can be modeled a special case 
of Scenario 3 where each set consists of one task. 
Hence, accommodating Scenario 3 enables 
accommodating the remaining scenarios. For the sake 
of simplicity, disjoint sets of tasks are assumed for a 
specification of the capacity. 

 

Example 2. To give an example, consider the node 
Coastguard, having capacity for tasks Rescue and 
Inform. The capacity of the Coastguard 
concerning the Rescue task in the TimeInterval 
I is 8. For the Inform task this maximum is set to 2. 
Combined however, the overall capacity is set to 8, 
meaning that for the Inform and Rescue tasks 
together the time spent can not exceed 8. According to 
the formal notation as introduced in Section 2.1, the 
example can be formalized as shown below. 
 

 

c1 = capacityOf(taskList(rescue, null),  
      Coastguard, I) 
cval1 = capacityValue(c1, 8) 
c2 = capacityOf(taskList(inform, null),  
      Coastguard, I) 
cval2 = capacityValue(c2, 2) 
co = overallCapacity(Coastguard, I) 
coval = overallCapacityValue(cO, 8) 

 
 
 
 
 

2.3. Workloads 
 

A workload of a node is the amount of work it is 
required to do. Much work has been done to define the 
concept of workload more precisely, however there is 
still little consensus on a single definition. In [4] the 
‘human workload’  is described as follows: “The 
intrinsic difficulty of the activities that an operator must 
perform establishes the target or nominal level of 
workload. The difficulty of a particular task may be 

overallCapacityValue: OverallCapacity x 
Value �  OverallCapacityValue 



influenced by any one or several of the following 
factors: (1) the goals and performance criteria set for a 
particular task; (2) the structure of the task; (3) the 
quality, format, and modality in which information is 
presented; (4) the cognitive processing required; (5) the 
characteristics of the response devices.”  

In operations management [8] research has been 
performed to define the time required to do a job in 
order to generate a unit of output, which is called work 
measurement. The initiator of this type of measurement 
was F.W. Taylor with his scientific management 
approach. It has however fallen into disfavor because if 
focuses on routine, repetitive tasks, but recently the 
labor-intensive service companies have resulted in a 
new popularity. 

The workload of an agent in this paper is determined 
based on the tasks assigned to it now, how often these 
assignments take place, and how much of these tasks 
are delegated to other agents. In general, the agent 
would perform a percentage of the tasks on its own and 
assign the remaining tasks to other agents; i.e., create 
workloads for others. In principle, the newly created 
workload should be less than that of the initial 
workload of the agent. The workload of an agent is 
only determined during execution.  Hence, it is not 
possible to know the workloads exactly during design 
time and distribute work accordingly. 
 

3. Specification for labels with respect to 
loads 
 

As has been mentioned before, labeled organization 
graphs can be used to analyze an organization. It can 
first be used to model the capacities and the workloads, 
and thereafter can be applied to analyze a trace 
representing the state of affairs within a multi-agent 
system during a certain period. 
 
3.1. Calculations for values of loads 
 

The workload of a node v during an interval I for a 
task t can be calculated in the following way: Let 
workload(e,t) be the workload for task t caused upon 
one activation of edge e. This number can be derived 
from the labeled algebra. First, look up the 
taskSubtaskList associated with this Task t: 
taskSubtaskList(t, TSL). Thereafter get the 
label for edge e: labeledEdge(e,L1). Now, look 
up the identifier of the LoadValueList via the 
Label: loadLabel(LVL, L1) and scan all entries 
of the LoadValueList for a Load in which the 
TaskSubtaskList starts with an element in TSL or 
starts with t, and holds for TimeInterval I. 

Finally, sum up the Value for each of these Load 
elements. Furthermore, for each of these edges, get the 
amount of activations, during TimeInterval I, 
then the workload can be calculated as shown in 
Definition 1: 
 

Definition 1. Workload(v, t, I) =  
�e ∈ incomingEdges(v) a1 x workload(e, t)   

  where edgeActivation(e, I, a1)                                
-  �e ∈ outgoingEdges(v) a2 x workload(e, t) 
  where edgeActivation(e, I, a2) 

 

Which entails summing up the workload caused by all 
incoming nodes, and subtracting from that the 
workloads distributed through the outgoing edges. The 
calculation of the overall workload of a node (for all 
tasks t) is simply summing up all separate workloads, 
as shown in Definition 2. 
 

