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Abstract. In social interaction between two persons usually a person displays 

understanding of the other person. This may involve both nonverbal and verbal 

elements, such as bodily expressing a similar emotion and verbally expressing 

beliefs about the other person. Such social interaction relates to an underlying 

neural mechanism based on a mirror neuron system, as known within Social 

Neuroscience. This mechanism may show different variations over time. This 

paper addresses this adaptation over time. It presents a computational model 

capable of learning social responses, based on insights from Social Neuroscience. 

The presented model may provide a basis for virtual agents in the context of 

simulation-based training of psychotherapists, gaming, or virtual stories. 
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1   Introduction 

Showing mutual empathic understanding is often considered a form of glue between 

persons within a social context. Recent developments within Social Neuroscience 

have revealed that a mechanism based on mirror neurons plays an important role in 

generating and displaying such understanding, both in nonverbal form (e.g., smiling 

in response to an observed smile) and in verbal form (e.g., attributing an emotion to 

the other person); cf. [11, 19]. Such empathic responses vary much over persons. For 

example, when for a person these responses are low or nonexistent, often the person is 

considered as ‘having some autistic traits’. Within one person such differences in 

responding may occur as well over time, in the sense of learning or unlearning to 

respond. This is the focus of this paper.  

It is often claimed that the mirroring mechanism is not (fully) present at birth, but 

has to be shaped by experiences during lifetime; for example, [3, 11, 14]. For persons 

(in particular children) with low or no social responses, it is worth while to offer them 

training sessions in imitation so that the mirror neuron system and the displayed social 

responses may improve. This indeed turns out to work, at least for the short term, as 

has been reported in, for example [7, 13]. Thus evidence is obtained that the mirror 

neuron system has a certain extent of plasticity due to some learning mechanism. In 

[14] it is argued that Hebbian learning (cf. [8, 10]) is a good candidate for such a 

learning mechanism. 



 In this paper a Hebbian learning mechanism is adopted to obtain an adaptive agent 

model showing plasticity of the agent’s mirror neuron system. The model realises 

learning (and unlearning) of social behaviour (in particular, empathic social 

responses), depending on a combination of innate personal characteristics and the 

person’s experiences over time obtained in social context. A person’s experiences 

during lifetime may concern self-generated experiences (the person’s responses to 

other persons encountered) or other-generated experiences (other persons’ responses 

to the person). By varying the combination of innate characteristics and the social 

context offering experiences, different patterns of learning and unlearning of socially 

responding to other persons are displayed. 

In Section 2 the adaptive agent model for Hebbian learning of social behaviour is 

presented. In Section 3 some simulation results are discussed, for different 

characteristics and social contexts. In Section 4 a mathematical analysis of the 

learning behaviour is made. Section 5 concludes the paper. 

2  The Adaptive Agent Model based on Hebbian Learning  

The basic (non-adaptive) agent model (adopted from [20]) makes use of a number of 

internal states for the agent self, as indicated by the nodes in Fig. 1. A first group of 

states consists of the sensory representations of relevant external aspects: a sensory 

representation of a body state (labeled by) b, of a stimulus s, and of another agent B, 

denoted by srb, srs, srB, respectively. Related sensor states are ssb, sss, ssB, which in turn 

depend on external world states wsb, wss, wsB. Moreover, pbb and pcB,b denote 

preparation states for bodily expression of b and communication of b to agent B. 

Following [5], the preparation for bodily expression b is considered to occur as an 

emotional response on a sensed stimulus s. Feeling this emotion is based on the 

sensory representation srb of b. These b’s will be used as labels for specific emotions. 

Communication of b to B means communication that the agent self  believes that B 

feels b; for example: ‘You feel b’, where b is replaced by a word commonly used for 

the type of emotion labeled in the model by b.  

The states indicated by psc,s,b are considered control or super mirror states (cf. 

[11], pp. 200-203, [12], [16]) for context c, stimulus s and body state b; they provide 

control for the agent’s execution of (prepared) actions, such as expressing body states 

or communications, or regulation of the gaze. Here the context c can be an agent B, 
which can be another agent (self-other distinction), or the agent self, or c can be sens 

which denotes enhanced sensory processing sensitivity: a trait which occurs in part of 

the population, and may affect social behaviour (e.g., [1, 4]). One reason why some 

children do not obtain a sufficient amount of experiences to shape their mirror neuron 

system, is that they tend not to look at other persons due to enhanced sensory 

processing sensitivity for face expressions, in particular in the region of the eyes; e.g., 

