
1

Compositional Verification of Multi-Agent Systems:

a Formal Analysis of Pro-activeness and Reactiveness*

Catholijn M. Jonker, Jan Treur

Vrije Universiteit Amsterdam

Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

URL: http://www.cs.vu.nl, Email: {jonker,treur}@cs.vu.nl

Abstract
A compositional method is presented for the verification of multi-agent systems. The advantages of the

method are the well-structuredness of the proofs and the reusability of parts of these proofs in relation to

reuse of components. The method is illustrated for an example multi-agent system, consisting of co-

operative information gathering agents. This application of the verification method results in a formal

analysis of pro-activeness and reactiveness of agents, and shows which combinations of pro-activeness

and reactiveness in a specific type of information agents lead to a successful cooperation..

1 Introduction

When designing multi-agent systems, it is often hard to guarantee that the specification of a system
that has been designed actually fulfils the needs, i.e., whether it satisfies the design requirements.
Especially for critical applications, for example in real-time domains, there is a need to prove that
the designed system will have certain properties under certain conditions (assumptions). While
developing a proof of such properties, the assumptions that define the bounds within which the
system will function properly are generated. For nontrivial examples, verification can be a very
complex process, both in the conceptual and computational sense. For these reasons, it is a recent
trend in the literature on verification in general to study the use of compositionality and abstraction
to structure the process of verification; for example, see (Abadi and Lamport, 1993; Hooman, 1994;
Dams, Gerth and Kelb, 1996).

The development of structured modelling frameworks and principled design methods tuned to the
specific area of multi-agent systems is currently underway; e.g., (Brazier, Dunin-Keplicz, Jennings
and Treur, 1995; Fisher and Wooldridge, 1997; Kinny, Georgeff and Rao, 1996). As part of any
mature multi-agent system design method, a verification approach is required. For example, in
(Fisher and Wooldridge, 1997) verification is addressed within a temporal belief logic. This
verification method does not exploit compositionality within the agents. In the current paper, in
Section 3, a compositional verification method for multi-agent systems is introduced. Roughly
spoken, the requirements of the whole system are formally verified by deriving them from

* An earlier version of this paper was presented at the International Workshop on Compositionality, COMPOS’97; see

(Jonker and Treur, 1998).

2

assumptions that themselves are properties of agents, which in their turn may be derived from
assumptions on sub-components of agents, and so on.

The compositional verification method introduced here is illustrated for an example multi-agent
system, consisting of two co-operative information gathering agents and the world. For this
example multi-agent system, requirements are formulated (both the required static and dynamic
properties), including variants of pro-activeness and reactiveness. These requirements are
formalised in terms of temporal semantics. It is shown how they can be derived from properties of
agents and how these agent properties in turn can be derived from properties of the agent
components. A compositional system specification is introduced in Section 4. The system
specification defines how the system is composed of the two agents and the world and how each
agent is composed of four agent components: for own process control, world interaction
management, agent interaction management, and an agent specific task (which in this case is
classification of objects in the world). The compositional specification itself is expressed in the
modelling framework DESIRE, shortly introduced in Section 2. The application of the
compositional verification method to the example multi-agent system is presented in Section 5 for
the top level of the composition. More details on the lower levels can be found in Sections 6 and 7.
In Section 8 an overview is given of succesful or unsuccessful cooperations of all possible
combinations of two information agents

2 Compositional Modelling of Multi-Agent Systems

The example task model described in this paper is specified within the compositional development
method DESIRE for multi-agent systems (DEsign and Specification of Interacting REasoning
components); cf. (Brazier, Dunin-Keplicz, Jennings, Treur, 1995) for a case study illustrating the
use of DESIRE, and (Brazier, Jonker and Treur, 1998) for an overview of the principles behind
DESIRE. In DESIRE, a design consist of knowledge of the following three types:

• process composition,
• knowledge composition,
• the relation between process composition and knowledge composition.

These three types of knowledge are discussed in more detail below.

2.1 Process Composition

Process composition identifies the relevant processes at different levels of (process) abstraction, and
describes how a process can be defined in terms of lower level processes.

2.1.1 Processes at Different Levels of Abstraction

Processes can be described at different levels of abstraction; for example, the process of the multi-
agent system as a whole, processes defined by individual agents and the external world, and
processes defined by task-related components of individual agents.

Specification of a Process

The identified processes are modelled as components. For each process the types of information
required as input and resulting as output are identified as well. This is modelled as input and output
interfaces of the components.

3

Specification of Process Abstraction Levels

The identified levels of process abstraction are modelled as abstraction/specialisation relations
between components at adjacent levels of abstraction: components may be composed of other
components or they may be primitive. Primitive components may be either reasoning components
(for example based on a knowledge base), or, alternatively, components capable of performing tasks
such as calculation, information retrieval, optimisation, et cetera.

The identification of processes at different abstraction levels results in specification of components
that can be used as building blocks, and of a specification of the sub-component relation, defining
which components are a sub-component of which other component. The distinction of different
process abstraction levels results in process hiding.

2.1.2 Composition of Processes

The way in which processes at one level of abstraction are composed of processes at the adjacent
lower abstraction level is called composition. This composition of processes is described by the
possibilities for information exchange between processes (static view on the composition), and task
control knowledge used to control processes and information exchange (dynamic view on the
composition).

Information Exchange

Knowledge of information exchange defines which types of information can be transferred between
components and the information links by which this can be achieved. Two types of information
links are distinguished: private information links and mediating information links. For a given
parent component, a private information link relates output of one of its components to input of
another, by specifying which truth value of a specific output atom is linked with which truth value
of a specific input atom. Atoms can be renamed: each component can be specified in its own
language, independent of other components. In a similar manner mediating information links
transfer information from the input interface of the parent component to the input interface of one of
its components, or from the output interface of one of its components to the output interface of the
parent component itself. Mediating links specify the relation between the information at two
adjacent abstraction levels in the process composition.

Task Control Knowledge

Components may be activated sequentially or they may be continually capable of processing new
input as soon as it arrives (awake). The same holds for information links: information links may be
explicitly activated or they may be awake. Task control knowledge specifies under which conditions
which components and information links are active (or made awake). Evaluation criteria, expressed
in terms of the evaluation of the results (success or failure), provide a means to guide further
processing.

2.2 Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of (knowledge)
abstraction, and describes how a knowledge structure can be defined in terms of lower level
knowledge structures. The knowledge abstraction levels may correspond to the process abstraction
levels, but this is often not the case.

4

2.2.1 Knowledge Structures at Different Abstraction Levels
The two main structures used as building blocks to model knowledge are: information types and
knowledge bases. Knowledge structures can be identified and described at different levels of
abstraction. The resulting levels of knowledge abstraction can be distinguished for both information
types and knowledge bases.

Information Types

An information type defines an ontology (lexicon, vocabulary) to describe objects or terms, their
sorts, and the relations or functions that can be defined on these objects. Information types can
logically be represented as signatures in order-sorted predicate logic.

Knowledge Bases

A knowledge base defines a part of the knowledge that is used in one or more of the processes.
Knowledge is represented logically by rules in order-sorted predicate logic.

Knowledge bases use ontologies defined in information types. Which information types are used in
a knowledge base defines a relation between information types and knowledge bases.

2.2.2 Composition of Knowledge Structures

Information types can be composed of more specific information types, following the principle of
compositionality discussed above. Similarly, knowledge bases can be composed of more specific
knowledge bases. The compositional structure is based on the different levels of knowledge
abstraction that are distinguished, and results in information and knowledge hiding.

2.3 Relation Between Process and Knowledge Composition

Each process in a process composition uses knowledge structures. Which knowledge structures are
used for which processes is defined by the relation between process composition and knowledge
composition.

The semantics of the modelling language are based on temporal logic (cf., Brazier, Treur,
Wijngaards and Willems, 1998). Design is supported by graphical tools within the DESIRE
software environment. Translation into an operational system is straightforward; the software
environment includes implementation generators with which specifications can be translated into
executable code. DESIRE has been successfully applied to design both single agent and multi-agent
systems.

3 Compositional Verification

The purpose of verification is to prove that, under a certain set of assumptions, a system will adhere
to a certain set of properties, for example the design requirements. In our approach, this is done by a
mathematical proof (i.e., a proof in the form mathematicians are accustomed to do) that the
specification of the system together with the assumptions implies the properties that it needs to
fulfil. In this sense verification leads to a formal analysis of relations between properties and
assumptions.

5

3.1 The Compositional Verification Method

A compositional multi-agent system can be viewed at different levels of abstraction. Viewed from
the top level, denoted by L0, the complete system is one component S, with interfaces, whereas
internal information and processes are hidden (information and process hiding). At the next lower
level of abstraction, the system component S can be viewed as a composition of agents and the
world, information links between them, and task control. Each agent A is composed of its sub-
components, and so on. The compositional verification method takes this compositional structure
into account.

For composed components two types of properties are recognised: behavioural and environmental
properties. A behavioural property is a property on the output of the component. Behavioural
properties can be conditional, or unconditional. A behavioural property is conditional if the
statements about the output of the component hold under the assumption that some specific
conditions hold for its input. For example, a conditional behavioural property of a diagnostic agent
could be conditional conclusion correctness of an agent (i.e., if the observation information needed
for diagnosis, which is input of the agent, is correct, then all diagnostic output of the agent is
correct), whereas the corresponding unconditional property would be conclusion correctness of an
agent (i.e., all diagnostic output of the agent is correct). An environmental property is a property on
the input of the component (possibly referring to certain conditions on the output).

