Semantic Formalisation of
I nter active Reasoning Functionality

Jan Treur
Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 10814, 1081 HV Amsterdam, The Netherlands
Email: treur@cs.vu.nl URL: http://www.cs.vu.nl/~treur

Abstract

In this paper a semantical framework is developed that provides a logical description of the
functionality of an interactive reasoning process. The concept of functionality description
defines the functionality of a reasoning process abstracting from specific inference relations
or knowledge bases. Moreover, a domain description is formalised. A number of properties of
a functionality description are identified, and related to properties of the domain. It is
established under which conditions a functionality, can be implemented by an inference
relation and a knowledge base.

I ntroduction

In compositional agent- and knowledge-based systems the task or reasoning pattern is built
up as adynamic interaction between the components representing the subtasks; see [3], or
[7]. Each of the primitive components is an interactive reasoning system based on an (often
domain-specific) knowledge base. To design and specify compositiona agent- and
knowledge-based systems for complex tasks, the compositional design method DESIRE
(DEsign and Specification of Interacting REasoning components; for instance see [2]) has
been devel oped

To obtain a clear and well-defined analysis of the behaviour of such a dynamic
compositional system, one has to start by defining the (interactive) role of agiven primitive
interactive component in such a system: aclear definition is needed of an interactive
reasoning component’s functionality. In particular, to support reusability and maintainability
afunctionality description independent of the component’s specific internal knowledge
representation, inference relations or implementation is required. This enables information
hiding within a reasoning system: the component’s internal structure can be changed aslong
asitsfunctionality remains the same.

In acompositional system questions concerning the behaviour of the whole system or
satisfaction of the system’s functionality, can be decomposed into questions related to the

system’s compositional structure and questions for the case of asingle primitive interactive
reasoning component (cf. [12]).

This paper concentrates on the case of a primitive reasoning component and its
interactions. For the reasons indicated, in this paper we analyse in more detail semantical and
functional aspects of interactive reasoning components. It will be shown how to obtainin a
semantical manner alogical description of reasoning that makes use of information "from
outside”; in this case by "outside" we mean outside the reasoning component, but possibly
inside the system. Such alogical description provides an explicit distinction between
situation-independent knowledge in the knowledge base (described as alogical theory) and
situation-specific information which can be used as an input, imported from the world
situation outside (that is described as a given situation model). This perspectiveis similar to
the perspectivein [18] (and [10]), where the model s representing specific information are
called simulation structures.

reasoning component
specification

(knowledge base)

declarative
functionality description

(input/output function)

description

Fig. 1 Domain description, functionality description

and reasoning component specification

On the one hand, from the computer science viewpoint, the framework enables us to
define what a declarative functionality of areasoning component is (the input/output
possibilities provided by the component). We abstract from the dynamic aspects of the
component: in this paper we are only concerned with what facts can be derived in agiven

situation (information state), and not with at what time and in which order specific facts are
derived. We prove that for any declarative functionality description a knowledge base
specification in rule-format can be found such that the semantical consequence relation
applied to this knowledge base and the additional input facts satisfies the required
functionality. Reasoning components are able to draw partial conclusionsif only a partial
input information state is given. Therefore our formal description of the declarative
functionality of acomponent also treats partiality of information both at the input side and
the output side of the component.

On the other hand, from the logical viewpoint, this framework enables usto definein a
direct and logical way when a reasoning component’s functionality is sound and complete
with respect to the domain that is concerned. The central part of this paper is built up as
shown in Fig. 1.

In Section 2 we define what a domain description is, and especially, in which manner
world situations occurring in adomain and partial descriptions of them (information states)
can be moddlled (the lowest layer in Fig. 1). We will give some examples and prove some
properties. In Section 3 we give aformal definition of a declarative functionality description
of an interactive reasoning component and treat some examples (the middle layer in Fig. 1).
Furthermore, we give some results on how well a declarative functionality description fitsto
(or describes) a given domain description (the lowest arrow in Fig. 1). In Section 4 it is
defined what a reasoning component specification is (the highest layer in Fig. 1) and how
well it fits to (or describes) a declarative functionality description (the highest arrow in Fig.
1) and to a domain description (both arrows). In Section 5 it is shown for an application to a
diagnostic process moded how declarative functionality descriptions can be used to specify
(required) properties of a primitive reasoning component in a concise and transparent
manner. In the Appendix proofs can be found. Before treating this all, Section 1 provides an
introduction to what an interactive reasoning component is.

1 Interactive Reasoning

In this section we explain the notions of interactive reasoning and of an interactive reasoning
component. Logical descriptions will be given that will be used and extended in later
chapters. In these logical descriptions the notion of (partial) mode as known from logic
plays an important role. We use partial models to represent information states of areasoning
component at a certain moment. Our logical descriptions will be based on partial

propositional logic. If (many-sorted) predicate |ogic with afinite number of object names
and relation names is used, we can always use a propositional trandlation of the formulas to
fall in the scope of propositiona logic.

1.1 Interactive reasoning by combining knowledge from theory and model

Usually areasoning component is described logically by a static theory KB (the knowledge
base) which is given beforehand. From this theory conclusions can be derived using some
inference mechanism. In case of an interactive reasoning component the information that
serves as input facts during the reasoning is viewed as knowledge which is present from the
start. In fact one deals with some extended theory KB+ which additionally contains all
information which could be put in from the outside. Using such information is essentially the
using of knowledge elements from the theory KB* in the inference process, just like the
knowledge from KB isused. Thislogical description enables oneto simply apply the
classical theory on derivability as studied in logic. This seems plain; however, there are some
aspects which stay implicit or informal thisway.

In fact thereis not onetheory KB but awhole variety of theories KB* which depend
on situations that can occur in redity, part of which is represented by the input facts that are
given to the component. This may be viewed as an implicit parametrization of the knowledge
base. How can an explicit logical description of this parametrization be obtained ? Moreover,
interactive reasoning components often have the property that during a session the input facts
are added incrementally: for any moment there is only partia input information available.
The component draws partial conclusions from this information; these conclusions may
occasionally affect which other input facts are added. For example, in a complex reasoning
task like diagnosis these dynamic effects are essential (see[17]). Therefore the knowledge
base KB* may be dynamic during the reasoning.

It turns out that some parts of the knowledge (the general or situation-independent
knowledge) which can be used in the inference process can be described as atheory KB but
other parts (situation-specific knowledge) are better described asamodel which represents
the actual situation in reality, part of which is represented by the input facts.

In reasoning these two kinds of knowledge are combined by an interactive process as
depicted in Fig. 2. Here the lowest layer depicts the world situation we are interested in; the
shaded area of the world situation is the part of the world situation that is not observable.
Since we cannot observeit, we are, in particular, interested in drawing conclusions about this
part.

interactive

reasoning component

KB

situation model

situation

Fig. 2 Interactive reasoning

This can be done by reasoning, as performed by the reasoning component in the highest
layer in Fig. 2. The world situation is modelled in some manner: we are only interested in
some types of information, and the reasoning component requires a strict format of inputs.
Therefore we use a situation model (the middle layer in Fig. 2). The reasoning makes use of
observabl e facts from the world situation (the arrows on the left side, pointing upwards), as
modelled by the situation model. In reasoning it applies general domain knowledge as stored
in KB. This reasoning process provides additional information that can be used to extend the
situation model (the highest right arrow, pointing downwards); this can be used to take a
decision to carry out some action in the world situation (the lowest right arrow).

If the model representing the actual situation is alogical model of the theory whichis
used, and the inference mechanism of the component is sound, then logical conclusions
derived in thisway are dwaystrue in the model. In this paper we deal with these issues. The
treatment we give provides aformal framework for interactive reasoning components as
defined in the following section.

