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Abstract. In this paper an agent-based social contagion model with an underlying dynamic 

network is proposed and analysed. In contrast to the existing social contagion models, the 

strength of links between agents changes gradually rather than abruptly based on a threshold 

mechanism. An essential feature of the model – the ability to form clusters – is extensively 

investigated in the paper analytically and by simulation. Specifically, the distribution of clusters 

in random and scale-free networks is investigated, the dynamics of links within and between 

clusters are determined, the minimal distance between two clusters is identified, and the 

convergence speed of networks is analysed. 

 

1   Introduction 

Social contagion models have been extensively applied to represent and analyse social 
decision making, opinion formation, spread of diseases and innovation [1, 2, 4, 5, 7, 8, 
12, 14]. Such models describe an evolution of states of individual agents under 
influence of their neighbouring agents by mutual contagion of these states. In many 
models [4, 9, 16, 17] the links between agents and their neighbors are constant. In 
some other models [1, 2, 4, 7] such links may disappear abruptly when states of 
interacting agents are considered to be too different from each other compared to 
some threshold. In this paper a social contagion model for social decision making with 
an underlying network of agents with variable link strengths is proposed and analysed. 
The strength of the links in the model reflects the degree of influence of one agent to 
another. The higher the influence to an agent, the higher the extent to which 
information provided by that agent is used in the decision making; sometimes this also 
is related to the notion of trust  (e.g., [6]). In contrast to the existing models [2, 4, 7, 
8], the strength of the links changes gradually in a continuous manner, rather than in a 
discontinuous manner based on a threshold mechanism. Such a mechanism is 
supported by sociological literature; e.g., [10], in which much evidence exist that 
relations between individuals develop continuously.  

Many experimental evidences exist that influence correlates positively with 
similarity of agents; e.g., [3, 11], either in a static sense or in a dynamic sense. This 
has led to the principle that the closer the opinions of the interacting agents, the higher 
the mutual degrees of influence of the agents is (static perspective) or will become 
(dynamic perspective). Such an assumption underlies most of the existing models of 
social influence [2, 4, 7, 8, 12, 14].  

Inspired by these findings, the dynamics of the links in the proposed model is 
defined based on the dynamic variant of this principle: closeness of opinions leads to a 
positive change of connection strength over time. An important feature of the 
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proposed model is that for certain ranges of parameter values clusters of agents 
emerge that are isolated from each other. A cluster is a set of connected agents (i.e., a 
connected graph) with the same states (e.g., opinions).  

The dynamics of social decision making based on the model was analysed by 
simulation and by mathematical analysis. In particular, the formation and dynamics of 
clusters of agents was investigated. Both simulation and analytical findings show that 
the links between the agents within a cluster become stronger over time, and the 
corresponding degrees of influence tend to 1 (i.e., the highest strength value). At the 
same time, the strength of the links between the agents in different clusters degrade, 
and the corresponding degrees of influence tend to 0 (the lowest strength value 
equivalent to the absence of a connection between the agents). Furthermore, it turns 
out that different emerging clusters have a certain minimal distance, which was 
determined analytically. Cluster size distributions in random and scale-free networks 
were investigated by simulation. The rate of convergence of agent states to 
equilibrium were investigated both by simulation and analytically and are discussed in 
the paper. Furthermore, the cluster formation and convergence properties of the 
proposed model are compared with the corresponding properties of the well-cited 
threshold-based model developed by Hegselmann and Krause [8]. 

The paper is organized as follows. In Section 2 a social contagion model for social 
decision making with an underlying dynamic network is proposed. Results of the 
model analysis analytically and by simulation are presented in Section 3. Section 4 
concludes the paper. 

