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Abstract.  In this paper an agent-based analysis is made of patterns in crowd 

behaviour, in particular to simulate a real-life incident that took place on May 4, 

2010 in Amsterdam. As a basis, an existing agent-based model is used for 

contagion of emotions, beliefs and intentions. From available video material 

and witness reports, useful empirical data were extracted. Similar patterns were 

achieved in simulations, whereby some of the parameters of the model were 

tuned to the case addressed, and most parameters were assigned default values. 

The results show the inclusion of contagion of belief, emotion, and intention 

states of agents results in better reproduction of the incident than non-inclusion. 
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1   Introduction 

Behavioural patterns emerging in large crowds are often not easy to regulate. Various 

examples have shown how things can easily get out of control when many people 

come together during big events. Especially when in a crowd, emotion spirals (e.g., 

for aggression or fear) develop to high levels, the consequences can be devastating. In 

this paper, it is analysed what happened on Dam square in Amsterdam at the 4
th

 of 

May in 2010, when large numbers gathered for the national remembrance of the dead 

(‘dodenherdenking’). In the middle of a two-minute period of silence, one person 

started shouting, causing panic to occur among the people present. What happened 

there, as a result of a panic spiral, was a relatively mild case in which ‘only’ a number 

of persons ended up in hospitals with fractures and bruises.  

In such situations, for each person involved, both cognitive and affective states 

and their intra-person interaction play a role. In this paper, beliefs and intentions are 

considered from the cognitive perspective, as they usually are the basis for actual 

behaviour: e.g., running away from a place that is believed to be dangerous. From the 

affective perspective, emotions are considered, such as fear, but also positive 

emotions for certain actions that are possible: for example, to go to a place believed to 

be safe. On the one hand such internally interacting cognitive and affective states are 

individual, private states, but on the other hand they are easily affected via verbal 

and/or nonverbal inter-person interaction by similar states of other persons.  



Exploiting insights from Social Neuroscience, for the dynamics of such states and 

their intra- and interpersonal interaction, an agent-based model was presented in [5], 

which we refer to as the ASCRIBE model (Agent-based Social Contagion Regarding 

Intentions Beliefs and Emotions). For each person the ASCRIBE model takes into 

account a number of parameters representing personal characteristics, for example, 

expressivity and openness for emotions and other mental states. This current model  

uses ASCRIBE in an adapted form to simulate the empirical data gathered for the 

May 4 incident: ASCRIBEMay4. As a first step, useful empirical data has been 

extracted from available video material and witness reports. In order to specialise the 

existing agent-based model to this case, values for most of  the parameters of the 

model where set by hand at certain default values, whereas values of other parameters 

were automatically tuned by use of a parameter tuning method developed earlier; cf. 

[2]. By comparing different default settings for the hand-set parameters relating to 

contagion of emotions, beliefs and intentions, it was possible to analyse the 

contribution of contagion in the model: parameter settings indicating low or no 

contagion show higher deviations from the empirical data.  

In this paper, Section 2 presents a brief overview of the ASCRIBE model. In 

Section 3 the May 4 incident is described and how empirical data was extracted from 

available material. In Section 4 it is discussed how the model was extended and 

specialised for the case study addressed. Section 5 describes the parameter estimation 

method by which parameters of the model were tuned to cover the patterns shown in 

the empirical data. Section 6 discusses the results and section 7 is a conclusion. 

2   Overview of the Agent-Based Model used 

The agent-based model ASCRIBE that was used (cf. [5]) has been inspired by some 

concepts and principles from Neuroscience. One of them is the concept of a mirror 

neuron (e.g., [6], [9], [10]). Such a neuron is not only active in preparation for certain 

actions or bodily changes but also when the person observes somebody else intending 

or performing the action or body change. When states of other persons are mirrored 

by some of the person’s own states, which at the same time play a role in generating 

their own behaviour, then this provides an effective basic mechanism for how in a 

social context persons fundamentally affect each other’s mental states and behaviour. 

Moreover, the model exploits the concept somatic marker (cf. [1]), which describes 

how emotions felt play a central role in decision making. Each considered decision 

option induces (via an emotional response) a feeling which is used to mark the option. 