1.2 Logical description of an interactive reasoning component
We consider adescription in terms of propositional with a non-empty set of atoms A
containing two subsets s (possible input atoms) and H (possible output atoms). The set of
atoms A collectsal atomic propositions that are used in the reasoning component. The
input atoms (sometimes called: observables) are the atoms for which a truth value may serve
as an input to the component from the outside: from other reasoning components or from the
outside world. The truth values of output atoms may be wanted by the user; since the
component can derive them by logical inferences from the input atoms, the component may
provide them to the user or to another component that needs them. It is possible that these
two subsets contain all atoms, but it is aso possible that there exist atoms outside these
subsets; these intermediate atoms can play arole as intermediate results or subgoasin
inferences. In the general case they form some subset | of A. Summarizing:

A =SuluH

S ={s;, S} | ={igin .} H ={hyhy .}
Notice that these sets may have nonempty intersections, although in the examples given
below we deal with adisjoint union. From these atoms the set of propositional formulas can
be built up by using the logical connectives A, v, —, -. Applicationsin knowledge bases are
often based on a subset of these propositions, namely propositionsin rule-format. These are
propositions in implication form where the if-part consists of a conjunction of literals and the
then-part consists of one literal (aliteral isthe basic unit of information we use: it is an atom
or the negation of an atom). Asa special case of formulasin rule-format, we alow single
literals. These are to be interpreted as general facts (they may be viewed as rules with an
empty condition-part). Examples of propositionsin rule-format are the onesin Fig. 3 below.

rulel SIS - iq
rule2 itAs3—> hg
rule3 i1A"S3 — -hg
rule4 itAs3 = hy
ruleb s3 — -hy
rule6 8 -

Fig. 3 Example of a knowledge base

To obtain aformal description of the interaction of the reasoning component with the
outside, we will have to give aformal description of al situations the component may get in
touch with (for instance all possible patients). For instance one may think of patient models
containing all factual knowledge on some patient, such as symptoms, diseases etcetera. The
reasoning is supposed to be always about one of these situations; in one session the user
always gives the component information about a fixed one of them. This excludes a user who
gives incorrect or arbitrary answers. we expect a user to transform factual knowledge from
the situation that is considered to the component in a correct manner.

We define a situation model as atruth assignment to the atoms. Some examples of

situation models related to the knowledge base of Fig. 3 may be obtained by taking the
following truth-assignments, corresponding to the tuple <s;, s, s3,54; i1 ; hy, hy>.

M1: <1,1101,1,0>
Mo: <1,1,00,1,0,1>
M3: <0,0,0,1,0,1,0>

Fig. 4 Somesituationsfor KB from Fig. 3

Notice that these situation models are models of the theory KB (i.e. in each situation M
every ruleof KB istruein M). Inthisway one can represent knowledge which is situation-
specific (facts from reality) in the form of truth assignments. Below we will give a number of
definitions to explain this point more precisely.

During areasoning process at each moment in the system only a part of the information
as given by asituation model is available. To represent this partiality we make use of partial
(situation) models: assignments of truth values from {0, 1, u} to each of the atoms. Here the u
denotes undefined or unknown. Notice that the models as defined above (e.g. in Fig. 4) are
included here as the truth assignments where to no atom an u is assigned; we distinguish
them as the complete models among the partial models. Therefore the set of complete models
isasubset of the set of partial models. Sometimes partial models that are not complete will
be called incomplete models. So theword "partial” means "maybe complete, maybe
incomplete”.

A partial model may be constructed by replacing in any model as above some symbols

0 or 1 by thesymbol u; examples of partial models are:
Ny: <4,u,1,0,u;u,0>

No: <1,Luu 1 uu>

It iseasy to seethat, for the complete models given in Fig. 4, there may exist severd
hundreds of partial models, representing all information states of the component that
eventually may occur; of course we will not enumerate them.

The dynamics of the reasoning of a component may be described by representing the
trace of subsequent information states by a sequence of partia models. Each inference step
constructs a new partial model as arefinement of the current partial model by adding to it the
derived information. To illustrate this, in Fig. 5 we give an example that is related to the
knowledge base in Fig. 3; here the tuples correspond to
<8, 5,83 41 115 hy, hp >

Nyt <L,L0,u;u;u,u>

inferencestep 1: rulel
Ny: <1,14,0,u; 1, u,u>

inferencestep 2: rule 3
N3: <1,1,0,u; L, 0,u>

inferencestep 3: rule 4
N3: <1,1,0,u;1,0,1>

Fig. 5 Example of areasoning trace

Here theinitial facts s, s, - s3 are observations, done in the world situation that is reasoned

about; this may be modelled by:

M=<1100101>
Furthermore, we assume that the initial information we know is about s;, s, s;. As pointed
out earlier, for the atomic statements on which no truth value 0 or 1 isknown the symbol u
isnoted. The reasoning is data-driven and based on chaining; it stops if no new conclusions
can be derived anymore. The chain of partial models constructed by this reasoning process
is.

Ny < Np < N3
Here < istherefinement relation between partial models (i.e. in N, moreinformation is
known thanin N, et cetera). Noticethat Nj<M for eachi.

We finish this section by summing up some of the properties we assume reasoning

components have:
- the component can be used by putting in some input facts (data-driven, forward) as well
as by asking aquery to it (goal-directed, backward) or a combination of these.

- the component can draw (partial) conclusions from partial input information: not for all
possible input facts truth values are needed

- theinput facts are not changed by the processing of the component; i.e., once afact has
been input as atrue fact it remains true during the inference proces (conservatism)

- if alarger set of input factsis given to the component, also the set of derivable factsis
larger (monotonicity)

1.3 Information statesin an implemented system

In an implementation of areasoning component in an Expert System Shell, the information
state of the component is represented by what is often called the (dynamic) facts base. The
relation of such arepresentation with a partial model may be viewed as depicted in Fig. 6.
Here the horizontal arrow depicts that the information state in the system represents (a part
of) the world situation that is reasoned about. The vertical arrows depict that both the
information state of the system and the world situation can be formalized by the use of a
partial model.

world system

world information
situation B state

partial
model

formal model

Fig. 6 World, system and formal model

The facts in the facts base are usually represented by objects and attributes of them. We
will show how such representations can be formalized in the form of a partial model. An
attribute with a boolean value such asin

birdl.female=false
encodes the information that the atomic statement
female(birda)

isfalse; this corresponds to the symbol o in apartial model, assigned to the atom
female(bird1). Similarly, a boolean value true corresponds to asymbol 1 inapartia model; for
instance male(bird1) hasthe truth value 1. An attribute with a non-boolean va ue codes a set
of atomic statements. For example the expression

birdl.color = grey
encodes the information that the atomic statement

color (birdl, grey)

istrue. In the same time we can have the information that color(bird1, red) isfalse. The
attributes for which no values are filled in in the objects base may be interpreted as
"unknown" or as "undefined”. These express the partiality of the information state; they
correspond to the symbols u in apartial model. Assume that we do not have information
about the size. Then both

size(bird, tall)

size(birdd, small)
are unknown. So this for simple example we can build the partial model, corresponding to

<female(birdl), male(birdl), color (birdi, grey), color(birdl, red), size(birdl, tall), size(birdl, small)>

in the following manner:

<0,1,1,0,u,u>
Notice that there may be some dependencies between the different atoms. we will not discuss
these at this place.

2 Domain Descriptions

In section 1 we have sketched how a reasoning component relates to the domain that is
concerned, and the specific world situation it is reasoning about. To be able to compare the
conclusions drawn by a reasoning component to the facts in this world situation in the
domain, aformal framework is needed for describing the domain and the interaction of the
reasoning component with it. Therefore below we will start by giving more precise
definitions that constitute aformal framework to describe adomain. In section 3 and 4 the
relation between a domain and a reasoning component is defined more formally.

2.1 Describing world situations by complete models

We start by giving the definition of the language elements to describe adomain. In this paper
we will work only with finite propositional logical languages.

10

Definition 2.1

A (propositional) signature = isa3-tuple <IinSig(z); IntSig(Z); OutSig(Z) > where InSig(z),
IntSig(z), OutSig(z) are ordered sets of atom names, respectively called the input signature, the
internal signature and the output signature. The input and output signatures may contain
common atom names, but the internal signature is disjoint from them. In this paper all
signatures are assumed to be finite.

