

1

Semantic Formalisation of

Interactive Reasoning Functionality

Jan Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Email: treur@cs.vu.nl URL: http://www.cs.vu.nl/~treur

Abstract
In this paper a semantical framework is developed that provides a logical description of the
functionality of an interactive reasoning process. The concept of functionality description
defines the functionality of a reasoning process abstracting from specific inference relations
or knowledge bases. Moreover, a domain description is formalised. A number of properties of
a functionality description are identified, and related to properties of the domain. It is
established under which conditions a functionality, can be implemented by an inference
relation and a knowledge base.

Introduction

In compositional agent- and knowledge-based systems the task or reasoning pattern is built

up as a dynamic interaction between the components representing the subtasks; see [3], or

[7]. Each of the primitive components is an interactive reasoning system based on an (often

domain-specific) knowledge base. To design and specify compositional agent- and

knowledge-based systems for complex tasks, the compositional design method DESIRE

(DEsign and Specification of Interacting REasoning components; for instance see [2]) has

been developed

 To obtain a clear and well-defined analysis of the behaviour of such a dynamic

compositional system, one has to start by defining the (interactive) role of a given primitive

interactive component in such a system: a clear definition is needed of an interactive

reasoning component’s functionality. In particular, to support reusability and maintainability

a functionality description independent of the component’s specific internal knowledge

representation, inference relations or implementation is required. This enables information

hiding within a reasoning system: the component’s internal structure can be changed as long

as its functionality remains the same.

 In a compositional system questions concerning the behaviour of the whole system or

satisfaction of the system’s functionality, can be decomposed into questions related to the

2

system’s compositional structure and questions for the case of a single primitive interactive

reasoning component (cf. [12]).

 This paper concentrates on the case of a primitive reasoning component and its

interactions. For the reasons indicated, in this paper we analyse in more detail semantical and

functional aspects of interactive reasoning components. It will be shown how to obtain in a

semantical manner a logical description of reasoning that makes use of information "from

outside"; in this case by "outside" we mean outside the reasoning component, but possibly

inside the system. Such a logical description provides an explicit distinction between

situation-independent knowledge in the knowledge base (described as a logical theory) and

situation-specific information which can be used as an input, imported from the world

situation outside (that is described as a given situation model). This perspective is similar to

the perspective in [18] (and [10]), where the models representing specific information are

called simulation structures.

domain

description

declarative

functionality description

(input/output function)

reasoning component

specification

(knowledge base)

Fig. 1 Domain description, functionality description

and reasoning component specification

 On the one hand, from the computer science viewpoint, the framework enables us to

define what a declarative functionality of a reasoning component is (the input/output

possibilities provided by the component). We abstract from the dynamic aspects of the

component: in this paper we are only concerned with what facts can be derived in a given

3

situation (information state), and not with at what time and in which order specific facts are

derived. We prove that for any declarative functionality description a knowledge base

specification in rule-format can be found such that the semantical consequence relation

applied to this knowledge base and the additional input facts satisfies the required

functionality. Reasoning components are able to draw partial conclusions if only a partial

input information state is given. Therefore our formal description of the declarative

functionality of a component also treats partiality of information both at the input side and

the output side of the component.

 On the other hand, from the logical viewpoint, this framework enables us to define in a

direct and logical way when a reasoning component’s functionality is sound and complete

with respect to the domain that is concerned. The central part of this paper is built up as

shown in Fig. 1.

 In Section 2 we define what a domain description is, and especially, in which manner

world situations occurring in a domain and partial descriptions of them (information states)

can be modelled (the lowest layer in Fig. 1). We will give some examples and prove some

properties. In Section 3 we give a formal definition of a declarative functionality description

of an interactive reasoning component and treat some examples (the middle layer in Fig. 1).

Furthermore, we give some results on how well a declarative functionality description fits to

(or describes) a given domain description (the lowest arrow in Fig. 1). In Section 4 it is

defined what a reasoning component specification is (the highest layer in Fig. 1) and how

well it fits to (or describes) a declarative functionality description (the highest arrow in Fig.

1) and to a domain description (both arrows). In Section 5 it is shown for an application to a

diagnostic process model how declarative functionality descriptions can be used to specify

(required) properties of a primitive reasoning component in a concise and transparent

manner. In the Appendix proofs can be found. Before treating this all, Section 1 provides an

introduction to what an interactive reasoning component is.

1 Interactive Reasoning

In this section we explain the notions of interactive reasoning and of an interactive reasoning

component. Logical descriptions will be given that will be used and extended in later

chapters. In these logical descriptions the notion of (partial) model as known from logic

plays an important role. We use partial models to represent information states of a reasoning

component at a certain moment. Our logical descriptions will be based on partial

4

propositional logic. If (many-sorted) predicate logic with a finite number of object names

and relation names is used, we can always use a propositional translation of the formulas to

fall in the scope of propositional logic.

1.1 Interactive reasoning by combining knowledge from theory and model

Usually a reasoning component is described logically by a static theory KB (the knowledge

base) which is given beforehand. From this theory conclusions can be derived using some

inference mechanism. In case of an interactive reasoning component the information that

serves as input facts during the reasoning is viewed as knowledge which is present from the

start. In fact one deals with some extended theory KB+ which additionally contains all

information which could be put in from the outside. Using such information is essentially the

using of knowledge elements from the theory KB+ in the inference process, just like the

knowledge from KB is used. This logical description enables one to simply apply the

classical theory on derivability as studied in logic. This seems plain; however, there are some

aspects which stay implicit or informal this way.

 In fact there is not one theory KB but a whole variety of theories KB+ which depend

on situations that can occur in reality, part of which is represented by the input facts that are

given to the component. This may be viewed as an implicit parametrization of the knowledge

base. How can an explicit logical description of this parametrization be obtained ? Moreover,

interactive reasoning components often have the property that during a session the input facts

are added incrementally: for any moment there is only partial input information available.

The component draws partial conclusions from this information; these conclusions may

occasionally affect which other input facts are added. For example, in a complex reasoning

task like diagnosis these dynamic effects are essential (see [17]). Therefore the knowledge

base KB+ may be dynamic during the reasoning.

 It turns out that some parts of the knowledge (the general or situation-independent

knowledge) which can be used in the inference process can be described as a theory KB but

other parts (situation-specific knowledge) are better described as a model which represents

the actual situation in reality, part of which is represented by the input facts.

 In reasoning these two kinds of knowledge are combined by an interactive process as

depicted in Fig. 2. Here the lowest layer depicts the world situation we are interested in; the

shaded area of the world situation is the part of the world situation that is not observable.

Since we cannot observe it, we are, in particular, interested in drawing conclusions about this

part.

5

M’

KB

M

situation model

interactive

reasoning component

 world
situation

Fig. 2 Interactive reasoning

 This can be done by reasoning, as performed by the reasoning component in the highest

layer in Fig. 2. The world situation is modelled in some manner: we are only interested in

some types of information, and the reasoning component requires a strict format of inputs.

Therefore we use a situation model (the middle layer in Fig. 2). The reasoning makes use of

observable facts from the world situation (the arrows on the left side, pointing upwards), as

modelled by the situation model. In reasoning it applies general domain knowledge as stored

in KB. This reasoning process provides additional information that can be used to extend the

situation model (the highest right arrow, pointing downwards); this can be used to take a

decision to carry out some action in the world situation (the lowest right arrow).

 If the model representing the actual situation is a logical model of the theory which is

used, and the inference mechanism of the component is sound, then logical conclusions

derived in this way are always true in the model. In this paper we deal with these issues. The

treatment we give provides a formal framework for interactive reasoning components as

defined in the following section.

6

1.2 Logical description of an interactive reasoning component

We consider a description in terms of propositional with a non-empty set of atoms A

containing two subsets S (possible input atoms) and H (possible output atoms). The set of

atoms A collects all atomic propositions that are used in the reasoning component. The

input atoms (sometimes called: observables) are the atoms for which a truth value may serve

as an input to the component from the outside: from other reasoning components or from the

outside world. The truth values of output atoms may be wanted by the user; since the

component can derive them by logical inferences from the input atoms, the component may

provide them to the user or to another component that needs them. It is possible that these

two subsets contain all atoms, but it is also possible that there exist atoms outside these

subsets; these intermediate atoms can play a role as intermediate results or subgoals in

inferences. In the general case they form some subset I of A. Summarizing:

 A = S � I � H

 S = {s1, s2,} I = {i1, i2,} H = {h1, h2,}�

Notice that these sets may have nonempty intersections, although in the examples given

below we deal with a disjoint union. From these atoms the set of propositional formulas can

be built up by using the logical connectives ª��Ó��µ��Å � Applications in knowledge bases are

often based on a subset of these propositions, namely propositions in rule-format. These are

propositions in implication form where the if-part consists of a conjunction of literals and the

then-part consists of one literal (a literal is the basic unit of information we use: it is an atom

or the negation of an atom). As a special case of formulas in rule-format, we allow single

literals. These are to be interpreted as general facts (they may be viewed as rules with an

empty condition-part). Examples of propositions in rule-format are the ones in Fig. 3 below.

� rule 1 s1 ª�s2 µ� i1

� rule 2� i1 ª�s3�µ� h1

� rule 3� i1�ª�Å�s3� µ� Å�h1

� rule 4� i1�ª�Å�s3� µ� h2

� rule 5� s3� µ� Å�h2

� rule 6� � s4� µ� h1

 Fig. 3 Example of a knowledge base

7

 To obtain a formal description of the interaction of the reasoning component with the

outside, we will have to give a formal description of all situations the component may get in

touch with (for instance all possible patients). For instance one may think of patient models

containing all factual knowledge on some patient, such as symptoms, diseases etcetera. The

reasoning is supposed to be always about one of these situations; in one session the user

always gives the component information about a fixed one of them. This excludes a user who

gives incorrect or arbitrary answers: we expect a user to transform factual knowledge from

the situation that is considered to the component in a correct manner.

 We define a situation model as a truth assignment to the atoms. Some examples of

situation models related to the knowledge base of Fig. 3 may be obtained by taking the
following truth-assignments, corresponding to the tuple < s1, s2, s3, s4; i1 ; h1, h2 >.

 M1 : < 1, 1, 1, 0; 1; 1, 0 >

 M2 : < 1, 1, 0, 0; 1; 0, 1 >

 M3 : < 0, 0, 0, 1; 0; 1, 0 >

 Fig. 4 Some situations for KB from Fig. 3

Notice that these situation models are models of the theory KB (i.e. in each situation M

every rule of KB is true in M). In this way one can represent knowledge which is situation-

specific (facts from reality) in the form of truth assignments. Below we will give a number of

definitions to explain this point more precisely.

 During a reasoning process at each moment in the system only a part of the information

as given by a situation model is available. To represent this partiality we make use of partial

(situation) models: assignments of truth values from {0, 1, u} to each of the atoms. Here the u

denotes undefined or unknown. Notice that the models as defined above (e.g. in Fig. 4) are

included here as the truth assignments where to no atom an u is assigned; we distinguish

them as the complete models among the partial models. Therefore the set of complete models

is a subset of the set of partial models. Sometimes partial models that are not complete will

be called incomplete models. So the word "partial" means "maybe complete, maybe

incomplete".

 A partial model may be constructed by replacing in any model as above some symbols

0 or 1 by the symbol u; examples of partial models are:
 N1 : < 1, u, 1, 0; u; u, 0 >

 N2 : < 1, 1, u, u; 1; u, u >

8

It is easy to see that, for the complete models given in Fig. 4, there may exist several

hundreds of partial models, representing all information states of the component that

eventually may occur; of course we will not enumerate them.

 The dynamics of the reasoning of a component may be described by representing the

trace of subsequent information states by a sequence of partial models. Each inference step

constructs a new partial model as a refinement of the current partial model by adding to it the

derived information. To illustrate this, in Fig. 5 we give an example that is related to the

knowledge base in Fig. 3; here the tuples correspond to
< s1, s2, s3, s4; i1 ; h1, h2 >.