Such somatic markers are used as a basis to choose an option. Within the ASCRIBE 

model it is assumed that at the individual intra-agent level, the strength of an intention 

for a certain decision option depends on the agent’s beliefs and emotions in relation to 

that option (intra-agent interaction from beliefs and emotions to intentions). 

Moreover, it is assumed that beliefs generate certain emotions (e.g., fear), that in turn 

may affect the strength of beliefs (mutual intra-agent interaction between beliefs and 

emotions). To describe inter-agent interaction, a mirroring mechanism is used for the 

three different mental states considered: emotions (fear, and emotions felt about a 

certain decision option), beliefs (e.g., about safe places), intentions (for certain 



decision options). Below, only a brief overview is given of the central idea of the 

model. For a complete overview, see [5].  

 The model is based upon the notion of contagion strength γSBA which is the 

strength with which an agent B influences agent A with respect to a certain mental 

state S (which, for example, can be an emotion, a belief, or an intention). It depends 

on the expressiveness (εSB) of the sender B, the strength of the channel (αSBA) from 

sender B to receiver A and the openness (δSA) of the receiver: γSBA = εSB αSBA δSA. The 

level qSA for mental state S of agent A is updated using the overall contagion strength 

of all agents B not equal to agent A: γSA = ΣB≠A γSBA. Then the weighed external impact 

qSA*:for the mental state S of all the agents B upon agent A, is determined by: qSA* = 

ΣB≠A γSBA qSB / γSA. Given these, state S for an agent A is updated by: 

qSA(t+∆t) =  qSA(t) +  ψSA γSA [ f(qSA*(t), qSA(t)) - qSA(t)] ∆t 

Here ψSA is an update speed factor for S, and f(V1, V2) a combination function. This 

expresses that the value for qSA is defined by taking the old value, and adding the 

change term, which basically is based on the difference between f(qSA*(t), qSA(t)) and 

qSA(t). The change also depends on two factors: the overall contagion strength γSA (i.e., 

the higher this γSA , the more rapid the change) and the speed factor ψSA.  

Within the definition of the combination function f(V1, V2) a number of further 

personality characteristics determine the precise influence of the contagion. First, a 

factor ηSA is distinguished which expresses the tendency of an agent to absorb or 

amplify the level of a state S, whereas another personality characteristic βSA represents 

the bias towards reducing or increasing the value of the state S. Thus, the combination 

function f(V1, V2) is defined as follows: 

f(V1, V2)  =  ηSA [ βSA (1 – (1 - V1)(1 - V2)) + (1-βSA) V1V2 ] + (1 - ηSA) V1 
 

This general model for any state S is applied to four types of states: 
 

fear of agent A     qfearA(t) 

emotion for option O of agent A   qemotion(O)A(t) 

intention indication for option O of agent A  qintention(O)A(t) 

belief in X of agent A     qbelief(X)A(t) 
 

The total number of such states that is available in the model depends on the 

number o of decision options and the number b of beliefs. It can be calculated as 

1+2o+b types of states per agent (which amounts to actual states). When a is the 

number of agents, then within the whole multi-agent system  (1+2o+b)a types of 

individual states play a role. In principle all parameters εSA, δSA, ηSA, βSA, ψSA, αSBA for 

different states S and agents A, B may have different values. Therefore the overall 

number of these parameter values is quadratic in the number a of agents and linear in 

the number o of options and the number b of beliefs; it can be calculated as 5a 

(1+2o+b ) + a
2
 (1+2o+b ) = a (a+5) (1+2o+b )  parameter values.  

Furthermore, interactions between different states are considered within the agent-

based model. First, the emotions have an effect on the beliefs. This influence has been 

modelled for the emotion of fear. The personality characteristics εbelief(X)A, δbelief(X)A, 

ηbelief(X)A, βbelief(X)A and interaction characteristic αbelief(X)BA are assumed to be dynamic, 

depending on the fear level. In addition the opposite direction is modelled: levels of 

emotions being influenced by levels of beliefs. Finally, the impact of levels of beliefs 



and emotions related to certain options on levels of intentions for these options is 

modelled. For more detailed specifications of these interactions, see [5]. To model 

these interactions, additional person-specific parameters are involved:  
 