[4, 15]. When observing the face or eyes of another person generates arousal which is 

experienced as too strong, as a form of emotion regulation the person’s own gaze 

often is taken away from the face or eyes observed; cf. [9]. Such an avoiding 

behavioural pattern based on emotion regulation may stand in the way of the 

development of the mirror neuron system. In summary, three types of super mirroring 

states may (nonexclusively) occur to exert control as follows:  

 



 if a super mirror state for agent B occurs (self-other distinction), a prepared 

communication will be performed and directed to B  

 if it occurs for self, the agent will execute the related prepared actions 

 if it occurs for sens, the agent will regulate some aspects of functioning to 

compensate for enhanced sensitivity: to suppress preparation and expression of 

related bodily responses, and to adapt the gaze to avoid the stimulus s.  
 

Expressing body state b is indicated by effector state ebb, communication of b to B by 

ecb,B, and regulated gaze to avoid stimulus s by egs. These effector states result in a 

modified body state indicated by wsb and an adapted gaze avoiding s indicated by wgs. 

In case the stimulus s is another agent B’s body expression for b (denoted by sb,B, 

for example, a smiling face), then mirroring of this body state means that the agent 

prepares for the same body expression b; e.g., [11, 16, 19]. If this prepared body state 

is actually expressed, so that agent B can notice it, then this contributes an empathic 

nonverbal response, whereas communication of b to B is considered an empathic 

verbal response. The bodily expression of an observed feeling b together with a 

communication of b to B occurring at the same time is considered a full empathic 

response of self to B. These two elements for empathic response are in line with the 

criteria for empathy explicated in [6], p. 435 (assuming true, faithful bodily and 

verbal expression): (1) presence of an affective state in a person, (2) isomorphism of 

the person’s own and the other person’s affective state, (3) elicitation of the person’s 

affective state upon observation or imagination of the other person’s affective state, 

(4) knowledge of the person that the other person’s affective state is the source of the 

person’s own affective state.  

 

 
 

 

 

 
 

 

 

 

Fig. 1.  Overview of the adaptive agent model 

 
 

The arrows connecting the nodes in Fig. 1 indicate the dynamical relationships 

between the states. Most of these connections have been given strength 1, but six of 

them (indicated by dotted arrows) have a dynamical strength, adapted over time 

according to Hebbian learning. Note that the graph of the model shown in Fig. 1 

shows three loops: the body loop to adapt the body, the as-if body loop to adapt the 
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internal body representation and integrate felt emotions in preparations for responses, 

and the gaze adaptation loop. The effect of these loops is that for any new external 

situation encountered, a (numerical) approximation process takes place until the 

internal states reach an equilibrium (assuming that the external situation does not 

change too fast). However, as will be seen in Section 3, it is also possible that a 

(static) external situation leads to periodic oscillations (limit cycle behaviour).  

The connection strengths are indicated by ij with the node labels i and j (the 

names of the nodes as indicated in Fig. 1) as subscripts. A distinction is made between 

expression states and the actual states for body and gaze. The first type of states are 

the agent’s effector states (e.g., the muscle states), whereas the body and gaze states 

result from these. The sensory representation of a body state b is not only affected by 

a corresponding sensor state (via the body loop), but also by the preparation for this 

body state (via the as-if body loop). Preparation for a verbal empathic communication 

depends on feeling a similar emotion, and adequate self-other distinction.  

Super mirroring for an agent A (self  or B) generates a state indicating on which 

agent (self-other distinction) the focus is, and whether or not to act. Super mirroring 

for enhanced sensory processing sensitivity, generates a state indicating in how far the 

stimulus induces a sensory body representation level experienced as inadequately 

high. To cover regulation to compensate for enhanced sensory processing sensitivity 

(e.g., [1]), the super mirroring state for this is the basis for three possible regulations: 

of the prepared and expressed body state, and of the gaze.  

A first way in which regulation takes place, is by a suppressing effect on 

preparation of the body state (note that the connection strength pssens,s,bpbb  from 

node pssens,s,b  to node pbb is taken negative). Such an effect can achieve, for example, 

that even when the agent feels the same as the other agent, an expressionless face is 

prepared. In this way a mechanism for response-focused regulation (suppression of 

the agent’s own response) to compensate for an undesired level of emotion is 

modelled; cf. [9]. Expressing a prepared body state depends on a super mirroring state 

for self and a super mirroring state for enhanced sensitivity with a suppressing effect 

(note that pssens,s,bebb is taken negative). This is a second way in which a mechanism 

for response-focused regulation is modelled to compensate for an undesired level of 

arousal. A third type of regulation to compensate for enhanced sensory processing 

sensitivity, a form of antecedent-focused regulation (attentional deployment) as 

described in [9], is modelled by directing the own gaze away from the stimulus. Note 

that node egs for avoiding gaze for stimulus s has activation level 1 for total avoidance 

of the stimulus s, and 0 for no avoidance (it indicates the extent of avoidance of s). To 

generate a sensor state for stimulus s, the gaze avoidance state for s is taken into 

account: it has a suppressing effect on sensing s (note that wgssss is taken negative). 