 N1 : < 1, 1, 0, u; u; u, u >

 inference step 1: rule 1

 N2 : < 1, 1, 0, u; 1; u, u >

 inference step 2: rule 3

 N3 : < 1, 1, 0, u; 1; 0, u >

 inference step 3: rule 4

 N3 : < 1, 1, 0, u; 1; 0, 1 >

 Fig. 5 Example of a reasoning trace

Here the initial facts s1, s2, Å�s3 are observations, done in the world situation that is reasoned

about; this may be modelled by:

 M = < 1, 1, 0, 0; 1; 0, 1 >

Furthermore, we assume that the initial information we know is about s1, s2, s3. As pointed

out earlier, for the atomic statements on which no truth value 0 or 1 is known the symbol u

is noted. The reasoning is data-driven and based on chaining; it stops if no new conclusions

can be derived anymore. The chain of partial models constructed by this reasoning process

is:
 N1 ���12 ���13

Here �� is the refinement relation between partial models (i.e. in N2 more information is

known than in N1, et cetera). Notice that Ni ��0 for each i.

 We finish this section by summing up some of the properties we assume reasoning

components have:

- the component can be used by putting in some input facts (data-driven, forward) as well

as by asking a query to it (goal-directed, backward) or a combination of these.

9

- the component can draw (partial) conclusions from partial input information: not for all

possible input facts truth values are needed

- the input facts are not changed by the processing of the component; i.e., once a fact has

been input as a true fact it remains true during the inference proces (conservatism)

- if a larger set of input facts is given to the component, also the set of derivable facts is

larger (monotonicity)

1.3 Information states in an implemented system

In an implementation of a reasoning component in an Expert System Shell, the information

state of the component is represented by what is often called the (dynamic) facts base. The

relation of such a representation with a partial model may be viewed as depicted in Fig. 6.

Here the horizontal arrow depicts that the information state in the system represents (a part

of) the world situation that is reasoned about. The vertical arrows depict that both the

information state of the system and the world situation can be formalized by the use of a

partial model.

partial
model

information
 state

 world
situation

world system

 formal model

Fig. 6 World, system and formal model

 The facts in the facts base are usually represented by objects and attributes of them. We

will show how such representations can be formalized in the form of a partial model. An

attribute with a boolean value such as in

 bird1.female = false

encodes the information that the atomic statement

 female(bird1)

10

is false; this corresponds to the symbol 0 in a partial model, assigned to the atom

female(bird1). Similarly, a boolean value true corresponds to a symbol 1 in a partial model; for

instance male(bird1) has the truth value 1. An attribute with a non-boolean value codes a set

of atomic statements. For example the expression

 bird1.color = grey

encodes the information that the atomic statement

 color(bird1, grey)

is true. In the same time we can have the information that color(bird1, red) is false. The

attributes for which no values are filled in in the objects base may be interpreted as

"unknown" or as "undefined". These express the partiality of the information state; they

correspond to the symbols u in a partial model. Assume that we do not have information

about the size. Then both

 size(bird1, tall)

 size(bird1, small)

are unknown. So this for simple example we can build the partial model, corresponding to

 <female(bird1), male(bird1), color(bird1, grey), color(bird1, red), size(bird1, tall), size(bird1, small)>

in the following manner:

 < 0, 1, 1, 0, u, u >

Notice that there may be some dependencies between the different atoms. we will not discuss

these at this place.

2 Domain Descriptions

In section 1 we have sketched how a reasoning component relates to the domain that is

concerned, and the specific world situation it is reasoning about. To be able to compare the

conclusions drawn by a reasoning component to the facts in this world situation in the

domain, a formal framework is needed for describing the domain and the interaction of the

reasoning component with it. Therefore below we will start by giving more precise

definitions that constitute a formal framework to describe a domain. In section 3 and 4 the

relation between a domain and a reasoning component is defined more formally.

2.1 Describing world situations by complete models

We start by giving the definition of the language elements to describe a domain. In this paper

we will work only with finite propositional logical languages.

11

Definition 2.1

A (propositional) signature Ë is a 3-tuple < InSig(Ë); IntSig(Ë); OutSig(Ë) > where InSig(Ë),

IntSig(Ë), OutSig(Ë) are ordered sets of atom names, respectively called the input signature, the

internal signature and the output signature. The input and output signatures may contain

common atom names, but the internal signature is disjoint from them. In this paper all

signatures are assumed to be finite.

The corresponding sets of literals are denoted by InLit(Ë), IntLit(Ë), OutLit(Ë), while their

union is denoted by Lit(Ë). If M is a (partial) model based on this signature, then we say M

is of signature Ë .

The signature Ë’ is called a subsignature of Ë if InSig(Ë)�¢�InSig(Ë), IntSig(Ë)�¢ IntSig(Ë) and

OutSig(Ë) ¢�OutSig(Ë).

 Each of the input, internal and output signatures are viewed as special cases of

subsignatures. The following is an example of a signature:
 < s1, s2, s3, s4; i1 ; h1, h2 >.

In this paper we often consider only the relations between inputs and outputs; in that case we

leave out the internal signature.

Definition 2.2

A domain description W for Ë is a non-empty set of complete truth assignments to the

atoms.

 In section 1, Fig. 4, an example of a domain description is shown. We assume W is an

(arbitrary) given set of situations, representing these situations that actually occur in reality.

This enables us to disregard from non-existing world situations with some as yet unknown

combination of observables and hypotheses. As discussed in section 1, the reasoning is

supposed to be always about one of these situations: we expect a user to transform factual

knowledge from the situation in a correct manner.

Remark: unless the example suggests, in practice the set W will not be enumerated; it

simply will be established that such a set exists, and maybe some typical and/or critical

examples of situation models will be described and used as a test set.

12

2.2 Describing information states by partial models

During a reasoning process, only a part of the information about a world situation is

available to the reasoning system. At any moment the system’s information state can be

described by a partial model, as has been discussed in the sections 1.2 and 1.3. In this section

we will give the formal framework.

 A (partial) model M of signature Ë is an assignment of truth values from {0, 1, u} to the

atoms of Ë. By M(a) we will denote the truth value assigned to atom a. We call M a

complete model if for all atoms a the truth value M(a) is not u. Let V be a non-empty set of

partial models of signature Ë. By P(V) we denote the set of all partial models that may be

refined to a model in V, and by C(V) we denote the set of complete models in V. Notice

that C(V) ¢ V and V ¢ P(V) but in general P(V) ¢ V and V ¢ C(V) are not the case. A

relevant example is V = P(W), where W is a domain description. In this case C(P(W)) = W.

 If M � P we denote by Lit(M) the set of literals which are true in M, and by InLit(M) the

set of input literals which are true in M. Similarly OutLit(M) denotes the set of output

literals which are true in M. These sets of propositions correspond to the restrictions of the

model M to the restricted sets of atoms S and H. These restricted models are sometimes

called reducts (also see [5]); the reduct of M to a subsignature Ë’ is denoted by M|Ë’.

 Suppose Ë’ is a subsignature of Ë and M’ is a model of signature Ë	. The trivial

expansion M of M’ to the signature Ë is the model of signature Ë created from M’ by

assigning a u to any atom outside Ë’.

 Let M be a model of signature Ë .The model In(M) is defined as the trivial expansion
of M|Ëin to the signature Ë. This model represents the input part of M; similarly Out(M)

represents the output part of M. For example, the input parts of the models of Fig. 4 are

given in Fig. 7.

 reduct to Ëin input part

 M1|Ëin : < 1, 1, 1, 0 > In(M1) : < 1, 1, 1, 0; u; u, u >

 M2|Ëin : < 1, 1, 0, 0 > In(M2) : < 1, 1, 0, 0; u; u, u >

 M3|Ëin : < 0, 0, 0, 1 > In(M3) : < 0, 0, 0, 1; u; u, u >

 Fig. 7 Input parts of the models in Fig. 4

The user (or other component) who is interacting with the reasoning component can only

provide information about the input part of the situation that is concerned. Notice that

 InLit(M) = Lit(In(M))

13

 OutLit(M) = Lit(Out(M))

If W is a domain description then the related set of complete input models (resp. of

complete output models), denoted by In(W) (resp. Out(W)), is the set of all possible

complete input (resp. output) models from models of W, that is:

 In(W) = {In(M) | M � W }

 Out(W) = {Out(M) | M � W }

A model M of signature Ë with M(a) = u for all atoms a not in InSig(Ë) is called an input

model. Similarly, M is called an output model of signature Ë if M(a) = u for all atoms a
not in OutSig(Ë). We will use the symbols Pin, Pout for non-empty sets of input models,

respectively output models. If all these models are complete with respect to InSig(Ë) resp.
OutSig(Ë) they are denoted by respectively Win, Wout. Notice that the models In(M) resp.

Out(M) are input resp. output models in this sense. If no confusion is expected, for

convenience we sometimes will leave out the u’s; for instance we may write < 1, 1, 1, 0 > for

the input model < 1, 1, 1, 0; u ; u, u >.

 By M���p (to be read as: M satisfies p) we denote that the proposition p is true in the

model M according to the strong Kleene semantics. The combination tables for truth values

according to this approach to partial semantics are given by:

 ¬ ϕ

0
1
u

1
0
u

ϕ∧ψ 1 0 u
1
0
u

1 0 u
0 0 0
u 0 u

ϕ∨ψ

1
0
u

1 0 u
1 1 1
1 0 u
1 u u

1
0
u

1 0 u
1 0 u
1 1 1
1 u u

ϕ→ψ

For more information on partial logic, see [1], [14]. By Ò we denote the empty partial model

that contains no information at all: only u’s are assigned. The refinement relation � between

partial models is defined by

M ��1 if for every atom a it holds M(a) ��1�D��(i.e., point by point), where the partial

ordering of truth values is defined by unknown < true, unknown < false.

Lemma 2.3

Suppose�Ë	 is a subsignature of Ë, and M, N are models of signature Ë���

a) M ��1 if and only if for all literals c it holds

 M ��c ¶ N ��c

b) If M ��1 then M|Ë’ ���1_Ë’.

c) If M’, N’ are of signature Ë	 and M, N are their trivial expansions to Ë then M ��1 if and

only if M’ ��1
.

14

Let V be a non-empty set of partial models. If M ��P(V) then by M��|� � ��p (to be read as: M

forces p with respect to V) we denote that for every refinement N of M in V it holds

N���p:
 M��|� � ��p ²���j�N �� V [M ��1��¶��N���p]

The semantic consequence relation restricted to models in V, denoted by F�� � �p is defined

by: for all models M’ in V with M’ � F it holds M’�� �p.

There is a connection between the forcing relation and the semantic consequence relation

restricted to models in V, namely:
 M��|� � ��p ²���Lit(M)�� � �p

 We say the members of V agree on the atom a if for all M � V the atom a has the

same truth value in M. In the other case we say the members of V disagree on a. For a

nonempty set V of partial models the greatest common information state of V is the partial

model N, denoted by N = gci(V), such that for all M � V it holds N ��0 and for any N’

satisfying this condition it holds N’ ��1. One may view this as the maximal information on

which all members of V agree. This model gci(V) can be constructed as follows: for any

atom a on which all members of V agree, take this truth value, and if the members of V

disagree take the truth value u. As an example, take the set V consisting of the partial

models:

 < 1, 1, 0, 1 >

 < 1, u, 0, u >

 < 0, 0, 0, u >

In this case we have

 gci(V) = < u, u, 0, u >

Notice that, just like the refinement relation, the operation gci is taken point by point. The

following Lemma will be useful later on.

Lemma 2.4
a) Suppose V1 and V2 are nonempty and for every N in V2 there exists a M in V1 such

that M ��1. Then gci(V1) ���JFL�92). In particular this holds if V2 ¢��V1.

b) If M is given such that for every N in V it holds M ��1, then M ���JFL�9��

 For any partial model M ��P(V) this gci-construction can be applied to the set of
refinements in V of M, i.e. to V0 = { N � V | M ��1�`. The resulting greatest common

information state of V0 is called the semantic closure of M with respect to V, and is

15

denoted by scV(M). This refinement of M satisfies precisely the literals that are forced by

M with respect to V. This and some other properties that we will use later on are included in

Lemma 2.5 below. As an example, the semantic closure of
 M0 = < 1, u, u, u; u; u, u >

with respect to the domain description W in Fig. 4 is the greatest common information state
of {M1, M2}; therefore

 scW(M0) = < 1, 1, u, 0; 1; u, u > .