The primitive components can be verified using more traditional verification methods such as
described in (Treur and Willems, 1994; Leemans, Treur and Willems, 1995). Verification of a
composed component is done using properties of the sub-components it embeds and the task control
knowledge, and environmental properties of the component (depending on the rest of the system,
including the world). This introduces a form of compositionality in the verification process: given a
set of environmental properties the proof that a certain component adheres to a set of behavioural
properties depends on the (assumed) properties of its sub-components, properties of the interactions
between those sub-components, and the manner in which they are controlled. The assumptions
under which the component functions properly, are the properties to be proven for its sub-
components. This implies that properties at different levels of abstraction are involved in the
verification process.

Often these properties are not given at the start of the verification process. Actually, the process of
verification has two main aims:

• to find the properties
• given the properties, to prove the properties

The verification proofs that connect one abstraction level with the other are compositional in the
following manner: any proof relating level i to level i+1 can be combined with any proof relating
level i-1 to level i, as long as the same properties at level i are involved. This means, for example,
that the whole compositional structure beneath level i can be replaced by a completely different
design as long as the same properties at level i are achieved. After such a modification the proof
from level i to level i+1 can be reused; only the proof from level i-1 to level i has to be adapted. In
this sense the verification method supports reuse of verification proofs.

The compositional verification method can be formulated in more detail as follows:

6

A. Verifying one Abstraction Level Against the Other

For each abstraction level the following procedure for verification is followed:
1. Determine which properties are of interest (for the higher level).
2. Determine which assumptions (at the lower level) are needed to guarantee these properties, and

which environment properties.
3. Prove the properties on the basis of these assumptions, and the environment properties.

B. Verifying a Primitive Component

For primitive knowledge-based components a number of techniques exist in literature, see for
example (Treur, Willems 1994; Leemans, Treur, Willems 1995). For primitive non-knowledge-
based components, such as databases, or neural networks, or optimisation algorithms, verification
techniques can be used that are especially tuned for that type of component.

C. The Overall Verification Process

To verify the complete system
1. Determine the properties that are desired for the whole system.
2. Apply the above procedure A iteratively until primitive components are reached. In the iteration

the desired properties of abstraction level Li are either:
• those determined in step A1, if i = 0, or
• the assumptions made for the higher level Li-1, if i > 0

3. Verify the primitive components according to B.

The results of verification are:

• Properties and assumptions at the different abstraction levels.
• The logical relations between the properties of different abstraction levels.

So, a hierarchy over process abstraction levels of sets of properties is the result, as follows:

required properties of top level component

/ | \

assumptions = properties of next lower level components

/ | \ / | \ / | \
.

(and so on)
.

/ | \ / | \ / | \ / | \ / | \

properties of primitive components

In this hierarchy, given the composition relation of the design, every set of properties represented by
a node is logically implied by the conjunction of the sets ofproperties represented by nodes
immediately beneath it in the hierarchy.

7

Notes:
• both static and dynamic properties and connections between them are covered.
• reuse of verification results is supported (refining an existed verified compositional model

by further decomposition, leads to a verification of the refined system in which the
verification structure of the original system can be reused).

• process and information hiding limits the complexity of the verification per abstraction
level.

• a requirement to apply the compositional verification method described above is the
availability of an explicit specification of how the system description at an abstraction level
Li is composed from the descriptions at the lower abstraction level Li+1

• in principle alternative (e.g., bottom-up or mixed) procedures can be formulated as well.

3.2 Semantics Behind the Compositional Verification Method

In principle, verification is always relative to semantics of the system descriptions that are verified.
For the compositional verification method, these semantics are based on compositional information
states which evolve over time. In this subsection a brief overview of these assumed semantics is
given.

An information state M of a component D is an assignment of truth values {true, false, unknown} to the
set of ground atoms that play a role within D. The compositional structure of D is reflected in the
structure of the information state. A formal definition can be found in (Brazier, Treur, Wijngaards
and Willems, 1999). The set of all possible information states of D is denoted by IS(D). Note that this
is a purely theoretical construct; this set will never be searched by a computational method.

A trace 4� of a component D is a sequence of information states (Mt)t � N in IS(D). The set of all

traces is denoted by IS(D)N, or Traces(D). Given a trace 4 of component D, the information state of
the input interface of component C at time point t of the component D is denoted by stateD(4� , t,

input(C)), where C is either D or a sub-component of D, and state is a function symbol. Analogously,
stateD(4� ,� t, output(C)), denotes the information state of the output interface of component C at time
point t of the component D. Given a trace 4 of component D, the task control information state of
component C at time point t of the component D is denoted by stateC(4�, t, tc(C)), where C is either D
or a sub-component of D. The symbol ��will be used to denote the ‘satisfies’ relation as follows: M
��A denotes that a formula A is true in state M according to Strong Kleene semantics; e.g., (Blamey,
1986; Langholm, 1988). If §��is a state formula expressed in the input ontology for component C,
then

 stateD(

�
, t, input(C)) ���§�

denotes that world state formula §�is true in this input state of C at time point t. These statements
can be compared to an infix notation variant of holds-statements in Situation Calculus (a difference,
however, is that we refer to a trace and time point instead of a single state, and that we focus on part
of the system). Based on these statements, behavioural properties can be formulated in a formal
manner as usual a sorted predicate logic with sorts T for time points, Traces for traces and F for
state formulae, using quantifiers over time and the usual logical connectives such as Å, ª, ¶��j�
q��Additional sorts�VQ�define terms within the sort�F�are allowed. The language defined in this
manner is denoted by�TL(S)��An example of a formula of�TL(S) is (where § is a world state formula)��

8

� �� j� t1 state(

�
�, t1, output(A))���to_be_observed(§)��

� � ¶����q�t2>t1 state(
�

�, t2, input(A))���observation_result(§, pos) � observation_result(§, neg)�

�

This expresses that if for some point in time the agent A has generated the
information�to_be_observed(§)�at its output interface, i.e., it has decided to observe�§� there will be a
later point in time that it received�observation_result(§, pos) �or��observation_result(§, neg) �at its input
interface; i.e., all initiated observations are successful.�

4 Co-operative Information Gathering Agents

To test the compositional verification method, the domain of co-operative information gathering has
been analysed. To get the idea, assume two agents A and B start a small project: they have to do
some investigations and make up a report on some topic. Each of the agents has access to useful
sources of information, but this differs for the two agents. By co-operation they can benefit from the
exchange of information that is only accessible to the other agent. If both types of information are
combined, conclusions can be drawn that would not have been achievable for each of the agents
separately. Why could such a co-operation fail ? First of all, one of the agents, say A, may not be
pro-active in its individual search for information. This might be compensated if the agent B is pro-
active in asking the other agent for information, but then at least A has to be reactive (and not
entirely inactive in information search). Also other reasons for failure may exist. For example, one
of the agents may not be willing to share its acquired information with the other agent. Yet another
reason for fialure may be that although both agents are active in searching and exchanging
information, none of them is able to combine different types of information and deduce new
conclusions. Using the compositional verification method introduced, this example has been
formally analysed in depth; an overview of results is presented in Section 8.

To make the example more precise: the example multi-agent model is composed of three
components: two information gathering agents A and B and a component W representing the
external world, see Figure 1. In this figure the boxes denote system components. The arrows depict
channels for flow of information (socalled information links). Task control defines which of the
system components are active; in this case it is trivial: all components are active all the time. Each
of the agents is able to acquire partial information about the external world by initiated
observations. Initiated observations are modelled by an arrow from the agent to the External World
transferring information on what is to be observed, and by an arrow back transferring information
on the results of the observation.

Each agent’s own observations are insufficient to draw conclusions of a desired type, but the
combined information of both agents is sufficient: they have to co-operate to be able to draw
conclusions. Therefore communication is required; the agents can communicate their own
observation results and requests for observation information of the other agent. For communication
the arrows (information links) between the agents are used.

For reasons of presentation, this by itself quite common situation for co-operative information
agents is materialised in the following more concrete form. The world situation consists of an object
that has to be classified. One agent can observe only the bottom view of the object, the other agent

9

the side view. By exchanging and combining observation information they are able to classify the
object.

system task control

External
World

Agent B

Agent A

Fig. 1. The example Multi-Agent System: Top Level composition relation

Communication from the agent A to B takes place in the following manner:

• the agent A generates at its output interface a statement of the form:
 to_be_communicated_to(<type>, <atom>, <sign>, B)

• the information is transferred to B using the arrow from A to B; thereby it is translated into

 communicated_by(<type>, <atom>, <sign>, A)

In the example <type> can be filled with a label request or world_info, <atom> is an atom expressing
information on the world, and <sign>, is one of pos or neg, to indicate truth or falsity. Examples of
communication information within an agent A that can be expressed are:
 to_be_communicated_to(request, view(B,circle), pos, B)
 communicated_by(world_info, view(B,circle), neg, B)
Here the object atom view(B,circle) expresses the world information that the view of the object visible
for B is a circle.Interaction between an agent A and the world takes place as follows:

• the agent A generates at its output interface a statement of the form:
 to_be_observed(<atom>)

• the information is transferred to W; thereby it is translated into
 to_be_observed_by(<atom>, A)

• the world W generates at its output interface a statement of the form:
 observation_result_for(<atom>, <sign>, A)

• the information is transferred to A; thereby it is translated into
 observation_result(<atom>, <sign>)

10

Examples of observation information for an agent A that can be expressed are:
 to_be_observed(view(A,circle))
 observation_result(view(A,circle), pos)

Part of the output of an agent are conclusions about the classification of the object of the form
object_type(s); these are transferred to the output of the system.