2   The Dynamical Model 

The model describes dynamics of decision making by agents in a group as a process of 
social contagion. The opinion qs,i of an agent i for a decision option s is expressed by a 
real number in the range [0, 1], reflecting the degree of the agent’s support for the 
option. For each option each agent communicates its opinion to other agents. Agents 
communicate only with those agents to which they are connected in a social network. 
In this study two network topologies are considered: 
   a scale-free network topology: a connected graph with the property that the 

number of links originating from a given node representing an agent has a power 
law distribution. In such networks the majority of the agents have one or two links, 
but a few agents have a large number of links;  

   a random network topology: a graph, in which links between nodes occur at 
random. Only connected graphs are considered in this study. 

To compare the dynamics in both types of networks, the networks used in this study 
were generated with 5000 agents and the same average node degree equal to 4.5. This 
value is close to the average node degree of real social networks. 

It is assumed that the agents are able to both communicate and receive opinions 
to/from the agents, to which they are connected (i.e., the links are bidirectional).  
Furthermore, a weight i,j [0,1], indicating the degree of influence of agent i on agent 
j, is associated with each link for each direction of interaction. This weight determines 
to which extent the opinion of agent i is taken into account in the update of the opinion 
of agent j for each option. These weights may or may not be symmetric. 

It is assumed that the agents interact with each other synchronously, i.e., at the same 
time (parallel interaction mode). For a quantitative comparison of the dynamics of 



 

social contagion models with the parallel interaction mode with models with the 
sequential interaction mode, please refer to [16, 17]. 

In the parallel mode, the opinion states of the agents are updated at the same time 
point t as follows: 

                                 qs,i(t+t) = qs,i(t)+ i s,i(t)t                        (1) 

Here i is an agent-dependent parameter within the range [0,1], which determines how 
fast the agent adjusts to the opinion of other agents, and  

s,i(t) = jAG j,i(t)(qs,j(t)- qs,i(t))/ jAG j,i(t) 

is the amount of change of the agent i’s opinion; AG is the set of all agent names.                                                                     
The normalization by  jAG j,i(t) has the effect that the agent balances by a relative 

comparison its own self-influence i,i(t) (i.e., self-assurance that its own opinion is 
correct) with the influences of other agents. 

The degrees of influence i,j  also change over time based on the principle: the closer 
the opinions of the interacting agents, the higher the mutual degrees of influence of the 
agents will become. This dynamic principle may be formalised by different functions 
as follows: 

                               i,j(t+t)= i,j(t) + fi,j(i,j(t), qs,i(t),qs,j(t)) t  (2) 

where for function fi,j(X, Y, Z) the main example used is: 

fi,j(X, Y, Z) = Pos(ij (ij - (Y-Z)
2
))(1-X)  - Pos(-ij (ij - (Y-Z)

2
))X                  (3) 

with Pos(x) = (|x|+x)/2, ij is a speed parameter and ij is a threshold or tolerance 
parameter.  

Other alternatives for fi,j(X, Y, Z) are: 

 X ij (ij - (Y-Z)
2
)(1-X)               X ij(1-|Y-Z|)(1-X) - ij |Y-Z| 

Here ij  is an amplification parameter and ij is an inhibition parameter. Note that (1) 
and (2) are expressed in difference equation format. In Section 3 they are also 
considered in differential equation format. 

A threshold-based model with abruptly changing links and threshold  as described 
in [8] can be obtained by defining fi,j(X, Y, Z) as follows: 

                                   fi,j(X, Y, Z) = 1-X,   when |Y-Z|                                         (4) 
                                  fi,j(X, Y, Z) = -X,    when |Y-Z| >                             (5) 

3 Model Analysis 

In this section first formal analytical results for the model are presented. After that the 
model is analysed by simulation. 