Notice that a semantic closure belongs to P(V) but in general does not belong to V and is

not complete, even if all models in V are complete.

Lemma 2.5

Suppose M, N ��P(V).

a) For any literal d it holds
 scV(M) � d ² M�^�V d

b) For all partial models M, N ��P(V) it holds:
 (i) If M ��1�� V then scV(M) ��1

 (ii) M ��VFV(M)

 (iii) M ��1��¶ scV(M) ��VFV(N)

c) M ��VFV(N) ¶ scV(M) ��VFV(N)

and in particular scV(scV(M)) = scV(M)

d) If every complete refinement of M is a member of V then scV(M) = M. In particular this

holds for every complete model M in V.

The formalisation of information states by partial models above is based on propositional

logic; for a many-sorted first order logic formalisation of information states by partial

models, see [13].

2.3 Empirically founded domains

In the philosophy of science, for instance as in [11], criteria are given which a certain domain

(an empirical science) must satisfy in order to have an empirical basis. Informally stated,

such a criterion requires that every statement on the domain is essentially testable. This

means that there exists a number of tests such that the statement is true if and only if a

certain logical (boolean) combination of outcomes of these tests is satisfied. In our logical

framework such a combination may be described formally as a proposition in terms of the

input atoms; this will be shown in section 4. In terms of a domain description empirically

16

foundedness means that the truth value of each output atom is uniquely determined by the

truth values of the inputs. After the following Lemma we will give a formal definition for

this.

Lemma 2.6

Let a domain description be given by W. Then the following conditions are equivalent:

 (i) For every pair of situations M, N � W which satisfy the same input literals it holds

 that they also satisfy the same output literals, i.e.:

 if M, N � W then

����������������������In(M) = In(N)��¶��Out(M) = Out(N)

(ii) For all M � Win the model scW(M) is complete.�

Definition 2.7

Let a domain description be given by W. The domain W is called empirically founded if

one of the (equivalent) conditions of Lemma 2.6 is satisfied.

 In case H = A these definitions provide that the models M � W are characterised uniquely

by their input parts (notice that in this case the sets S and H will have a nonempty

intersection). Notice also that the example in Fig. 4 satisfies these definitions; also in this

example the models are characterised by their input parts.

 In many disciplines one tries to build up a domain in such a manner that it is empirically

founded. For instance in medical domains for every disease one tries to give a testable

criterion which determines in what cases the disease occurs. In some cases these criteria are

not correct or they are incomplete. However, there also exist many cases in which essentially

correct and complete criteria are available, although in practical situations some of these

criteria are not testable in an easy manner. For instance, for testing a certain criterion the

patient has to be referred to a specialist, or the test is expensive, or risky, or takes a long

time, et cetera. This may imply that for some time one has to draw (heuristic) conclusions

from incomplete knowledge. In this paper we will not discuss this heuristic approach to

incomplete knowledge; in [17] a treatment of this can be found.

2.4 Example

The following example shows how sometimes the set of observables (input atoms) can be

extended to obtain an empirically founded domain. The domain W consists of the following
truth assignments, corresponding to signature < s1, s2, s3; h1, h2 >:

17

 M1 : < 1, 1, 0; 1, 0 >

 M2 : < 0, 1, 1; 1, 1 >

 M3 : < 0, 1, 1; 1, 0 >

 M4 : < 1, 0, 1; 0, 0 >

 W = {M1, M2, M3, M4}.

 Fig. 8 Domain, not empirically founded

The domain described by W is not empirically founded: both M2 and M3 satisfy the same

input literals but differ in the output literals they satisfy: condition (i) of Lemma 2.6 fails.
 Now we extend the set A by a fourth input atom s4. This s4 holds in the second and

fourth situation but not in the first and third one. The set W’ is given by the following truth
assignments, corresponding to < s1, s2, s3, s4; h1, h2 >.

 M’1 : < 1, 1, 0, 0; 1, 0 >

 M’2 : < 0, 1, 1, 1; 1, 1 >

 M’3 : < 0, 1, 1, 0; 1, 0 >

 M’4 : < 1, 0, 1, 1; 0, 0 >

 W’ = {M’1, M’2, M’3, M’4}.

 Fig. 9 Domain, empirically founded

The domain described by W’ is empirically founded, as may be easily verified by the use of

Lemma 2.6(i).

3 Declarative Functionality Descriptions

After having defined in section 2 more precisely what a domain description is, we now turn

to the properties of a reasoning component related to a given domain. By the declarative

functionality of a reasoning component we mean what the component is able to derive, given

certain specific input data. Notice that in our terms funcionality is not covered by simply

18

describing what type of inputs in general may be needed, and separate from this what type of

output in general may be produced. In our case by functionality we mean to describe for any

set of specific input data, what specific output data in particular will or should occur, given

these input data.

 In this section, for a given domain description we treat what (declarative) functionality

may be required from a reasoning component, in order to cover the domain description.

Therefore we define what a declarative functionality description of a reasoning component is

in section 3.1. Furthermore, the notions of soundness and completeness of a declarative

functionality description with respect to a given domain description are defined in section

3.2. In section 4, in addition it will be treated in what format a component’s knowledge base

can be specified and when this specification meets the requirement as posed by a declarative

functionality description.

3.1 Definitions, constructions and examples

In case of an empirically founded domain it looks rather trivial how a corresponding

reasoning component’s functionality should be defined. Given a complete input model, the

output of the component simply is prescribed by the unique model from W that refines the

input model. In the case of the empirically founded W’ of Fig. 9 we could simply define the

component’s declarative functionality by the mapping m: In(W’) µ W’ given by

 < 1, 1, 0, 0 > µ < 1, 1, 0, 0; 1, 0 >

 < 0, 1, 1, 1 > µ < 0, 1, 1, 1; 1, 1 >

 < 0, 1, 1, 0 > µ < 0, 1, 1, 0; 1, 0 >

 < 1, 0, 1, 1 > µ < 1, 0, 1, 1; 0, 0 >

Notice that for convenience we include the input parts in the resulting models.

 This seems a rather straightforward approach. However, there are two complications that

require a more detailed analysis. Firstly, the domain may not be empirically founded at all; in

that case there is no unique refinement in W. So some output literals will have to remain

indeterminate. Secondly, a reasoning component is expected to give some (partial) answers

in the case of an incomplete input model as well. These partial answers cannot be read

directly from the complete models in W. Both complications have to do with incomplete

information (in input and/or in output). We will extend the above approach by using partial

models both for input models and output models to specify these incompletenesses.

19

 In this section we consider the following example of a domain description. The
signature is given by < s1, s2; h1, h2 >. The domain W is given by the following situation

models:

 M1 : < 0, 0; 0, 0 >

 M2 : < 0, 1; 0, 1 >

 M3 : < 1, 0; 0, 0 >

 M4 : < 1, 0; 1, 0 >

 M5 : < 1, 1; 1, 1 >

 Fig. 10 Example domain

Notice that this domain is not empirically founded: both M3 and M4 have the same input

part, but they have different output parts.

 In this case we can define a corresponding declarative functionality description by the

mapping m: In(W) µ P, where P = P(W), given by:

 < 0, 0 > µ < 0, 0; 0, 0 >

 < 0, 1 > µ < 0, 1; 0, 1 >

 < 1, 0 > µ < 1, 0; u, 0 >

 < 1, 1 > µ < 1, 1; 1, 1 >

 Fig. 11 Functionality description for complete input models

Here a u is assigned to the output atoms on which there is no common opinion in W, given

the complete input model. So, Fig. 11 is constructed by taking the greatest common

information state of the refinements of (the trivial expansion of) < 1, 0 > in W, in other
words by taking scW(< 1, 0 >) , where < 1, 0 > is identified with its trivial expansion. This

indicates a simple quite natural technique to solve the first one of the complications

mentioned above, by simply allowing partial models in the range of m.

 The second complication as mentioned above deals with the case of incomplete input

information. For example, suppose the partial input model < u, 1 > is given. What should the
reasoning component conclude about h1 and h2 in this case ? A trivial answer could be:

nothing, i.e. assign u to both h1 and h2. However, if W is inspected it turns out that there

are only two refinements of (the trivial expansion of) < u, 1 > in W, namely:

20

 M2 : < 0, 1; 0, 1 >

 M5 : < 1, 1; 1, 1 >

These two situation models disagree on h1, but they agree that h2 is true. Therefore the

reasoning component may be expected to give as an answer: < u, 1; u, 1 >. This is the greatest

common information state of all refinements in W of the given partial input model < u, 1 > ,
i.e. scW(< u, 1 >) = gci({M2, M5}). So there are methods to obtain a non-trivial extension of the

functionality description m: In(W) µ P to a mapping m: P(In(W)) µ P. In our example

this leads to the mapping m as defined by Fig. 12.

 < 0, 0 > µ < 0, 0; 0, 0 >

 < 0, 1 > µ < 0, 1; 0, 1 >

 < 0, u > µ < 0, u; 0, u >

 < 1, 0 > µ < 1, 0; u, 0 >

 < 1, 1 > µ < 1, 1; 1, 1 >

 < 1, u > µ < 1, u; u, u >

 < u, 0 > µ < u, 0; u, 0 >

 < u, 1 > µ < u, 1; u, 1 >

 < u, u > µ < u, u; u, u >

 Fig. 12 Functionality description m for partial input models

Here any right hand side is obtained by taking the greatest common information state of all

refinements in W of the corresponding left hand side (i.e. by taking its semantic closure).

We summarize the construction of the mapping m from the domain description as carried

out above.

Construction of a functionality description from a domain description

1. List all possible (partial) input models and take any of them;

 as an example we choose < u, 0 >

2. For any input model M collect the situations from W that refine M in a set V(M);
 according to Fig. 10 this set consists of M1, M3, and M4.

3. Take the greatest common information state of this set: gci(V(M));

 this is < u, 0; u, 0 >

4. Define m(M) = gci(V(M)).

21

5. Repeat this for all other input models.

 It turns out that this construction results in a mapping m: Pin µ P which satisfies a

number of nice properties as defined by the following:

Definition 3.1
Suppose a signature Ë is given, a non-empty set of complete input models Win for Ë and a

mapping m: Pin µ P, where Pin = P(Win) and P is a set of partial models for Ë .

a) The mapping m is called conservative if for all M � Pin it holds:

 M ���m(M)

b) The mapping m is called monotonic if for all M, N � Pin it holds:

 M ���1��¶ m(M) ���m(N)

c) The mapping m is called self-bounded if for all M, N � Pin it holds:

 M ���m(N)�¶ m(M) ���m(N)

d) The mapping m is called well-informed if for all M � Pin it holds:

� � Out(m(M)) = gci({Out(m(N)) | N � Win & M ��1�`�

e) The mapping �: Pin µ P such that for all N � Win it holds m(N) = �(N) is called better

informed than m if Out(m(M)) ���2XW��(M)) for all M � Pin.

f) The mapping m does not affect inputs if for all M � Pin it holds:

� � m(M)|Ëin = M|Ëin

g) The mapping m is called regular if it does not affect inputs that are no outputs, i.e. if for
all M � Pin it holds:

� � m(M)|Ëin\out = M|Ëin\out

where Ëin\out is the part of the input signature that is not included in the output signature.

 As a result of the analysis above, we use these properties to define the notion of a

declarative functionality description. However, first we establish some logical relations

between these properties, for instance:

Lemma 3.2
Suppose a signature Ë is given, a non-empty set of complete input models Win for Ë and

a mapping m: Pin µ P, where Pin = P(Win) and P is a set of partial models for Ë .

a) m is conservative if and only if M � In(m(M)) for all M � Pin

b) If m is conservative and self-bounded then m is monotonic.