Definition 2. workload(v, I) =  �t ∈ tasks workload(v, t, I) 
 

 

Example 3. Consider the organization as presented in 
Example 1 and 2. Imagine the following scenario 
(during an interval I): A Dakota airplane has crashed in 
the sea, the airport forwards this crash message to the 
coastguard (causing a load of 5), who in turn delegates 
the land operations to the alarm center (causing them a 
load of 1). Besides that, the press starts asking 
questions about the crash (causing a load of 1 each 
time), as they have observed the plane crashing in the 
sea. They request information 40 times, and the 
Coastguard replies the same number of times (causing 
the press a load of 0.8 each time). The workload 
calculation is as follows: workload(coastguard, rescue, 
I) = (1 * 5) – (1 * 1) = 4 man-hours during interval T 
for the rescue task workload(coastguard, inform, I) = 
(40 * 1) – (40 * 0.8)=8 man-hours during interval I for 
the inform task. 

 

As the calculation for the workload has been 
explained, the workload of a node can be compared 
with the capacity of a node, this is referred to as the 
load of a node. Two different types of loads have been 
distinguished. First of all, the load for a specific task t 
can be calculated. To calculate this load, first 
remember that the capacities are defined for a list of 
tasks, let l be the list of which t is an element. As it is 
impossible to calculate loads for individual tasks, loads 
can only be calculated in terms of these lists of tasks, 
therefore the calculation of a load for a task t is done 
by means of the list l the task is part of. Let v be a 
node, t be a task and I be an interval and let capacity(v, 
l, I) be the capacity of the node v for task list l, during 
interval I. This can be derived from the labeled algebra 
as follows: Get the capacity for TaskList L in 
which task t is defined for node v during interval I: C = 



capacityOf(L,v,I). Thereafter, look up the 
Value CV of this capacity: 
capacityValue(C,CV). Now the load is defined 
as shown in Definition 3. 

 

 

This defines that the load for a task is calculated by 
summing up all workload within the list l (so for every 
task within l) and dividing it by the capacity defined for 
that list.  

The load can also be calculated for the node as a 
whole, this is simply done by taking the workload of 
the node, and dividing it by the overall capacity, 
capacity(v, I), which can be found using the algebra: 
CA = overallCapacity(v,I) after which the 
Value OCV can be looked up: 
overallCapacityValue(CA,OCV). The load is 
now calculated as shown in Definition 4. 

 

Definition 4. load(v, I) = workload(v, I)/ capacity(v, I)) 
 

An example of an interesting type of information 
that can be derived from the load is the load 
distributions among the nodes in the graph. An 
organization with evenly balanced nodes is typically 
preferable over a very uneven distribution of loads. 
 

Example 4. Picture the organization in case of an 
airplane crash in the North-Sea, the Netherlands again. 
Following the capacity example as given in Section 2.2 
the coastguard has a capacity of 8 man-hours during I 
for the rescue task, and a capacity of 2 man-hours for 
the inform task, during that same period. Another 
capacity that is part of this organization is that of the 
press. The capacity of the press (which is not shown in 
a formalization) is defined as being 50 during the time-
interval I in which the incident management occurs. 
The load of the coastguard and the press nodes can be 
calculated: The general load for the coastguard is: 
load(coastguard, I) = (12 / 8) = 1.5. More specifically, 
for the task rescue the load is 0.5 and for the inform 
task the load is 4.0. For the press, the workload is only 
caused by the information coming from the coastguard, 
which can not be distributed elsewhere. Therefore the 
workload of the press is 40 x 0.8 = 32. As they only 
have one task, the load of the press, load (press, I), is 
equal to 0.64. Based on this, it can be seen that the 
press has a relatively low load compared to the 
coastguard. By means of this information, a person that 
is analyzing an organization could suggest that the 
press should reduce the requests for information to the 
coastguard and try getting most of their information 

within the press organization, as they still have 
sufficient capacity. 
 
