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Abstract. To provide personalized intelligent ambient support for persons per-

forming demanding tasks, it is important to have insight in their state of atten-

tion. Existing models for attention have difficulties in distinguishing between 

stressed and relaxed states. To solve this problem, this paper proposes to extend 

an existing model for attention with a model for ‘functional state’. In this inte-

grated agent model, output of a functional state model (experienced pressure) 

serves as input for the attention model; the overall amount of attention is de-

pendent on the amount of experienced pressure. An experiment was conducted 

to test the validity of the integrated agent model against the validity of an earlier 

model based on attention only. Results pointed out that the integrated model 

had a higher validity than the earlier model and was more successful in predict-

ing attention. 

1   Introduction 

For persons performing complex and demanding tasks, it is crucial to have sufficient 

attention for the various subtasks involved. This is particularly true for tasks that 

involve the continuous inspection of (computer) screens. For instance, an air traffic 

controller inspecting the movements of aircrafts can not permit him- or herself to miss 

part of the events that occur. The same holds for a naval operator monitoring the 

movements of hostile vessels on a radar screen. In such situations, a person may be 

supported by an intelligent ambient agent system [1], that keeps track of where his or 

her attention is, and provides some personalized assistance in case the attention is not 

where it should be, see, e.g., [4], [13].  

The current paper is part of a larger project that aims to develop such an agent-

based intelligent ambient support system. The main application domain of this system 

will be naval missions, and one of its main goals will be to support naval operators 

that work in the control room of the vessels. For example, in case such an operator is 

directing its attention on the left part of a radar screen, but ignores an important con-

tact that just entered the radar screen from the right, such a system may alert him or 

her about the arrival of that new contact. To be able to provide this kind of intelligent 

personalized support, the system somehow needs to maintain a model of the cognitive 

state of the person: in this case the human’s focuses of attention1. It should have the 

                                                           
1  Note that in this paper, a rather wide definition of the term ‘attention’ is used, covering not only visual 

attention, but also ‘mental’ attention for objects that have been observed some time earlier, often referred 

to as ‘situational awareness’ [5].  



capability to attribute mental, and in particular attentional (e.g., [12]) states to the 

human, and to reason about these. 

In previous work, an initial version of such a model has been developed [3], and 

evaluated positively [13]. This model takes two types of sensor information as input, 

namely information about the human’s gaze (e.g., measured by an eye tracker), and 

characteristics of stimuli (e.g., the colour and speed of airplanes on radar screens, or 

of the persons on surveillance images). Based on these types of information, it esti-

mates where the human’s attention is and uses this to decide whether adaptive support 

is needed. 

However, one important shortcoming of that model is that it assumes that the total 

amount of attention a person can spend at a particular time point (in the remainder of 

this paper referred to as A(t)) is static and known beforehand. However, it is known 

from literature like [8] that factors like A(t) usually vary over time, depending on 

states and characteristics of a person [6]. More specifically, it may depend on a hu-

man’s functional state. According to [11], (an operator’s) functional state refers to 

‘the multidimensional pattern of processes that mediate task performance under stress 

and high workload, in relation to task goals and their attendant physiological and 

psychological costs’. It is usually assumed to be based on notions like the person’s 

experienced pressure and exhaustion. 

In recent years, researchers have started to develop computational models for the 

concept of functional state. One of the most sophisticated models is presented in [2]. 

This model takes into account some of the human’s personal characteristics. Inspired 

by these developments, the goal of the research reported in this article has been to 

develop an integrated agent model for attention and functional state. Our main hy-

pothesis is that the integrated model (which will be called attention+ from now on) 

has a higher validity (i.e., is more accurate in estimating where a person’s attention is) 

than the original model (called attention-) from [3].   

The structure of this paper is as follows. First, the original models for attention [3] 

and functional state [2] will be briefly described, as well as a proposal to integrate 

them. Next, an experiment is described that has been performed to compare the valid-

ity of the four models. The context of the experiment is a shooting task, which is 

representative for complex tasks that are currently performed in the naval domain. 

After that, the results of the experiment are analysed, both using a subjective and an 

objective evaluation measure. The paper is concluded by a discussion. 

2   The Two Submodels and their Integration 

The introduced integrated agent model (i.e. the attention+ model) is composed of two 

main submodels, namely (1) a basic attention model (i.e., the attention- model) and 

(2) a functional state model. Below, both of them will be briefly summarised. Next, a 

detailed explanation is provided about how they are combined. 