The corresponding sets of literals are denoted by InLit(z), IntLit(Z), OutLit(z), while their
union is denoted by Lit(Z). If M isa(partia) model based on this signature, then we say M
isof signaturex .

Thesignature 3’ iscalled asubsignature of = if InSig(X) c InSig(Z), IntSig(X) < IntSig(z) and
OutSig(X') c OutSig(X).

Each of theinput, internal and output signatures are viewed as special cases of
subsignatures. The following is an example of a signature:
<$1,5,83 84 i1: hy, hy >,
In this paper we often consider only the relations between inputs and outputs; in that case we
leave out the interna signature.

Definition 2.2
A domain description w for x isanon-empty set of complete truth assignments to the
atoms.

In section 1, Fig. 4, an example of adomain description is shown. We assume w isan
(arbitrary) given set of situations, representing these situations that actually occur in redlity.
This enables us to disregard from non-existing world situations with some as yet unknown
combination of observables and hypotheses. As discussed in section 1, the reasoning is
supposed to be always about one of these situations. we expect a user to transform factual
knowledge from the situation in a correct manner.

Remark: unless the example suggests, in practicethe set W will not be enumerated; it
simply will be established that such a set exists, and maybe some typical and/or critical
examples of situation models will be described and used as atest set.

11

2.2 Describing information states by partial models

During areasoning process, only a part of the information about aworld situation is
available to the reasoning system. At any moment the system’s information state can be
described by a partial model, as has been discussed in the sections 1.2 and 1.3. In this section
we will give the formal framework.

A (partiad) model M of signaturex isan assignment of truth values from {0, 1, u} to the
atomsof =. By M(a) wewill denote the truth value assigned to atom a. Wecal M a
complete model if for all atoms a thetruth value M(a)isnot u. Let v beanon-empty set of
partial models of signature =. By P(V) we denote the set of all partial models that may be
refined toamodel in v, and by c(v) we denote the set of complete modelsin v. Notice
that c(v)cVv and vV cP(V) butingeneral P(V)cV and vV c C(v) arenotthecase. A
relevant exampleis v = P(W), where W isadomain description. In this case C(P(W)) = W.

If M e P wedenoteby Lit(M) the set of literalswhich aretruein M, and by InLit(M) the
set of input literalswhich aretruein M. Similarly outLit(M) denotes the set of output
literalswhich aretruein M. These sets of propositions correspond to the restrictions of the
model M to therestricted sets of atoms S and H. These restricted models are sometimes
called reducts (also see [5]); thereduct of M to asubsignature > isdenoted by M|z

Suppose £’ isasubsignatureof = and M’ isamodel of signature x'. Thetrivial
expansion M of M’ tothesignature = isthe model of signature = created from M’ by
assigning a u to any atom outside =".

Let M beamode of signaturex .The model In(M) isdefined as the trivial expansion
of M3, to the signature x. This model represents the input part of M; similarly out(M)
represents the output part of M. For example, the input parts of the models of Fig. 4 are
giveninFig. 7.

reduct to =i, input part

Mq1l%in:<L41,1,0> InM): <1,1,1,0,u;u,u>
MolZih:<1,1,0,0> In(Mo): <1,1,0,0; u; u,u>
M3l%in:<0,0,0,1> InMg): <0,0,0,1; u;u,u>

Fig. 7 Input partsof themodelsin Fig. 4
The user (or other component) who is interacting with the reasoning component can only

provide information about the input part of the situation that is concerned. Notice that
InLit(M) = Lit(In(M))

12

OutLit(M) = Lit(Out(M))
If w isadomain description then the related set of complete input models (resp. of
complete output models), denoted by In(w) (resp. Out(w)), isthe set of all possible
complete input (resp. output) models from models of w, that is:

In(W) = {In(M)|M e W}

Out(W) = {Out(M)|M e W}
A model M of signature = with M(a) =u for al atoms a not in InSig(z) iscaled an input
model. Similarly, M is called an output model of signature = if M(a)=u for al atoms a
not in OutSig(z). We will use the symbols Pj,, Pg,t for non-empty sets of input models,

respectively output models. If all these models are complete with respect to InSig(z) resp.
OutSig(z) they are denoted by respectively Wiy, Wt Notice that the models in(m) resp.
Out(M) are input resp. output models in this sense. If no confusion is expected, for
convenience we sometimes will leave out the u’s; for instance we may write<1, 1, 1, 0> for
theinput model <1,1,1,0; u; u,u >.

By M= p (tobereadas: M satisfies p) we denote that the proposition p istrueinthe
model M according to the strong Kleene semantics. The combination tables for truth values
according to this approach to partial semantics are given by:

6| oo |

) oy |
1
0
u

1
0
u

c O Rk
o o o|o
c ocl|c
i
c or|o
c c r|c
c or|E
N
c oo
c P clc

For more information on partial logic, see[1], [14]. By A we denote the empty partial model
that contains no information at al: only u’s are assigned. The refinement relation < between
partial modelsis defined by

M <N if for every atom a it holds M(a) < N(a) (i.e., point by point), where the partia
ordering of truth valuesis defined by unknown < true, unknown < false.

Lemma?23
Supposex' isasubsignature of =, and M, N are models of signature = .
a) M<N if andonly if for al literals c it holds
MEc= NEkEC
b) If M<N then M|z’ < Nz
c) If M, N areof signaturex' and M, N aretheir trivial expansionsto = then M <N if and
only if M’<N'.

13

Let v beanon-empty set of partial models. If M e P(V) thenby M |-y p (toberead as: M

forces p with respect to v) we denote that for every refinement N of M in v it holds
N = p.
MEFyp & VNeV [MEN = NEkp]
The semantic consequence relation restricted to modelsin v, denoted by F=y p isdefined
by: for all models M’ in v with M’ F itholds M’ £ p.

There is a connection between the forcing relation and the semantic consequence relation
restricted to modelsin Vv, namely:
My p & LitM)Ey p
We say the members of v agreeontheatom a if foral M e v theatom a hasthe
same truth valuein M. In the other case we say the membersof v disagreeon a. For a
nonempty set v of partial models the greatest common information state of Vv isthe partial
model N, denoted by N =gci(v), suchthatforal M e Vv itholds N<m andforany N’
satisfying this condition it holds N’ < N. One may view this as the maximal information on
which al members of v agree. Thismodel gci(v) can be constructed as follows: for any
atom a onwhich all membersof v agree, take this truth value, and if the members of v
disagree take the truth value u. As an example, takethe set v consisting of the partial
models:
<1,1,01>
<1,u0u>
<0,0,0,u>
In this case we have
gei(V) = <u,u,0,u>
Notice that, just like the refinement relation, the operation gci is taken point by point. The
following Lemmawill be useful later on.

Lemma 2.4
a) Suppose Vv, and V, are nonempty and for every N in Vv, thereexistsa M in Vv, such

that M <N. Then gci(V,) < gei(Vy). In particular thisholdsif v, c v;.

b) If M isgivensuchthat for every Nin v itholds M <N, then M < gci(V).

For any partial model M e P(v) this gci-construction can be applied to the set of
refinementsin v of M,i.e.to Vg={Ne V|M<N}. Theresulting greatest common

information state of vy iscalled the semantic closure of M with respect to v, andis

14

denoted by scy,(M). Thisrefinement of M satisfies precisely the literals that are forced by

M with respect to V. This and some other properties that we will use later on areincluded in
Lemma 2.5 below. As an example, the semantic closure of

|\/|0 =<1,u,u,U; U; u,u>
with respect to the domain description W in Fig. 4 isthe greatest common information state
of {Mq, M,}; therefore

sow(Mp) = <1,1,u,0,1, u,u>.
Notice that a semantic closure belongsto P(v) but in general does not belongto v andis
not complete, even if all modelsin v are complete.