To be able to perform its tasks, each agent is composed of four components, see Figure 2: three for
generic agent tasks world interaction management (WIM), agent interaction management (AIM), own proces control

(OPC), and one for an Agent Specific Task (AST; in this case object classification).

agent task control

Object
Classification

(AST)

Agent
Interaction

Management

 World
Interaction

Management

Own
Proces
Control

Fig. 2. Composition relation within an agent

Object Classification (agent specific task)

This component is able to draw a conclusion if it has input on the two views on the object. The
component can reason on the basis of the world knowledge represented in the table depicted in
Table 1.

11

Side

Bottom

sphere cone cilinder

cone

cilinder cube

tetrahedron pyramid

pyramid

Table 1. World knowledge

World Interaction Management
This component reasons about the manner in which the agent interacts with the world. Here it is
decided under which conditions which observations are to be performed in the world.

Agent Interaction Management
This component reasons about the agent’s communication with other agents. In this component it is
determined when to request which information from the other agent. Another task is to determine
when to provide which observation information to the other agent and what to do with the world
information received from the other agent.

Own Process Control
This component defines the agent’s own characteristics or attitudes. Information on these attitudes
can be transferred to other components, to influence the reasoning that takes place there. The agents
can differ in their attitudes towards observation and communication: an agent may or may not be
pro-active, in the sense that it takes the initiative with respect to one or more of:

• performing observations
• communicate its own observation results to the other agent
• ask the other agent for its observation results
• draw conclusions about the classification of the object

Moreover, it may be reactive to the other agent in the sense that it responds to a request for
observation information:

• by communicating its observation result as soon as they are available
• by starting to observe for the other agent

These agent attitudes are represented explicitly as (meta-)facts in the agent’s component own process

control. By varying these attitude facts, different variants of agents can be defined. The impact of
these explicitly specified characteristics has been specified in the model. For example, if an agent
has the attitude that it will always take the initiative to communicate its observation results as soon
as they are acquired, then the agent’s behaviour should show this, but if the characteristic is not

12

there, then this behaviour should not be present. This requires an adequate interplay between the
component own process control and the component agent interaction management within the agent, and
adequate knowledge within agent interaction management.

The successfulness of the system depends on the attitudes of the agents. For example, if both agents
are pro-active and reactive in all respects, then they can easily come to a conclusion. However, it is
also possible that one of the agents is only reactive, and still the other agent comes to a conclusion.
Or, an agent that is only pro-active in reasoning and reactive in information acquisition may come
to a conclusion due to pro-activeness of the other agent. So, successfulness can be achieved in many
ways and depends on subtle interactions between pro-activeness and reactiveness attitudes of both
agents. The formal analysis of the example in the following sections provides a detailed picture of
these possibilities.

5 Formal Analysis of Pro-actviveness and Reactiveness: Top Level

In this section the properties of the system as a whole (defined in Section 5.1) are related to
properties of the agents and the world (defined in Section 5.2 and 5.3), and their interaction. For a
picture of the Top Level view, see Figure 1

5.1 Properties for the Top Level of the System

First, it is determined which properties the system as a whole should satisfy. Considering that the
system S is a classification system, it is expected that S produces output of the form object_type(s) for
some s. A first requirement is that output generated by the system is correct, i.e., if the system
derives object_type(s) for some s, it is true in the world situation. Let the world state (which is
assumed static) be denoted by M. In Figure 4 the successfulness property of S is related to other
properties of S and assumed properties of the next level. In Figure 3 the correctness property of S is
similarly related to other properties. The following correctness property relates the output of the
system to the current world state. It expresses that if the system generates output about object types,
this information is true in the world state considered. In the formulae s is a variable ranging over
(three dimensional) object type values sphere, cube, pyramid,

Correctness of S
The system S is called correct if:

 j4�Traces(S) jt js

 [stateS(4 , t, output(S)) � object_type(s)�¶ M � object_type(s)]

 ∧ [stateS(4 , t, output(S)) � ¬ object_type(s)�¶ M � ¬ object_type(s)]

Output information of S is only provided by agents
As can be seen in Figure 1 the only information links connected to the output of S are the
information link from agent A to S and the information link from agent B to S. Furthermore, the
output interface of S cannot spontaneously change its contents. Therefore, the output information of
the system is only provided by agents. This means that the property ‘correctness of S’ can be
derived from two other properties, as depicted in Figure 3 (the arcs upward mean logical
derivability; an & sign between the arcs means that from the conjunction of the lower level
statements, the upper level statement can be derived). Here the left hand side property is a property

13

at one level lower (a property of individual agents; see Section 5.2), and the right hand side property
derives from the composition relation as depicted in Figure 1.

correctness of S

conclusion
correctness of

all agents

output
information of

S is only
provided by
the agents

&

Fig. 3. Correctness of S

Next, the system is required to be successful in generating conclusions: during the process, for each
value for object types s, at some time point it should either have derived positive output, or negative
output regarding the object type:

Successfulness of S
The system S is called successful if:

 j4�Traces(S) js qt stateS(4 , t, output(S)) � object_type(s))

 ∨ qt stateS(4 , t, output(S)) � ¬object_type(s))�

To guarantee the adequate information exchange between the different components, the following
properties are needed; here the variable r ranges over (two-dimensional) shape values: circle, square,
..., and sign ranges over {pos, neg}.

Interaction effectiveness

The interaction from agent X to the output interface of system S is called effective if information on
object types generated at the output of an agent X will occur at the output of the system S as well,
i.e., for φ either object_type(s) or ¬ object_type(s):

 j4�Traces(S) jt js [stateS(4 , t, output(X)) ��φ ¶�qt’>t stateS(4 , t’, output(S)) ��φ]

Similarly, the interaction from the external world W to agent X is called effective if all observation
result information for agent X generated by W also will occur at the input of X:

 j4�Traces(S) jt jr,sign

 [stateS(4 , t, output(W)) ��observation_result_for(view(X,r), sign, X)
 ¶��qt’>t stateS(4 , t’, input(X)) ��observation_result(view(X,r),sign)]
The same for observation initiation: the interaction from the agent X to the external world W is
called effective if:

14

 j4�Traces(S) jt jr,sign

 [stateS(4 , t, output(X)) ��to_be_observed (view(X,r))
 ¶��qt’>t stateS(4 , t’, input(W)) ��to_be_observed_by (view(X,r), X)]

Interaction effectiveness can be proven from the detailed specification of the composition relation
(the information links involved and the timely functioning of those information links as specified in
the task control of the component containing the information link given in the detailed
specification). This property is needed to prove several environment properties of the agents and
also to prove successfulness of S. Sometimes it will not be stated explicitly.

Agent provides output information of S
An agent X provides output information of system S if X is conclusion successful and the interaction
from X to S is effective.

Logical relations between these properties are depicted in Figure 4. By these logical relations the
successfulness property can be derived from properties of individual agents A and B and interaction
effectiveness properties, which derive from the composition relation.

S is successful

or

conclusion
successfulness, A

effective interaction
from A to S

conclusion
successfulness, B

effective interaction
from B to S

A provides output information of S B provides output information of S

& def & def

Fig. 4. Successfulness of S

For a static world situation it may be considered undesirable () that the system changes its mind
during the process. Therefore in the case of a static world a requirement can be expressed that once
a conclusion has been derived, this is never revised (if the world is not static, this requirement is not
relevant, nor desirable):

Conservatism of S

The system S is called conservative if:

 j4�Traces(S) jt js

 [stateS(4 , t, output(S)) ��object_type(s) ¶��jt’>t stateS(4 , t’, output(S)) ��object_type(s)]
 ∧ [stateS(4 , t, output(S)) � ¬ object_type(s)�¶ jt’>t stateS(4 , t’, output(S)) � ¬ object_type(s)])

The property of conservatism of S can be reduced to similar properties of individual agents in a
similar way as the other properties of S (i.e., Figures 3, 4).

15

Communication effectiveness

The communication from agent X to agent Y is called effective if:

 j4�Traces(S) jt jsign, q j φ

 [stateS(4 , t, output(X)) ��to_be_communicated_to(q, φ, sign, Y)
 ¶��qt’>t stateS(4 , t’, input(Y)) ��communicated_by(q, φ, sign, X)]

Note that in this property it is expressed that communication takes time: if it is sent at time t, it is
received at some time t’ > t. Communication effectiveness can be proven in the same way as
interaction effectiveness. This property is needed to prove environment properties of the agents.

5.2 Properties of the Agents

The required properties of the system have been proven from assumed properties of the components
at one level lower. During this proof process these assumptions have been discovered. A number of
assumptions are quite straightforward. For example, correctness inherits upward from the agents to
the system:

Conclusion correctness of an agent
An agent X is called conclusion correct if:

 j4�Traces(X) jt js

 [stateX(4 , t, output(X)) � object_type(s)��¶ M � object_type(s)]

 ∧ [stateX(4 , t, output(X)) � ¬object_type(s)���¶ M � ¬object_type(s)]

This property logically depends on other properties of the agent, input correctness and conditional
conclusion correctness, as can be seen for agent A in Figure 5.