2.1   Attention Submodel 

The attention submodel was taken from [3]. The model uses three types of input: 

information about the human’s gaze direction, about locations (or spaces) and about 

features of objects on the screen (see Figure 1, where the circles denotes the italicised 

concepts, and the arrows indicate influences between them). Based on this, at each 

time point   it makes an estimation of the current attention distribution: an assign-



ment of attention values         to a set of attention spaces   at that time. The atten-

tion distribution is assumed to have a certain persistency. At each point in time the 

new attention level is related to the previous attention, by: 

AV(s,t) = λ  AV(s,t-1) + (1 - λ)  AVnorm(s,t) 

Here,   is the decay parameter for the decay of the attention value of space   at 

time point    , and              is determined by normalisation for the total 

amount of attention     , described by: 

             
          

              
       

            
          

               
 

Here,            is calculated from the potential attention value of space   at 

time point   and the relative distance of each space   to the gaze point (the centre). 

The term        is taken as the Euclidian distance between the current gaze point and 

s at time point   (multiplied by an importance factor α which determines the relative 

impact of the distance to the gaze point on the attentional state, which can be different 

per individual and situation): 

                        

The potential attention value            is a weighted sum of the features of the 

space (i.e., of the types of objects present) at that time (e.g., luminance, colour): 

                           

      

 

For every feature there is a saliency map  , which describes its potency of draw-

ing attention (e.g., [12]). Moreover,        is the unweighted potential attention 

value of s at time point  , and         is the weight used for saliency map  , where 

           and                . 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Overview of the Attention model 

 

For a more detailed description of the model and the underlying theories, see [3], [4]. 

2.2   Functional State Submodel 

The functional state (FS) submodel was adopted from [2] and determines a person’s 

functional state as a function of task properties and personal characteristics. The 

model is based on two different theories: (1) the cognitive energetic framework [10], 

which states that effort regulation is based on human recourses and determines human 

performance in dynamic conditions; (2) the idea, that when performing sports, a per-

son’s generated power can continue on a critical power level without becoming more 
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exhausted [9]. The FS of a human represents the dynamical state of the person. In the 

model (see Figure 2), this is defined by a combination of exhaustion, motivation and 

experienced pressure, but also the amount of generated and provided effort. Due to 

space limitations no further details of the model are provided here. However, for a 

detailed description, see [2]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. Overview of the Functional State model 

 

The most important variable from the FS model that is used in this paper is the ex-

perienced pressure. Here, this variable is used to determine the amount of available 

attention (the precise relation is explained in the next section). In the FS model, ex-

perienced pressure is related to a number of factors, such as the amount of exhaustion, 

the amount of effort related to the critical point and the performance quality. The 

strength of these relations is dependent on personality characteristics like exhaustion 

sensitivity, performance norm and performance sensitivity. 

2.3   Integrating the Attention and Functional State Model 

One of the drawbacks of the attention- model is that it does not take into account that 

the amount of attention may vary over time. However, in reality, this amount of atten-

tion is influenced by different aspects of the functional state, in particular by the ex-

perienced pressure. Experienced pressure results in variances in concentration and 

motivation, which are directly related to attention. This is the idea behind the integra-

tion of the previously explained submodels: the output variable experienced pressure 

of the Functional State submodel is used as an input variable for the total amount of 

attention      in the Attention submodel. This is done in the following way: 

 

                   

where       is the experienced pressure at time point  , and       and    
     are parameters that can be tuned. If the used Functional State submodel is 

valid, this means that also the attention+ model will have an improved validity, due to 

the FS’s capability to alter       at the appropriate times and therefore dropping or 

taking into account the part of the estimation where attention- was the least certain of. 
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Fig. 3a. Output attention- (left) and attention+ (right) with a low situational demand 

In Figure 3a and b an example is given of this capability. A visualisation of the out-

comes of the models attention- and attention+ is shown for the situations in which 

there is a low situational demand (a) and a high situational demand (b). Here, the area 

determined by the x- and y-axis represents a radar screen, the circles denote contacts, 

and the z-axis indicates the estimated level of attention. The situational demand is 

related to the amount of contacts to be handled with a certain time interval. 