22

c) If m is conservative then the following are equivalent:

 (i) m is self-bounded
 (ii) m is monotonic and for all M � Pin it holds

 m(In(m(M))) = m(M)

 If, moreover, Ëin = Ëout then this is equivalent to

 (iii) m is monotonic and m(m(M)) = m(M) for all M � Pin (idempotency).

d) If m does not affect the inputs and m is conservative then the following are equivalent:

 (i) m is monotonic

 (ii) m is self-bounded.
e) If m, �: Pin µ P are mappings such that for all N � Win it holds m(N) = �(N) , m is

monotonic and � is well-informed, then � is better informed than m.
f) If m, � : Pin µ P are mappings such that for all N � Win it holds m(N) = �(N) and both

mappings are monotonic and well-informed then for all M � Pin it holds

 Out(m(M)) = Out(�(M)) .�

 A declarative functionality description should satisfy some of the properties introduced

above to exclude pathological examples that cannot be realized by reasoning components as

described in section 1.4. On the other hand the notion should not be too restrictive. The

following definition will provide such a notion, as will become clear in the rest of this paper.

Definition 3.3

Suppose a signature Ë is given.

a) A declarative functionality description for Ë consists of a non-empty set of complete
input models Win for Ë and a mapping m: Pin µ P, where Pin = P(Win) and P is a set of

partial models for Ë , such that m is conservative and self-bounded.

b) If m is a declarative functionality description, then a well-informed refinement of m is a
well-informed � such that for all N � Win it holds Out(m(N)) = Out(�(N)) .

 If no confusion is expected, for convenience we often omit the word "declarative". An

example of a functionality description is the m as constructed in Fig. 12. This can be stated

as the following more general Theorem.

Theorem 3.4

23

Let a non-empty set of complete input models Win for signature Ë��be given and a set V of

partial models of signature Ë��such that Win ¢ P(V). Define the mapping m: Win µ P , where

P = P(V) , by m(M) = scV(M) for all M � Pin.

Then m is a declarative functionality description.
In particular this holds if V is a domain description W, and Win = In(W).

�

 In fact, the functionality description m� = scW additionally satisfies the property of

well-informedness. We do not prove this here, since it will follow from more general results

later on (Theorem 3.7 and Proposition 3.8). Definition 3.3 allows more functionality

descriptions than that one (see section 3.2). But there are restrictions as well. For example it
is not possible to express a functionality of a component that makes h1 true if s1 is

unknown (1) and makes h1 unknown else (2):

 < 0 > µ < 0; u >

 < 1 > µ < 1; u >

 < u > µ < u; 1 >

 Fig. 13 Not a functionality description

This mapping does not satisfy the monotonicity condition: monotonicity would require that
(1) implies that h1 is also true in case s1 is true or false, which contradicts (2). In fact the

conditions of Definition 3.3 imply that it is possible to satisfy the functionality description

by an ordinary monotonic deduction system. This will be treated in more detail in section 4.

3.2 Soundness and completeness

Definition 3.3 above does not say anything about how well such a functionality description

fits to a given domain description. The example as constructed in section 3.1 does cover the

concerning domain description, but a slight change may provide a different functionality

description that does not quite fit to the domain description. For example, this is the case if

the third line is changed to

 < 0, u > µ < 0, u; u, u >

In this section we define additional requirements of soundness and completeness that should

be satisfied by a functionality description in order to cover a given domain description.

�

Proposition 3.5

24

Suppose a domain description is given by signature Ë and non-empty set of situation
models W. Let m: Pin µ P be a functionality description, where Pin = P(In(W)) and P =

P(W). The following conditions are equivalent:
 (i) For all M � Pin each h � OutLit(Ë) that is true in m(M) is also true in all

 complete refinements of M in W, i.e.
 if h���OutLit(Ë) and M���Pin then

� � m(M)����h ¶���M�^��W h

 (ii) For all M � Win each h � OutLit(Ë) that is true in m(M) is also true in all

 complete refinements of M in W, i.e.
 if h���OutLit(Ë) and M���Win then

� � m(M)����h ¶���M�^�W h

(iii) For all M � W each h � OutLit(Ë) that is true in m(In(M)) is also true in M, i.e.

 if h���OutLit(Ë) and M���W then

� � m(In(M))����h ¶���M�� h�

 In Definition 3.6 we will use the three equivalent conditions of Proposition 3.5 to define

soundness of a functionality description with respect to a given domain description. Similar

notions for completeness are only equivalent under the stronger assumption that m is well-

informed. Therefore in Definition 3.6 we distinguish between two versions of completeness:

a strong notion and a weak one.

Definition 3.6

Suppose a domain description is given by signature Ë and non-empty set of situation
models W. Let m: Pin µ P be a functionality description, where Pin = P(Win) and P =

P(W).

a) We call m sound with respect to W if the one of the (equivalent) conditions of

Proposition 3.5 is satisfied.
b) We call m (strongly) complete with respect to W if for all M � Pin for each h �

OutLit(Ë) that is true in all complete refinements of M in W, this h is also true in m(M), i.e.
if h���OutLit(Ë) and M���Pin then

� � M�^�W h����¶���m(M)����h �����

E���We call m weakly complete (w-complete) with respect to W if for all M � Win for each

h � OutLit(Ë) that is forced by M , this h is also true in m(M), i.e.

if h���OutLit(Ë) and M���Win then
� � M��^�W h����¶���m(M)����h ����

25

d) If both the conditions a) and b) are satisfied we say that m covers W. If both the

conditions a) and c) are satisfied we say that m weakly covers (w-covers) W.

 It is easy to verify that the final functionality description m as constructed in Fig. 12 in

section 3.1 covers the given domain description.

 < 0, 0 > µ < 0, 0; 0, 0 >

 < 0, 1 > µ < 0, 1; 0, 1 >

 < 0, u > µ < 0, u; u, u >

 < 1, 0 > µ < 1, 0; u, 0 >

 < 1, 1 > µ < 1, 1; 1, 1 >

 < 1, u > µ < 1, u; u, u >

 < u, 0 > µ < u, 0; u, u >

 < u, 1 > µ < u, 1; u, u >

 < u, u > µ < u, u; u, u >

 Fig. 14 Not well-informed functionality description extending Fig. 11

 An example where completeness is not satisfied, whereas w-completeness is satisfied is

if in the lines concerning incomplete input models we replace in the example in section 3.1

the output truth values in the right hand side by u (see Fig. 14). This example is in some

sense the contrary of a well-informed refinement of m . One could call it badly informed.

 The following theorem shows that, given a domain description, there exists a unique

regular functionality description that covers it.

Theorem 3.7

Suppose a domain description is given by signature Ë and non-empty set of situation
models W. Let m: Pin µ P be a functionality description, where Pin = P(Win) with Win =

In(W) and P = P(W). Then the following hold:

a) The following conditions are equivalent:

 (i) The functionality description m is sound with respect to W
 (ii) Out(m(M)) ��2XW�VFW(M)) for all M � Pin.

 (iii) m(M) ��VFW(M) for all M � Pin.

26

b) The following conditions are equivalent:

 (i) The functionality description m is w-complete with respect to W
 (ii) Out(m(M)) ��2Xt(scW(M)) for all M � Win.

 (iii) m(M) ��VFW(M) for all M � Win.

c) The functionality description m is complete with respect to W if and only if
 Out(m(M)) ��2XW�VFW(M)) for all M � Pin.

d) The following conditions are equivalent:

 (i) The functionality description m w-covers W
 (ii) Out(m(M)) = Out(scW(M)) for all M � Win.

 (iii) m(M) = scW(M) for all M � Win.

e) The functionality description m covers W if and only if
 Out(m(M)) = Out(scW(M)) for all M � Pin.

 There exists a functionality description that covers W, namely scW.

f) If m w-covers W , then the domain description given by W is empirically founded if and

only if for every M � In(W) the model m(M) is complete.

It turns out that the additional condition of well-informedness is strong enough to make w-

completeness equivalent to completeness:

Proposition 3.8
Suppose a signature Ë is given with a non-empty set of complete input models Win and P

is a set of partial models for Ë. Assume the mapping m: Pin µ P, where Pin = P(Win) , is a

declarative functionality description for Ë. Moreover, let a domain description W for
signature Ë with In(W) = Win be given.

Then the following conditions are equivalent:

 (i) W is covered by m���

KK���W is w-covered by m���CPF���m��KU�YGNN�KPHQTOGF��

 From Theorem 3.7 and Proposition 3.8 it follows that in the situation of Theorem 3.4 the
functionality description given by m = scW is well-informed.

 A most simple example of a functionality description not satisfying well-informedness
for signature < s1; h1 > is given by the following:

 < 0 > µ < 0; 1 >

 < 1 > µ < 1; 1 >

27

 < u > µ < u; u >

 Fig. 15 Simple example of a not well-informed functionality description

One may raise the question whether or not reasoning components that satisfy this type of

functionality description are desirable. In section 4 we will return to this issue.

 The question may arise whether for any given functionality description m a domain

description can be found that is covered by m; this is the reverse situation of Theorem 3.7

above. According to Theorem 3.7e) this question can be formulated equivalently as: given m
, does there exist a W such that Out(m(M)) = Out(scW(M)) for all M � Pin. It turns out that

any m can be expressed in this way if and only if m is well-informed, as is shown by

Theorem 3.9.

Theorem 3.9
Suppose a signature Ë is given, Win is a non-empty set of complete input models and P is

a set of partial models for Ë. Assume m: Pin µ P is a declarative functionality description

for Ë, where Pin = P(Win).

Then a domain description W* for Ë with In(W*) = Win can be obtained that is w-covered

by m. One can construct W* from m by taking
 W* = { N | N is a complete model of signature Ë� & qM���Win �m(M) ��1`.

Moreover, W* is covered by m��KH�CPF�QPN[�KH��m��KU�YGNN�KPHQTOGF��

For every domain description W with In(W) = Win for which m is sound, W is contained

in W*.�

Corollary 3.10
Suppose a signature Ë is given, Win is a non-empty set of input models for Ë��and P is a set

of partial models for Ë. Assume m: Pin µ P, where Pin = P(Win) � is a declarative

functionality description for Ë.
Then there is a well-informed declarative functionality description �: Pin µ P that is a

well-informed refinement of m���This���� is better informed�VJCP��m��; in particular, it holds
 Out(m(M)) � Out(�(M)) = Out(scW*(M))

for CNN� M � Pin , with W* as in Theorem 3.9.�

 Not surprisingly, the well-informed declarative functionality description � related to a

given m as obtained in Corollary 3.10, sometimes is called the well-informed refinement of

m.

28

4 Specifications of Interactive Reasoning Components

The examples of functionality descriptions given in section 3 are defined by enumerating

complete tables for the mappings. In the context of systems that acquire their knowledge by

learning from examples (cases), this may have some practical relevance: the tables may be

used as a representation of the cases that were encountered in the past, and the functionality

embodied by this history. However, in practical situations concerning knowledge-based

systems that do not learn from examples, tables are not an efficient manner of specification.

Therefore a more condensed form of specification is needed. This will be treated in this

section.

 As already sketched in section 2, the declarative aspects of a reasoning component are

determined by the specification of a knowledge base that enables the component, using a

suitable fixed inference relation, to derive new (output) facts from given input facts. In

section 4.1 we make a choice on the format in which the knowledge base is specified. We

will leave the inference relation unspecified. Instead here we will define a suitable notion of

a semantic consequence relation. In principle a choice of a strict format for the knowledge

implies a restriction on the expressiveness. However, we will prove in section 4.3 that for

any relevant well-informed functionality description a knowledge base specification in the

chosen format is possible such that by the semantic consequence relation the required

(declarative) functionality is obtained. This means that any derivability relation that is sound

and complete with respect to this semantic consequence relation is able to derive from a

given input information state by use of the knowledge base the right conclusions. In another

report it will be discussed that chaining provides such a suitable derivability relation.