µδbeliefA, µηbeliefA, µβbeliefA adaptation speed for δ, η, β for beliefs 

σA, τA   steepness and threshold values for adaptation 

ζA   optimistic/pessimistic bias upon fear 

νA   weight of fear against beliefs 

ωX,fear,A   weight of information X for fear 

ωOEA1    weight of the group impact on the emotion of A for O 

ωOBA1    weight for the own belief impact on the emotion of A for O 

ωOIA1    weight for the group impact on the intention of A for O 

ωOEA2     weight for own emotion impact on the intention of A for O 

ωOBA2   weight for the own belief impact on the intention of A for O  
 

These parameters add to the overall number of parameter values needed, providing 3a 

+ 2a + a + a + ba + 5oa = a(b + 5o +7) parameter values. The current model 

ASCRIBEMay4 is specialised to the May 4 case and therefore adds a few parameters, 

see Section 4. 

3   Case Study: the May 4 Incident 

The computational model mentioned above was applied to the May 4 incident in 

Amsterdam (Netherlands). The incident was as follows. In the evening of the 4th of 

May, around 20.000 people gathered on Dam Square in Amsterdam (Netherlands) for 

the National Remembrance of the dead. At 19:58 everybody in the Netherlands, 

including the crowd on Dam Square were in silence for 2 minutes to remember the 

dead. The 20.000 people on Dam Square were compartmented by fences and officials. 

At 20.01 a man in the crowd on Dam Square disturbs the silence by screaming loudly. 

People standing around him could see that this man looked a bit ‘crazy’ or ‘lost’, and 

they did not move. Other people, not within a few meters of the screaming source, 

started to panic and ran away from the man that screamed. The panic spread through 

the people that were running away and infected each other with their emotions and 

intentions to flee in a certain direction and also because of a loud ‘BANG’ that was 

heard about 3 seconds after the start of the scream. Queen Beatrix and other royal 

members present, were escorted to a safe location nearby. In total, 64 persons got 

injured: broken bones and scrapes, by being pushed into a certain direction, or ran 

over by the crowd. The police exported the screaming man and got control over the 

situation within 2 minutes. After 2½ minutes, the master of ceremony announced to 

the crowd, that a person had become ill and had received care. He asked everybody to 

take their initial place again, to continue the ceremony. After this, the ceremony 

continued. For a short movie with images from the live broadcast on Dutch National 

Television, see URL: http://www.youtube.com/watch?v=0cEQp8OQj2Y. This shows 

how within two minutes the crowd starts to panic and move. 

The actual live broadcast of the National Remembrance on Dutch National 

Television has been acquired in HD-quality. In this video, one can see the crowd on 

Dam Square flee from the perspective shown in Fig. 1. The video includes the cuts 



and editing that were done during the live broadcast

video material of all cameras that were filming th

Fig. 1. Still image of the people 

The circle on the right bottom indicates the location of the yelling person

 

From the total broadcast, a shorter 3

moment where the crowd was in silence and a person started to scream loudly. In this 

3-minute movie there are two time slots that were processed further, namely the parts 

from 11-17 seconds and 20

1 was visible and the direction and speed of the movements of the people could be 

analysed. These specific parts of 15 seconds in total length were analysed as follows. 

The 3-minute long .mpeg movie was cut into still images, to detec

people by hand. This was done with a computer program called

images per second were chosen for the cutting, to be able to detect the movements of 

running people frame by frame. The location/movement detection of the cro

done as follows: the still images were viewed in a program called IrFanView

you can see the coordinates of your mouse click on the picture in the upper left 

corner. 

The total of 130 frames

selected persons in the frames were collected. Not all people in the crowd could be 

analysed by hand, because of the quantity, but also because it was not possible to 

trace every ‘dot’ (person) over multiple still images. In total 35 persons were 

Persons in different positions of the crowd that have simultaneous movements as the 

people around them were chosen, so these target subjects can represent multiple 

people around them. The density of the crowd around a target subject was also 

acquired, which could be used to build a representative large scale simulation of ten 

thousands of agents.. Since the

not be distinguished in the video, 

and low. The size of the circle around the target subject in which density was 

measured, is shown on the right

                                        
1 FFmpeg is a cross-platform program to record, convert and stream audio and video. 

http://www.ffmpeg.org/.  
2 IrFanView is a graphic viewer, see: 

and editing that were done during the live broadcast, because the uncut/un

all cameras that were filming that day was not saved.  