Input correctness of an agent
a) An agent X is called observation input correct if:

 j4�Traces(X) jt jr

 [stateX(4 , t, input(X)) �observation_result(view(X,r),pos) ¶���M �view(X,r)]

 ∧ j4�Traces(X) jt jr

 [stateX(4 , t, input(X)) �observation_result(view(X,r),neg) ¶���M �¬view(X,r)]

b) An agent X is called communication input correct if:

 j4�Traces(X) jt jr

 [stateX(4 , t, input(X)) � communicated_by(world_info,view(Y,r), pos,Y) ¶���M � view(Y,r)]

 ∧ j4�Traces(X) jt jr

 [stateX(4 , t, input(X)) � communicated_by(world_info,view(Y,r), neg,Y) ¶���M ��¬ view(Y,r)]

c) An agent X is called input correct if X is observation input correct and communication input
correct.

16

Conditional conclusion correctness of an agent
An agent X is called conditionally conclusion correct if the following holds: if input correctness of
X then conclusion correctness of X.

input correctness, A conditional conclusion
correctness, A

observation
input

correctness, A

&

conclusion correctness, A

& def

communication
input

correctness, A

Fig. 5. Conclusion correctness of A

The following property is needed to prove conservatism of S.

Conclusion conservatism of an agent
The agent X is called conclusion conservative if:

 j4�Traces(X) jt js

 [stateX(4 , t, output(X)) ��object_type(s) ¶��jt’>t stateX(4 , t’, output(X)) ��object_type(s)]

 ∧ [stateX(4 , t, output(X)) � ¬ object_type(s)���¶ jt’>t stateX(4 , t’, output(X)) � ¬ object_type(s)])

Again, the proof has been omitted from this paper. Successfulness of the system (see Figure 4)
depends on successfulness of at least one of the agents.

Conclusion successfulness of an agent
The agent X is called conclusion successful if:

 j4�Traces(X) qt stateX(4 , t, output(X)) � object_type(s))

 ∨ qt stateX(4 , t, output(X)) � ¬ object_type(s))�

This property can be proven in a number of ways. However, in all proofs the properties information
saturation of the agent and conclusion pro-activeness is required, see Figure 6 for the logical
relations between properties of agent A that are needed to prove conclusion successfulness of agent
A.

17

Information saturation of an agent
a) The agent X is called observation info saturating if:

 j4�Traces(X) qt�jr qsign stateX(4 , t, input(X)) � observation_result(view(X,r), sign)

b) The agent X is called communicated info saturating if:

 j4�Traces(X) qt�jr qsign stateX(4 , t, input(X)) � communicated_by(world_info, view(Y,r), sign, Y)

c) The agent X is called request saturating if for all agents Y different from X:

 j4�Traces(X) qt�jr stateX(4 , t, input(X)) ��communicated_by(request, view(X,r), pos, Y)

d) The agent X is called information saturating if X is observation info saturating and
communicated info saturating.

conclusion successfulness, A

information saturation, A

communicated info
saturation, A

observation info saturation, A

pro-active observation
info saturation, A

reactive observation
info saturation, A

observation
pro-activeness, A

observation
effectiveness, A

request
saturation, A

conclusion pro-activeness, A

or

&

&

or

spontaneous observation
info saturation, A

observation
reactiveness, A

& def
& def

observation
effectiveness, A

Fig. 6. Conclusion successfulness of A

Conclusion pro-activeness
The agent X is called conclusion pro-active if for all agents Y different from X:

 j4�Traces(X) jt,t’

 [jr,r’ q sign,sign’

 stateX(4 , t, input(X)) � observation_result(view(X,r), sign) ª

 stateX(4 , t’, input(X)) � communicated_by(world_info, view(Y,r’), sign’, Y)]]
� � ¶ q t”>t, t”>t’ js [stateX(4 , t”, output(X)) � object_type(s) ∨
 stateX(4 , t“, output(X)) � ¬object_type(s)]

18

All properties occurring in Figure 6 are also properties of agent A. The leaves in the tree are either
environmental properties of A or behavioural properties of A. To prove environmental properties of a
component behavioural properties of other components of the same level (in this case other agents
and/or the world) are needed as are properties about interactions between these components (in this
case interactions between agents and between the world and agents). For example, the property
communicated information saturation of agent A (see Figure 6) can be proved from interaction
effectiveness from agent B to agent A and the property successful information provision of agent B,
see Figure 7.

communicated info saturation, A

&

communication effectiveness from B to A successful information provision, B

Fig. 7. Communicated info saturation of A

Information provision successfulness
a) The agent X is called successful information providing if:

 j4�Traces(X) jr, qsign qt

 stateX(4 , t, output(X)) ��to_be_communicated_to(world_info, view(X,r), sign, Y)

b) The agent X is called successful information providing pro-active if
 X is observation effective and strongly information providing pro-active.
c) The agent X is called successful information providing reactive if
 X is request saturating and reactive observation effective.

interaction
effectiveness,
from W to A

correctness of W

&&

input observation
information of A is only

provided by W

observation input correctness, A communication input correctness, A

information provision
correctness, B

communication
effectiveness,
from B to A

&&

input communication
information of A is only

provided by B

Fig. 8. Information correctness of A

Similarly, the properties observation input correctness and communication input correctness of an
agent depend on correct information coming from the other agent or from the world (see Section 5.3
for definitions of properties concerning the world), see Figure 8.

The property spontaneous observation info saturation of an agent as used in Figure 6 is defined
by the property pro-activeness of the world (see Section 5.3) and interaction effectiveness from the
world to that agent, see Figure 9.

19

spontaneous observation info saturation, A

pro-activeness, W effective interaction from W to A

& def

Fig. 9. Spontaneous observation info saturation of A

The property successful information provision of agent B, used in Figure 7, can be proven in several
ways. The first division made in Figure 10 is between pro-active and reactive information provision.
Also the notions strong and weak are used.

Information provision correctness
The agent X is called information providing correct if:

 j4�Traces(X) jr jt

 [stateX(4 , t, output(X)) � to_be_communicated_to(world_info, view(X,r), pos, Y) ¶ M � view(X,r)]
 ª�j4�Traces(X) jr jt

 [stateX(4 , t, output(X)) � to_be_communicated_to(world_info, view(X,r), neg, Y) ¶ M � ¬view(X,r)]

Information providing pro-activeness
a) The agent X is called weakly information providing pro-active if:

 j4�Traces(X) jt, r, sign

 [stateX(4 , t, input(X)) � observation_result(view(X,r), sign)

 ¶ qt’ stateX(4 , t’, output(X)) � to_be_communicated_to(world_info, view(X,r), sign, Y)]

b) The agent X is called strongly information providing pro-active if
 X is weakly information providing pro-active and observation pro-active.

Information providing reactiveness
a) The agent X is called weakly information providing reactive if:

 j4�Traces(X) jt, t’,�r, sign

 [stateX(4 , t, input(X)) � observation_result(view(X,r), sign) ª

 stateX(4 , t’, input(X)) � communicated_by(request,view(X,r), pos,Y)]

� � ¶ qt”>t, t”>t’ stateX(4 , t”, output(X)) � to_be_communicated_to(world_info, view(X,r), sign, Y)

b) The agent X is called strongly information providing reactive if
 X is weakly information providing reactive and observation reactive.
c) The agent X is called reactive observation info saturating if
 X is request saturating and strongly information providing reactive.

20

successful information provision, B

or

& def

request
saturation, B

successful information
provision reactive, B

reactive
observation

effectiveness, B

successful information
provision pro-active, B

observation info
saturation, B

or or

spontaneous
observation

info saturation, B

pro-active
observation

info saturation, B

observation
pro-activeness, B

observation
effectiveness, B

& def

reactive
observation

info saturation, B

reactive observation
info saturation, B

request
saturation, B

strongly reactive
information
provision, B

observation
reactiveness, B

weakly reactive
information
provision, B

& def

& def

observation
effectiveness, B

weakly
reactive

information
provision, B

or

strongly reactive
information
provision, B

observation
reactiveness, B

weakly
reactive

information
provision, B

reactive observation
effectiveness, B

observation info
saturation, B

& def

&&stongly information
providing pro-active, B

observation
effectiveness, B

weakly
pro-active
information
provision, B

observation
pro-activeness, B

successful information
provision pro-active, B

& def

& def

Fig. 10. Successful information provision of B

The tree in Figure 10 consists of logical relations between properties of the agent B. Some of them
have been defined above, the others are defined as follows.

21

Information acquisition pro-activeness of an agent
a) The agent X is called observation pro-active if:

 j4�Traces(X) jr qt stateX(4 , t, output(X)) � to_be_observed (view(X,r))]

b) The agent X is called request pro-active if for all agents Y different from X:

 j4�Traces(X) jr qt stateX(4 , t, output(X)) � to_be_communicated_to(request, view(Y,r), pos, Y)]

c) The agent X is called information acquisition pro-active if X is observation pro-active and
request pro-active.