3.1 Mathematical Analysis 

For a mathematical analysis, as a point of departure the following differential 

equations were derived from (1), (2) and (3) in Section 2. For i,j(t): 

di,j(t)/ dt = Pos(ij (ij - (qs,i(t)- qs,j(t))
2
))(1-i,j(t)) - Pos(-ij (ij - (qs,i(t)- qs,j(t))

2
)) i,j(t) 

The differential equations for the qs,i(t) are: 

dqs,i(t)/ dt =i  jAG j,i(t)(qs,j(t)- qs,i(t))/jAG j,i(t)           



 

Equilibrium values for connection strengths i,j(t) 
First, the equilibrium values i,j for i,j(t) are addressed. The standard approach is to 

derive an equilibrium equation from the differential equation by putting di,j(t)/ dt = 0. 

For the specific case for the function fi,j(X, Y, Z) this is 

Pos(ij (ij - (qs,i(t)- qs,j(t))
2
))(1-i,j(t))  

                           - Pos(-ij (ij - (qs,i(t)- qs,j(t))
2
)) i,j(t) = 0 

The following lemma is used: 

Lemma 1 

For any numbers  and  the following are equivalent: 

(i)  Pos(x) +  Pos(-x) = 0  

(ii)   Pos(x) = 0 and  Pos(-x) = 0 

(iii)  x = 0   or   x>0 and  = 0   or   x<0 and  = 0.        ■ 
 

Using Lemma 1 it is found that the above equilibrium equation has three solutions 

|qs,i - qs,j| = ij 

|qs,i - qs,j| > ij   and i,j = 0 

|qs,i - qs,j| < ij   and i,j = 1 

More can be found about the circumstances under which such equilibria can occur, 
and for a wider class of functions fi,j(X, Y, Z). The following symmetry properties are 
relevant. 

Definition  
The network is called weakly symmetric if for all nodes i and j at all time points it 

holds i,j = 0    j,i= 0 or, equivalently: i,j > 0    j,i > 0. The network is called 

fully symmetric if  i,j = j,i for all nodes i and j at all time points. 

Note that the network is fully symmetric if the initial values for i,j and j,i are equal 
and fi,j(X, Y, Z)=fj,i(X, Z, Y) for all X, Y, Z; the latter condition is fulfilled for the 
specific case if i,j=j,i and i,j=j,i. The following lemma is used to obtain Theorem 1. 

Lemma 2 

a) If for some node i at time t for all nodes j with qs,j(t) > qs,i(t) it holds j,i(t) = 0, then 
qs,i(t) is decreasing at t: dqs,i(t)/dt ≤ 0. 

b) If, moreover, a node k exists with  qs,k(t) < qs,i(t) and  k,i(t) > 0 then qs,i(t) is strictly 
decreasing at t: dqs,i(t)/dt < 0.   
Proof: a) From the expressions for s,i(t) it follows that s,i(t)  0, and  therefore 
dqs,i(t)/dt  0, so qs,i(t) is decreasing at t. 
b) In this case it follows that s,i(t) < 0 and therefore dqs,i(t)/dt < 0, so qs,i(t) is strictly 
decreasing.■ 

Theorem 1 (Equilibrium values i,j) 

Suppose the network is weakly symmetric, and fi,j(X,Y,Y) >0 for all X, Y with 0 < X < 
1. Then in an equilibrium state for any two nodes i and j it holds i,j = 0 or i,j = 1. 
More specifically, the following hold: 

a)  In an equilibrium state with qs,i ≠ qs,j it holds i,j = 0. 



 

b)  In an equilibrium state with qs,i = qs,j it holds i,j = 0  or i,j = 1. If qs,i(t) = qs,j(t) and 
0 < i,j(t) < 1, then i,j(t) is strictly increasing at time t:  di,j(t)/ dt > 0.   

Proof: a)  Suppose in an equilibrium state qs,i ≠ qs,j and i,j, j,i > 0 for some nodes i 

and j. Take the node i with this property with highest value qs,i. Then for all nodes j 

with qs,j > qs,i it holds i,j = j,i = 0. Now apply Lemma 2 to this node i. It follows that 

dqs,i(t)/dt < 0, so qs,i(t) is not in equilibrium. This contradicts the assumption. 

Therefore i,j = 0 for all nodes i and j with qs,i ≠ qs,j.    

b) If 0 < i,j(t) < 1, then from qs,i(t) = qs,j(t) it follows that fi,j(i,j(t), qs,i(t),qs,j(t)) > 0. 

From this it follows that di,j(t)/dt > 0: i,j(t) is strictly increasing and is not in 

equilibrium. Therefore in an equilibrium state with qs,i = qs,j it holds i,j = 0 or i,j = 1.■ 

Note that the criterion on the function fi,j(X, Y, Z) in Theorem 1 is satisfied for the 

specific function  fi,j(X, Y, Z) = Pos(ij (ij - (Y-Z)
2
))(1-X)- Pos(-ij (ij - (Y-Z)

2
))X if 

and only if ij, ij > 0, which is the case.  

Equilibrium values for qs,i(t) 
In an equilibrium of the network not only the i,j  are in an equilibrium i,j but also the 
qs,i . From the differential equations for the qs,i  it follows that the equilibrium values 
qs,i  for qs,i (t) have to satisfy jAG j,i (qs,j - qs,i ) = 0. 

When j,i = 0 for all j, then from the differential equation it follows that qs,i is in 
equilibrium irrespective of what value it has. Suppose at least one node j exists with 
j,i ≠ 0.  Then the equilibrium equations can be rewritten as 

                     qs,i = jAG (j,i / kAG  k,i) qs,j  

This provides a system of linear equations for the qs,i that could be solved, unless they 
are trivial or dependent. To analyse this, suppose Si  is the cluster (of size si) of nodes 
with same equilibrium value as qs,i : 

Si = { j | qs,j = qs,i  }                  si  = # (Si
 
) 

In Theorem 1a) above it has been found that j,i = 0 if  jSi. Therefore  

jAG j,i qs,j = jSi j,i qs,j = jSi j,i qs,i     

Then the equilibrium equation for qs,i becomes: 

qs,i = jAG j,i qs,j / jAG  j,i = ,jSi j,i qs,j / jSi  j,i   =  qs,i 

Thus these equations do not provide a feasible way to obtain information about the 

equilibrium values qs,i . However, by different methods at least some properties of the 

equilibrium values qs,i can be derived, as is shown below.  

The following conditions on the function fi,j(X, Y, Z) are assumed: 

Definition 

The function fi,j(X, Y, Z) has a threshold  for Y – Z if  

a)  For all Y and Z it holds 

fi,j(0, Y, Z)  0               fi,j(1, Y, Z)  0   

b)  For all X with 0 < X < 1 and all Y and Z it holds 

fi,j(X, Y, Z) > 0     iff   |Y – Z| <  

fi,j(X, Y, Z) = 0     iff   |Y – Z| =  



 

fi,j(X, Y, Z) < 0     iff   |Y – Z| >    

 

Note that (given that ij > 0 is assumed) the function 

fi,j(X, Y, Z) = Pos(ij (ij - (Y-Z)
2
))(1-X)  

            - Pos(-ij (ij - (Y-Z)
2
))X 

satisfies these conditions for threshold ij. 

Theorem 2 (Distance between equilibrium values qs,i) 

Suppose the network is weakly symmetric, the function fi,j(X, Y, Z) has a threshold , 
and the network reaches an equilibrium state with values qs,i  for the different nodes i. 

Then for every two nodes i and j if their equilibrium values qs,i  and qs,j  are distinct, 

and the initial values for i,j  and j,i are nonzero, they have a distance of at least  : | 

qs,i  - qs,j | ≥ .  In particular, when all initial values for i,j  and j,i are nonzero, there 

are at most 1 + 1/  distinct equilibrium values qs,i .  

Proof: Suppose two nodes are given with distinct equilibrium values qs,i  and qs,j with 

distance less than . Then | qs,i  - qs,j | =  -   for some  > 0. Without loss of 

generality it can be assumed that qs,j  <  qs,i . Because qs,i (t) converges to qs,i  and qs,j 

(t) converges to qs,j  it follows that there exists a t such that for all t' with t'≥t it holds   

           | qs,i (t') - qs,i | < ½    and   | qs,j(t')  -  qs,i | < ½   

Therefore for all t'≥t it holds (by the triangle inequality) 

 |qs,i (t') - qs,j (t')| = |(qs,i (t') -qs,i) – (qs,j (t') - qs,j) + (qs,i -  qs,j)|  

≤ | qs,i (t') - qs,i  | + |qs,j (t') -  qs,j| + | qs,i  -  qs,j |  

< ½  +  ½  +  -   =  

So, |qs,i (t') - qs,j (t') | <  for all t'≥t.  

Since the function fi,j(X, Y, Z) has threshold , from this it follows that for all t'≥t  

when 0 < i,j(t') < 1 it holds  

fi,j(i,j(t'), qs,i (t'), qs,j(t')) > 0  

From the differential equation for i,j(t)  it follows that when 0<i,j(t')<1 it holds that 

di,j(t')/dt >0 for all t'≥t. From Theorem 1a) it follows that the equilibrium value for 

i,j(t) is i,j = 0. Taking into account that always i,j(t') ≥ 0, and  that di,j(t')/dt > 0 when 

0 < i,j(t') < 1 for all t'≥t this equilibrium value i,j = 0 can only be reached when i,j(t) 

= 0 for all t, which contradicts the fact that the initial value for i,j is nonzero. 

Summarising, the assumption that | qs,i  - qs,j | <  has been falsified, so the distance 

between two distinct equilibrium values qs,i  and  qs,j  is at least : | qs,i  - qs,j | ≥ . The 

last statement of the theorem follows since the interval [0, 1] can be divided in at most 

1/  subintervals of length . ■ 

In case the network is fully symmetric (i.e., j,i =i,j for all i and j) the equilibrium 

values qs,i  can be related to the initial values qs,i(t). In this case the sum i qs,i(t) is 

preserved: iAG qs,i(t) = iAG qs,i(t') for all t and t'. From j,i =i,j this can be 

established as follows: 

d iAG  qs,i(t)/dt = iAG  d qs,i(t)/dt  = i iAG jAG j,i(t)(qs,j(t)- qs,i(t))/jAG j,i(t) 

= i [ kAG iAG i,kqs,k(t)- kAG iAG i,k qs,k(t)]/jAG j,i(t) = 0 



 

The fact that iAG qs,i(t)  is preserved can be applied to compare the equilibrium 

values q
s,i

 to the initial values qs,i(t0). Let S be the set of clusters of equilibria: 

S = {Si | i any node} 

For CS define 

q
s,C

  =  q
s,j

  for any jC 

sC = #(C) = sj for any jC 

Then from the preservation it follows  

iAG  qs,i
  =  iAG q

s,i
(t0)    

Therefore  

CS  iC  qs,i
  =  iAG  q

s,i
(t0)    

CS   (sC/n) q
s,C

  =  iAG  q
s,i

(t0)/n    

with n=#(AG) the total number of nodes. So, the weighted average over the clusters 

(with as weights the fraction of the total number of nodes in the cluster) is the average 

of the initial values q
s,i

(t0). These are summarised in the following theorem: 

Theorem 3 (Equilibria qs,i in fully symmetric case) 

Suppose the network is fully symmetric. Then the sum iAG  qs,i(t) is preserved over 

time. Moreover, the weighted average of the equilibrium values for the clusters, with 

the fraction of the total number of nodes in the cluster as weights, is the average of the 

initial values: 

                     CS   (sC/n) q
s,C

 = iAG  q
s,i

(t0)/n  ■ 

Because of the space limitations, analysis of the model behaviour around equilibria 

is described in an online appendix at http://iccci13.9k.com/app.pdf 

3.2 Analysis by Simulation 

In this section two model variants from Section 2 are analysed by simulation: model 
M1 with continuously changing links (equation (3)) and a threshold-based model M2 
with abruptly changing links (equations (4) and (5)). Both models have the same 
threshold =ij. The models were simulated in Matlab. 

To compare the models, 10 different random network topologies with 5000 agents 
and 10 different scale-free network topologies with 5000 agents were generated. The 
scale-free networks were obtained using the Complex Networks Package [13] with 
scale-free degree distribution of α=-2.2 (as in many real social networks). The average 
node degree of such networks with 5000 agents equals 4.5. The random networks 
were generated with the same average node dergree. 

The agents formed opinions on some topic s. The parameters of the agents and of 
the links were uniformly distributed as follows: i[0.5, 1]; qs,i(0)[0,1]; i,j(0)(0, 1] 
(in model M2 i,j(0)=1, if there was a link between i and j, and 0 otherwise). These 
distributions are assumed to represent the diversity that naturally occurs in real-world 
agent populations. 

The simulation time was 300 time points and t=1. 
In the previous section 3.1 it was proven that when all initial values i,j(0) in the 

population of agents are nonzero, then at most 1 + 1/ij  clusters can be formed in the 
model with threshold =ij. The minimal distance between two clusters is ij, 



 

Table 1. The minimal distances between the clusters in 10 random and 10 scale-free 

networks determined by simulation and analytically 

Parameter 

settings 

=0.001 =0.0025 =0.01 

=1 =10 =20 =1 =10 =20 =1 =10 =20 

Scale-free   0.034 0.041 0.038 0.053 0.059 0.07 1 cluster 

Random  0.041 0.034 0.033 0.1 0.084 0.2 0.4 0.15 0.23 

Analytical  0.032 0.05 0.1 

 
provided that these two clusters were not disconnected initially.  In this section we 
investigate how parameters ij and ij influence the number and size of the clusters 
emerging in the scale-free and random networks. Furthermore, the rate of convergence 
of the agent opinions is determined for different parameter settings.  

In the simulation study three values for ij: 0.001, 0.0025, 0.01 and three values for 
ij: 1, 10, 20 were used. According to the findings from Section 3.1, at most 33 
clusters could emerge for ij=0.001, 21 clusters for ij=0.0025 and 11 clusters for 
ij=0.01. In the networks used in the simulation less clusters were formed, as these 
networks were not fully connected. For ij > 0.01, in most cases only one cluster was 
formed containing all the agents. The minimal distances between the clusters in the 
simulated networks were greater than ij. (Table 1).  

In the tables with the results small clusters have the size up to 101 agents; medium 
clusters contain more than 100 but less than 1001 agents, and large clusters comprise 
of more than 1000 agents. 

Besides ij, parameter ij also influences the number of clusters with the limit 1 + 
1/ij (Tables 2, 3), however in a more intricate manner. For example, in the random 
networks the largest number of clusters emerges when ij takes intermediate values 
(around 10), whereas in the scale-free networks many clusters tend to form with low 
values of ij.  

In the random networks simulated with M1 model only small and large size clusters 
tend to form (Table 4). Only one large size cluster emerges in the M1-based 
simulations, which contains the great majority of the agents in the population. Model 
M2 produces also medium size clusters, but their amount is less than the number of the 
small size clusters. This can be partially explained by the absence of central agents or 

Table 2. The mean and standard deviation values (in parentheses) of the numbers of 

small (  100 agents), medium ( >100 and  1000 agents) and large ( >1000 agents) 

size clusters emerging in 10 random networks 

Parameter 

settings 
=0.001 =0.0025 =0.01 

=1 =10 =20 =1 =10 =20 =1 =10 =20 

Small  M1 1.1 

(1) 

4  

(1.2) 

2.9 

(1.2) 

0.6 

(0.9) 