Still image of the people on Dam Square starting to flee. 

The circle on the right bottom indicates the location of the yelling person 

From the total broadcast, a shorter 3-minute long .mpeg movie was made from the 

moment where the crowd was in silence and a person started to scream loudly. In this 

minute movie there are two time slots that were processed further, namely the parts 

17 seconds and 20-27 seconds. In these seconds, the camera angle from 

1 was visible and the direction and speed of the movements of the people could be 

analysed. These specific parts of 15 seconds in total length were analysed as follows. 

minute long .mpeg movie was cut into still images, to detect the location of 

people by hand. This was done with a computer program called FFmpeg.1

images per second were chosen for the cutting, to be able to detect the movements of 

running people frame by frame. The location/movement detection of the cro

done as follows: the still images were viewed in a program called IrFanView

you can see the coordinates of your mouse click on the picture in the upper left 

total of 130 frames were analysed by hand. In an Excel file all coordina

in the frames were collected. Not all people in the crowd could be 

analysed by hand, because of the quantity, but also because it was not possible to 

trace every ‘dot’ (person) over multiple still images. In total 35 persons were 

Persons in different positions of the crowd that have simultaneous movements as the 

people around them were chosen, so these target subjects can represent multiple 

people around them. The density of the crowd around a target subject was also 

, which could be used to build a representative large scale simulation of ten 

Since the exact number of surrounding persons of a target 

in the video, 3 distinctions in density were made: high, medium 

ow. The size of the circle around the target subject in which density was 

on the right in the picture.      

                                                           
platform program to record, convert and stream audio and video. 

.   
IrFanView is a graphic viewer, see: http://www.irfanview.com/. 

he uncut/un-edited 

 

 

movie was made from the 

moment where the crowd was in silence and a person started to scream loudly. In this 

minute movie there are two time slots that were processed further, namely the parts 

amera angle from Fig. 

1 was visible and the direction and speed of the movements of the people could be 

analysed. These specific parts of 15 seconds in total length were analysed as follows. 

t the location of 
1 Ten still 

images per second were chosen for the cutting, to be able to detect the movements of 

running people frame by frame. The location/movement detection of the crowd was 

done as follows: the still images were viewed in a program called IrFanView2, where 

you can see the coordinates of your mouse click on the picture in the upper left 

were analysed by hand. In an Excel file all coordinates of 

in the frames were collected. Not all people in the crowd could be 

analysed by hand, because of the quantity, but also because it was not possible to 

trace every ‘dot’ (person) over multiple still images. In total 35 persons were traced. 

Persons in different positions of the crowd that have simultaneous movements as the 

people around them were chosen, so these target subjects can represent multiple 

people around them. The density of the crowd around a target subject was also 

, which could be used to build a representative large scale simulation of ten 

of a target could 

made: high, medium 

ow. The size of the circle around the target subject in which density was 

platform program to record, convert and stream audio and video. 



The next step was to correct for the angle the camera makes with the floor ad 

recalculate the coordinates, into coordinates that would fit into a bird’s view on the 

Dam Square, perpendicular to the floor. For the transformation of the pixels-

coordinates in the image to the location on the map as seen from above, both the 

horizontal and vertical distances in pixels between corners of buildings near the center 

of the image were calculated. This was compared with the real distances in meters to 

calculate the average pixels per meter in the image for the x and y axis near the center 

of the image. This method results in a distortion for points further away from the 

center of the image, however, given the 

distance of the camera from the area of 

interest and the fact that most of the 

movement were in the middle horizontal 

band of the image, the distortion is 

limited. Eventually, the positions in 

meters from corners of the buildings were 

translated to the position in pixels on a 

600x800 map of the area, using offsets 

and scaling. Specifically, the following 

formulae are used to translate movements 

in pixels to movements in meters:  xmeter = 

xpixel / 22 and ymeter = ypixel / 8. This was 

then transformed to the map using the 

following formulae: 

xmap = ( xmeter * 5.15 ) + 136 

ymap = ( ymeter * 5.15 ) - 167 

The bird’s eye view perspective used in 

the computational model can be seen in 

Fig. 2. The resulting 600 by 800 pixels 

figure was represented in the simulation 

in Matlab as a grid of 300 by 400. Locations of certain obstacles, like buildings and 

fences, were also transformed with the formula from the camera angle into the bird’s 

eye view.    