Observation reactiveness of an agent
The agent X is called observation reactive if:

 j4�Traces(X)jt�jr [stateX(4 , t, input(X)) � communicated_by(request, view(X,r), pos, Y)

 ¶ qt’ stateX(4 , t, output(X)) � to_be_observed (view(X,r))]

Information acquisition effectiveness of an agent
a) The agent X is called observation effective if:

 j4�Traces(X) jt�jr [stateX(4 , t, output(X)) � to_be_observed (view(X,r))

 ¶ qt’>t qsign stateX(4 , t, input(X)) � observation_result(view(X,r), sign)]

b) The agent X is called request effective if:

 j4�Traces(X) jt�jr

 [stateX(4 , t, output(X)) �to_be_communicated_to(request,view(Y,r),pos,Y)

 ¶ qt’>t, sign stateX(4 , t, input(X)) � communicated_by(world_info, view(Y,r), sign, Y)]

c) The agent X is called information acquisition effective if
 X is observation effective and request effective.
d) The agent X is called reactive observation effective if:

 j4�Traces(X) jt�jr

 [stateX(4 , t, input(X)) � communicated_by(request, view(Y,r), pos, Y)

 ¶ qt’>t, sign stateX(4 , t, input(X)) � observation_result(view(X,r), sign)]

e) The agent X is called pro-active observation info saturating if
 X is observation pro-active and observation effective.

The relations between the environmental properties request saturation of agent A and observation
effectiveness of agent A, and properties of the world, of agent B, and of interactions between agents
and world can be found in Figure 11.

22

observation effectiveness, A

& def

&

observation
effectiveness, W

interaction effectiveness
between A and W

interaction effectiveness
from W to A

interaction effectiveness
from A to W

request saturation, A

&

interaction effectiveness
from B to A

request pro-activeness, B

Fig. 11. Observation effectiveness and request saturation of A

5.3 Properties of the World

For the component World assumptions on correctness and conservatism are made.

Correctness of the world
The world W is called correct if:

 j4�Traces(W) jt jv, X

 [stateW(4 , t, output(W)) � observation_result_for(view(X, r), pos, X)��¶ M � view(X, r)]
 ª�j4�Traces(W) jt jv, X

 [stateW(4 , t, output(W)) � observation_result_for(view(X, r), neg, X)��¶ M ��Å view(X, r)]

Conservatism of the world
The world W is called conservative if:

 j4�Traces(W) jt jr, sign, X

 [stateW(4 , t, output(W)) ��observation_result_for(view(X, r), sign, X)

 ¶��jt’>t stateW(4 , t’, output(W)) ��observation_result_for(view(X, r), sign, X)]

Moreover, the world should be effective in providing observation results for observations initiated
by the agents.

Observation effectiveness of the world
The component W is called observation effective if:

 j4�Traces(W) jt jr, X
 [�stateW(4 , t, input(W)) � to_be_observed_by(view(X, r), X)]

 ¶ [qt’>t,sign stateW(4 , t’, output(W)) ��observation_result_for(view(X, r), sign, X)]

It is also possible that the world provides observation information without an initiative from the
agent (e.g., by automated sensors). In this case the world shows pro-activeness:

23

Observation pro-activeness of the world
The component W is called observation pro-active if:

 j4�Traces(W) jr, X qt,sign

 stateW(4 , t, output(W)) ��observation_result_for(view(X, r), sign, X)

6 Properties of Agent Components

The properties of the agents needed to prove the properties of the top level of the system were
discussed in Section 5.2. The assumed properties of the sub-components of an agent, as depicted in
Figure 2, Own Process Control (OPC), World Interaction Management (WIM), Agent Interaction
Management (AIM), and Object Classification (OC), are discussed in this section. These properties
are needed to prove the behavioural properties of that agent; the logical structure of those proofs in
the form of trees is discussed in this section as well. Properties of the component own process control
play a role in the proof of each behavioural agent property.

6.1 Properties of Own Process Control (OPC)

In the component Own Process Control the agent’s attitudes are explicitly represented. The attitudes
are represented in the following manner (see Table 2).

 attitude representation within OPC

observation reactive observation observation_attitude(reactive)

 pro-active observation observation_attitude(pro-active)

communication weakly reactive information provision info_provision_attitude(weakly_reactive)

 strongly reactive information provision info_provision_attitude(strongly_reactive)

 weakly pro-active information provision info_provision_attitude(weakly_pro-active)

 strongly pro-active information provision info_provision_attitude(strongly_pro-active)

 pro-active requesting requesting_attitude(pro-active)

reasoning pro-active reasoning reasoning_attitude(weakly_pro-active)

Table 2 Different agent attitudes

Attitude determination successfulness of OPC
The component OPC is called attitude determination successful for the attitude pro-activeness of
observation if:

 j4�Traces(OPC) qt�jt’=t�����stateOPC(4 , t’, output(OPC)) � observation_attitude(pro-active)

In a similar manner attitude determination successfulness for the other attitudes is defined.

24

In the example the attitudes are assumed to be defined in a static manner, as general facts in OPC.
However, it is not difficult to define them dynamically, (i.e., that an agent may change its attitude
on the basis of experiences) by specifying a knowledge base that takes into account (dynamic) input
for OPC.

Attitude conservatism of OPC
The component OPC is called attitude conservative for the attitudepro-activeness of observation if:
 j4�Traces(OPC)�jt��

� � stateOPC(4 , t, output(OPC)) � observation_attitude(pro-active) ��

� � ¶�jt’>t�stateOPC(4 , t’, output(OPC)) � observation_attitude(pro-active)

In a similar manner attitude conservatism for the other attitudes is defined.

In order to prove observation pro-activeness of agent A not only properties of OPC are needed, but
also of the component WIM. The logical relations between these properties can be found in Figure
12.

observation pro-activeness, A

interaction
effectiveness from

OPC to WIM

successful attitude
determination:

observation pro-active,
OPC

pro-active observation
generating

effectiveness, WIM

& & &

interaction
effectiveness from

WIM to A

Fig. 12. Observation pro-activeness of A

The properties concerning interaction effectiveness used on this level correspond to the same
properties on the top level. Explicit definitions have been omitted in this paper.

6.2 Properties of World Interaction Management (WIM)

If the agent is pro-active for observation, see Figure 12, then the agent makes sure that every
observation is performed at least once. The component world interaction management initiates these
observations.

Pro-active observation generation effectiveness of WIM
The component WIM of agent X is called pro-actively observation generation effective if:

 j4�Traces(WIM) jt jr

 [stateWIM(4 , t, input(WIM)) � observation_attitude(pro-active)

 ¶ qt’ stateWIM(4 , t’, output(WIM)) � to_be_observed (view(X,r))]

Note that no temporal restrictions are put on t’: either the observation has been generated in the past
(in which case no new observation has to be initiated), or it has to be done now or in the future.

25

In the reactive case, also the presence of a request is of importance:

Reactive observation generation effectiveness of WIM
The component WIM of agent X is called reactively observation generation effective if:

 j4�Traces(WIM) jt jr

 [[stateWIM(4 , t, input(WIM)) � observation_attitude(reactive) ª

 stateWIM(4 , t, input(WIM)) � requested(view(X,r))]

 ¶ qt’ stateWIM(4 , t’, output(WIM)) � to_be_observed (view(X,r))]

Given this property and the ability of AIM to pass on request information to WIM it is possible to
prove observation reativeness of agent A, see Figure 13.

& &

&

observation reactiveness, A

observation
reactiveness, WIM

indirect interaction
effectiveness from

A to WIM

interaction
effectiveness from

WIM to A

request transfer,
AIM

interaction
effectiveness from

AIM to WIM

interaction
effectiveness from

A to AIM

reactive observation
attitude information

saturation, WIM

reactive observation
generation effectiveness,

WIM

successful attitude
determination:

reactive observation,
OPC

interaction effectiveness
from OPC to WIM

& def & def

& def

Fig. 13. Observation reactiveness of A

Observation result transfer of WIM
The component WIM of agent X is called observation result transferring if:

 j4�Traces(WIM) jt jr, sign

 [stateWIM(4 , t, input(WIM)) ��observation_result (view(X,r), sign)

 ¶�qt’ =t stateWIM(4 , t, output(WIM)) � observation_result (view(X,r), sign)]

This property is used in Figure 14, 15, and 17.

In order to prove weakly pro-active or weakly reactive information provision of A, the properties of
the component agent interaction management are of importance.