4.1 Some definitions

By KB (the knowledge base) we denote the knowledge which may be used by the reasoning
component to derive output literals from the available information on inputs. Recall that Pin

is the non-empty set of all possible partial input models. If M � Pin, and c is a conjunction of

literals, then by M �KB c� we will denote that c� semantically follows from the information

of M by use of KB, i.e. is a semantic consequence of the theory Lit(M)���KB. The notions of

rule-format, semantic consequence and reasoning component specification can be defined

formally as follows:

Definition 4.1

29

Let Ë� be a signature and KB a set of propositions for Ë.

a) A proposition in rule-format, or simply a rule is a proposition of one of the following two

forms:

 (i) d where d is a literal; these rules are sometimes called general facts

 (ii) c µ d where c is a conjunction of literals and d is a literal

b) We call KB consistent with respect to the input model M if there exists a model N

with M ��1 and N���KB.

c) If KB is consistent with respect to the input model M then the semantic consequence
relation M �KB c is defined as: for all models N for Ë��with M ��1 and N���KB it holds�

N���c��

d) A (declarative) reasoning component specification consists of a finite signature Ë , a

finite non-empty set of rules for this signature KB (knowledge base), and a finite set of input
models Pin = P(Win) where Win is a non-empty set of complete input models for the

related input signature.

 Notice that the fact that we restrict the rule format to one conclusion only is not an
essential restriction: every implication c µ d where both c CPF� d = d1 ª��... ª��dk are

conjunctions of literals can simply be rewritten to a set of rules c µ d1, ..., c µ dk in the

sense of Definition 4.1a).
 The notion of consistency can be tested for a given subset of Pin ; however, this does

not guarantee that the component reasons sound with respect to a functionality description or

domain description. This (stronger) notion of soundness will be explained further in section

4.2.
 For a reasoning component that is consistent with respect to M � Pin we define the

consequence model consKB(M) of M as the partial model where all literals that semantically

follow are true, and the others are unknown, i.e. for all atoms a it holds
 consKB(M)(a) = 0 if M � ��� Å�a

 1 if M � ��� �a

 u else

It is easy to verify that
 M � ��� �a ²��M |�Mod(KB) �a

and
 consKB(M) = scMod(KB) (M)

where Mod(KB) is the set of all models of KB.

30

Lemma 4.2
Suppose a signature Ë is given and Win is a non-empty set of input models. Take for P

the set of all partial models of signature Ë and Pin = P(Win). Let a consistent reasoning

component specification for Ë and Pin be given by KB.

Then the mapping consKB : Pin µ�P given by M µ��consKB(M) is a well-informed

(declarative) functionality description. Moreover, consKB = scMod(KB).

�

Definition 4.3
Suppose a signature Ë is given and Win is a non-empty set of input models. Take for P

the set of all partial models of signature Ë and Pin = P(Win). Let a consistent reasoning

component specification for Ë and Pin be given by KB.

a) We call consKB the well-informed functionality description related to (or specified by)

the given reasoning component specification, or if no confusion is expected we simply call it

the well-informed functionality description related to (or specified by) KB.
b) We call two reasoning component specifications with the same set of input models Pin

equivalent if they specify the same functionality description.

c) We say a functionality description m is covered by the well-informed functionality
description related to the reasoning component specification given by KB if for all M � Pin

it holds Out(m (M)) = Out(consKB (M)).

4.2 Soundness and completeness

In this section we give precise definitions of soundness and completeness of the well-

informed functionality description related to a reasoning component specification with

respect to a given domain description. In view of Definition 4.3 this can be done very easily:

Definition 4.4
Suppose a signature Ë is given and Win is a non-empty set of input models and W a

domain description for Ë and Win . Let a consistent reasoning component specification

for Ë and Pin be given by KB.

The quality of a reasoning component specification with respect to a given domain

description can be expressed by respectively soundness, completeness, w-completeness,

covering with respect to the given domain description of the well-informed functionality

description related to the reasoning component specification.

31

 It is easy to verify that the well-informed functionality description related to a reasoning

component specification given by KB is sound with respect to W if and only if every model

M � W is a model of KB. Collecting this, together with the connections formulated in

Definition 3.6, Theorem 3.7 and Proposition 3.8, we obtain the following statements for

these notions:

Proposition 4.5

Suppose Ë is a signature, and a domain description is given by W and a non-empty set of
input models Win. Let a consistent reasoning component specification for Ë and Pin =

P(Win) be given by KB, and m the well-informed functionality description related to the

reasoning component specification given by KB.

a) The following conditions are equivalent:

 (i) m is sound with respect to the domain description given by W.

 (ii) The output literals, which semantically follow using the knowledge base KB from input
literals which are true in a given input model M���Pin��� are true in

 all complete refinements of M in W, i.e.
 if h���OutLit(Ë) and M���Pin then

� � M �� ��� �h ��¶���M �^�W �h���

 (iii) The output literals, which semantically follow using the knowledge base KB from
 input literals which are true in a given complete input model M���Win��� are true in all

 complete refinements of M in W, i.e.
 if h���OutLit(Ë) and M���Win then

� � M �� ��� �h ��¶���M �^�W �h���

 (iv) For all M � W each h � OutLit(Ë) that semantically follow using the knowledge

 base KB from input literals which are true in M��is true in M, i.e.

 if h���OutLit(Ë) and M���W then
� � In(M)�� � � ��h ¶���M�� h

 (v) For all M � Pin it holds

 consKB(M) � scW(M)

 (vi) Every M � W is a model of KB.

b) The following conditions are equivalent:

 (i) m is complete with respect to W.

 (ii) m is w-complete with respect to W.
(iii) For any input model M � Pin and for any output literal h which is true in all complete

32

 refinements of M in W, this h semantically follows from M using KB,
 i.e. if h���OutLit(Ë) and M���Pin then

�������������������������������������M �^�W �h� ¶� M � ��� h

(iv) For all M � Pin it holds

 Out(consKB(M)) � Out(scW(M)).

 (v) For any complete input model M � Win and for any output literal h which is true in

 all complete refinements of M in W, this h semantically follows from M using KB,
 i.e. if h���OutLit(Ë) and M���Win then

�������������������������������������M �^�W �h� ¶� M � ��� h

(vi) For all M � Win it holds

 consKB(M) � scW(M).

c) The following holds: m covers W if and only if
 Out(consKB(M)) = Out(scW(M)) for all M � Pin. �

�

 In practice, in a reasoning component specification often the set of input models Pin is

not mentioned. We will interpret this omission as if this set of input models is meant to be

the set of all partial models for the input signature (all truth assignments that are theoretically

possible). However, in practical domains, often not all theoretically possible input models

are used, for instance since there are semantical dependencies between the input atoms. In

these cases there may be theoretically possible input models that do not make sense in

reality, and especially, there is no (domain) knowledge on what output should be expected

for these input models. This means that in such a domain it is essentially impossible to prove

soundness and completeness, as long as no restriction is put on the set of input models.

 On the other hand, in practice it is often unfeasable to enumerate the set of all relevant

input models, so in any case practical problems can be expected in proving soundness and

completeness. What can be done is to collect (during knowledge acquisition) a set of typical,

and critical examples of input models, and use this as a representative test set. Another

possible approach is, as a part of the knowledge acquisition process, to make explicit all
semantic dependencies between input atoms, and use these as constraints to specify Pin. This

approach has not been tried out yet.

4.3 Existence of reasoning component specifications

In this section we show that for any well-informed functionality description m a reasoning

component specification can be found such that its related well-informed functionality

description gives the same reults as m, and that this can be done in a minimal sense. To

33

illustrate these issues we return to the example in section 3.1 of a domain description given

by W and a well-informed functionality description m , given by Fig. 12. If we involve only

complete input models we may create from m a knowledge base. This can be done by simply

taking for each complete input model the conjunction of all input literals that are true, and

use this as the condition of a rule, while the conclusion is given by the image under m . This

results in the knowledge base of Fig. 16.
 This knowledge base KB is consistent and satisfies Out(m(M)) � Out(consKB (M)) for all

M � Pin . But this is not an adequate specification, since in the first place using it one cannot

conclude anything in a clear and direct manner from incomplete input models: some of the

rules are more complicated than is needed. Secondly, it contains too many rules: it contains

more rules than are needed, as we will see later on.

� � Å�s1�ª�Å�s2� µ� Å�h1

� � Å�s1�ª��s2� µ� Å�h1 �

� � �s1�ª��s2� µ� �h1

� � Å�s1�ª�Å�s2� µ� Å�h2

� � Å�s1�ª��s2� µ� �h2

� � �s1�ª�Å�s2� µ� Å�h2

� � �s1�ª��s2� µ� �h2

 Fig. 16 Knowledge base weakly covering m�

 The first problem can be solved by adding to this knowledge base rules that are based on

incomplete input models as well. Consider, for example, the third line of the functionality

description m in Fig. 12:

 < 0, u > µ� < 0, u; 0, u >

If M is any model in Pin refining the left hand side (i.e. < 0, u > ��0), then by monotonicity

 < 0, u; 0, u > = m(< 0, u >) ���m(M)

Therefore for any M � Pin it holds:

 if < 0, u > ��M then < 0, u; 0, u > ���m(M)
Since < 0, u > ��0 is equivalent to M ��Å�s1 and < 0, u; 0, u > ���m(M) is equivalent to M

��Å�s1 and additionally m(M) �� Å�h1, we can restate the above if-then rule by the rule

Å�s1��µ��Å�h1. Doing this for all relevant lines of Fig. 12, this results in the extension of KB

given in Fig. 17.

34

 By this knowledge base we obtain a reasoning component specification that is able to

conclude from partial input information in a direct manner. But the second problem has

become worse: the number of rules has even increased to 10: this is still a very inefficient

specification.

� Å�s1� µ� Å�h1

� Å�s2� µ� Å�h2

� s2� µ� �h2

� �����������������Fig. 17 Extension of the knowledge base of Fig. 16 covering m�

 However, sometimes a number of the earlier rules are a special case of one new rule

with less conditions. For instance, it is easy to see that the 10th rule makes the rules 5 and 7

superfluous, since both the complete input models related to the rules 5 and 7 are refinements

of the incomplete input model related to rule 10. This enables us to prune the knowledge

base until we obtain a minimal form for it. Comparatively, in practice knowledge bases are

acquired from experts who have streamlined and minimized the storage of their knowledge

in the past.

 Here, in our example it can be shown how such a minimization can be done. For
example, instead of considering all partial input models M � Pin for which m(M) � h1, we

only take the M � Pin among them that are minimal in Pin , i.e. such that there does not

exist an M’ � Pin with m(M) � h1 such that M’ ��0 and M’ ��M. Inspecting Pin, for each of

the four output literals h1, Å�h1, h2, Å�h2 we find one non-trivial minimal element. Using

these we obtain the following more concise knowledge base (which is a subset of the

knowledge base above):

� � �s1�ª��s2� µ� �h1

� Å�s1� µ� Å�h1

� Å�s2� µ� Å�h2

� s2� µ� �h2

 Fig. 18 Minimal knowledge base covering m�

�

35

By this knowledge base a specification is obtained such that its related well-informed

functionality description has the same output models as m (it covers m) and which is

minimal in the sense that will be defined below more precisely.

 In the context of the example above we gave an informal description of a construction

showing that for a given well-informed functionality description m there exists a reasoning

component specification such that its related well-informed functionality description is

covering m . Summarized, the procedure can be described using truth tables as shown below.

Here a right hand side of the functionality description is interpreted as a truth-table (by

example we take the one of Fig. 12):

 s1 s2 h1 h2 T(h2) mT(h2)

__

 0 0 0 0 (1)

 0 1 0 1 + e (2)

 0 u 0 u (3)

 1 0 u 0 (4)

 1 1 1 1 + e (5)

 1 u u u (6)

 u 0 u 0 (7)

 u 1 u 1 + V (8)

 u u u u (9)

 Fig. 19 Truth table representing the functionality description of Fig 12

The lines correspond to partial output models as described by the well-informed functionality

description, and the columns correspond to the truth values for the atom mentioned above it.