3.2. Overloading 
 

As the load for a node has been defined, the 
definition of a node being overloaded can be given. A 
certain role is overloaded in case one, or both of the 
following situations hold: (1) There exists a task t for 
which the load is greater than 1.0; (2) The load for the 
entire node, load(v, I) exceeds 1.0. A formal definition 
is presented below. Please note that due to the choice 
of representing the capacities by group restricted 
capacities it can occur that the loads for the individual 
group are not overloaded whereas the overall load is. 

 

Definition 5: overloaded(v, I) = 
∃t:Task (load(v,t,I) > 1.0) ∨ (load(v,I) > 1.0)  

 

Example 5. Following from example 4, it can be seen 
that the role of coastguard is heavily overloaded, for 
one of the tasks (inform) the load is 4.0, which means 4 
times the capacity. The press however is not 
overloaded as it has a load value of 0.64. 
 

4. Case-Study: Dakota Incident 
 
This Section presents details regarding the 
implementation of the labeled graph approach into a 
software tool, and shows an empirical evaluation using 
a trace obtained from the domain of incident 
management.  
 
4.1. Implementation 
 

In order to be able to use the algebra and 
calculations for analyzing multi-agent organizations, a 
software tool has been created. First, the algebra 
presented in Section 2 has been implemented in 
PROLOG [1], including the calculations that are 
presented in Section 3. For a comparative study of 
translating an algebraic specification into a PROLOG 
program, see [2]. A specific interval can be specified 
over which the calculations of the organizational 
performance are done. Thereafter, in order to make the 
calculations of the workloads and loads for the nodes 
more insightful for e.g. domain experts to evaluate, a 
visualization tool has been created that graphically 
shows how much work is being transferred between 
different nodes within the graph, and represents the 
load for each of these nodes. Figure 2 shows a screen-
shot of the visualization tool. The radius of a node is 
increased in case the load increases, so the bigger the 
node the heavier the load on that specific node. Further, 

Definition 3. load(v, t, I) = 
(�task∈l workload(v, task, I))/ capacity(v, l, I) where t∈l 



communication channels that are intensively used (i.e. 
edges that are activated many times during a particular 
time interval) are highlighted as well by turning red in 
case of a lot of activity (or in case of a huge amount of 
activity purple). 
 

4.2. Empirical Evaluation 
 
In order to evaluate the functioning of the 
implementation and the approach itself, a case study 
has been performed in the incident management 
domain. The case-study itself is based upon reports of a 
plane crash which occurred in the Netherlands in 1996. 
A trace of the events that occurred during the rescue of 
the passengers on board of the plane has been obtained 
from domain experts and logs that have been made of 
the communications that took place during the incident 
management in 1996. The examples used in Sections 2 
and 3 include simplifications used for this case study.  
To enable an analysis, the organization, including the 
roles and the communications that took place, has been 
translated to a graph. Thereafter, a domain expert has 
labeled the graph with the values he thinks are 
appropriate values for workload caused by activation of 
a communication line (i.e. an edge). Furthermore, the 
expert has set capacities for the roles (i.e. nodes) within 
the incident management organization. According to 
the experts in the field (written down in incident 
management reports) the role of the coastguard 
(abbreviated in the figure to KWC) was heavily 
overloaded due to too many requests for information of 
the press, regional alarm center (RAC) and the military 
airport (MVKK). This indeed showed in the 
visualization, based on the capacities and workloads set 
in the graph. The coastguard has a large capacity for 
handling all the work, but is unable to handle all 

incoming requests. This shows that the analysis using 
the labeled graph approach is indeed in line with the 
manual expert evaluations. 
 

5. Discussion 
 

This paper has presented a formal language for 
specifying organizations.  The specification is based on 
a graph formalism. The nodes of the graph represent 
agents and the edges between the nodes are labeled to 
denote why those edges exist. This allows us to 
represent the interactions between the agents in an 
expressive way.  It has been shown that using this 
organization structure properties of executing 
organizations can be detected, such as the cases where 
the organization hosts overloaded agents, successfully.  