26

6.3 Properties of Agent Interaction Management (AIM)

Pro-active information provision effectiveness of AIM
The component AIM of agent X is called weakly pro-actively information provision effective if for
every agent Y different from X:

 j4�Traces(AIM) jt jr, sign

 [stateAIM(4 , t, input(AIM)) � info_provision_attitude(weakly_pro-active) ª�

� � � � stateAIM(4 , t, input(AIM)) ���observation_result (view(X,r), sign)

 ¶�qt’ stateAIM(4 , t, output(AIM)) � to_be_communicated_to(world_info, view(X,r), pos, Y)]

Figure 14 shows how the agent property weakly pro-active information provision depends on other
properties of AIM. The component AIM needs observation information, therefore, the observation
result transfer property of WIM, and effective interaction from the input of the agent to WIM, and from
WIM to AIM should hold. The correct necessary attitude information is provided by OPC.

weakly pro-active information provision, A

&

& def

&

indirect interaction
effectiveness from

A to AIM

information provision
effectiveness, AIM

interaction effectiveness
from AIM to A

& def

interaction effectiveness
from A to WIM

interaction effectiveness
from WIM to AIM

observation
result transfer,

WIM

&

weakly pro-active
information provision
attitude information

saturation, AIM

weakly pro-active
information provision

effectiveness, AIM

successful attitude
determination:

weakly pro-active
information provision,

OPC

interaction effectiveness
from OPC to AIM

& def

Fig. 14. Weakly pro-active information provision of A

Reactive information provision effectiveness of AIM
The component AIM of agent X is called weakly reactively information provision effective if for
every agent Y different from X:

 j4�Traces(AIM) jt,t’ jr, sign

 [stateAIM(4 , t, input(AIM)) � info_provision_attitude(weakly_reactive) ª�

� � � � stateAIM(4 , t, input(AIM)) ��observation_result (view(X,r), sign) ª

 stateAIM(4 , t’, input(AIM)) � requested(view(X,r))

 ¶�qt”=t’ stateAIM(4 , t”, output(AIM)) � to_be_communicated_to(world_info, view(X,r), pos, Y)]

27

Similarly, the reactive information provision effectiveness property of AIM is needed to prove the
agent property weakly reactive information provision, see Figure 15.

weakly reactive information provision, A

& &

indirect interaction
effectiveness from

A to AIM

reactive information
provision

effectiveness, AIM

interaction
effectiveness

between A and AIM

indirect interaction
effectiveness from

A to AIM

interaction effectiveness
from A to WIM

interaction effectiveness
from WIM to AIM

observation
result transfer,

WIM

& def & def

interaction effectiveness
between A and AIM

interaction effectiveness
from A to AIM

interaction effectiveness
from AIM to A

& def

reactive information
provision

effectiveness, AIM

&

weakly reactive
information provision
attitude information

saturation, AIM

weakly reactive
information provision
effectiveness, AIM

successful attitude
determination:
weakly reactive

information provision,
OPC

interaction effectiveness
from OPC to AIM

& def

Fig. 15. Weakly reactive information provision of A

28

Request transfer of AIM
The component AIM of agent X is called request transferring if for every agent Y different from X:

� j4�Traces(AIM) jt jr

 [stateAIM(4 , t, input(AIM)) ��communicated_by (request, view(X,r), pos, Y)

 ¶ qt’ =t stateAIM(4 , t, output(AIM)) � requested(view(X,r))]

This property is used in Figure 13 and in Figure 17. The following property can be used to prove
request pro-activeness of agent A, see Figure 16.

Pro-active request generation effectiveness of AIM
The component AIM of agent X is called pro-actively request generation effective if for every agent
Y different from X:

 j4�Traces(AIM) jt jr

 [stateAIM(4 , t, input(AIM)) � requesting_attitude(pro-active)

 ¶�qt’ stateAIM(4 , t, output(AIM)) � to_be_communicated_to(request, view(Y,r), pos, Y)]

request pro-activeness, A

&

interaction effectiveness
from AIM to A

pro-active request
attitude information

saturation, AIM

successful attitude
determination:

pro-active request,
OPC

interaction effectiveness
from OPC to AIM

& def

pro-active request
generating

effectiveness, AIM

&

Fig. 16. Request pro-activeness of A

Communicated information transfer of AIM
The component AIM of agent X is called communicated information transferring if for every agent
Y different from X:

� j4�Traces(AIM) jt jr, sign [stateAIM(4 , t, input(AIM)) ��communicated_by (world_info, view(Y,r), sign, Y)

 ¶�qt’ =t stateAIM(4 , t, output(AIM)) � received_world_info(view(Y,r), sign)]

29

6.4 Properties of the Agent Specific Task Object Classification (OC)

The required properties of the component OC are the following. Conclusiveness defines that the
component is able to draw decisive conclusions if sufficient input is provided.

& &

conclusion pro-activeness, A

interaction
effectiveness from

OC to A

indirect interaction
effectiveness from

A to OC

conclusiveness,
OC

conclusiveness,
OC

&

conditional
conclusiveness, OC

target information
saturation, WIM

successful attitude
determination:

pro-active reasoning,
OPC

interaction effectiveness
from OPC to OC

& def

indirect interaction
effectiveness from

A to OC

communication info
transfer, AIM

interaction
effectiveness from

AIM to OC

interaction
effectiveness from

A to AIM

observation
results transfer,

WIM

interaction
effectiveness from

WIM to OC

interaction
effectiveness from

A to WIM

indirect communication info interaction
effectiveness from A to OC

indirect observation info interaction
effectiveness from A to OC

& def& def

& def

& def& def

Fig. 17. Conclusion pro-activeness of A

30

Conclusiveness of OC
The component OC is called conclusive if, under the condition that all required input information
has been acquired, for every output atom a conclusion is derived:

 j4�Traces(OC) [jY�qr,t stateOC(4 , t, input(OC)) ��view(Y,r)]

 ¶�js [qt’ stateOC(4 , t’, output(OC)) � object_type(s) ∨

 qt’ stateOC(4 , t’, output(OC)) � ¬object_type(s)]�

To allow that OPC controls the reasoning on the basis of its reasoning attitude, the following
conditional variant of conclusiveness is needed. This means that only conclusions are drawn if OC
has been input (transferred from OPC) the right targets. Conditional conclusiveness is used to prove
conclusion pro-activeness of agent A in Figure 17.

Conditional conclusiveness of OC
The component OC is called conditionally conclusive if, under the condition that all required input
information has been acquired, for every output atom which is associated to its focus (as a target), a
conclusion is derived:

 j4�Traces(OC) js

 [jY�qr,t stateOC(4 , t, input(OC)) ��view(Y,r)] ª

 [stateOC(4 , t, input(OC)) ��target(OC_focus, object_type(s), determine)

 ¶ [qt’ stateOC(4 , t’, output(OC)) � object_type(s) ∨ qt’ stateOC(4 , t’, output(OC)) � ¬object_type(s)]�

Conclusion correctness means: if a conclusion is derived, then this conclusion corresponds to the
world situation.

Conclusion correctness of OC
The component OC is called conclusion correct if:

 j4�Traces(OC) jt js

 [stateOC(4 , t, output(OC)) � object_type(s)���¶ M � object_type(s)]
 ∧ [stateOC(4 , t, output(OC)) � ¬ object_type(s)�¶ M � ¬object_type(s)]

Conservation can be defined by:

Conclusion conservatism of OC
The component OC is called conclusion conservative if:

 j4�Traces(X) jt js

 [stateOC(4 , t, output(OC)) ��object_type(s) ¶��

� � � jt’>t stateX(4 , t’, output(OC)) ��object_type(s)]
 ∧ [stateOC(4 , t, output(OC)) � ¬ object_type(s)�¶

 jt’>t stateOC(4 , t’, output(OC)) � ¬ object_type(s)]

31

6.5 Domain Assumptions

The properties also need assumptions on the domain knowledge to be used in the model.

Static world
The world state is static during the processing of the system S. This property is particularly needed
to make the conservatism properties relevant.

Empirically foundedness
The possible conclusions can be uniquely characterised by means of observations; in other words: if
two world situations satisfy exactly the same observations, then they also satisfy exactly the same
conclusions (see Treur and Willems, 1994).

7 Verification of Primitive Components

In Sections 5 and 6 verification of the multi-agent model was described, based on assumed
properties of the primitive components. The primitive components can be verified making use of
the more standard methods used for verification of knowledge bases; e.g. such as introduced in
(Treur and Willems, 1994; Leemans, Treur and Willems, 1993). For example, the component
Object Classification should satisfy conclusion correctness and conditional conclusiveness.
Actually, these two properties reduce to static properties described in (Treur and Willems, 1994). In
fact all properties required for primitive components reduce to static properties that define a
constraint on the combined input-output states of the component. Such properties can be verified by
the (static) methods described in the references mentioned.

8 Overview of Successful and Unsuccessful Co-operations

The number of combinations of pro-activeness and reactiveness characteristics within one of the
agents is large. In principle any subset of the set of attitudes listed in Section 6.1 (in Table 2) gives a

specific type of agent. Since 8 attitudes are distinguished, this leads to 2
8
 = 256 possible agent

types. However, due to logical relations between the attitudes, the actual number is less: strong
information provision pro-activeness is definable as the conjunction of weak information provision
pro-activeness and observation pro-activeness, and strong information provision reactiveness is
definable as the conjunction of weak information provision reactiveness and observation
reactiveness. Moreover, pro-activeness logically implies reactiveness, for both observation and
information provision. This brings down the number of combinations for one agent to 36, based on
the following independent attitudes and values:

 attitude values code

 observation no observation on

 observation reactiveness or

 observation pro-activeness op

 communication

 information provision no information provision in

 weak information provision reactiveness ir

 weak information provision pro-activeness ip

32

 requesting no requesting qn

 request pro-activeness qp

 reasoning no reasoning rn

 reasoning pro-activeness rp

This implies that the number of couples of agents is 1296. According to the verification proofs
presented above, some of these combinations have a sucessful co-operation, others do not. To get an
overview, in Table 3 the less trivial combinations are shown. For each of the 576 displayed couples
it is shown which agent(s) will draw a conclusion. The combinations in which one of the agents
does not observe at all have been left out: these combinations are all unsuccessful, because for
succesfulness both observations are needed. This reduces the table to 24 x 24 instead of 36 x 36. As
the main structuring criterion for this table, the observation attitude has been chosen, as starting
point of the whole information gathering process.