The model has been specified in dynamical system format (e.g., [18]) as follows. 

Here for a node label k, by ak(t) the activation level (between 0 and 1) of the node 

labeled by k at time t is denoted, by input(k) the set of node labels is denoted that 

provides input (i.e., have an incoming arrow to node k in Fig. 1), and th(W)  is a 

threshold function.  
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The parameter    is an update speed factor, which might differ per connection, but has 

been given a uniform value 0.8  in Section 3. The following logistic threshold 

function th(W) with  > 0 a steepness and   0 a threshold value has been used in the 

simulations (except for the sensor states): 
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The former threshold function can be approximated by the simpler latter expression 

for higher values of  (e.g.,   higher than 20/). For the sensor states for b and B the 

identity function has been used for th(W), and for the sensor state of s the update 

equation has been taken more specifically to incorporate the effect of gaze on the 

sensor state (note that the connection strength         from the world gaze state to 

the sensor state is taken negative): 
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Hebbian learning   

The model as described above was adopted from [20]; as such it has no adaptive 

mechanisms built in. However, as put forward, for example, in [3, 11, 14] learning 

plays an important role in shaping the mirror neuron system. From a Hebbian 

perspective [10], strengthening of a connection over time may take place when both 

nodes are often active simultaneously (‘neurons that fire together wire together’). The 

principle goes back to Hebb [10], but has recently gained enhanced interest by more 

extensive empirical support (e.g., [2]), and more advanced mathematical  

formulations (e.g., [8]). In the adaptive agent model the connections that play a role 

in the mirror neuron system (i.e., the dotted arrows in Fig. 1) are adapted based on a 

Hebbian learning mechanism. More specifically, such a connection strength  is 

adapted using the following Hebbian learning rule, taking into account a maximal 

connection strength 1, a learning rate , and an extinction rate  (usually small):  
 

 

      

  
 =   [ ai(t)aj(t)(1 - ij(t)) - ij(t) ] =   [ ai(t)aj(t) - ( ai(t)aj(t) + ) ij(t)] 

 

 

A similar Hebbian learning rule can be found in [8], p. 406. By the factor 1 - ij(t) the 

learning rule keeps the level of ij(t)  bounded by 1 (which could be replaced by any 

other positive number); Hebbian learning without such a bound usually provides 

instability. When the extinction rate is relatively low, the upward changes during 

learning are proportional to both a1(t)   and a2(t)   and maximal learning takes place 

when both are 1. Whenever one of them is 0 (or close to 0) extinction takes over, and 

 slowly decreases (unlearning). This learning principle has been applied 

(simultaneously) to all six connections indicated by dotted arrows in Fig. 1. In 

principle, the adaptation speed factor  , the learning rate  and extinction rate , could 

be taken differently for the different dynamical relationships. In the example 

simulations discussed in Section 3 uniform values have been used:   = 0.8,  = 0.2 

and  = 0.004.  



3  Example Simulations of Learning Processes  

A number of simulation experiments have been conducted for different types of 

scenarios, using numerical software. For the examples discussed here the values for 

the threshold and steepness parameters are as shown in Table 1. Note that first the 

value 3 for sensitivity super mirroring threshold was chosen so high that no enhanced 

sensitivity occurs. The speed factor   was set to 0.8, the learning rate  = 0.2 and 

extinction rate  = 0.004. The step size t was set to 1. All nonadapted connection 

strengths have been given value 1, except those for suppressing connections  
 

pssens,s,bpbb, pssens,s,bebb  and wgssss 
 

which have been given the value -1. The scenario was chosen in such a way that after 

every 100 time units another agent is encountered for a time duration of 25 units with 

a body expression that serves as stimulus. Initial values for activation levels of the 

internal states were taken 0. A first pattern, displayed in Fig. 2, is that in normal 

circumstances, assuming initial strengths of the learned connections of 0.3, the model 

is indeed able to learn the empathic responses as expected. Here (and also in Fig. 3) 

time is on the horizontal axis and activation levels at the vertical axis. 
 