The procedure runs as follows:

Minimal knowledge base construction

1. Select one of the output literals;
 as an example we choose h2

2. Collect all lines in the table where the h2-column shows that h2 is true (the set T(h2));

 this results in the lines 2, 5, 8
3. Delete from this list the ones that are refinements of other lines (the set mT(h2));

36

 here the lines 2 and 5 are deleted since the input parts of them are refinements of the

 input part of line 8

4. For each of the remaining lines, construct a rule with as condition part the conjunction
 of input literals that are true and with h2 as conclusion;

 in our example this results in the rule s2��µ��h2

5. Repeat this procedure for all other output literals;
 so do the same for h1, Å�h1, Å h2.

We will define this construction more formally and prove that it provides indeed a

specification covering m . Moreover, we will prove that it results in a minimal specification.

The example and procedure described above may help to understand the ideas behind the

formal approach below. Notice that this is an extension to partial logic of the wellknown

theorem from propositional logic, stating that any boolean function can be expressed as a

combination of negation, conjunction and disjunction.

Definition 4.5

Let a consistent reasoning component specification be given by signature Ë, a knowledge
base KB, and non-empty set of partial input models Pin. Then it is called minimal if for every

rule in KB, and every generalization of it by omitting one of the conditions, replacing the

rule by its generalization makes a knowledge base that is not equivalent to KB.

Lemma 4.6
Assume a signature Ë is given, Win is a non-empty set of complete input models and P a

set of models for Ë . Assume m : Pin µ P where Pin = P(Win) is a functionality description.

The non-empty set of rules KB � is constructed as follows. For each output literal h, take

 T(h) = { M ��Pin | m(M) � h }

and mT(h) the set of minimal (with respect to the refinement relation) elements in T(h).
Define KB � by the following set of rules

 KB � = { h | Ò � mT(h) } ���{ Con(Lit(M)) µ h | M � mT(h), M ��Ò }

where Con(..) means taking the conjunction of a set of literals.

Then a consistent reasoning component specification is obtained with signature Ë,
knowledge base KB � , and set of partial input models Pin such that for all complete models

M ��Win��it holds m(M)���KB � .

Theorem 4.7

37

Assume a signature Ë is given, Pin is a non-empty set of partial input models for Ë and let

m : Pin µ P(W) be a well-informed functionality description.

Then the well-informed functionality description related to the consistent reasoning
component specification with signature Ë, knowledge base KB � , and a set of partial input

models Pin covers m. This reasoning component specification is minimal.

 Applying the construction of Lemma 4.6 above to the not well-informed functionality

description of Fig. 15 gives the knowledge base of Fig. 20. Notice that here two different
minimal elements occur in the set T(h1).

 s1 µ h1

 Å�s1 µ h1

 Fig. 20 Knowledge base based on a not well-informed functionality description.

A reasoning component specified by this knowledge base KB1 has h1 as a semantic

consequence (independent of whether or not input information is given). However, the
original functionality description gives as an output the truth value unknown to h1 if the

truth value unknown of s1 is given as an input. This illustrates the plain fact that any

functionality description that is not well-informed cannot be covered by the well-informed

functionality description related to any knowledge base. The reasoning component is able to
derive h1 from KB1 by use of any complete inference relation such as resolution or natural

deduction. But using chaining KB1 is not able to derive h1 if nothing is known about s1.

 This contrasts with the knowledge base KB2 just consisting of the general fact h1; with

KB2 a component using any complete inference relation derives the same conclusions as

with KB1. With chaining as an inference relation this time it is also able to derive always h1

. It turns out that using chaining we are able to distinguish the two different functionality
descriptions as discussed by the two knowledge bases KB1 and KB2 where other (so-called

complete) inference relations are not able to distinguish a functionality description from its

well-informed refinement. Since this concerns distinctions that are relevant in practice, this

phenomenon will be analysed in more detail in another report.

 The following Proposition describes the case of empirically founded domains.

Proposition 4.8

38

Let a domain description for signature Ë and a non-empty set of input models Win be given

by W. Suppose m is a declarative functionality description w-covering W and KB defines

a reasoning component specification such that its related well-informed functionality

description covers m.

The following conditions are equivalent:

 (i) The domain described by W is empirically founded
 (ii) For every M���Win the model m(M) is complete

(iii) For every M���Win and output literal h it holds either M �KB h or M �KB Å�h

(iv) For any output literal h� there exists a proposition p in terms of input literals such

 that h is true in a situation M � W if and only if p is true in M

 (explicit definability), i.e.: for every M � W it holds

������������������������ M����h��²��M���p

5 Applications

In this section it is shown how the semantical framework introduced in this paper can be

applied to a process model for diagnostic reasoning (see [6]) . The processes at different

abstraction levels of this generic diagnostic model are given in Fig. 21. The primitive

component Hypothesis Determination generates hypotheses that are validated by the

component Hypothesis Validation. The latter component is not primitive: it is composed of

the primitive components Observation Determination, Observation Execution, and

Hypothesis Evaluation.

Diagnostic Reasoning

Hypothesis Determination

Observation
Determination

Hypothesis
Evaluation

Hypothesis Validation

Observation
Execution

39

Fig. 21 Processes at different abstraction levels in the diagnostic process model

In [6] it is shown how (dynamic) properties of the process model as a whole can be reduced

to properties of Hypothesis Determination, and how properties of Hypothesis Validation can

be reduced to properties of Observation Determination, Observation Execution, and

Hypothesis Evaluation. Since the primitive components were left open in this generic model,

here the story ends in [6]. To apply the generic model, instantiations of these primitive

components are needed, for example selected from a library of components. The functionality

of these components can be described by functionality descriptions. However, using the

approach of [6], the model as a whole is only guaranteed to work properly if the properties of

the primitive components presented in [6] are in some sense satisfied by these functionality

descriptions. In this section we shown how these properties can be formulated as properties of

functionality descriptions.

The component Hypothesis Determination should satisfy focus efficiency and focus

effectiveness. Focus efficiency means that no hypotheses are chosen in focus that already

have been assessed. In the temporal language used in [6] this is expressed in the following

form. For all traces, at all time points if at the input the information is available that some

hypothesis h already was assessed, then it will not be at the output that it is in focus:

 �4�Traces(HD) �t �h

 [stateHD(4 , t, input(HD)) |= assessed(h) � stateHD(4 , t, output(HD)) |z focus(h)]

Suppose a candidate component to be used for Hypothesus Determination is described by

functionality description D. Then the above property can be reformulated to the following

property of D:

 M |= assessed(h) � � (M) |z focus(h)]

The second proerty to be satisfied by Hypothesis Determination is focus effectiveness; this

means that as long as not all hypotheses have been assessed, and no hypothesis has been

confirmed, there will be generated focus hypotheses. In the temporal language of [6] this is

expressed as follows. For all traces and time points, if there exists at least one hypothesis for

which no information is at the input that it was assessed, and for no hypothesis there is

40

information on the input that it was confirmed, then there exists at least one hypothesis such

that on the output there is information that it is in focus:

 �4�Traces(HD) �t

 [�h stateHD(4 , t, input(HD)) |z assessed(h) � �h stateS(4 , t, input(HD)) |z confirmed(h)]

 ��[�h’ stateHD(4 , t, output(HD)) |= focus(h’)]

This property can be reformulated to the following property of D:

 [�h M |z assessed(h) & �h M |z confirmed(h)] � �h’ � (M) |= focus(h’)

In conclusion, a component can be chosen to play the role of Hypothesis Determination in the

diagnostic model if these two properties hold for its functionality description.

 In a similar manner the properties ’observation effectiveness’ and ’observation efficiency’ of

the component Observation Determination reduce to static properties of functionality

descriptions. Observation efficiency means that no observations are generated that already

were performed:

 �4�Traces(OD) �t �o

 [stateOD(4 , t, input(OD)) |= observed(o) � stateOD(4 , t, output(OD)) |z to_be_observed(o)]

This is reformulated as

 M |= observed(o) � � (M) |z to_be_observed(o)]

Observation effectiveness means that if there exists at least one hypothesis in focus, and not

all observations have been performed, then at least one observation is generated.

�4�Traces(OD) �t �h

 [�o stateOD(4 , t, input(OD)) |z observed(o)

 � stateOD(4 , t, input(OD)) |= focus(h) �

 �o’ stateOD(4 , t, output(OD)) |= to_be_observed(o’)]

This is reformulated as

 [�o,h M |z observed(o) & M |= focus(h)] � �o' � (M) |= to_be_observed(o’)

One of the required properties of Hypothesis Evaluation is assessment decisiveness, which

means that if for all possible observations, observation results have been input, then for every

hypothesis an assessment can be derived:

�4�Traces(HE) �t

 [�o [stateHE(4 , t, input(HE)) |= o �� stateHE(4 , t, input(HE)) |= � o] �

 �h [stateHE(4 , t, output(HE)) |= h �� stateHE(4 , t, output(HE)) |= � h]

41

This can be reformulated for a functionality description as:

 �o [M |= o �� M |= � o] � �h [� (M) |= h �� � (M) |= � h]

This property is a special case of a property that is sometimes called decisiveness: The

functionality description � is called decisive if for all complete input models, also the

generated model is complete:

 M � Win � � (M) is complete

In this section it was shown in an example (based on [6]) how required properties of

candidate primitive components for a generic model can be formulated as properties of their

functionality description which specifies their functionality independent of specific details of

internal knowledge representation, inference relations or implementation.

6 Conclusions

This paper contributes a semantical framework that provides a logical description of the

functionality of interactive reasoning. The concept of functionality abstracts from specific

inference relations or knowledge representation. A number of properties of a functionality

description are identified, and related to (formalized) characteristics of the domain. It is

characterised under which conditions a functionality description can be implemented by an

inference relation and a knowledge base.

 It turns out that our semantical framework may provide adequate logical descriptions for

the functionality of an interactive reasoning component. In particular the relation of the

conclusions that may be drawn by a component and the situation in reality that is concerned

may be made more transparant by our framework. Furthermore, the formal definitions of

soundness, completeness and empirically foundedness as given above enable us to establish

the (meta-)logical connections between these concepts.

 The semantic formalisation using information states can also be exploited to formalise the

dynamics of a reasoning process. The intermediate reasoning steps can be formalised as traces

of information states, as briefly sketched in Section 1.2. To specify the dynamics of such

traces variants of temporal logic can be used. For specific classes of nonmonotonic reasoning

methods this has been worked out in [7], [8], [9].

42

 The semantic framework for reasoning components introduced here can be incorporated

in a semantic formalisation of a compositional reasoning system, as presented in [4]. In [4] the

semantic formalisation of the functionality of a primitive component was left open; it was

taken as an assumed building block on top of which the compositional dynamics were defined

semantically. The current paper fills this gap by providing a semantic formalisation of the

building block. In [12] some results can be found on compositioon verification of agent-based

reasoning systems. In this paper it has been addressed how properties of primitive components

are related to (dynamic) properties of a compositional reasoning system as a whole.

 In Section 5 above it has been shown how (required) properties of primitive components

within a compositional system can be related to properties of declarative functionality

descriptions of candidate components. Since these properties abstract from specific

knowledge representation or inference, reuse and maintainability is supported: whatever is

changed within such a candidate component, it does not matter as long as the functionality

description remains the same or at least has the same relevant properties (information hiding).

Other future investigations are planned in the relation between the semantical approach

introduced above and recent work on input-output logics (cf. [15]).

Acknowledgements

The research reported here has benefit from discussions with Catholijn Jonker, Pieter van

Langen, Izak van Langevelde and Leon van der Torre.

References

1. S. Blamey, Partial Logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol.

III, 1-70, Reidel, Dordrecht, 1986.

2. Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Compositional Multi-agent System

Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP World Computer Congress, WCC’98,

Conference on Information Technology and Knowledge Systems, IT&KNOWS’98, 1998, pp. 347-360. To

be published by IOS Press.