4  Extending and Specialising the Model for the May 4 Case 

To tailor the ASCRIBE model towards this domain, a number of steps were taken. 
 

Case specific states. First of all, the relevant states for the agents have been 

distinguished. In this case, the emotion, belief and intention states relate to the options 

for each agent. A total of 9 options are available including ‘remain standing’, and 

moving in any wind direction (N, NE, E, SE, S, SW, W, NW). Besides these, there is 

an additional belief about the current situation. This expresses how positive a person 

judges the current situation (0 a negative judgment, and 1 a positive judgment). 

Finally, the emotions for each of the options and the emotion fear is represented. 
 

Fig. 2. 600 x 800 pixel image of the 

Dam Square 



Channel strength. In the scenario described above, the channel strengths between the 

various agents are dependent on the physical location of the agents. If other agents are 

close, the channel strength is high, whereas it is low or 0 in case agents are far apart. 

Therefore, a threshold function was used expressing within which reach agents still 

influence each other in a significant manner:  

αSBA(t) = 1 – (1/1+e-σ(distance
BA

(t) - τdistance)) 

Here σ and τdistance are global parameters and distanceBA is the Euclidean distance 

between the positions (xA(t), yA(t)) and (xB(t), yB(t))  of A and B at t. 
 

Movement. The movement of the agents directly depends upon their intentions. The 

highest feasible intention is selected (in cases where certain movements are 

obstructed, the next highest intention is selected). For each of the selected options O, 

the movement xmovement(O) on the x-axis and ymovement(O) on the y-axis is specified; e.g., the 

option for going south means -1 step on the y-axis and none on the x-axis: xmovement(O) = 

0 and ymovement(O) = -1. The actual point to which the agent will move is then calculated 

by taking the previous point and adding the movement of the agent during a certain 

period to that. The movement of the agent depends upon the strength of the intention 

for the selected option and the maximum speed with which the agent can move. If the 

intention is maximal (i.e., 1) the agent will move with the maximum speed. In case 

the intention is minimal (i.e., 0) the agent will not move. The model that establishes 

this behaviour is as follows: 

     xA(t+∆t) = xA(t) + max_speedA ⋅ qintention(O)A(t) ⋅xmovement(O)⋅ ∆t 

     yA(t+∆t) = yA(t) + max_speedA ⋅ qintention(O)A(t) ⋅ymovement(O)⋅ ∆t 
 

Here the maximum speeds max_speedA are agent-specific parameters. 

5   The Parameter Tuning Method Used 

As explained above, the computational model contains a large number of parameters; 

these parameters address various aspects of the agents involved, including their 

personality characteristics (e.g., expressiveness, openness, and tendency to absorb or 

amplify mental states), physical properties (e.g., minimum and maximum speed, and 

limit of their sight), and characteristics of their mutual interactions (e.g., channel 

strength between sender and receiver). The accuracy of the model (i.e., its ability to 

reproduce the real world data as closely as possible) heavily depends on the settings 

of these parameters. Therefore, parameter estimation techniques [12] have been 

applied to learn the optimal values for the parameters involved.  

In order to determine what is ‘optimal’, first an error measure needs to be defined. 

The main goal is to reproduce the movements of the people involved in the scenario; 

thus it was decided to take the average (Euclidean) distance (over all agents and time 

points) between the actual and simulated location: 

ε =  ∑  �����	 � ∑ 
(�(�,�,	���−�(�,�,������2+(�(�,�,	���−�(�,�,������2

#�����	⋅#���������	���������	 �   



Here, x(a, t, sim) is the x-coordinate of agent a at time point t in the simulation, and 

x(a, t, data) the same in the real data (similarly the y-coordinates). Both are in meters. 