Lemma 25
Suppose M, N e P(V).
a) Forany literal d it holds
soy(M) Ed & M=y d
b) For dl partia models M, N e P(V) it holds:
(i) If M<NeV then soy(M)<N
(ii) M <sey(M)
(iii) M<N = scy(M) <sey(N)
C) M <scy(N) = soy(M)<sey(N)
and in particular scy/(scy(M)) = scy(M)
d) If every completerefinement of M isamember of v then sc,,(M) =M. In particular this

holds for every complete model M in V.

The formalisation of information states by partial models above is based on propositional
logic; for amany-sorted first order logic formalisation of information states by partial
models, see [13].

2.3 Empirically founded domains

In the philosophy of science, for instance asin [11], criteria are given which a certain domain
(an empirical science) must satisfy in order to have an empirical basis. Informally stated,
such acriterion requires that every statement on the domain is essentialy testable. This
means that there exists a number of tests such that the statement istrueif and only if a
certain logical (boolean) combination of outcomes of these testsis satisfied. In our logical
framework such a combination may be described formally as a proposition in terms of the
input atoms; this will be shown in section 4. In terms of a domain description empirically

15

foundedness means that the truth value of each output atom is uniquely determined by the
truth values of the inputs. After the following Lemmawe will give aformal definition for
this.

Lemma 2.6
Let adomain description be given by w. Then the following conditions are equivalent:
(i) For every pair of situations M, N e W which satisfy the same input literasit holds
that they aso satisfy the same output literals, i.e.:
if M,Ne w then

In(M) =In(N) = Out(M) = Out(N)
(i) Foral ™M e wj, themodd sy (M) iscomplete.

Definition 2.7
Let adomain description be given by w. Thedomain w iscaled empirically founded if
one of the (equivalent) conditions of Lemma 2.6 is satisfied.

Incase H=A these definitions provide that the models M e W are characterised uniquely
by their input parts (notice that in this casethe sets s and H will have a nonempty
intersection). Notice also that the example in Fig. 4 satisfies these definitions; also in this
example the models are characterised by their input parts.

In many disciplines onetries to build up a domain in such amanner that it isempirically
founded. For instance in medical domains for every disease onetriesto give atestable
criterion which determines in what cases the disease occurs. In some cases these criteriaare
not correct or they are incomplete. However, there also exist many cases in which essentially
correct and complete criteria are available, although in practical situations some of these
criteria are not testable in an easy manner. For instance, for testing a certain criterion the
patient has to be referred to a specialist, or the test is expensive, or risky, or takes along
time, et cetera. Thismay imply that for some time one has to draw (heuristic) conclusions
from incomplete knowledge. In this paper we will not discuss this heuristic approach to
incomplete knowledge; in [17] atreatment of this can be found.

2.4 Example
The following example shows how sometimes the set of observables (input atoms) can be

extended to obtain an empirically founded domain. Thedomain w consists of the following
truth assignments, corresponding to signature <sy, s, sg; hy, hy >:

16

M1: <1,1,0;1,0>
Mo: <0,1,1;1,1>
M3: <0,1,1,1,0>
My4: <1,0,1;0,0>

W = {M1, Mo, M3, My}

Fig. 8 Domain, not empirically founded

The domain described by w isnot empirically founded: both M, and M3 satisfy the same

input literals but differ in the output literals they satisfy: condition (i) of Lemma 2.6 fails.
Now we extend the set A by afourth input atom s,. This s, holdsin the second and

fourth situation but not in the first and third one. The set W’ is given by the following truth
assignments, corresponding to <s;, s,, s3, 54 hy, hy >.

M’1: <1,1,00;1,0>
M'p: <0,1,1,1 11>
M’3: <0,1,1,0;1,0>
My: <1,0,1,1,0,0>
W’ = {M’1,M’p, M’3, M’4}.
Fig. 9 Domain, empirically founded
The domain described by W’ isempirically founded, as may be easily verified by the use of

Lemma 2.6(i).

3 Declarative Functionality Descriptions

After having defined in section 2 more precisely what a domain description is, we now turn
to the properties of areasoning component related to a given domain. By the declarative
functionality of areasoning component we mean what the component is able to derive, given
certain specific input data. Notice that in our terms funcionality is not covered by smply

17

describing what type of inputsin general may be needed, and separate from this what type of
output in general may be produced. In our case by functionality we mean to describe for any
set of specific input data, what specific output datain particular will or should occur, given
these input data.

In this section, for a given domain description we treat what (declarative) functionality
may be required from a reasoning component, in order to cover the domain description.
Therefore we define what a declarative functionality description of areasoning component is
in section 3.1. Furthermore, the notions of soundness and compl eteness of a declarative
functionality description with respect to a given domain description are defined in section
3.2. In section 4, in addition it will be treated in what format a component’s knowledge base
can be specified and when this specification meets the requirement as posed by a declarative
functionality description.

3.1 Definitions, constructions and examples

In case of an empirically founded domain it looks rather trivial how a corresponding
reasoning component’s functionality should be defined. Given a complete input model, the
output of the component simply is prescribed by the unique model from w that refines the
input model. In the case of the empirically founded w’ of Fig. 9 we could simply define the
component’s declarative functionality by the mapping o: In(W’) — W’ given by

<1,1,0,0> - <1100 1,0>
<0,1,1,1> - <0,1,1,1,1,1>
<0,1,1,0> - <0,1,10;,1,0>
<1,0,1,1> - <10,1,10,0>

Notice that for convenience we include the input parts in the resulting models.

This seems arather straightforward approach. However, there are two complications that
require amore detailed analysis. Firstly, the domain may not be empirically founded at all; in
that case thereis no unique refinement in w. So some output literals will have to remain
indeterminate. Secondly, a reasoning component is expected to give some (partial) answers
in the case of an incomplete input model aswell. These partia answers cannot be read
directly from the complete modelsin w. Both complications have to do with incomplete
information (in input and/or in output). We will extend the above approach by using partia
models both for input models and output models to specify these incompl etenesses.

18

In this section we consider the following example of a domain description. The
signatureisgiven by <sy, s,; hy, h,>. Thedomain w is given by the following situation

models;

M1: <0,0,0,0>
Mo: <0,1,0,1>
M3: <1,0,0,0>
Myg: <1,0,1,0>
Mg: <1,11,1>

Fig. 10 Example domain

Notice that this domain is not empirically founded: both M3 and M, have the sameinput

part, but they have different output parts.
In this case we can define a corresponding declarative functionality description by the
mapping o: In(W) — P, where P = P(W), given by:

<0,0> - <0,0;0,0>
<0,1> - <0,1;0,1>
<1,0> - <1,0;u,0>

<1,1> - <1,1;1,1>
Fig. 11 Functionality description for complete input models

Herea u isassigned to the output atoms on which there is no common opinionin W, given
the complete input model. So, Fig. 11 is constructed by taking the greatest common
information state of the refinements of (thetrivial expansion of) <1,0> in w, in other
words by taking scyy(<1,0>), where <1,0> isidentified with itstrivial expansion. This
indicates a simple quite natural technique to solve the first one of the complications
mentioned above, by simply alowing partial modelsin the range of o.

The second complication as mentioned above deals with the case of incomplete input

information. For example, suppose the partial input model <u, 1> isgiven. What should the
reasoning component conclude about h; andh, inthiscase ? A trivia answer could be:

nothing, i.e. assign u to both h; andh,. However, if w isinspected it turns out that there

are only two refinements of (thetrivial expansion of) <u,1> in w, namely:

19

Mo: <0,1,0,1>
Mg: <1,1,1,1>
These two situation models disagree on h,, but they agreethat h, istrue. Therefore the

reasoning component may be expected to give as an answer: <u, 1; u, 1>. Thisisthe greatest
common information state of al refinementsin w of the given partia input model <u, 1>,
i.e. sopy(<u, 1>) = gei({Mo, Mg}). So there are methods to obtain anon-trivial extension of the
functionality description o: In(W) - P to amapping o: P(In(W)) — P. In our example
this leadsto the mapping o as defined by Fig. 12.