3. Brazier, F. M. T., Jonker, C. M., Treur, J., and Wijngaards, N.J.E, (2000), On the Use of Shared Task

Models in Knowledge Acquisition, Strategic User Interaction and Clarification Agents. International

Journal of Human-Computer Studies, vol. 52, 2000, pp. 77-110.

4. Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M., Temporal semantics of compositional task

models and problem solving methods. Data and Knowledge Engineering, vol. 29(1), 1999, pp. 17-42.

5. C.C. Chang, H.J. Keisler, Model theory, North Holland, 1973

43

6. Cornelissen, F., Jonker, C.M., and Treur, J., Compositional verification of knowledge-based systems: a case

study in diagnostic reasoning. In: E.Plaza, R. Benjamins (eds.), Knowledge Acquisition, Modelling and

Management, Proceedings of the 10th European Knowledge Acquisition Workshop, EKAW’97, Lecture

Notes in AI, vol. 1319, Springer Verlag, Berlin, 1997, pp. 65-80.

7. Engelfriet, J., and Treur, J., Temporal Theories of Reasoning. Journal of Applied Non-Classical Logics, 5,

1995, pp. 239-261.

8. Engelfriet J., Treur J. Executable Temporal Logic for Nonmonotonic Reasoning. Journal of Symbolic

Computation, vol. 22, 1996, pp. 615-625.

9. Engelfriet J., and Treur J. Specification of Nonmonotonic Reasoning. Journal of Applied Non-Classical

Logics, vol. 10, 2000, pp. 7-27

10. E. Giunchiglia, P. Traverso and F. Giunchiglia, Multi-context Systems as a Specification framework for

Complex Reasoning Systems, In: J. Treur and Th. Wetter (eds.), Formal Specification of Complex

Reasoning Systems, Ellis Horwood, 1993, pp. 45-72.

11. C.G. Hempel, Philosophy of Science, Prentice-Hall, Englewoods Cliffs, 1966

12. Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal Analysis of Pro-

activeness and Reactiveness. In: W.P. de Roever, H. Langmaack, A. Pnueli (eds.), Proceedings of the

International Workshop on Compositionality, COMPOS’97. Lecture Notes in Computer Science, vol.

1536, Springer Verlag, 1998, pp. 350-380.

13. P.H.G. van Langen and J. Treur, Representing world situations and information states by many-sorted

partial models, Report PE8904, University of Amsterdam, Department of Mathematics and Computer

Science, 1989.

14. T. Langholm, Partiality, Truth and Persistance, CSLI Lecture Notes No. 15, Stanford University, Stanford,

1988.

15. D. Makinson, L. van der Torre, Input/output logics. Journal of Philosophical Logic 29 (2000) 383-408.

16. J. Treur, Completeness and definability in diagnostic expert systems. Proc. European Conference on

Artificial Intelligence, ECAI 1988, pp. 619 - 624

17. Treur, J., Heuristic reasoning and relative incompleteness. International Journal of Approximate

Reasoning, vol. 8, 1993, pp. 51-87.

18. R.W. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, Artificial Intelligence 13

(1980), pp. 133-170

�

44

Appendix: Proofs

Lemma 2.6

Let a domain description be given by W. Then the following conditions are equivalent:

 (i) For every pair of situations M, N � W which satisfy the same input literals it holds

 that they also satisfy the same output literals, i.e.:

 if M, N � W then

����������������������In(M) = In(N)��¶��Out(M) = Out(N)
(ii) For all M � Win the model scW(M) is complete.

Proof
(i) ¶�(ii) Let N be a complete model in W refining M � Win. From (i) it follows that all

complete models N’ in W refining M are the same. Therefore scW(M) = N � W.

(ii) ¶�(i) This follows from Lemma 2.5b)(i). ��

Lemma 3.2
Suppose a signature Ë is given, a non-empty set of complete input models Win for Ë

and a mapping m: Pin µ P, where Pin = P(Win) and P is a set of partial models for Ë

.
a) m is conservative if and only if M � In(m(M)) for all M � Pin

b) If m is conservative and self-bounded then m is monotonic.

c) If m is conservative then the following are equivalent:

 (i) m is self-bounded
 (ii) m is monotonic and for all M � Pin it holds

 m(In(m(M))) = m(M)
 If, moreover, Ëin = Ëout then this is equivalent to

 (iii) m is monotonic and m(m(M)) = m(M) for all M � Pin (idempotency).

d) If m does not affect the inputs and m is conservative then the following are equivalent:

 (i) m is monotonic

 (ii) m is self-bounded.
e) If m, �: Pin µ P are mappings such that for all N � Win it holds m(N) = �(N) , m is

monotonic and � is well-informed, then � is better informed than m.
f) If m, � : Pin µ P are mappings such that for all N � Win it holds m(N) = �(N) and

both mappings are monotonic and well-informed then for all M � Pin it holds

 Out(m(M)) = Out(�(M)) .

45

Proof

a) This follows from Lemma 2.3b).

b) If M ��1 then by conservativeness M ��1���m(N). By self-boundedness this implies

that m(M) ���m(N), i.e. m is monotonic.

c) (i) ¶ (ii) Since In(m(M)) ���m(M), by self-boundedness it is trivial that

 m(In(m(M))) ���m(M).

On the other hand from M ���m(M) (conservative) it follows that M � In(m(M)), and again

by conservativity

 M � In(m(M)) ��m(I(m(M))).

Applying self-boundedness yields m(M) ��m(I(m(M))) and finishes the proof.

(ii) ¶ (i) Suppose M ��m(N), then by Lemma 2.3b) we have
 M = M|Ëin ��m(N)|Ëin = In(m(N));

hence M � In(m(N)).

From monotonicity it follows m(M) ��m(In(m(N))) = m(N). This proves (i).

The final statement of c) is trivial.

d) This follows from b) and c).
e) Let M � Pin be given. From monotonicity of m it follows that for any N � Win with

M ��1 it holds: m(M) ���m(N) = �(N). Therefore by Lemma 2.4b) we have
� � m(M) ���JFL�^�(N) | N � Win , M ��1 })

Finally, from well-informedness of � it follows that
 Out(gci({�(N) | N � Win , M ��1 }) = Out(�(M))

f) This follows from application of e) in two directions. ��

Theorem 3.4
Let a non-empty set of complete input models Win for signature Ë��be given and a set V

of partial models of signature Ë��such that Win ¢ P(V). Define the mapping m: Win µ P ,

where P = P(V) , by m(M) = scV(M) for all M � Pin.

Then m is a declarative functionality description.
In particular this holds if V is a domain description W, and Win = In(W).

Proof
Apply Lemma 2.5 to conclude that m is conservative and self-bounded. ��

�

Proposition 3.5

46

Suppose a domain description is given by signature Ë and non-empty set of situation
models W. Let m: Pin µ P be a functionality description, where Pin = P(In(W)) and P

= P(W). The following conditions are equivalent:
 (i) For all M � Pin each h � OutLit(Ë) that is true in m(M) is also true in all

 complete refinements of M in W, i.e.
 if h���OutLit(Ë) and M���Pin then

� � m(M)����h ¶���M�^��W h
 (ii) For all M � Win each h � OutLit(Ë) that is true in m(M) is also true in all

 complete refinements of M in W, i.e.
 if h���OutLit(Ë) and M���Win then

� � m(M)����h ¶���M�^�W h

(iii) For all M � W each h � OutLit(Ë) that is true in m(In(M)) is also true in M, i.e.

 if h���OutLit(Ë) and M���W then

� � m(In(M))����h ¶���M�� h

Proof
(i) ¶ (ii) This follows from Win ¢�Pin.

(ii) ¶ (iii) If M���W then application of condition (ii) to In(M) provides In(M)�^�W h.

Hence M�� h .
(iii) ¶ (i) Suppose M���Pin and m(M)����h . Let any N���W be given with M ��1. By

Lemma 2.3b) we have M ��,Q�1� ��Win. From monotonicity of m it follows that m(M) ��

m(In(N)). Since m(M)����h this implies m(In(N))����h. From condition (iii) it follows that

N�� h . Summarizing: for any N���W with M ��1 we have proved that N�� h, i.e.
M�^�W h . This proves (i). ��

Theorem 3.7

Suppose a domain description is given by signature Ë and non-empty set of situation
models W. Let m: Pin µ P be a functionality description, where Pin = P(Win) with

Win = In(W) and P = P(W). Then the following hold:

a) The following conditions are equivalent:

 (i) The functionality description m is sound with respect to W
 (ii) Out(m(M)) ��2XW�VFW(M)) for all M � Pin.

 (iii) m(M) ��VFW(M) for all M � Pin.

b) The following conditions are equivalent:

 (i) The functionality description m is w-complete with respect to W

47

 (ii) Out(m(M)) ��2XW�VFW(M)) for all M � Win.

 (iii) m(M) ��VFW(M) for all M � Win.

c) The functionality description m is complete with respect to W if and only if
 Out(m(M)) ��2XW�VFW(M)) for all M � Pin.

d) The following conditions are equivalent:

 (i) The functionality description m w-covers W
 (ii) Out(m(M)) = Out(scW(M)) for all M � Win.

 (iii) m(M) = scW(M) for all M � Win.

e) The functionality description m covers W if and only if
 Out(m(M)) = Out(scW(M)) for all M � Pin.

 There exists a functionality description that covers W, namely scW.

f) If m w-covers W , then the domain description given by W is empirically founded if

and only if for every M � In(W) the model m(M) is complete.

Proof
a) Let M � Pin be given. From Lemma 2.5a) it follows that for any h � OutLit(Ë) it

holds scW(M) � h if and only if M�^�W h. Therefore soundness is equivalent to:

for each M � Pin and all h � OutLit(Ë) it holds

� � m(M)����h ¶���scW(M) � h

This proves (i) ² (ii) of a).
+V�KU�ENGCT�VJCV�VJKU�EQPFKVKQP�HQNNQYU�HTQO��m(M) ��VFW(M) . This proves (iii) ¶ (i) of a)��

We will now prove (ii) ¶ (iii). Assume (ii) holds. We will prove that �m(M) ��VFW(M) . By

(ii), for any given M � Pin we have: for all h � OutLit(Ë) it holds

� � m(M)����h ¶���scW(M) � h

Therefore �m(M)|Ëout ��VFW(M)|Ëout .

Since we assume that only input and output signatures are involved in functionality

descriptions (and no internal signatures), the only thing that remains to be proved is that it
also holds m(M)|Ëin ��VFW(M)|Ëin . Notice that

 scW(M)|Ëin = gci({M’| M ��0
�� W}|Ëin

 = gci({In(M’)| M ��0
�� W}

+H��M ��0
�� W� then M = In(M) ��,Q�0
�, and by monotonicity it follows that

m(M) ��m(In(M’)) and therefore by Lemma 2.3b) we have
 m(M)|Ëin ��m(In(M’))|Ëin.

By conservatism we have In(M’) ��m(In(M’)). Therefore we derive
 In(M’) = In(M’)|Ëin ��m(In(M’))|Ëin .

48

Now In(M’) � Win, so it has no real refinements (except itself).

Therefore m(In(M’))|Ëin = In(M’) and thus

� � m(M)|Ëin ��m(In(M’))|Ëin = In(M’)

By Lemma 2.4 this proves �m(M)|Ëin ��JFL�^,Q�0
�_�0���0
�� W}) = scW(M)|Ëin��

This proves (ii) ¶ (iii) of a).

b) The proof of b)(i) ² (ii) is similar to the proof of a)(i) ² (ii).
For the proof of (ii) ² (iii), notice that for M a complete input model, since m and scW

are conservative, the input parts of m(M) and scW(M) both are equal to M.

c) This is similar to the proof of a)(i) ² (ii).

d) This follows from a) and b).

e) The first part of this follows from a) and c). From Theorem 3.4 it follows that the
mapping defined by �scW�: M µ scW(M) for all M � Pin is a declarative functionality

description; by the first part of e) it covers W.
f) This follows from d) and Lemma 2.6. ���������������������������

�

Proposition 3.8
Suppose a signature Ë is given with a non-empty set of complete input models Win and P

is a set of partial models for Ë. Assume the mapping m: Pin µ P, where Pin = P(Win) ,

is a declarative functionality description for Ë. Moreover, let a domain description W for
signature Ë with In(W) = Win be given.