Operations research is a closely related field to the 
research presented in this paper, see e.g. [5]. Many 
theories have been developed in that field of research 
to enable a proper functioning of the organization as a 
whole, creating a planning for these operations, etc. 
The research presented in this paper is meant to 
monitor the performance of these organizations, not to 
design these operations within the organization. 

Another related field is workflow management, in 
which tools exist that measure and analyze the 
execution of processes so that continuous 
improvements can be made. The approach in workflow 
management can be used as a support tool to analyze 
the execution, however workflow management systems 
constitute a huge system which is put into the 
organization to measure the performance, whereas the 
approach in this paper simply needs traces of the events 
and values for the capacities of nodes and workloads 
regarding tasks. This also enables the presented 
approach to be used for analyzing occurrences in the 
past and organizations in which introducing a workflow 
management system is not feasible. 

There is a vast literature on designing multi-agent 
organizations. Zambonelli et al. develop a design 
methodology, GAIA [11]. GAIA identifies roles, 
organization rules, environment, and so on as necessary 
organizational abstractions. Using these constructs, 
GAIA methodology helps a system designer build its 
system in a systematic way. Padgham and Winikoff 
develop Prometheus, an agent-based software 
development methodology [7]. It consists of a system 
specification, architectural design, and detailed design 
phases. While these approaches are useful for 
designing multi-agent systems, they do not provide any 
mechanisms for analyzing executing organizations. 
That is, these methodologies only care for the design 
phase, but are not targeted for analyzing the multi-

Figure 2. Screenshot of the visualization tool 
 



agent system during execution, which is the case for the 
methodology presented in this paper. 

Handley and Levis create a model to evaluate the 
effect of organizational adaptation by means of colored 
Petri nets [4]. The Petri nets are used to represent 
external interaction of decision makers as well as 
internal algorithms the decision maker must perform, 
and are equipped with labels. In this model the 
workload of the decision makers is monitored and is 
used as a performance indicator. The concept of 
entropy is used to measure the total activity value 
(which is linked to the workload) of a decision maker. 
When an overload of a decision maker occurs, the 
execution time of the internal algorithm has a delay of 
one additional time point. Decision makers can also 
base decisions on who to forward an output to on the 
total activity of the decision maker that can be chosen. 
Their approach differs from the approach in this paper 
in the sense that they specify the entire process within 
the organization, and use the Petri nets to actually 
simulate an organization. Therefore, their aim is more 
towards the decision process and the evaluation thereof 
whereas the approach presented here is more intended 
as a separate method for evaluating the performance of 
an organization from an external viewpoint. 

Fink et al. develop a visualization system to help 
monitor the performance of businesses [3]. The focus 
of their work is on presenting a tool that can 
incorporate different performance metrics from 
different sources. The aim of the approach presented 
here is to analyze workings of a business automatically. 
In this sense, the work of Fink et al. is complementary 
to the work in this paper. Once certain properties are 
detected by the approach in this paper, they could be 
feed into a visualization tool to ease the exposure.  

The work presented in this paper is open for further 
improvements. Whereas this paper mainly deals with 
calculating the effect of an edge on its endpoints, it is 
also possible to calculate the effects of an edge on 
nodes that are not immediate endpoints. This can be 
regarded as calculating the cascading effects of 
interactions on third parties. Similarly, the 
representation can be made richer by adding capacities 
or workflows for groups of agents to model the smaller 
units in an organization. Ideas developed in this paper 
can also be used to help agents model others and 
reason about others’  workloads to manage their 
interactions more efficiently. Such reasoning could 
possibly even result in change of an organization in 
case the workload simply cannot be handled, see [6] for 
more extensive results on this. Furthermore, 
investigations on how well the approach scales up to 
large scale multi-agent systems will need to be 

performed in the future. One important possibility to 
note here is that of specifying such a system on 
multiple aggregation levels, whereby the analysis can 
take place at the highest level (e.g. the workload 
between departments) while at the lower level focus on 
parts of the organization (e.g. the workload within a 
department). 
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