<0,0> - <0,0;0,0>
<0,1> - <0,1;0,1>
<0,u> — <0,u; O,u>
<1,0> - <1,0;u,0>
<l1,1> —><1111>
<lu>—> <luuu>
<u,0> - <u,0;u,0>
<u,1> —» <ulul>
<uU,u> — <u,uU;u,u>

Fig. 12 Functionality description o for partial input models

Here any right hand side is obtained by taking the greatest common information state of all
refinementsin w of the corresponding left hand side (i.e. by taking its semantic closure).
We summarize the construction of the mapping o from the domain description as carried
out above.

Construction of afunctionality description from a domain description

1. List all possible (partia) input models and take any of them;
as an example we choose <u, 0>

2. For any input model M collect the situationsfrom w that refine M inaset v(m);
according to Fig. 10 this set consists of M1, M3, and M.

3. Takethe greatest common information state of this set: gci(V(M));
thisis <u,0;u, 0>
4. Define a(M) = gei(V(M)).

20

5. Repeat thisfor al other input models.

It turns out that this construction results in amapping o: Pj, — P which satisfiesa

number of nice properties as defined by the following:

Definition 3.1
Suppose asignature = is given, anon-empty set of complete input models w;,, for * and a

mapping o: Pi, — P, where Pj, = P(Wj,) and P isaset of partial modelsfor = .
a) Themapping o iscalled conservativeif for all M e P;, it holds:

M < a(M)
b) Themapping o iscalled monotonicif for al M,N e Pj, it holds:

M <N = aM) < a(N)
c) Themapping o iscaled salf-bounded if for al M,Ne P, it holds:

M < o(N) = a(M) < a(N)
d) Themapping o iscalled well-informed if for al M e P, it holds:
out(a(M)) = gei({Out(a(N)) | Ne Wiy & M<N})
€) Themapping B: Pj, — P suchthat for al Ne w;, itholds a(N)=p(N) iscalled better
informed than o if Out(w(M)) < Out(B(M)) foral M e Pj,.
f) Themapping o does not affect inputsif for al M e Py, it holds:
oM)Zin = MIZin
g) Themapping o iscalledregular if it does not affect inputsthat are no outputs, i.e. if for
al ™M e Py, itholds:
aM)Einout = MEin\out
where Zj\out 1Sthe part of the input signature that is not included in the output signature.

As aresult of the analysis above, we use these properties to define the notion of a
declarative functionality description. However, first we establish some logical relations
between these properties, for instance:

Lemma3.2
Suppose asignature * isgiven, anon-empty set of complete input models w;,, for = and

amapping o: Pj, — P, where P, = P(Wj,) and P isaset of partiadl modelsfor = .
a) o isconservativeif and only if M <In(o(M)) foral M e Py,

b) If o isconservative and self-bounded then o is monotonic.

21

c) If o isconservative then the following are equivalent:

(i) o issef-bounded

(i) o ismonotonic and for all M e P;, it holds

a(In(a(M))) = o(M)

If, moreover, =i, = oyt thenthisisequivalent to

(iii) o ismonotonic and a(o(M)) = a(M) for al M e Pj, (idempotency).
d) If o doesnot affect theinputsand o isconservative then the following are equivalent:

(i) o ismonotonic

(i) o issef-bounded.
e) If o, pB: P, — P aremappingssuch that for al Ne w;j, itholds a(N)=B(N), o is
monotonic and B iswell-informed, then B is better informed than o.
f) If o, B : Pjy — P aremappings such that for all Ne wj, itholds o(N) =g(N) and both
mappings are monotonic and well-informed then for all M e P, it holds

Out(o(M)) = Out(B(M)) .

A declarative functionality description should satisfy some of the properties introduced
above to exclude pathological examples that cannot be realized by reasoning components as
described in section 1.4. On the other hand the notion should not be too restrictive. The
following definition will provide such anotion, as will become clear in the rest of this paper.

Definition 3.3

Suppose asignature = isgiven.

a) A declarative functionality description for = consists of anon-empty set of complete
input models w;, for = and amapping o: Pj, — P, where Pj, = P(Wj,) and P isaset of
partial modelsfor = , such that o isconservative and self-bounded.

b) If o isadeclarative functionality description, then awell-informed refinement of o isa
well-informed g suchthat for al Ne wj, it holds Out(o(N)) = Out(B(N)) .

If no confusion is expected, for convenience we often omit the word "declarative”'. An
example of afunctionality descriptionisthe o asconstructed in Fig. 12. This can be stated
as the following more general Theorem.

Theorem 3.4

22

Let anon-empty set of complete input models wj,, for signature = begiven and aset v of
partial models of signature = such that Wj, c P(V). Define the mapping o: W, — P, where
P=P(V), by aM)=scyM) foral M e Pj,.

Then o isadeclarative functionality description.
In particular thisholdsif v isadomain description w, and Wi, = In(w).

In fact, the functionality description o =scy, additionally satisfies the property of
well-informedness. We do not prove this here, since it will follow from more genera results
later on (Theorem 3.7 and Proposition 3.8). Definition 3.3 alows more functionality

descriptions than that one (see section 3.2). But there are restrictions as well. For example it
is not possible to express a functionality of a component that makes h, trueif s; is

unknown (1) and makes h; unknown else (2):

<0> - <0;u>
<1> -5 <lu>

<u> - <u; 1>
Fig. 13 Not afunctionality description

This mapping does not satisfy the monotonicity condition: monotonicity would require that
(1) impliesthat h, isasotrueincase s, istrueor false, which contradicts (2). In fact the
conditions of Definition 3.3 imply that it is possible to satisfy the functionality description
by an ordinary monotonic deduction system. Thiswill be treated in more detail in section 4.

3.2 Soundness and completeness
Definition 3.3 above does not say anything about how well such a functionality description
fits to a given domain description. The example as constructed in section 3.1 does cover the
concerning domain description, but a slight change may provide a different functionality
description that does not quite fit to the domain description. For example, thisisthe case if
the third lineis changed to

<Q,u> = <0,u; u,u>
In this section we define additional requirements of soundness and compl eteness that should
be satisfied by a functionality description in order to cover agiven domain description.

Proposition 3.5

23

Suppose a domain description is given by signature * and non-empty set of situation
models w. Let o: Pj, — P beafunctionality description, where Pj,,=P(In(w)) and P =

P(W). The following conditions are equivalent:
(i) Foradl M e P, each he OutLit(z) thatistruein o(M) isasotrueinal

complete refinementsof M in w, i.e
if he outLit(z) and M e Pj, then
oM)E h = MIEw h
(i) Foral Me wj, each he OutLit(z) thatistruein o(M) isaso truein all
complete refinementsof M in w,i.e
if he outLit(z) and M e Wj, then
oM)E h = Mgy h
(iii) Fordl M e w each he outLit(z) that istruein a(in(M)) isasotruein M, i.e.
if he OutLit(z) and M e W then
a(in(M))= h = Mk h

In Definition 3.6 we will use the three equivalent conditions of Proposition 3.5 to define
soundness of a functionality description with respect to a given domain description. Similar
notions for completeness are only equivalent under the stronger assumptionthat o iswell-
informed. Therefore in Definition 3.6 we distinguish between two versions of completeness:
astrong notion and aweak one.

Definition 3.6
Suppose adomain description is given by signature = and non-empty set of situation
models w. Let o: Pj, — P beafunctionality description, where P, = P(Wj,) and P=
P(W).
a) Wecdl o soundwith respectto w if the one of the (equivalent) conditions of
Proposition 3.5 is satisfied.
b) Wecal o (strongly) complete with respect to w if for all M e Py, for each he
outLit(z) that istrue in all complete refinementsof M in w, this h isasotruein oM),i.e.
if he outLit(z) and M e P, then

MlEw h = oM)E h
c) Wecall o weakly complete (w-complete) with respect to w if for all M e w;, for each
h e OutLit(z) that isforced by M, this h isadsotruein o(M),i.e.

if heoutLit(z) and M e W, then
M lrwh = oM)E= h

24

d) If both the conditions @) and b) are satisfied we say that o. covers w. If both the
conditions a) and c) are satisfied we say that o. weakly covers (w-covers) w.