Next, the relevant parameters were tuned to reduce this error. To this end, the 

approach described in detail in Section 3 and 4 of [2] was used. This approach makes 

use of the notion of sensitivity of variables for certain parameter changes. Roughly 

spoken, for a given set of parameter settings, the idea is to make small changes in one 

of the parameters involved, and to observe how such a change influences the change 

of the variable of interest (in this case the error). Here, ‘observing’ means running the 

simulation twice, i.e., once with the original parameter settings, and once with the 

same settings were one parameter has slightly changed. Formally, the sensitivity SX,P 

of changes ∆X in a variable X to changes ∆P in a parameter P is defined as follows 

(note that this sensitivity is in fact the partial derivative ∂X/∂P): SX,P = ∆X /∆P . Based 

on this notion of sensitivity, the adaptation process as a whole, is an iterative process, 

which roughly consists of: 1) calculating sensitivities for all parameters under 

consideration, and 2) using these sensitivities to calculate new values for all 

parameters. This second step is done by changing each parameter with a certain 

amount ∆P, which is determined as follows: ∆P =  -λ * ∆X / SX,P. Here, ∆X is the 

deviation found between actual and simulated value of variable X, and λ is a speed 

factor. Note that, since in the current case X represents the error, the ‘actual value’ of 

X is of course 0, so ∆X simply equals ε in the simulation. 

6   Results 

This section presents the results of specialising and tuning the agent-based model 

with 35 agents, to the real world data of the May 4 incident.  The results are presented 

for the first part of the data (i.e., seconds 11-17 of the 3-minute movie). The number 

of parameters to tune was large, therefore, before starting the tuning process, the 

settings for a large majority of the parameters were fixed at default values (see Table 

1). For example, parameters with a relatively small sensitivity were left out of 

consideration for the tuning process (cf. [2]). For these parameters, reasonable default 

settings were chosen by hand (based on experimentation). The values of the 

remaining parameters (among others, the maximum speed for each individual agent, 

the minimum distance within which agents influence each other, and the initial values 

of one of the beliefs, see Table 1) were initialised by hand, but were then adapted 

using the parameter tuning approach described in the previous section. The speed 

factor λ of this tuning process was set to 0.1. The initial locations of the agents 

involved were taken equal to the locations in the real world data. An overview of all 

optimal settings found for the global parameters and the initial variables involved in 

the model (cf. [5]) is shown in Table 1. Here, the settings shown in the first two 

columns were set by hand, and the settings shown in the last two columns were found 

after tuning. Note that all settings (except those for maximum speed) were used 

globally for all agents. 
 

 

 

 



Global parameters 

(not tuned) 

Initial variable settings 

(not tuned) 

Global parameters 

(tuned) 

Initial variables 

(tuned) 

#agents 35 εintention 0.5 τdistance 190 qbelief(nomove) 0.005 

max_x 600 δintention 0.5 sight_reach 200   

max_y 800 ηintention 0.5 max_speed 

(per agent) 

see Fig.3   

∆t 0.5 βintention 0.5     

µδbelief 0.5 εbelief 0.5     

µηbelief 0.5 δbelief 0.5     

µβbelief 0.5 ηbelief 0.5     

ζbelief 0.5 βbelief 0.5     

σ 100 εemotion 0.5     

ωOIA1 0.3 δemotion 0.5     

ωOEA2 0.3 ηemotion 0.5     

ωOBA2 0.3 βemotion 0.5     

ωOEA1 0.5       

ωOBA1 0.5       

all qbelief(X) 0       

impact of 

event on 

qbelief(X) 

1       

min_speed 0.01       

 

Table 1. Optimal parameter settings found 
 

 

These optimal settings were compared to two other variants of the model: one 

baseline variant in which the agents do not move at all, and one variant in which all 

agents also make individual decisions, but do not influence each other (i.e., no 

contagion takes place). For the latter variant, in order to enable a fair comparison, 

parameter tuning was applied to find optimal settings as well. Fig. 3 shows for each of 

the three variants how the average error (over all agents) increases during the 

simulation. Note that the error is expressed in meters. At the first time point, the error 

is 0 (all agents start at their actual position), but over time the error increases very 

quickly in the baseline case, so that the overall average error becomes quite large 

(0.87). The overall error found for the tuned model without contagion is much lower 

(0.66, i.e., an improvement of 24%), and is even lower for the tuned model with 

contagion (0.54, i.e., an improvement of 38%).  