Then the following conditions are equivalent:

 (i) W is covered by m���

KK���W is w-covered by m���CPF���m��KU�YGNN�KPHQTOGF��

�

2TQQH�
(i) ¶�(ii) Let M � Pin be given. We have to prove that m �KU�YGNN�KPHQTOGF��K�G��

� � �Out(m(M)) = Out(gci(V1))

where
 V1 = {�m(N) | N � Win & M ��1�`

For any N � Win with M ��1, from monotonicity it follows that m(M) ��m(N).

Therefore by Lemma 2.4b)
 m(M) �� gci(V1) (1)

This implies one side of what we have to prove. The other side is the harder part. Since W

is covered by m by Theorem 3.7 we have
 Out(m(M)) = Out(scW(M)) = Out(gci(V2))

with

49

 V2 = { N � W | M ��1�`

We will apply Lemma 2.4a) to the sets V1 and V2. Suppose an arbitrary N � V2 is given,

then N � W and M ��1 . Take M’ = In(N) � Win ; this is a complete model with respect

to the input signature. By Lemma 2.3b) M ��0
, so m(M’) � V1 . Since m covers W it

also w-covers W; further N is complete. Therefore by Theorem 3.7d) we have
� � m(M’) = scW(M’) ��VFW(N) = N

6JKU�UJQYU�WU�VJCV�VJG�EQPFKVKQPU�QH�.GOOC����C��CTG�UCVKUHKGF��#RRN[KPI�VJKU�NGOOC�RTQXKFG

U�

� � gci(V1)���gci(V2) = scW(M)

Therefore
 Out(gci(V1))���Out(scW(M)) = Out(m(M)). (2)

This is the other side of what we had to prove. From (1) and (2) it follows that

m��KU�YGNN�KPHQTOGF.
(ii) ¶�(i) Suppose W is w-covered by a well-informed m. Then by Theorem 3.7d) we have
scW(M) = m(M) for all M � Win. By applying Lemma 3.2f) we derive that Out(scW(M)) =

Out(m(M)) for all M � Pin. From Theorem 3.7e) it follows that (i) holds. ��

�

Theorem 3.9
Suppose a signature Ë is given, Win is a non-empty set of complete input models and P

is a set of partial models for Ë. Assume m: Pin µ P is a declarative functionality

description for Ë, where Pin = P(Win).

Then a domain description W* for Ë with In(W*) = Win can be obtained that is w-

covered by m. One can construct W* from m by taking
 W* = { N | N is a complete model of signature Ë� & qM���Win �m(M) ��1`.

Moreover, W* is covered by m��KH�CPF�QPN[�KH��m��KU�YGNN�KPHQTOGF��

For every domain description W with In(W) = Win for which m is sound, W is

contained in W*.

Proof

Take the domain description given by
 W* = { N | N is a complete model of signature Ë� & qM���Win �m(M) ��1`

It is easy to verify that In(W*) = Win.

We will prove that W* is w-covered by m ; first we treat soundness. Let an M�� Pin� be

given. By the choice of W* above and by Lemma 2.3b) we can rewrite
 scW*(M) = gci { N � W* | M ��1�`� �JFL�92)

 with

50

 V2 = { N | N is a complete model & M ��1�	�qM’ � Win m(M’) ��1�`

We will prove that m(M) is less than or equal to every member of V2. Let a member N of

V2 be given, with M’ � Win such that m(M’) ��1�. Then both M ��1 and M’ ��m(M’) ��

N, while M’ = In(N). From Lemma 2.3b) it follows that M ��0
. Therefore, by

monotonicity m(M) ��m(M’) ��1. By applying Lemma 2.4b) it follows that
 m(M) � gci(V2) = scW*(M) (3)

This proves soundness of m with respect to W*.
Next we will treat w-completeness. We are done if we prove that scW*(M) ��m(M) for all

M � Win. Let such an M be given. Then we have M ��m(M). Notice that by our choice of

W* every complete refinement of m(M) is in W*; therefore by Lemma 2.5b) and 2.5a):
 scW*(M) ��VFW*(m(M)) = m(M) (4)

This proves the w-completeness of m with respect to W*. From (3) and (4) it follows that

m w-covers W*.

By Proposition 3.8 m is well-informed if and only if m covers W*.

Finally we will prove that for any W such that m is sound with respect to W it holds W

¢ W*. Suppose M � W is given, then by Theorem 3.7a) from soundness of m with

respect to W it follows that
 m(In(M))���VFW(In(M)) ��0�

Therefore M � W*. ��

Corollary 3.10
Suppose a signature Ë is given, Win is a non-empty set of input models for Ë��and P is a

set of partial models for Ë. Assume m: Pin µ P, where Pin = P(Win) � is a declarative

functionality description for Ë.
Then there is a well-informed declarative functionality description �: Pin µ P that is a

well-informed refinement of m���This���� is better informed�VJCP��m��; in particular, it holds
 Out(m(M)) � Out(�(M)) = Out(scW*(M))
for CNN� M � Pin , with W* as in Theorem 3.9.

Proof

First we prove the existence of such a �. Apply Theorem 3.9 to the functionality description
m. By Theorem 3.7 the resulting domain W* is covered by the well-informed � = scW* .

From Theorem 3.9 it follows that W* is w-covered by m�. From Theorem 3.7b), applied to

m it follows that
 Out(m(N)) = Out(scW*(N)) = Out(�(M))

51

for all N � Win. From Lemma 3.2e) it follows that � is better informed than m. This

proves the existence. ��

�

Lemma 4.2
Suppose a signature Ë is given and Win is a non-empty set of input models. Take for P

the set of all partial models of signature Ë and Pin = P(Win). Let a consistent reasoning

component specification for Ë and Pin be given by KB.

Then the mapping consKB : Pin µ�P given by M µ��consKB(M) is a well-informed

(declarative) functionality description. Moreover, consKB = scMod(KB).

Proof
Since consKB = scMod(KB) this follows from Theorems 3.4, 3.7 and Proposition 3.8. ��

�

Lemma 4.6
Assume a signature Ë is given, Win is a non-empty set of complete input models and P a

set of models for Ë . Assume m : Pin µ P where Pin = P(Win) is a functionality

description. The non-empty set of rules KB � is constructed as follows. For each output

literal h, take
 T(h) = { M ��Pin | m(M) � h }

and mT(h) the set of minimal (with respect to the refinement relation) elements in T(h).
Define KB � by the following set of rules

 KB � = { h | Ò � mT(h) } ���{ Con(Lit(M)) µ h | M � mT(h), M ��Ò }

where Con(..) means taking the conjunction of a set of literals.

Then a consistent reasoning component specification is obtained with signature Ë,
knowledge base KB � , and set of partial input models Pin such that for all complete models

M ��Win��it holds m(M)���KB � .

Proof
Suppose a model M ��Win is given. We will prove that m(M)���KB � . This also implies

consistency. First we treat the general facts in KB � . Assume h ��KB � ��UQ Ò � mT(h).

Therefore m(Ò)���h. From monotonicity it follows that m(M)���h. Next we treat a rule that

is no general fact, say
 Con(Lit(M0)) µ h

with M0 � mT(h). Since M is complete, from not M���Con(Lit(M0)) it follows that

 M���Å�Con(Lit(M0))

52

By the strong Kleene rule for implication in that case the rule is true in M, independent of

the truth value of h. By conservatism the same holds for m(M). In the other case
 M���Con(Lit(M0))

This implies that M0 ��0. Therefore, by monotonicity we have m(M0) ��m(M). Now from

M0 � mT(h) it follows that m(M0) � h , hence m(M) � h. So also in this case the rule is

true in m(M). ��

Theorem 4.7
Assume a signature Ë is given, Pin is a non-empty set of partial input models for Ë and

let m : Pin µ P(W) be a well-informed functionality description.

Then the well-informed functionality description related to the consistent reasoning
component specification with signature Ë, knowledge base KB � , and a set of partial input

models Pin covers m. This reasoning component specification is minimal.

Proof

We will prove that the well-informed functionality description of the reasoning component
specification with KB = KB � given in Lemma 4.6 covers m. First we prove

Out(consKB (M)) � Out(m(M)) for all M���Pin. Let the output literal h���OutLit(Ë) and

M���Pin be given with M �� ��� �h . By Lemma 4.6 for every N ��Win with M ��1 the

model m(N) is a model of KB, hence m(N) ��h. By well-informedness m(M) � h.
Next we prove Out(consKB (M)) � Out(m�(M)) for all M���Pin. Suppose we are given

h���OutLit(Ë) and an M���Pin with m(M) �� �h�� We will show that� M � ��� h. Since

m(M) �� �h we have M � T(h). Take a minimal element M’ in T(h) with M’ ��0. If M’
= Ò, then from M’ � mT(h) it follows h � KB, so M � ��� h and we are done. In the

other case that M’ ��Ò we have the following rule in KB:

 Con(Lit(M’)) µ h

From M’ ��0 it follows that M � Con(Lit(M’)) . Therefore for any partial model N with

N ��0 and N � KB it holds N � Con(Lit(M’)). Since N � KB it holds

N � Con(Lit(M’)) µ h . Therefore, (by the strong Kleene truth value combination table)
we have N � h. This proves M � ��� h.

Therefore the well-informed functionality related to the reasoning component specification

as constructed covers the given functionality description m. Finally we show it is minimal.

Suppose we obtain KB’ from KB by leaving out one of the conditions in the condition

part of a rule

53

 Con(Lit(M)) µ h
with M � mT(h) ¢ T(d) and M ��Ò . The resulting condition part corresponds to a partial
model M’ ��0 with M’ ��0. Since M was minimal in T(h), it holds M’ ½�T(h);
therefore m(M’) ��h, while M’ �KB’ h. So this knowledge base KB’ would not be

equivalent to KB. This proves that the constructed KB is minimal. ��

�

Proposition 4.8
Let a domain description for signature Ë and a non-empty set of input models Win be

given by W. Suppose m is a declarative functionality description w-covering W and KB

defines a reasoning component specification such that its related well-informed functionality

description covers m.

The following conditions are equivalent:

 (i) The domain described by W is empirically founded
 (ii) For every M���Win the model m(M) is complete

(iii) For every M���Win and output literal h it holds either M �KB h or M �KB Å�h

(iv) For any output literal h� there exists a proposition p in terms of input literals such

 that h is true in a situation M � W if and only if p is true in M

 (explicit definability), i.e.: for every M � W it holds

������������������������ M����h��²��M���p

Proof

(i) ² (ii) This follows from Theorem 3.7b).
(ii) ¶ (iii) Let a complete input model M���Win and an output literal h be given.

Suppose M �KB h is not the case. This implies that not consKB(M) � h . Since KB

defines a reasoning component specification such that its related well-informed functionality

description is covering m, therefore not m(M) � h. From completeness of m(M) it follows
that Out(consKB(M)) = Out(m(M)) � Å h , hence we have M �KB Å h .

(iii) ¶ (ii) Following the lines of the above proof in the reversed order this can easily be

established.

(i) ¶ (iv) This proof is a variant of the construction in Theorem 4.6. Let an output literal h
be given. Take an indexing of all Mi ��W with Mi ��h ; we show that h is explicitly

definable by the proposition
 p = Dis{Con(Lit(In(Mi))) | i = 1, .. , k}

where Dis stands for the disjunction of a set of formulas. If M ��W is given with
M ��p, then M � Con(Lit(In(Mi))) for some i , so In(M) = In(Mi). From (i) and

54

Mi ��h it follows that also M���h. Conversely, suppose M ��h, then M = Mi for some

i. Then M ��Con(Lit(In(Mi))), so M � p. We have proved that for every

M ��W it holds that M���p ²��M���h.
(iv) ¶ (i) This is easy to verify. ��

�

�

�

�

