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1   Introduction 
Existing models for complex systems are often based on quantitative, numerical 
methods such as Dynamical Systems Theory (DST) [Port and Gelder 1995]. Such 
approaches often use numerical variables to describe global aspects and specify how 
they affect each other over time. An advantage of such approaches is that numerical 
approximation methods and software are available for simulation. 

Agent-based modelling approaches take into account the local perspective of a 
possibly large number of agents and their behaviours. They are usually based on 
qualitative, logical languages. An advantage of such approaches is that they allow 
logical analysis of relationships between different parts of a model, for example 
relationships between global and local properties of a (multi-agent) system. 
Moreover, declarative models can be specified using logic-based languages close to 
natural language. Such models can be analyzed at a high level of abstraction. 
Furthermore, automated support is available for manipulation and design of models. 

Complex systems often involve both qualitative aspects and quantitative aspects 
that can be modelled by agent-based (logical) and DST-based approaches 
respectively. It is not easy to integrate both types of approaches in one modelling 
method. On the one hand, it is difficult to incorporate logical aspects in differential 
equations. On the other hand, logical, agent-based modelling languages, often are not 
able to handle real numbers and calculations. This paper shows an integrative 
approach to simulate and analyse complex systems, integrating quantitative, 
numerical and qualitative, logical aspects within one temporal specification language. 
In Section 2, this language (called LEADSTO) is described in detail, and is illustrated 
for a system of differential equations (a Predator-Prey model) applying methods from 
numerical analysis. Section 3 shows how quantitative and qualitative aspects can be 
combined within the same model. Section 4 demonstrates how relationships can be 
established between dynamics of basic mechanisms (described in LEADSTO) and 
global dynamics of a process (described in a super-language of LEADSTO). Finally, 
Section 5 is a discussion. An extended version of this paper with more details 
appeared as [Bosse, Sharpanskykh and Treur, 2008]. 



 

2   Modelling dynamics in LEADSTO 
Dynamics can be modelled in different forms. Based on the area within Mathematics 
called calculus, the Dynamical Systems Theory [Port and Gelder 1995] advocates to 
model dynamics by continuous state variables and changes of their values over time, 
which is also assumed continuous. In particular, systems of differential or difference 
equations are used. However, not for all applications dynamics can be modelled in a 
quantitative manner as required for DST. Sometimes qualitative changes form an 
essential aspect of the dynamics of a process. For example, to model the dynamics of 
reasoning processes usually a quantitative approach will not work. In such processes 
states are characterised by qualitative state properties, and changes by transitions 
between such states. For such applications often qualitative, discrete modelling 
approaches are advocated, such as variants of modal temporal logic, e.g. [Meyer and 
Treur 2002]. However, using such methods, the more precise timing relations are lost. 

For the LEADSTO language described in this paper, the choice has been made to 
consider the timeline as continuous, described by real values, but for state properties 
both quantitative and qualitative variants can be used. The approach subsumes 
approaches based on simulation of differential or difference equations, and discrete 
qualitative modelling approaches. In addition, the approach makes it possible to 
combines both types of modelling within one model. Moreover, the relationships 
between states over time are described by either logical or mathematical means, or a 
combination thereof. This will be explained in more detail in Section 2.1. As an 
illustration, in Section 2.2 it will be shown how a system of ordinary differential 
equations representing the classical Predator-Prey model can be modelled and 
simulated in LEADSTO. 

2.1   The LEADSTO language 

Dynamics is considered as evolution of states over time. The notion of state as used 
here is characterised on the basis of an ontology defining a set of properties that do or 
do not hold at a certain point in time. For a given (order-sorted predicate logic) 
ontology Ont, the propositional language signature consisting of all state ground 
atoms (or atomic state properties) based on Ont is denoted by APROP(Ont). The state 
properties based on a certain ontology Ont are formalised by the propositions that can 
be made (using conjunction, negation, disjunction, implication) from the ground 
atoms. A state S is an indication of which atomic state properties are true and which 
are false, i.e., a mapping S: APROP(Ont) → {true, false}.  

To specify simulation models a temporal language has been developed. This 
language (the LEADSTO language [Bosse et al. 2007]) enables to model direct 
temporal dependencies between two state properties in successive states, also called 
dynamic properties. A specification of dynamic properties in LEADSTO format has 
as advantages that it is executable and that it can often easily be depicted graphically. 
The format is defined as follows. Let α and β be state properties of the form 
‘conjunction of atoms or negations of atoms’ , and e, f, g, h non-negative real numbers. 
In the LEADSTO language the notation α →→e, f, g, h β (also see Figure 1), means: 



 

If state property α holds for a certain time interval with duration g, then  after some delay 
(between e and f) state property β will hold for a certain time interval of length h. 

An example dynamic property in LEADSTO format is the following: 
“observes(agent_A, food_present) →→ 2, 3, 1, 1.5  beliefs(agent_A, food_present)” . Informally, this 
example expresses the fact that, if agent A observes that food is present during 1 time 

unit, then after a delay between 2 
and 3 time units, agent A will 
belief that food is present during 
1.5 time units. In addition, the 
LEADSTO language allows using 
sorts,    sorted    variables,    real 

     Figure. 1.  Timing relationships in LEADSTO  numbers, and mathematical 
operations, such as in “has_value(x, v) →→ e, f, g, h  has_value(x, v*0.25)” . A trace or 
trajectory γ over a state ontology Ont is a time-indexed sequence of states over Ont 

(with the real numbers as time frame). To specify that a certain event (i.e., a state 
property) holds at every state within a certain time interval, the predicate 
holds_during_interval(event, t1, t2) is used. Here event is some state property, t1 is the 
start of the interval and t2 is the end of the interval. 

2.2   Differential Equations in LEADSTO 

Often behavioural models in the Dynamical Systems Theory are specified by systems 
of differential equations with given initial conditions for continuous variables and 
functions. One of the approaches to find solutions for such a system with given initial 
values is based on discretization, i.e., replacing a continuous model by a discrete one, 
whose solution is known to approximate that of the continuous one. For this methods 
of numerical analysis are usually used [Pearson 1986].  

The simplest approach to approximate of solutions for ordinary differential 
equations is provided by Euler’s method. To solve a differential equation of the form 
dy/dt = f(y) with the initial condition y(t0)=y0 this method comprises a difference 
equation derived from the Taylor power series, until power 1: yi+1=yi+h* f(yi), where i≥0 
is the step number and h>0 is the integration step size. 
This equation can be modelled in the LEADSTO language in the following way: 

• States specify the respective values of y at different time points.  
• The difference equation is modelled by a transition rule from current to successive state.  
• The duration of an interval between state changes is defined by a step size h.  

For the considered general case the LEADSTO model comprises the following rule: 
has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+h* f(v1)) 

The initial value for the function y is specified by the following LEADSTO rule: 
holds_during_interval(has_value(y, y0), 0, h) 

By performing a simulation of the obtained model in the LEADSTO environment an 
approximate solution to the differential equation is found.  

Although the first-order Euler method offers a stable solution, it is still rather 
rough and imprecise since the accumulated error within this method grows 
exponentially as the integration step size increases, therefore small step sizes are 
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needed. To obtain more precise solutions for a given step size, higher order numerical 
methods are used. To illustrate higher-order numerical approaches, the fourth-order 
Runge-Kutta method is considered. This method is derived from a Taylor series up to 
the fourth order. It is known to be very accurate (the accumulated error is O(h4)) and 
stable for a wide range of problems. The Runge-Kutta method for solving a 
differential equation of the form dx/dt = f(t, x) is described by the following formulae: 

xi+1 = xi + h/6 *(k1 + 2*k2 + 2*k3 + k4),  

where i≥0 is the step number, h>0 is the integration step size, and 
   k1 = f(ti, xi)     k2 = f(ti + h/2, xi + h/2 *k1)    k3 = f(ti + h/2, xi + h/2 *k2)  k4 = f(ti + h, xi + h* k3). 

To illustrate the proposed approach for simulations based on numerical methods, the 
system of ordinary differential equations representing the classical Lotka-Volterra 
model (a Predator-Prey model) [Morin 1999] is used. This model describes 
interactions between two species in an ecosystem, a predator and a prey. If x(t) and y(t) 
represent the number of preys and predators respectively, that are alive in the system 
at time t, then the Lotka-Volterra model is defined by:  

dx/dt = a*x - b*x*y  dy/dt = c*b*x*y - e*y 

where a is the per capita birth rate of the prey; b is a per capita attack rate; c is the 
conversion efficiency of consumed prey into new predators; e is the rate at which 
predators die in the absence of prey. 
Now, using the Runge-Kutta method, the classical Lotka-Volterra model is described 
in the LEADSTO format as follows: 
has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(x, v1 + h/6 *(k11 + 2*k12 + 2*k13 + k14)) 
has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(y, v2 + h/6 *(k21 + 2*k22 + 2*k23 + k24)),  

where  k11 = a*v1-b*v1*v2, k21 = c*b*v1*v2 - e*v2, k12 = a*(v1 + h/2 *k11) - b*(v1 + h/2 
*k11)*(v2 + h/2 *k21), k22 = c*b*(v1 + h/2 *k11)*(v2 + h/2 *k21) - e*(v2 + h/2 *k21),  k13 = a*(v1 + 
h/2 *k12) - b*(v1 + h/2 *k12)*(v2 + h/2 *k22), k23 = c*b*(v1 + h/2 *k12)*(v2 + h/2 *k22) - e*(v2 + h/2 
*k22), k14 = a*( v1 + h *k13) - b*(v1 + h *k13)*(v2 + h *k23), k24 = c*b*(v1 + h *k13)*(v2 + h *k23) -
e*(v2 + h *k23). 

The result of simulation of this model with the initial values x0=25 and y0=8 and the 
step size h=0.1 is given in [Bosse, Sharpanskykh and Treur, 2008]. It is identical to 
the result produced by Euler’ s method with a much smaller step size (h=0.01) for the 
same example.  

Although for most cases the Runge-Kutta method with a small step size provides 
accurate approximations, this method can still be computationally expensive and, in 
some cases, inaccurate. To achieve a higher accuracy together with minimum 
computational efforts, methods that allow the dynamic (adaptive) regulation of an 
integration step size are used. Generally, these approaches are based on the fact that 
the algorithm signals information about its own truncation error. The most commonly 
used technique for this is step doubling and step halving, see, e.g. [Gear 1971]. Since 
its format allows the modeller to include qualitative aspects, it is not difficult to 
incorporate step doubling and step halving into LEADSTO. See [Bosse, 
Sharpanskykh and Treur, 2008] for an illustration of how this can be done. 



 

3   The Predator-Prey Model with Qualitative Aspects 
In this section, an extension of the standard predator-prey model is considered, by 
some qualitative aspects of behaviour. Assume that the population size of both 
predators and preys within a certain eco-system is externally monitored and 
controlled by humans. Furthermore, both prey and predator species in this eco-system 
are also consumed by humans. A control policy comprises a number of intervention 
rules that ensure the viability of both species. Among such rules could be following: 
- in order to keep a prey species from extinction, a number of predators should be 

controlled to stay within a certain range (defined by pred_min and pred_max); 
- if a number of a prey species falls below a fixed minimum (prey_min), a number 

of predators should be also enforced to the prescribed minimum (pred_min); 
- if the size of the prey population is greater than a certain prescribed bound 

(prey_max), then the size of the prey species can be reduced by a certain number 
prey_quota (cf. a quota for a fish catch). 

These qualitative rules can be encoded into the LEADSTO simulation model for the 
standard predator-prey case by adding new dynamic properties and changing the 
existing ones in the following way:  
        has_value(x, v1)  ∧ has_value(y, v2) ∧ v1< prey_max →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2)) 

has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 ≥ prey_max →→ 0, 0, h, h   
                has_value(x, v1+h*(a*v1-b*v1*v2) - prey_quota) 

has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 ≥ prey_min ∧ v2 < pred_max →→ 0, 0, h, h   
                has_value(y, v2+h* (c*b*v1*v2-e*v2)) 

has_value(x, v1)  ∧ has_value(y, v2) ∧ v2 ≥ pred_max →→ 0, 0, h, h  has_value(y, pred_min) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 < prey_min →→ 0, 0, h, h  has_value(y, pred_min) 

The result of simulation of this model using Euler’s method with the parameter 
settings: a=4; b=0.2, c=0.1, e=8, pred_min=10, pred_max=30, prey_min=40, prey_max=100, 
prey_quota=20, x0=90, y0=10 is given in Figure 2. 

 

Figure. 2.  Simulation results for the Lotka-Volterra model combined with qualitative aspects. 

4   Analysis In Terms of Local-Global Relations 
Within the area of agent-based modelling, one of the means to address complexity is 
by modelling processes at different levels, from the global level of the process as a 
whole, to the local level of basic elements and their mechanisms. At each of these 



 

levels dynamic properties can be specified, and by interlevel relations they can be 
logically related to each other; e.g., [Sharpanskykh and Treur 2006]. These 
relationships can provide an explanation of properties of a process as a whole in 
terms of properties of its local elements and mechanisms. Such analyses can be done 
by hand or automatically. To specify the dynamic properties at different levels and 
their relations, a more expressive language is needed than simulation languages based 
on causal relationships, such as LEADSTO. To this end, the formal language TTL 
has been introduced as a super-language of LEADSTO; cf. [Bosse et al. 2006]. It is 
based on order-sorted predicate logic, and allows including numbers and arithmetical 
functions. Therefore most methods used in Calculus are expressible in this language, 
including methods based on derivatives and differential equations. In this section it is 
shown how to incorporate differential equations in the predicate-logical language 
TTL that is used for analysis. Further, in this section a number of global and local 
dynamic properties are identified, and it is shown how they can be expressed in TTL 
and logically related to each other. 

Differential Equations in TTL 
A differential equation of the form dy/dt = f(y) with the initial condition y(t0)=y0 can be 
expressed in TTL on the basis of a discrete time frame (e.g., the natural numbers) in a 
straightforward manner: 

∀t ∀v   state(γ , t) |== has_value(y, v)       �     state(γ , t+1) |== has_value(y, v + h • f(v)) 
The traces γ satisfying the above dynamic property are the solutions of the difference 
equation. However, it is also possible to use the dense time frame of the real numbers, 
and to express the differential equation directly. Thus, x = dy/dt can be expressed as: 
  ∀t,w  ∀ε>0 ∃δ>0 ∀t',v,v'  0 < dist(t',t) < δ  &  state(γ, t) |== has_value(x, w) &   
   state(γ, t) |== has_value(y, v) &  state(γ, t') |== has_value(y, v') �     dist((v'-v)/(t'-t),w) < ε 
where dist(u,v) is defined as the absolute value of the difference. The traces γ for 
which this statement is true are (or include) solutions for the differential equation. 
Models consisting of combinations of difference or differential equations can be 
expressed in a similar manner. This shows how modelling constructs often used in 
DST can be expressed in TTL.  

Global and Local Dynamic Properties  
Within Dynamical Systems Theory, for global properties of a process more specific 
analysis methods are known. Examples of such analysis methods include 
mathematical methods to determine equilibrium points, the behaviour around 
equilibrium points, and the existence of limit cycles. Suppose a set of differential 
equations is given, for example a predator prey model: dx/dt  =  f(x, y) and dy/dt  =  g(x, 

y). Here, f(x, y) and g(x, y) are arithmetical expressions in x and y. Within TTL the 
following abbreviation is introduced as a definable predicate: 

point(γ, t, x, v, y, w)  ⇔  state(γ, t) |= has_value(x, v) ∧ has_value(y, w) 

Equilibrium points  
These are points in the (x, y) plane for which, when they are reached by a solution, 
the state stays at this point in the plane for all future time points. This can be 
expressed as a global dynamic property in TTL as follows: 

has_equilibrium(γ, x, v, y, w)  ⇔ ∀t1 [ point(γ, t1, x, v, y, w)  �  ∀t2≥t1  point(γ, t2, x, v, y, w) ] 
occurring_equilibrium(γ, x, v, y, w)  ⇔ ∃t point(γ, t, x, v, y, w) &  has_equilibrium(γ, x, v, y, w)   



 

Behaviour Around an Equilibrium 
attracting(γ, x, v, y, w, ε0)  ⇔   

has_equilibrium(γ, x, v, y, w)  &  
ε0>0 ∧ ∀t  [ point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 �  
∀ε>0 ∃t1≥t ∀t2≥t1  [ point(γ, t2, x, v2, y, w2)  � dist(v2, w2, v, w) < ε ] ] 

Here, dist(v1, w1, v2, w2) denotes the distance between the points (v1, w1) and 
(v2, w2) in the (x, y) plane.  

The global dynamic properties described above can also be addressed from a local 
perspective.  

Local equilibrium property 
From the local perspective of the underlying mechanism, equilibrium points are those 
points for which dx/dt = dy/dt  = 0, i.e., in terms of f and g for this case f(x, y) = g(x, y) = 0.  

equilibrium_state(v, w)  ⇔  f(v, w) = 0  &  g(v, w) = 0 

Local property for behaviour around an equilibrium: 
attracting(γ, x, v, y, w, δ, ε0, d)  ⇔  has_equilibrium(γ, x, v, y, w)  &  
ε0>0 ∧ 0< δ <1 ∧ d≥0 ∧ ∀t  [ point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 �  
∀t' [ t+d�t'�t+2d  & point(γ, t', x, v2, y, w2)  �   dist(v2, w2, v, w) < δ*dist(v1, w1, v, w) ] ] 
In terms of f and g, this can be expressed by relationships for the eigen values of the 
matrix of derivatives of f and g. 

The properties of local and global level can be logically related by interlevel 
relations, for example, the following ones: 

∀t  [ state(γ, t) |= equilibrium_state(v, w)   �  has_equilibrium(γ, x, v, y, w)  

∃d>0, δ>0  attracting(γ, x, v, y, w, δ, ε0, d)  �  attracting(γ, x, v, y, w, ε0)   

5   Discussion 
The LEADSTO approach proposed in this paper provides means to simulate models 
of dynamic systems that combine both quantitative and qualitative aspects. 
Sometimes such systems are called hybrid systems [Davoren and Nerode 2000]. In 
the control engineering area, hybrid systems are often considered as switching 
systems that represent continuous-time systems with isolated and often simplified 
discrete switching events [Liberzon and Morse 1999]. Yet in computer science the 
main interest in hybrid systems lies in investigating aspects of the discrete behaviour, 
while the continuous dynamics is often kept simple [Manna and Pnueli 1993]. 

Our LEADSTO approach provides as much place for modelling the continuous 
constituent of a system, as for modelling the discrete one. In contrast to many studies 
on hybrid systems in computer science (e.g., [Rajeev et al. 1997]), in which a state of 
a system is described by assignment of values to variables, in the proposed approach 
a state of a system is defined by (composite) objects using a rich ontological basis 
(i.e., typed constants, variables, functions and predicates). Furthermore, using TTL, a 
super-language of LEADSTO, analysis of dynamical systems by formalizing and 
applying standard techniques from the mathematical calculus can be performed. 

Accuracy and efficiency of simulation results for hybrid systems provided by the 
proposed approach to a great extend depend on the choice of a numerical 
approximation method. Although the proposed approach does not prescribe usage of 



 

any specific approximation method (even the most powerful of them can be modelled 
in LEADSTO), for most of the cases the fourth-order Runge-Kutta method can be 
recommended, especially when the highest level of precision is not required. For 
simulating system models, for which high precision is demanded, higher-order 
numerical methods with an adaptive step size can be applied. 
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