It is easy to verify that the final functionality description o as constructed in Fig. 12 in
section 3.1 covers the given domain description.

— <0,0;0,0>
- <0,1,0,1>
- <0,u;u,u>
— <1,0;u,0>
<l11> —><1111>
— <1, u,uu>
- <u,0u,u>
- <u,1;u,u>
N

<u,u;u,u>
Fig. 14 Not well-informed functionality description extending Fig. 11

An example where completeness is not satisfied, whereas w-completenessis satisfied is
if in the lines concerning incompl ete input models we replace in the examplein section 3.1
the output truth valuesin the right hand side by u (see Fig. 14). Thisexampleisin some
sense the contrary of awell-informed refinement of o . One could call it badly informed.

The following theorem shows that, given a domain description, there exists a unique
regular functionality description that coversit.

Theorem 3.7

Suppose adomain description is given by signature * and non-empty set of situation
models w. Let o: Pj; — P beafunctionality description, where Py, = P(W;,) with wj, =
In(w) and P =P(W). Then the following hold:

a) Thefollowing conditions are equivalent:

(i) Thefunctionality description o issound with respect to w
(i) Out(a(M)) < Out(seyy (M)) foral Me Pin-
(iii) a(M)<sey(M) foral M e Pj,.

25

b) The following conditions are equivalent:
(i) Thefunctionality description o isw-complete with respect to w
(ii) out(a(M)) = Out(scyy(M)) forall M e Wjp,.
(iii) a(M)=seyy(M) foral M e wjp,.
¢) Thefunctionality description o iscomplete with respect to w if and only if
Out(c(M)) > Out(se\y(M)) foral M e Pjp,.
d) Thefollowing conditions are equivalent:
(i) Thefunctionality description o w-covers w
(i) Out(o(M)) = Out(scy(M)) for al M e Wip,.
(iii) (M) =scyy(M) foral M e wjp,.
e) Thefunctionality description o covers w if and only if
Out(a(M)) = Out(scyy(M)) for al M e Pjp,.
There exists afunctionality description that covers w, namely scy.
f) If o w-covers W , then the domain description given by w isempirically founded if and
only if for every M e In(w) themoded o(M) iscomplete.

It turns out that the additional condition of well-informednessis strong enough to make w-
compl eteness equivalent to completeness:

Proposition 3.8
Suppose asignature * is given with anon-empty set of complete input models w;j, and P

isaset of partial models for . Assume the mapping o: Pj, — P, where P, = P(Wjp) , isa

declarative functionality description for . Moreover, let adomain description w for
signature = with In(w)= W;j, begiven.

Then the following conditions are equivalent:

(i) w iscovered by o

(ii) w isw-coveredby o and o is well-informed.

From Theorem 3.7 and Proposition 3.8 it follows that in the situation of Theorem 3.4 the
functionality description given by o =scyy, iswell-informed.

A most simple example of afunctionality description not satisfying well-informedness
for signature <s;; hy > isgiven by the following:

<0> - <0;1>

<1> 5 <1 1>

26

<u> - <u;u>
Fig. 15 Simple example of a not well-informed functionality description

One may raise the question whether or not reasoning components that satisfy this type of
functionality description are desirable. In section 4 we will return to thisissue.

The question may arise whether for any given functionality description oo adomain
description can be found that is covered by «; thisisthe reverse situation of Theorem 3.7
above. According to Theorem 3.7€) this question can be formulated equivalently as: given o
, doesthereexist a W suchthat Out(a(M)) = Out(scyy(M)) for al M e Pj,. It turnsout that
any o canbeexpressedinthisway if and only if o iswell-informed, asis shown by
Theorem 3.9.

Theorem 3.9
Suppose asignature * isgiven, Wi, isanon-empty set of complete input modelsand P is

aset of partial modelsfor =. Assume o: Pj, — P isadeclarative functionality description
for =, where Pj, = P(Wip).
Then adomain description w* for © with In(w*) = w;, can be obtained that is w-covered
by o. One can construct w* from o by taking

W* ={ N|N isacompletemodd of signature> & IM € Wj, a(M)<N}.
Moreover, W* iscovered by o if and only if o is well-informed.
For every domain description W with In(w) = w;j, for which o issound, w is contained

in wx,

Corollary 3.10
Suppose asignature * isgiven, Wi, isanon-empty set of input modelsfor = and P isaset

of partial modelsfor x. Assume o: Pj, — P, where Pj, = P(Wj,), isadeclarative

functionality description for x.
Then there is awell-informed declarative functionality description B: Pj, — P thatisa

well-informed refinement of o . This B is better informed than o ; in particular, it holds
Out(ouM)) < Out(B(M)) = Out(scyy+(M))
forall M e Pj,, with w* asin Theorem 3.9.

Not surprisingly, the well-informed declarative functionality description p related to a
given o asobtained in Corollary 3.10, sometimesis called the well-informed refinement of

o

27

4 Specifications of I nteractive Reasoning Components

The examples of functionality descriptions given in section 3 are defined by enumerating
complete tables for the mappings. In the context of systems that acquire their knowledge by
learning from examples (cases), this may have some practical relevance: the tables may be
used as a representation of the cases that were encountered in the past, and the functionality
embodied by this history. However, in practical situations concerning knowledge-based
systems that do not learn from examples, tables are not an efficient manner of specification.
Therefore a more condensed form of specification is needed. Thiswill be treated in this
section.

As dready sketched in section 2, the declarative aspects of a reasoning component are
determined by the specification of a knowledge base that enables the component, using a
suitable fixed inference relation, to derive new (output) facts from given input facts. In
section 4.1 we make a choice on the format in which the knowledge base is specified. We
will leave the inference relation unspecified. Instead here we will define a suitable notion of
a semantic consequence relation. In principle a choice of astrict format for the knowledge
implies arestriction on the expressiveness. However, we will provein section 4.3 that for
any relevant well-informed functionality description a knowledge base specification in the
chosen format is possible such that by the semantic consegquence relation the required
(declarative) functionality is obtained. This means that any derivability relation that is sound
and complete with respect to this semantic consequence relation is able to derive from a
given input information state by use of the knowledge base the right conclusions. In another
report it will be discussed that chaining provides such a suitable derivability relation.

4.1 Some definitions

By KB (the knowledge base) we denote the knowledge which may be used by the reasoning
component to derive output literals from the available information on inputs. Recall that Pj,

isthe non-empty set of all possible partial input models. If M e Pj,, and c isaconjunction of
literals, thenby M =xg c wewill denotethat ¢ semantically follows from the information
of M by useof KB, i.e. isasemantic consequence of the theory Lit(M) U KB. The notions of
rule-format, semantic consequence and reasoning component specification can be defined
formally asfollows:

Definition 4.1

28

Let = beasignatureand KB aset of propositionsfor x.
a) A propositionin rule-format, or simply aruleisaproposition of one of the following two
forms:

(i) d where d isaliteral; these rules are sometimes called general facts

(i) c—d where c isaconjunction of literalsand d isaliteral
b) Wecal KB consistent with respect to the input model M if there existsamodel N
with M<Nand N = KB.
c) If KB isconsistent with respect to the input model M then the semantic consequence
relation M =g cisdefined as: for all models N for = with M <N and N~ KB it holds
NE c
d) A (declarative) reasoning component specification consists of afinite signature =, a
finite non-empty set of rulesfor this signature KB (knowledge base), and a finite set of input
models P, = P(Wj,) Where w;, isanon-empty set of complete input models for the

related input signature.

Notice that the fact that we restrict the rule format to one conclusion only is not an
essential restriction: every implication ¢ —d whereboth ¢ and d= d;A ..A d, ae

conjunctions of literals can simply be rewritten to aset of rules ¢ —dj, ..., c—dy inthe
sense of Definition 4.1a).

The notion of consistency can be tested for a given subset of Py, ; however, this does
not guarantee that the component reasons sound with respect to afunctionality description or
domain description. This (stronger) notion of soundness will be explained further in section

4.2,
For areasoning component that is consistent with respect to M e P;,, we define the

consequence model conscg(M) of M asthe partial model where al literals that semantically
follow are true, and the others are unknown, i.e. for all atoms a it holds
consggM)@ = 0 if MEgg-a
1if MEgg a
u else
Itis easy to verify that
MEgg a & M |':Mod(KB) a
and
consgg(M) = Sty (k) (M)
where Mod(KB) isthe set of all models of KB.

29

Lemmad4.2
Suppose asignature * isgivenand W, isanon-empty set of input models. Take for P

the set of dl partial models of signature = and P;, =P(Wj,). Let aconsistent reasoning
component specification for = and Pj, begivenby KB.

Then the mapping conscg : Pin — P givenby M — conscg(M) isawell-informed
(declarative) functionality description. Moreover, consc g = Sty od(k B)-

Definition 4.3
Suppose asignature > isgivenand W, isanon-empty set of input models. Take for P

the set of al partial models of signature = and Pj, =P(Wj,). Let aconsistent reasoning
component specification for = and P;, begivenby KB.

a) Wecall conscg the well-informed functionality description related to (or specified by)
the given reasoning component specification, or if no confusion is expected we simply call it
the well-informed functionality description related to (or specified by) KB.

b) We call two reasoning component specifications with the same set of input models Pj,,
equivalent if they specify the same functionality description.

¢) We say afunctionality description o is covered by the well-informed functionality
description related to the reasoning component specification given by kB if foral M e Py,

it holds Out(a (M)) = Out(consg g (M)).

4.2 Soundnessand completeness

In this section we give precise definitions of soundness and completeness of the well-
informed functionality description related to a reasoning component specification with
respect to a given domain description. In view of Definition 4.3 this can be done very easily:

Definition 4.4
Suppose asignature * isgivenand Wj, isanon-empty set of input modelsand w a

domain description for = and W, . Let aconsistent reasoning component specification
for = and P, begivenby KB.

The quality of areasoning component specification with respect to a given domain
description can be expressed by respectively soundness, compl eteness, w-completeness,
covering with respect to the given domain description of the well-informed functionality
description related to the reasoning component specification.

30

It is easy to verify that the well-informed functionality description related to areasoning
component specification given by KB issound with respect to w if and only if every model
M e W isamodel of KB. Collecting this, together with the connections formulated in
Definition 3.6, Theorem 3.7 and Proposition 3.8, we obtain the following statements for
these notions:

Proposition 4.5

Suppose = isasignature, and adomain descriptionisgiven by w and a non-empty set of
input models wj,,. Let aconsistent reasoning component specificationfor = and Pj, =

P(Wijn) begivenby KB, and o thewell-informed functionality description related to the
reasoning component specification given by KB.
a) Thefollowing conditions are equivalent:
() o issound with respect to the domain description given by w.
(if) The output literals, which semantically follow using the knowledge base KB from input
literals which are true in agiven input model M e Pj,,, aretruein

al complete refinementsof M in w,i.e

if he outLit(z) and M e P, then

MEggh = Mgy h

(iii) The output literals, which semantically follow using the knowledge base KB from
input literals which are true in a given complete input model M e w;,,, aretruein al

complete refinementsof M in w, i.e.
if he outLit(z) and M e Wj, then
M ':KB h = M “:W h

(iv)Foral M e w each he outLit(z) that semantically follow using the knowledge
base kB frominput literdswhich aretruein M, istruein M, i.e.
if he outLit(z) and M e W then
INM)Egkg h = ME h
(v) Foral m e Py, itholds
consgg(M) < sop (M)
(vi)Every M e W isamodel of KB.

b) The following conditions are equivalent:
(i) oo iscomplete with respect to w.
(i) o isw-complete with respectto w.
(iii) For any input model M e P, and for any output literal h whichistruein all complete

31

refinementsof M in w, this h semanticaly followsfrom M using KB,
i.e.if he OutLit(z) and M e Pj, then

MIEw h = MEggh
(iv) Foral M e Pj, it holds
Out(cons g(M)) = Out(scyy(M)).

(v) For any complete input model M e wj, and for any output literal h whichistruein
al complete refinementsof M in w, this h semantically followsfrom M using KB,
i.e.if he outLit(z) and M e W;, then

M Iy h = MEggh
(vi) Foral M e wj, it holds
consgg(M) = s (M).
¢) Thefollowingholds: o covers w if and only if
Out(consgg(M)) = Out(scy(M)) foral M e Pj,.

In practice, in areasoning component specification often the set of input models p;, is

not mentioned. We will interpret this omission asif this set of input modelsis meant to be
the set of all partial models for the input signature (all truth assignments that are theoretically
possible). However, in practical domains, often not all theoretically possible input models
are used, for instance since there are semantical dependencies between the input atoms. In
these cases there may be theoretically possible input models that do not make sensein
reality, and especially, thereis no (domain) knowledge on what output should be expected
for these input models. This means that in such adomain it is essentially impossible to prove
soundness and completeness, as long as no restriction is put on the set of input models.

On the other hand, in practice it is often unfeasable to enumerate the set of al relevant
input models, so in any case practical problems can be expected in proving soundness and
completeness. What can be doneis to collect (during knowledge acquisition) a set of typical,
and critical examples of input models, and use this as a representative test set. Another
possible approach is, as a part of the knowledge acquisition process, to make explicit all
semantic dependencies between input atoms, and use these as constraints to specify Pj,. This

approach has not been tried out yet.

4.3 Existence of reasoning component specifications

In this section we show that for any well-informed functionality description o areasoning
component specification can be found such that its related well-informed functionality
description gives the samereults as «, and that this can be donein aminimal sense. To

32

illustrate these issues we return to the example in section 3.1 of adomain description given
by w and awell-informed functionality description o , given by Fig. 12. If weinvolve only
complete input models we may create from o a knowledge base. This can be done by simply
taking for each complete input model the conjunction of al input literals that are true, and
use this as the condition of arule, while the conclusion is given by theimage under o . This

results in the knowledge base of Fig. 16.
Thisknowledge base KB isconsistent and satisfies Out(a(M)) > Out(consgg (M)) for al

M e Pj, . But thisis not an adequate specification, sincein the first place using it one cannot

conclude anything in a clear and direct manner from incomplete input models: some of the
rules are more complicated than is needed. Secondly, it contains too many rules: it contains
more rules than are needed, as we will see later on.

TSiATSs > ohy
THASH o>y
SR -
aSsiATs > —hy
“sAs o hp
A7 > ~h
SIA S - hy

Fig. 16 Knowledge base weakly covering o

The first problem can be solved by adding to this knowledge base rules that are based on
incomplete input models as well. Consider, for example, the third line of the functionality
description o inFig. 12:

<Q,u> — <0,u;0,u>

If M isany model in Py, refining the left hand side (i.e. <0, u>< M), then by monotonicity

<0,u; Q,u> = o(<0,u>) < (M)
Thereforefor any M e P, it holds:

if <o,u><M then <0,u;0,u> < (M)
Since<0,u><M isequivaentto M= -s; and<0,u; 0,u> < (M) isequivalentto m
k-5 and additionally o(M) = - hy, we can restate the above if-then rule by the rule
-s; — - hy. Doing thisfor all relevant lines of Fig. 12, thisresultsin the extension of KB

givenin Fig. 17.

33

By this knowledge base we obtain a reasoning component specification that is able to
conclude from partial input information in adirect manner. But the second problem has
become worse: the number of rules has even increased to 10: thisis still avery inefficient
specification.

o5 - ~hp
B - ~hy
$ - hy

Fig. 17 Extension of the knowledge base of Fig. 16 covering o

However, sometimes a number of the earlier rules are a special case of one new rule
with less conditions. For instance, it is easy to see that the 10th rule makestherules5 and 7
superfluous, since both the complete input models related to the rules 5 and 7 are refinements
of the incomplete input model related to rule 10. This enables us to prune the knowledge
base until we obtain aminimal form for it. Comparatively, in practice knowledge bases are
acquired from experts who have streamlined and minimized the storage of their knowledge
in the past.