1.9 

(0.7) 

1  

(0.8) 

0.2 

(0.4) 

0.3 

(0.6) 

0.2 

(0.4) 

Small  M2 5.1 (1.1) 2.9 (0.9) 0.6 (0.5) 

Medium M1 0 0 0 0 0 0 0 0 0 

Medium M2 3.8 (0.9) 2 (0.8) 0 

Large M1 1 1 1.1  1 1 1 1 1 1 

Large M2 2.3 (0.6) 1.3 (0.5) 1 

 



 

hubs with many connections in the random networks. Such agents would be able to 
attract large groups of other agents and influence their opinions so that the whole 
agent population may become polarized in larger opposing clusters.  

More medium size clusters tend to emerge in the scale-free networks simulated with 
both M1 and M2 models (Tables 3 and 5). The scale-free network topology contains 
hub agents. When such agents have opposing opinions, they form the basis for future 
clusters in which the whole population is divided. Because of such agents, who group 
others around themselves, the small and medium size clusters in the scale-free 
networks are on average larger than the ones emerging in the random networks 
(Tables 4 and 5).  

According to the analytical results from Section 3.1, the links between the agents 
within a cluster in model M1 become stronger and the corresponding degrees of 

Table 3. The mean and standard deviation values (in parentheses) of the numbers of 

small (  100 agents), medium ( >100 and  1000 agents) and large ( >1000 agents) size 

clusters emerging in 10 scale-free networks 

Parameter 

settings 
=0.001 =0.0025 =0.01 

=1 =10 =20 =1 =10 =20 =1 =10 =20 

Small  M1 5.9 

(0.9) 

2.4 

(0.8) 

0.6  

(0.6) 

1.8 

(0.9) 

0.8 

(0.7) 

0.1 

(0.3) 

0 0 0 

Small  M2 3.1 (1.3) 1.6 (0.8) 0.1 (0.3) 

Medium M1 0 2.4 

(0.8) 

2.8 

(0.6) 

0 1.6 

(0.5) 

1.6 

(0.7) 

0 0 0 

Medium M2 6.6 (1.3) 4.1 (1) 1.6 (0.5) 

Large M1 1 1 1 1 1.1 

(0.3) 

1.2 

(0.4) 

1 1 1 

Large M2 1.6 (0.5) 1.5  (0.5) 1 

 

Table 4. The mean and standard deviation values (in parentheses) of the sizes of small  

(  100 agents), medium ( >100 and  1000 agents) and large ( >1000 agents) clusters 

emerging in 10 random networks 

Parameter 

settings 
=0.001 =0.0025 =0.01 

=1 =10 =20 =1 =10 =20 =1 =10 =20 

Small  M1 1.1 

(0.3) 

2.2 

(1.6) 

2.1  

(1.9) 

1 1.7 

(1.2) 

1.6  

(0.8) 

1 1.3 

(0.6) 

1 

Small  M2 17.5 (22.1) 19.4 (25.2) 5.7 (3.4) 

Medium M1 0 0 0 0 0 0 0 0 0 

Medium M2 405.7 (253.8) 439.7 (271.8) 0 

Large M1 4998 

(1) 

4996 

(3) 

4539 

(1026) 

4999 

(1) 

4997 

(2) 

4998  

(1) 

4999 

(0.4) 

4999 

(1) 

4998 

(0.4) 

Large M2 1465 (427) 3126 (1280) 4997 (3) 

 



 

influence i,j(t) gradually tend to 1, whereas the links between the agents from different 
clusters gradually disappear. In contrast to M1, links in M2 appear and disappear 
instantaneously, depending on the states of the agents, which leads to faster and more 
abrupt cluster formation. Intuitively, this may be compared to instantaneous decision 
making (e.g., under high stress) without more detailed consideration and discussion. 
Because of this, in M2 agents break links more easily than in M1, and thus, more 
clusters emerge (Tables 2, 3). 
In general, the convergence time of a network decreases with the increase of ij. (Table 
6). This is because the agents become more tolerant to each other’s opinions, and less 
clusters tend to form. The random networks converged faster than the scale-free 
networks, because on average more clusters were formed in the scale-free networks. 
 