 
Fig. 3b. Output attention- (left) and attention+ (right) with a high situational demand 

 

For fixed decision criteria attention+ is able to adapt to the expected change of the 

functional state of the user, whereas attention- is not. In Figure 3 this means that more 

objects are estimated to be attended to in the low situational demand (4 opposed to 3) 

and less in the high situational demand condition (4 opposed to 7). 

3   Experiment 

The goal of the experiment was to investigate the difference in validity between the 

attention model connected to the FS model (attention+) and the original attention 

model (attention-). The hypothesis is that the validity of the attention+ model is 

higher than the validity of the attention- model.  

3.1   Participants 

Three female and two male participants with a mean age of 24.67 took part in this 

study. All participants already had some experience with the task environment. 



3.2   Simulation-Based Training Environment 

The main task that was used in this study consists of identifying incoming contacts 

and, based on the outcome of  identification, deciding to eliminate the contact (by 

shooting) or allowing it to land (by not shooting). A screenshot of this simulation-

based training environment is displayed in Figure 4. The object at the bottom of the 

screen represents the participant’s (stationary) weapon. In addition, contacts (allies 

and enemies in the shape of a dot with a radius of 5 pixels) appear at a random loca-

tion on the top and fall down to random locations at the bottom of the screen. 

 

 
 

Fig. 4. Screenshot of the Task Environment 

 

Before a contact can be identified, it has to be perceived. This is done by a mouse 

click at the contact, which reveals a mathematical equation underneath the contact. 

The identification task is to check the correctness of the mathematical equation 

(which is less difficult in less demanding situations). A correct equation means that 

the contact is an ally; an incorrect equation indicates that the contact is an enemy. 

Identification is done by pressing either the left or right arrow for respectively an ally 

or enemy. When a contact is identified a green (for an ally) or a red (for an enemy) 

circle appears around the contact. 

The contacts that are identified as an enemy have to be shot before they land. A 

missile is shot by executing a mouse click at a specific location; the missile will move 

from the weapon to that location and explode exactly at the location of the mouse 

click. Any contact within a radius of 50 pixels of the exploding missile is destroyed. 

3.3   Procedure 

The experiment consisted of 4 blocks of 20 minutes of the simulation-based task 

environment. In the first 10 minutes of one block, task demands were low (contacts 

appear every 10 to 20 seconds) and in the second 10 minutes of one block, task de-

mands were high (contacts appear every 2.25 to 4.5 seconds). In the first and third 

block, ‘freezes’ were made after each 2.5 minute, in the second and fourth block no 

freezes were made.  When a freeze was made, the experiment was put on hold and the 

following sentence was shown: “Gameplay frozen. Select contacts, press space when 



done.” At this moment, participants had to select all contacts which they thought to 

have recently paid attention to. After selection, a computer version of the NASA-TLX 

was shown, where participants had to indicate their performance and mental effort.  

First, a Tobii x50 eye tracker (http://www.tobii.se) was connected to measure eye 

movements as input for the attention model. After calibration of the eye tracker, the 

experiment was started and onscreen instructions were given on the task environment 

and freezes. The instructions were followed by a practice block of 1 minute low task 

demands and 1 minute high task demands to get familiar with the environment. After 

practice, participants started with the first block. Before each block the eye tracker 

status was checked and after each block, the participant was given a three minute 

break before continuing with the next block.  

When the participant finished the experiment, the data on the task difficulty (situ-

ational demands) and performance quality were used for tuning of the parameters in 

the FS model. This was done using a Simulated Annealing technique. This method 

initially selects a random parameter setting as the best available parameter setting, 

then introduces a small change in these settings to generate a neighbour of the current 

parameter settings in the search space. If this neighbour is found to be a more appro-

priate representation of the observed human behaviour then it is marked as the best 

known parameter setting, otherwise a new neighbour is selected to evaluate its appro-

priateness. For more details about how this technique was applied, see [2]. 

Next, the obtained personal parameters were used to calculate the experienced 

pressure and the exhaustion in the FS model, which served as input for predicting 

attention in the attention+ model. Furthermore, both eye movements and features of 

contacts (luminance, colour, ...) served as input for the attention model. At this point, 

also the remaining parameters of the attention model (i.e., , , and the different wM, 

see Section 2.1) and of the connection between both models (i.e., a and b, see Section 

2.3) are tuned using Simulated Annealing, to obtain an optimal performance. 