 

 
 

Fig. 3. Development of error over the simulation for three variants of the model. 
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Fig. 4. Screenshot of the simulation. 

Units displayed on the axes are in pixels, 

where 5.15 pixels equals 1 meter. 

This finding provides strong evidence 

for the conclusion that incorporating the 

contagion makes the model more accurate, 

even when it is based on default settings 

for the parameters. Note that in the current 

scenario, the agents’ movements involve 

relatively small steps, compared to the 

size of the grid; in case the steps would 

have been larger, the difference in 

performance between the three models 

would be expected to have been bigger as 

well. 

After the tuning process was finished, 

the optimal settings found for all 

parameters were used as input for the 

simulation model with contagion, to 

generate a simulation trace which closely 

resembles the real world scenario. Using 

visualisation software (written in Matlab), 

the simulation trace has been visualised in 

the form of a 2D animation (see 

http://www.few.vu.nl/~tbosse/may4/). A 

screenshot of the animation is shown in Fig. 4. Here, the lines represent fences that 

were used to control the crowd, the large circle represents the monument on the 

square (see Fig. 1 for the actual situation), and the big dots represent corners of other 

buildings. The plus sign on the right indicates the location of the screaming man. The 

small dots represent the actual locations of the 35 people in the crowd that were 

tracked, and the stars represent the locations of the corresponding agents in the 

simulation. Even at the end of the simulation (see Fig. 4), the distances between the 

real and simulated positions are fairly small. 

7   Discussion 

This paper has two main contributions. Firstly, it presents how empirical data has 

been extracted from available video material and witness reports of the May 4 

incident in Amsterdam. Qualitative data about escape panics are rare [4]. Based on 

these data, it is possible to compare models for crowd behaviour with qualitative data 

of a real panicking event. Second, an existing agent-based model for describing group 

behaviour involving contagion of emotion, belief and intention, ASCRIBE [5], has 

been adapted to construct a model for behaviour in a crowd when a panic spiral 

occurs. Experiments have been performed with two variants of the model. In one 

variant parameters related to contagion were set in such a way that there was no 

contagion at all; in this case the movement of individuals is only determined by their 

individual state. In the other variant, mutual influencing took place because emotions, 

beliefs and intentions were spreading to persons nearby. When comparing the 



simulations of both variants of the model with the most optimal settings for the other 

parameters, the variant with contagion had an 18% lower average error rate (0.54 

instead of 0.66). Thus, it is shown that the contagion of emotions is an essential 

element to model the behaviour of crowds in panic situations. 

Several models for crowd behaviour have been presented by other researchers. An 

influential paper has been [4], in which a mathematical model for crowd behaviour in 

a panic situation is presented, based on physics theories and socio-psychological 

literature. This model is based on the principle of particle systems, in which forces 

and collision preventions between particles are important. This approach is often used 

for simulating crowd behaviour in virtual environments [11, 14]. In [3] the model of 

[4] is extended by adding individual characteristics to agents, such as the need for 

help and family membership. In both models, there are no individual emotion, belief 

and intention states that play a role. In contrast, in [7] an agent has an 

‘emotional_status’, which determines whether agents walk together (i.e. it influences 

group formation). The emotional status of an agent can change when to agents meet. 

An even further elaborated role of emotional and psychological aspects in a crowd 

behaviour model can be found in [8]. In this model, several psychological aspects 

influence the decision making of individual agents, for example, motivation, stress, 

coping, personality and culture. In none of the models presented above, there is 

contagion of emotional or other mental states between people. Also, no evaluation 

with real qualitative data has been performed. One of the most developed tools for 

crowd simulation, which also incorporates mental states, is ESCAPES [13]. This 

system, which specifically targets evacuation scenarios, has several similarities with 

the approach shown here. Future work will explore the possibilities to incorporate the 

detailed mechanisms for contagion of mental states presented here into ESCAPES.  

Moreover, in the future, further parameter tuning experiments are planned to study 

the effect of the parameters that were fixed as default values in the current 

experiments. The aim is to explore whether even more realistic simulations can be 

achieved by exploiting the details of the model for contagion of emotions, beliefs and 

intentions in a more differentiated form. 
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