 B

A

or
in
q
n
rn

or
in
q
n
rp

or
in
q
p
rn

or
in
q
p
rp

or
ir
q
n
rn

or
ir
q
n
rp

or
ir
q
p
rn

or
ir
q
p
rp

or
ip
q
n
rn

or
ip
q
n
rp

or
ip
q
p
rn

or
ip
q
p
rp

o
p
in
q
n
rn

o
p
in
q
n
rp

o
p
in
q
p
rn

o
p
in
q
p
rp

o
p
ir
q
n
rn

o
p
ir
q
n
rp

o
p
ir
q
p
rn

o
p
ir
q
p
rp

o
p
ip
q
n
rn

o
p
ip
q
n
rp

o
p
ip
q
p
rn

o
p
ip
q
p
rp

or.in.qn.rn -

or.in.qn.rp - A A

or.in.qp.rn -

or.in.qp.rp - - - - - - - A - - A A - - - - - - A A - - A A

or.ir.qn.rn - - - - - - - - - - - - - - - B - - - B - - - B

or.ir.qn.rp - - - - - - - - - - - - - - - B - - - B - - A A
B

or.ir.qp.rn - - - - - - - B - - - B - - - B - - - B - - - B

or.ir.qp.rp - - - B - - A A
B

- - A A
B

- - - B - - A A
B

- - A A
B

or.ip.qn.rn - - - - - - - - - - - - - - - B - - - B - - - B

or.ip.qn.rp - - - - - - - - - - - - - - - B - - A A
B

- - A A
B

or.ip.qp.rn - - - B - - - B - - - B - - - B - - - B - - - B

or.ip.qp.rp - - - B - - A A
B

- - A A
B

- - - B - - A A
B

- - A A
B

op.in.qn.rn -

op.in.qn.rp - A A A A

op.in.qp.rn -

op.in.qp.rp - - - - A A A A A A A A - - - - A A A A A A A A

op.ir.qn.rn - - - - - - - - - - - - - - - B - - - B - - - B

op.ir.qn.rp - - - - - - - - - - - - - - - B - - - B A A A A
B

op.ir.qp.rn - - - B - - - B - B - B - - - B - - - B - - - B

op.ir.qp.rp - - - B A A A A
B

A A
B

A A
B

- - - B A A A A
B

A A A A
B

op.ip.qn.rn - - - - - - - - - - - - - B - B - B - B - B - B

op.ip.qn.rp - - - - - - - - - - - - - B - B - B - B A A
B

A A
B

op.ip.qp.rn - B - B - B - B - B - B - B - B - B - B - B - B

op.ip.qp.rp - B - B A A
B

A A
B

A A
B

A A
B

- B - B A A
B

A A
B

A A
B

A A
B

Table 3 Successful and unsuccessful couples of information gathering agents

33

Notice that such a table is a huge representation (and for more than two agents it would even be
much more huge) for the logical relationships presented in this paper. Actually, the logical
relatioships themselves are in a sense a more concise form of representation, because they can be
combined (in a tree form) to obtain the different possibilities that have been written out in the table.
For example, the combinatorics of a binary tree of depth n can represent in a concise manner 2n
possibilities. However, in this case to give an overview a table form of a reasonable size could be
and therefore has been added.

A nontrivial example from this table is an agent A that is

A1. conclusion pro-active, and
A2. observation reactive,

and not active at all for requesting and information provision. If combined with an agent B that is
(at least):

B1. pro-active for observation,
B2. pro-active for information provision, and
B3. pro-active for requesting,

Table 3 (or 4) shows that agent A will be successful (but not agent B, although it has almost all of
the initiative in this case). The following explanation can be given of this outcome. First, from
Figure 6 it follows that A is conclusion successful if:

(1) A is conclusion pro-active (which is satisfied because of agent property A1)
(2) A satisfies communication info saturation
(3) A satisfies request saturation
(4) A is observation effective (which is true by assumption)
(5) A is observation reactive (which is satisfied because of agent property A2)

From this list, (2) and (3) remain to be proven. By Figure 7, property (2) can be reduced to
(6) communication effectiveness from B to A (which is true by assumption)
(7) successful information provision of B

Here by Figure 10 property (7) can be reduced to successful information provision pro-active, B (8),
which in turn by the same figure can be reduced to

(9) observation pro-activeness for B (satisfied because of agent property B1)
(10) weakly pro-active information provision of B (satisfied because of agent property B2)
(11) obervation effectiveness of B (true by assumption)

Therefore property (7) can be derived, and using this, also property (2). To derive propert (3),
Figure 11 is used. By this figure (3) is reduced to

(12) interaction effectiveness from B to A (true by assumption)
(13) request pro-activeness of B (satisfied because of agent property B3)

This derives property (3).

Another, symmetric example is that both agent A and B are pro-active for requesting and reasoning,
and reactive for observation and information provision. In this case both agents will succeed, which
can be derived in a manner, similar to the case above..

In Table 4 a rearrangement of Table 3 has been made to show the dependence of the reasoning
attitude (the end point of the whole information gathering process) more clearly.

34

 B

A

or
in
qn
rn

or
in
qp
rn

or
ir
qn
rn

or
ir
qp
rn

or
ip
qn
rn

or
ip
qp
rn

op
in
qn
rn

op
in
qp
rn

op
ir
qn
rn

op
ir
qp
rn

op
ip
qn
rn

op
ip
qp
rn

or
in
qn
rp

or
in
qp
rp

or
ir
qn
rp

or
ir
qp
rp

or
ip
qn
rp

or
ip
qp
rp

op
in
qn
rp

op
in
qp
rp

op
ir
qn
rp

op
ir
qp
rp

op
ip
qn
rp

op
ip
qp
rp

or.in.qn.rn -

or.in.qp.rn -

or.ir.qn.rn - - - - - - - - - - - - - - - - - - - B - B - B

or.ir.qp.rn - - - - - - - - - - - - - - - B - B - B - B - B

or.ip.qn.rn - - - - - - - - - - - - - - - - - - - B - B - B

or.ip.qp.rn - - - - - - - - - - - - - B - B - B - B - B - B

op.in.qn.rn -

op.in.qp.rn -

op.ir.qn.rn - - - - - - - - - - - - - - - - - - - B - B - B

op.ir.qp.rn - - - - - - - - - - - - - B - B B B - B - B - B

op.ip.qn.rn - - - - - - - - - - - - - - - - - - B B B B B B

op.ip.qp.rn - - - - - - - - - - - - B B B B B B B B B B B B

or.in.qn.rp - - - - - - - - - - - A - - - - - - - - - - - A

or.in.qp.rp - - - - - A - - - A - A - - - A - A - - - A - A

or.ir.qn.rp - - - - - - - - - - - A - - - - - - - B - B - A
B

or.ir.qp.rp - - - A - A - - - A - A - B - A
B

- A
B

- B - A
B

- A
B

or.ip.qn.rp - - - - - - - - - A - A - - - - - - - B - A
B

- A
B

or.ip.qp.rp - - - A - A - - - A - A - B - A
B

- A
B

- B - A
B

- A
B

op.in.qn.rp - - - - - - - - - - A A - - - - - - - - - - A A

op.in.qp.rp - - A A A A - - A A A A - - A A A A - - A A A A

op.ir.qn.rp - - - - - - - - - - A A - - - - - - - B - B A A
B

op.ir.qp.rp - - A A A A - - A A A A - B A A
B

A
B

A
B

- B A A
B

A A
B

op.ip.qn.rp - - - - - - - - - - A A - - - - - - B B B B A
B

A
B

op.ip.qp.rp - - A A A A - - A A A A B B A
B

A
B

A
B

A
B

B B A
B

A
B

A
B

A
B

Table 4 A rearrangement of Table 3

9 Conclusions

The modelling approach DESIRE is based on compositionality of processes and knowledge at
different levels of abstraction. The compositional verification method described in this paper fits
well to DESIRE, but can also be useful to any other compositional modelling approach. The
compositional verification method formalized in this paper actually can be applied to a broad class
of multi-agent systems. Compositional verification for one process abstraction level deep is based
on the following very general assumptions:
• a multi-agent system consists of a number of agents and external world components.

35

• agents and components have explicitly defined input and output interface languages; all other
information is hidden; information exchange between components can only take place via the
interfaces (information hiding).

• a formal description exists of the manner in which agents and world components are composed
to form the whole multi-agent system (composition relation).

• the semantics of the system can be described by the evolution of states of the agents and
components at the different levels of abstraction (state-based semantics).

This non-iterative form of compositional verification can be applied to many existing approaches,
for example, to systems designed using Concurrent METATEM (Fisher and Wooldridge, 1997).
Compositional verification involving more abstraction levels assumes, in addition:
• some of the agents and components are composed of sub-components.
• a formal description exists of the manner in which agents or components are composed of sub-

components (composition relation).
• information exchange between components is only possible between two components at the

same or adjacent levels (information hiding).
Currently not many approaches to multi-agent system design exist that exploit iterative
compositionality. One approach that does is the compositional development method DESIRE. The
compositional verification method formalized in this paper fits well to DESIRE, but not
exclusively.

Two main advantages of a compositional approach to modelling are the transparent structure of the
design and support for reuse of components and generic models. The compositional verification
method extends these main advantages to (1) a well-structured verification process, and (2) the
reusability of proofs for properties of components that are reused. The first advantage entails that
both conceptually and computationally the complexity of the verification process can be handled by
compositionality at different levels of abstraction. The second advantage entails: if a modified
component satisfies the same properties as the previous one, the proof of the properties at the higher
levels of abstraction can be reused to show that the new system has the same properties as the
original. This has high value for a library of reusable generic models and components. The
verification of generic models forces one to find the assumptions under which for the considered
domain the generic model is applicable, as is also discussed in (Fensel, 1995; Fensel and
Benjamins, 1996). A library of reusable components and task models may consist of both
specifications of the components and models, and their design rationale. As part of the design
rationale, at least the properties of the components and their logical relations can be documented.