4 Conclusions and Discussion 

In this paper an agent-based social decision making model based on social contagion 
with a dynamic network is proposed. In contrast to the existing models [2, 4, 7, 8], 
similarity in agent states or opinions has a dynamic effect on the strengths of the links 
between agents: they change gradually over time, rather than that a more static effect 

Table 5. The mean and standard deviation values (in parentheses) of the sizes of small (  

100 agents), medium ( >100 and  1000 agents) and large ( >1000 agents) clusters emerging 

in 10 scale-free networks 

Parameter 

settings 
=0.001 =0.0025 =0.01 

=1 =10 =20 =1 =10 =20 =1 =10 =20 

Small  M1 1.7 

(0.9) 

47.5  

(35.9) 

1 1.7 

(0.7) 

53.3 

(34.6) 

1 0 0 0 

Small  M2 30.4 (30) 36.7 (33) 48 

Medium M1 0 222 

(136) 

429 

(166) 

0 276 

(173) 

450 

(192) 

0 0 0 

Medium M2 424.8 (242) 462.6 (271) 543.5 (241) 

Large M1 4990 

(3) 

4351 

(228) 

3797 

(246) 

4997 

(1.8) 

4105 

(1051) 

3566 

(1200) 

5000 5000 5000 

Large M2 1314 (165) 2030 (727)  4126 (131) 

 

Table 6. The mean convergence time (in simulation time points) of 10 random network 

and 10 scale-free networks 

Parameter 

settings 
=0.001 =0.0025 =0.01 

=1 =10 =20 =1 =10 =20 =1 =10 =20 

Scale-free  M1 68.3 83.5 76.7 56.7 59.6 51.8 20.2 18.2 17.3 

Scale-free  M2 12.7 12.8 10.2 

Random M1 44 38.9 85.6 23.8 27 28.8 16.9 12.1 10.4 

Random M2 12 11.9 8.4 

 



 

is used based on a threshold mechanism. The model was analysed analytically and by 
simulation. Cluster formation has been extensively investigated in the paper for the 
models with gradually and abruptly changing links: the distribution of clusters in 
random and scale-free networks was investigated, the dynamics of links within and 
between clusters were determined, the minimal distance between two clusters was 
identified, and the convergence speed was analysed. 

In the paper simulation results were presented for the networks with the average 
node degree 4.5. However, also experiments for more dense networks were 
performed. In general, the higher the density of a network, the higher its convergence 
speed to an equilibrium state and the less number of clusters are formed.  

Besides the parallel mode of interaction we also performed simulation for the 
sequential interaction mode. In the latter mode two randomly chosen agents interacted 
in each iteration. Small, medium and large clusters emerged in this case as well, 
however their numbers were lower than in the parallel case, and the convergence 
speed was higher.  

Simulations were also performed for model variants, in which agents exchanged 
opinions on multiple topics at the same time. For these models two alternatives exist: 
1) to introduce a separate degree of influence for each topic, or 2) to use one degree of 
influence for all topics. Also clusters can be considered for each topic separately or by 
introducing a similarity measure of the agents combining all the topics (e.g., based on 
the Euclidean distance). In all these cases small, medium and large clusters emerged. 
However, the convergence speed was significantly slower than in the case with one 
topic. 

An important future step is validation of the proposed model. To this end data from 
a news discussion web site gathered for several years will be used. On this site users 
vote for news and for each other’s comments to the news (like/dislike). Voting for 
news would reflect the opinions of the agents in our model and voting for comments 
would be related to the degrees of influence between the agents. The proposed model 
will be used to predict the dynamics of the network and formation of clusters over 
time. 
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