3.4   Data Analysis 

The output of the attention- and attention+ models have been compared with subjec-

tive data retrieved during freezes in the experiment. In 40 minutes, after each 2.5 

minutes of the task execution time a freeze was initiated, where the participant was 

asked to point out to what objects she was paying attention to. At the same time, at-

tention- and attention+ also pointed out what they thought was the case. Each freeze 

in an easy condition was coupled with one in a hard condition in order to be able to 

evaluate the performance of the models given that the task demand changes over time 

(see Table 1).  

Table 1. Freeze couples 

Freeze couple nr Freeze nr (easy) Freeze nr (hard) 

1 1 5 

2 2 6 

3 3 7 
4 4 8 

5 9 13 

6 10 14 
7 11 15 

8 12 16 

 

http://www.tobii.se/


The procedure used to compare the models with the subjective data retrieved dur-

ing the freezes is described in the next section. 

4   Results 

This section presents the results of the experiment. An example of the experienced 

pressure as predicted from the functional state model is shown in Figure 5, for partici-

pant 1 and 2. These two participants were quite extreme cases, in the sense that par-

ticipant 1 experienced much pressure, and participant 2 experienced little pressure. As 

can be seen, both participants experience less pressure during the blocks with low task 

demands (time point 0-1500, 3000-4500, and 6000-7500) than during the blocks with 

high task demands. Recall that these fluctuations of experience pressure were used to 

determine the values of the total amount of attention A(t) in the attention+ model. 

Unfortunately, results of participant 5 could not be used, as the functional state model 

provided unreliable data.   

 

 

 

Fig. 5. Estimated Experienced Pressure over time of participant 1 and 2 during three blocks   

To evaluate the models, a performance measure was chosen based on the calcula-

tion of true positives (hit rate) and false positives (false alarm rate), which can be 

extracted from confusion matrices, as is shown in Table 2. 

Table 2. Confusion matrix 

 
 

In this table, t and f represent whether the participant indicated that he allocated at-

tention to an object or not, respectively, and t’ and f’ indicate that one of the models 

indicated it or not, respectively. Moreover, Hits/T results in the hit rate and False 

Alarms/F results in the false alarm rate. Based on these notions, the sensitivity score 

d’, which is a measure for the performance of the model, is determined as follows: 
 

                          



where zscore(X) is a function that represents X in terms of standard deviations from 

the average. 

The results of the experiment show that the average performance of the attention+ 

model (M+ = 0.736, SD+ = 0.118) was significantly higher than for the attention- 

model (M− = 0.661, SD− = 0.128), with t(31) = 4.709, p <0.001 (paired t-test). Aver-

age d-primes per participants are displayed in Figure 6.  

 

 

 Fig. 6. Mean d-prime per model averaged over participants. 

5   Discussion 

For personalized ambient agents supporting persons performing demanding tasks, it is 

important that they have insight in various aspects of the person’s mental state [5], 

[14]. One important aspect is the distribution of the person’s attention over the objects 

(s)he observes. However, existing models for human attention (e.g., [3]) assume that 

the total amount of attention a person can spend is static. As a result, such models 

cannot distinguish situations in which a person experiences a lot of pressure from 

situations in which (s)he is completely relaxed, whereas in reality these situations 

result in very different behaviours. 

To solve this problem, the current paper proposed to extend the original attention 

model from [3] with a component to keep track of a person’s functional state. A first 

experiment provided evidence that the validity of the attention+ model was slightly 

higher than the validity of the attention- model. 

Despite this encouraging result, the limitations of the approach should not be ig-

nored. First, the amount of participants in the experiment (only 5) was too low to be 

able to draw strict conclusions. Second, the results were difficult to evaluate, due to a 

number of complicating factors. For example, the presence of the ‘freezes’ used for 

the subjective evaluation may have interfered with the task. Third, the approach as-

sumes that participants are sufficiently capable of estimating where their own atten-

tion is. Although some evidence exists that this is indeed the case [13], this assump-

tion can be tested more precisely. Finally, it is an open question to what extent the 

results can be generalised to other scenarios and circumstances. 

In future work, it is planned to address these concerns. For example, experiments 

with higher numbers of participants are planned, both with the current setup and 

within a different experimental context. In addition, more work will be spent on fine-

tuning of the parameters involved in the model (using standard techniques such as 

simulated annealing and gradient-based parameter estimation). Finally, on the long 



term, it is planned to actually implement an intelligent ambient agent system support-

ing humans in demanding circumstances, and test this in more realistic scenarios. 
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