Also due to the compositional nature of the verification method, a distributed approach to
verification is facilitated. This implies that several persons can work on the verification of the same
system at the same time, once the properties to be verified have been determined. Since the proof of
properties of a composed component depends on the properties of its sub-components, it is only
necessary to know or to agree on the properties of these sub-components.

The formal analysis of variants of reactiveness and pro-activeness properties in the context of co-
operative information agents deepened our insight in these notions and their logical relationships
and interactions. Semantical formalisation of different variants of reactiveness and pro-activeness
have been found in the form of conditional temporal statements. The notion of information and
process hiding, in DESIRE modelled in terms of components at different abstraction levels, made it
possible to distinguish in a natural manner between observable and non-observable variants of pro-

36

activeness and reactiveness: the variants of behaviour that can be observed from outside the agent
(at its interface), and the variants of internal behaviour (in its sub-components and interactions
between them) that cannot be observed from outside. This formal analysis could be a starting point
for a more general mathematical or logical theory on pro-activeness and reactiveness, and their
interaction. Actually, the logical relations, in this paper depicted in the form of AND/OR graphs in
the figures, can be viewed as lemmas and theorems in such a theory.

A main difference in comparison to (Fisher and Wooldridge, 1997) is that our approach exploits
compositionality. An advantage of their approach is that they can make use of a temporal belief
logic. It would be a challenge to extend the approach as referred to a compositional variant of
temporal belief logic. A first step in this direction can be found in (Engelfriet, Jonker and Treur,
1997). Also a main difference of the current paper in comparison to the work in (Fensel, 1995,
Fensel and Benjamins, 1996; Fensel et al, 1996) is that in our approach compositionality of the
verification is addressed; in the work as referred only domain assumptions are taken into account,
and no hierarchical relations between properties are defined.

The example used to illustrate the compositional verification method in this paper does not display
all possibilities of the method. One of the properties of the example domain is that the world is
static; this is not a requirement for the method. Apart from the work reported here, a generic model
for diagnosis has been verified (Cornelissen, Jonker and Treur, 1997) and a multi-agent system with
agents negotiating about load balancing of electricity use, where the world can be dynamic (Brazier,
Cornelissen, Gustavsson, Jonker, Lindeberg, Polak, and Treur, 1998). Also the example in (Jonker,
Treur, and Vries, 2000) involves a dynamic world. A future continuation of this work will consider
the development of tools for verification in the context of requirements engineering. At the moment
only tools exist for the verification of primitive components; no tools for the verification of
composed components exist yet. To support the handwork of verification it would be useful to have
tools to assist in the creation of the proof. This could be done by formalising the proofs of a
verification process using a first order logic in which time and states are represented explicitly, and
an interactive theorem prover to support the proofs. Another option that can be explored is to extend
Fisher and Wooldridge’s approach to the compositional case. Yet another option to be explored is
whether the tool KIV (based on dynamic logic) can be used. Positive experiences with KIV for
verification of an example model of a knowledge-based system are reported in (Fensel et al, 1996).

Acknowledgements

Wieke de Vries has read an earlier version of this paper, which has led to a number of
improvements in the text.

References

Abadi, M. and L. Lamport (1993). Composing Specifications, ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 1, p. 73-132.

Benjamins, R., Fensel, D., Straatman, R. (1996). Assumptions of problem-solving methods and
their role in knowledge engineering. In: W. Wahlster (ed.), Proceedings of the 12th European
Conference on AI, ECAI'96, John Wiley and Sons, pp. 408-412.

Blamey, S. , Partial Logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical
Logic, Vol. III, 1-70, Reidel, Dordrecht, 1986.

37

Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B., and Treur,
J., Compositional Design and Verification of a Multi-Agent System for One-to-Many Negotiation.
In: Proceedings of the Third International Conference on Multi-Agent Systems, ICMAS’98. IEEE
Computer Society Press, 1998, pp. 49-56. Brazier, F.M.T. , Dunin-Keplicz, B., Jennings, N.R. and
Treur, J. (1995). Formal specification of Multi-Agent Systems: a real-world case. In: V. Lesser
(ed.), Proceedings of the First International Conference on Multi-Agent Systems, ICMAS-95, MIT
Press, Cambridge, MA, pp. 25-32. Extended version in: International Journal of Cooperative
Information Systems, M. Huhns, M. Singh, (Eds.), special issue on Formal Methods in
Cooperative Information Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-94.

Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M. (1999). Temporal semantics of
compositional task models and problem solving methods. Data and Knowledge Engineering, vol.
29(1), 1999, pp. 17-42.

Cornelissen, F., Jonker, C.M., Treur, J. (1997). Compositional verification of knowledge-based
systems: a case study in diagnostic reasoning. In: E.Plaza, R. Benjamins (eds.), Knowledge
Acquisition, Modelling and Management, Proc. of the 10th EKAW, Lecture Notes in AI, vol. 1319,
Springer Verlag, pp. 65-80. Extended abstract in: Proceedings of the Fourth European Symposium
on the Validation and Verification of Knowledge-based Systems, EUROVAV’97.

Dams, D., Gerth, R., Kelb, P. (1996). Practical Symbolic Model Checking of the full µ-calculus
using Compositional Abstractions. Report, Eindhoven University of Technology, Department of
Mathematics and Computer Science.

Engelfriet, J., Jonker, C.M., Treur, J., (1997). Compositional Verification of Knowledge-based
Systems in Temporal Epistemic Logic. In: A. Bossi (ed.), Proceedings of the ILPS'97 Workshop on
Verification.

Fensel, D. (1995). Assumptions and limitations of a problem solving method: a case study. In: B.R.
Gaines, M.A. Musen (eds.), Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-
based Systems workshop, KAW'95, Calgary: SRDG Publications, Department of Computer
Science, University of Calgary.

Fensel, D., Benjamins, R. (1996). Assumptions in model-based diagnosis. In: B.R. Gaines, M.A.
Musen (eds.), Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-based Systems
workshop, KAW'96, Calgary: SRDG Publications, Department of Computer Science, University of
Calgary, pp. 5/1-5/18.

Fensel, D., Schonegge, A., Groenboom, R., Wielinga, B. (1996). Specification and verification of
knowledge-based systems. In: B.R. Gaines, M.A. Musen (eds.), Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-based Systems workshop, KAW'96, Calgary: SRDG
Publications, Department of Computer Science, University of Calgary, pp. 4/1-4/20.

Fisher, M., Wooldridge, M. (1997) On the Formal Specification and Verification of Multi-Agent
Systems. International Journal of Cooperative Information Systems, M. Huhns, M. Singh, (eds.),
special issue on Formal Methods in Cooperative Information Systems: Multi-Agent Systems, vol.
6, pp. 67-94.

Harmelen, F. van and Fensel, D. (1995). Formal Methods in Knowledge Engineering. Knowledge
Engineering Review, Volume 10, Number 4.

Hooman, J. (1994). Compositional Verification of a Distributed Real-Time Arbitration Protocol.
Real-Time Systems, vol. 6, pp. 173-206.

38

Jonker, C.M., Treur, J., and Vries, W.de. (2000). Reuse and Abstraction in Verification: Agents
Acting in a Dynamic Environment. In: P. Ciancarini, M.J. Wooldridge (eds), Proceedings of the
The First International Workshop on Agent-Oriented Software Engineering (AOSE-2000). To be
published by Springer Verlag.

Kinny, D., Georgeff, M.P., Rao, A.S. (1996). A Methodology and Technique for Systems of BDI
Agents. In: W. van der Velde, J.W. Perram (eds.), Agents Breaking Away, Proceedings 7th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW’96,
Lecture Notes in AI, vol. 1038, Springer Verlag, pp. 56-71.

Langevelde, I.A. van, A. Philipsen, and J. Treur (1992). Formal Specification of Compositional
Architectures. In B. Neumann (ed.), Proceedings of the 10th European Conference on AI, ECAI’92,
Wiley and Sons, pp. 272-276.

Langholm, T. , Partiality, Truth and Persistance, CSLI Lecture Notes No. 15, Stanford University,
Stanford, 1988.

Leemans, P., J. Treur, and M. Willems (1993). On the verification of knowledge-based reasoning
modules, Report IR-346, Department of Mathematics & Computer Science, AI Group, Vrije
Universiteit Amsterdam.

Rao, A.S. and Georgeff, M.P. (1991). Modeling rational agents within a BDI architecture. In: R.
Fikes and E. Sandewall (eds.), Proceedings of the Second Conference on Knowledge
Representation and Reasoning, Morgan Kaufman, pp. 473-484.

Treur, J., and M. Willems (1994). A logical foundation for verification. In: Proceedings of the 11th
European Conference on AI, ECAI’94, A. Cohn (ed.), John Wiley & Sons, Ltd., pp. 745-749.

Wooldridge, M., N.R. Jennings (eds.) (1995), Intelligent Agents, Proceedings of the First
International Workshop on Agent Theories, Architectures and Languages, Lecture Notes in AI, vol.
890, Springer Verlag.