 

 
 

Fig. 2.  Example scenario of the Hebbian learning process  

 

The upper graph shows levels for body representation, body preparation, expressed 

body states and communication. The lower graph shows the learning patterns for the 

connections (the dotted arrows in Fig. 1). Note that the two connections  

srb pbb    (for emotion integration)   and   pbbsrb   (as-if body loop)  

have the same values, as they connect the same nodes srb and pbb, and have been 

given the same initial values. Moreover, also the connections  

srB psB,s,b   and srs psB,s,b  
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have the same values, as in the considered scenario the input nodes for srB and srs 
have been given the same values, and also the initial values for the connections. This 

can easily be varied. In Fig. 2 it is shown that when regular social encounters take 

place, the connections involved in responding empathically are strengthened to values 

that approximate 1. Notice that due to the relatively low initial values of the 

connections chosen, for some of them first extinction dominates, but later on this 

downward trend is changing into an upward trend. Accordingly the empathic 

responses become much stronger, which is in line with the literature; e.g., [7], [13]. 
 

Table 1.  Settings for threshold and steepness parameters 
 

    

representing body state srb 1 3 

super mirroring B psB,s,b  0.7 30 

super mirroring sensitivity pssens,s,b 3 30 

mirroring/preparing body state pbb 1 3 

preparing communication pcb,B 0.8 3 

expressing body state ebb 1.2 30 

expressing communication ecb,B 0.8 30 

expressing gaze avoidance state egs 0.6 30 
 

 

How long the learned patterns will last will depend on the social context. When after 

learning the agent is isolated from any social contact, the learned social behaviours 

may vanish due to extinction. However, if a certain extent of social contact is offered 

from time to time, the learned behaviour is maintained well. This illustrates the 

importance of the social context. When zero or very low initial levels for the 

connections are given, this natural learning process does not work. However, as other 

simulations show, in such a case (simulated) imitation training sessions (starting with 

the therapist imitating the person) still have a positive effect, which is also lasting 

when an appropriate social context is available. This is confirmed by reports that 

imitation training sessions are successful; e.g., [7], [13].  

In addition to variations in social environment, circumstances may differ in other 

respects as well. From many persons with some form of autistic spectrum disorder it 

is known that they show enhanced sensory processing sensitivity; e.g., [1], [4]; this 

was also incorporated in the model. Due to this, their regulation mechanisms to avoid 

a too high level of arousal may interfere with the social behaviour and the learning 

processes. Indeed, in simulation scenarios for this case it is shown that the adaptive 

agent model shows an unlearning process: connection levels become lower instead of 

higher. This pattern is shown in Fig. 3. Here the same settings are used as in Table 1, 

except the sensitivity super mirroring threshold which was taken 1 in this case, and 

the initial values for the connection weights, which were taken 0.7. It is shown that the 

connections  
 

srs pbb  (for mirroring) and  srb pbb   and pbbsrb  (for emotion integration) 
 

are decreasing, so that the responses become lower over time. 
 



 
 

Fig. 3.  Learning under enhanced sensory processing sensitivity 

 

This is due to the downregulation which, for example, leads to a gaze that after a short 

time is taken away from the stimulus, and returns after the arousal has decreased, after 

which the same pattern is repeated; this is shown in the upper graph (the two or three 

peaks per encounter). Note that the values related to super mirroring of and 

communication to another agent stay high: the downregulation as modelled does not 

have a direct effect on these processes. When downregulation is also applied to 

communication, also these connections will extinguish. When for such a case 

imitation training sessions are offered in a simulation, still the connection levels may 

be strengthened. However, these effects may not last in the natural context: as soon as 

these sessions finish, the natural processes may start to undo the learned effects. To 

maintain the learned effects for this case such training sessions may have to be 

repeated regularly.  

4   Formal Analysis  

The behaviour of the agent’s adaptation process can also be investigated by formal 

analysis, based on the specification for the connection strength  = ij from node i to 

node j. 
 
 

    
    

  
 +   (ai(t)aj(t) + ) (t)  =  ai(t)aj(t)    

 

This is a first-order linear differential equation with time-dependent coefficients: ai 

and aj  are functions of t which are considered unknown external input in the equation 

for . An analysis can be made for when equilibria occur:  
 

 
    

  
 = 0     (aiaj  + )  = aiaj        = 
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One case here is that  = 0  and one of ai and aj is 0. When ai and aj are nonzero, it can 

be rewritten as (since aiaj  1):  
 

 

 = 1 /(1  + /aiaj)    1 /(1  + /) 
 

 

This shows that when no extinction takes place ( = 0), an equilibrium for  of 1 is 

possible, but if extinction is nonzero, only an equilibrium < 1 is possible. For 

example, when  = 0.2 and  = 0.004  as in Section 3, then an equilibrium value will 

be  0.98, as also shown in the example simulations.  

Further analysis can be made by obtaining an explicit analytic solution of the 

differential equation in terms of the functions ai and aj. This can be done as follows. 

Take  
 

W(t) =             
 

  
    

 

the accumulation of ai(t)aj(t) over time from t0 to t; then 
 

     

  
  = ai(t)aj(t) 

 

Given this, the differential equation for  can be solved by using an integrating factor 

as follows: 
 

 

    
                   

  
 =  ai(t)aj(t)    

               
 

from which it can be obtained: 
 

(t) =                             
 

  
ai(u)aj(u)    

                     du  

For the special case of constant aiaj= c, explicit expressions can be obtained, using  
W(t) = c(t-t0) and W(t)-W(u) = c(t-u): 

 

   
 

  
ai(u)aj(u)    

                     du =    
 

  
c              du  

  =  
 

      
 [1 -                 ] 

 

Although in a simulation usually aiaj will not be constant, these expressions are still 

useful in a comparative manner. When aiaj   c on some time interval, then by 

monotonicity the above expressions for  with aiaj = c  provide a lower bound for . 

From these expressions it can be found that 
 

c /(c+) – (t) = [c /(c+) – (0)]          
 

which shows the convergence rate to an equilibrium for constant aiaj= c, provides an 

upper bound for the deviation from the equilibrium. This has half-value time  
 

ln(2)/ (c+) = 0.7 / (c+)  
 

When aiaj   c on some time interval, then by the monotonicity mentioned earlier, the 



upward trend will be at least as fast as described by this expression. For example, for 

the settings in Section 3 with c = 0.2  this provides half-value time 20. This bound 

indeed is shown in simulations (e.g., in Figs 2 and 3) in time periods with aiaj around 

or above 0.2.  

For scenarios in which encounters with other agents alternate with periods when 

nobody is there, as in Figs 2 and 3, a fluctuating learning curve is displayed. A 

question is how the balance between the different types of episodes should be in order 

to keep the learned effects at a certain level. Given the indications above a rough 

estimation can be made of how long a time duration td1 of increase should last to 

compensate a time duration td2 of decrease: 
 
 

                        td2/td1 =  (c+)/  = 1+c/    
 

 

For example, when  = 0.2 and  = 0.004, as in Section 3, for c = 0.2  this provides: 

td2/ td1 = 11. This means that for this case under normal circumstances around 9%  of 

the time an encounter with another agent should take place leading to aiaj   0.2 to 

maintain the empathic responses. This indeed corresponds to what was found by 

simulation experiments varying the intensity of encounters.  

5   Discussion 

To function well in social interaction it is needed that a person displays a form of 

empathic understanding, both by nonverbal and verbal expression. Within Social 

Neuroscience it has been found how such empathic social responses relate to an 

underlying neural mechanism based on a mirror neuron system. It is often suggested 

that innate factors may play a role, but also that a mirror neuron system can only 

function after a learning process has taken place (e.g., [3], [11], [14]): the strength of 

a mirror neuron system may change over time within one person. In this paper an 

adaptive agent model was presented addressing this aspect of adaptation over time, 

based on knowledge from Social Neuroscience.  

The notion of empathic understanding taken as a point of departure is in line with 

what is formulated in [6]. The learning mechanism used is based on Hebbian learning, 

as also suggested by [14]. It is shown how under normal conditions by learning the 

empathic responses become better over time, provided that a certain amount of social 

encounters occur. The model also shows how imitation training (e.g., [7], [13]) can 

strengthen the empathic responses. Moreover, it shows that when enhanced sensory 

processing sensitivity [1] occurs (e.g., as an innate factor), the natural learning 

process is obstructed by avoidance behaviour to downregulate the dysproportional 

arousal [9].  

In [17] a computational model for a mirror neuron system for grasp actions is 

presented; learning is also incorporated, but in a biologically implausible manner, as 

also remarked in [14]. In contrast, the presented model is based on a biologically 

plausible Hebbian learning model, as also suggested by [14]. The presented agent 

model provides a basis for the implementation of virtual agents, for example, for 

simulation-based training of psychotherapists, or of human-like virtual characters.  
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