Here, in our example it can be shown how such aminimization can be done. For
example, instead of considering all partia input models M e Pj, for which o(M) = hq, we

only takethe M e P, among them that are minimal in P, , i.e. such that there does not
existan M’ e Pj, with o(M)r hy suchthat M’<M and M’ # M. Inspecting P;y,, for each of
the four output literals hq, - hq, hy, = h, wefind one non-trivial minimal element. Using
these we obtain the following more concise knowledge base (which is a subset of the
knowledge base above):

SIA S - h
—'Sl — "hl
—|52 — —|h2
S - hy

Fig. 18 Minimal knowledge base covering o

By this knowledge base a specification is obtained such that its related well-informed
functionality description has the same output modelsas o, (it covers o) and whichis
minimal in the sense that will be defined below more precisely.

In the context of the example above we gave an informal description of a construction
showing that for a given well-informed functionality description o there exists areasoning
component specification such that its related well-informed functionality description is
covering o. . Summarized, the procedure can be described using truth tables as shown below.
Here aright hand side of the functionality description is interpreted as a truth-table (by
example we take the one of Fig. 12):

S1 S hy h, T(hy) mT (hy)

0 0 0 0 ®
0 1 0 1 + X)
0 u 0 u (©)
1 0 u 0 @
1 1 1 1 + X (5)
1 u u u (6)
u 0 u 0 ®
u 1 u 1 + \Y ®
u u u u 9)

Fig. 19 Truth tablerepresenting the functionality description of Fig 12

Thelines correspond to partial output models as described by the well-informed functionality
description, and the columns correspond to the truth values for the atom mentioned above it.
The procedure runs as follows:

Minimal knowledge base construction

1. Select one of the output literals;
as an example we choose h,

2. Collect all linesin the table where the h,-column shows that h, istrue (the set T(h,));

thisresultsinthelines 2, 5, 8
3. Delete from thislist the ones that are refinements of other lines (the set mT(h,));

35

herethelines 2 and 5 are deleted since the input parts of them are refinements of the
input part of line 8

4. For each of the remaining lines, construct a rule with as condition part the conjunction
of input literals that are true and with h, as conclusion;

in our examplethisresultsintherule s, — h,

5. Repeat this procedure for al other output literals;
S0 do the same for hq, = hy, = ho.

We will define this construction more formally and prove that it providesindeed a
specification covering o. . Moreover, we will prove that it resultsin a minimal specification.
The example and procedure described above may help to understand the ideas behind the
formal approach below. Notice that thisis an extension to partial logic of the wellknown
theorem from propositional logic, stating that any boolean function can be expressed as a
combination of negation, conjunction and digunction.

Definition 4.5

Let aconsistent reasoning component specification be given by signature x, aknowledge
base KB, and non-empty set of partial input models Pj,,. Thenitis called minimal if for every
rulein KB, and every generalization of it by omitting one of the conditions, replacing the
rule by its generalization makes a knowledge base that is not equivaent to KB.

Lemma 4.6
Assume asignature = isgiven, Wj, isanon-empty set of complete input modelsand P a

set of modelsfor . Assume o : Pj, = P where P;, =P(Wj,) isafunctionality description.
The non-empty set of rules KB, is constructed as follows. For each output literal h, take
T(h) ={Me P, |a(M)= h}
and mT(h) the set of minimal (with respect to the refinement relation) elementsin T(h).
Define kB, by the following set of rules
KBy ={h | Ae mT(h)} U {Con(Lit(M)) - h | Me mT(h),M#A}
where Con(..) means taking the conjunction of a set of literas.

Then a consistent reasoning component specification is obtained with signature z,
knowledge base KB, and set of partial input models P;,, such that for al complete models

M e Wi, it holds o(M) = KB,

Theorem 4.7

36

Assumeasignature = isgiven, Pj, isanon-empty set of partial input modelsfor = and let
o : P, — P(W) beawell-informed functionality description.

Then the well-informed functionality description related to the consistent reasoning
component specification with signature =, knowledge base KB, and a set of partial input
models Pj,, covers o. Thisreasoning component specification isminimal.

Applying the construction of Lemma4.6 above to the not well-informed functionality

description of Fig. 15 gives the knowledge base of Fig. 20. Notice that here two different
minimal elements occur intheset T(h,).

sp — hy
T8 o>y

Fig. 20 Knowledge base based on a not well-infor med functionality description.

A reasoning component specified by this knowledge base KB, has h; asasemantic
consequence (independent of whether or not input information is given). However, the
original functionality description gives as an output the truth value unknown to h; if the
truth value unknown of s; isgiven asan input. Thisillustrates the plain fact that any

functionality description that is not well-informed cannot be covered by the well-informed

functionality description related to any knowledge base. The reasoning component is able to
deriveh; from KB, by use of any complete inference relation such as resolution or natural

deduction. But using chaining KB, is not able to derive h; if nothing isknown about s;.

This contrasts with the knowledge base KB, just consisting of the general fact hq; with
KB, acomponent using any complete inference relation derives the same conclusions as
with KB,. With chaining as an inference relation thistime it is a so able to derive always h;
. It turns out that using chaining we are able to distinguish the two different functionality
descriptions as discussed by the two knowledge bases kB, and KB, where other (so-called
complete) inference relations are not able to distinguish a functionality description from its
well-informed refinement. Since this concerns distinctions that are relevant in practice, this
phenomenon will be analysed in more detail in another report.

The following Proposition describes the case of empirically founded domains.

Proposition 4.8

37

Let adomain description for signature =~ and a non-empty set of input models wj,, begiven

by w. Suppose o isadeclarative functionality description w-covering w and KB defines
areasoning component specification such that its related well-informed functionality
description covers o.
The following conditions are equivalent:

(i) The domain described by w isempirically founded

(i) Forevery M e Wi, themodel o(M) iscomplete

(iii) For every M e W;, and output literal h it holdseither M =g h Of MEgg = h

(iv) For any output literal h there exists aproposition p interms of input literalssuch
that h istrueinasituation M e W if and only if p istruein m
(explicit definability), i.e.: for every M e W it holds
ME he MEp

5 Applications

In this section it is shown how the semantical framework introduced in this paper can be
applied to a process model for diagnostic reasoning (see [6]) . The processes at different
abstraction levels of this generic diagnostic model are given in Fig. 21. The primitive
component Hypothesis Determination generates hypotheses that are validated by the
component Hypothesis Validation. The latter component is not primitive: it is composed of
the primitive components Observation Determination, Observation Execution, and

Hypothesis Evaluation.

Diagnostic Reasoning

Hypothesis Determination Hypothesis Validation

Observation Observation Hypothesis
Determination Execution Evaluation

38

Fig. 21 Processes at different abstraction levelsin the diagnostic process model

In[6] it is shown how (dynamic) properties of the process model as awhole can be reduced
to properties of Hypothesis Determination, and how properties of Hypothesis VValidation can
be reduced to properties of Observation Determination, Observation Execution, and
Hypothesis Evaluation. Since the primitive components were |eft open in this generic modd,
here the story endsin [6]. To apply the generic modd, instantiations of these primitive
components are needed, for example selected from alibrary of components. The functionality
of these components can be described by functionality descriptions. However, using the
approach of [6], the model as awhole is only guaranteed to work properly if the properties of
the primitive components presented in [6] are in some sense satisfied by these functionality
descriptions. In this section we shown how these properties can be formulated as properties of
functionality descriptions.

The component Hypothesi s Determination should satisfy focus efficiency and focus
effectiveness. Focus efficiency means that no hypotheses are chosen in focus that already
have been assessed. In the temporal language used in [6] thisis expressed in the following
form. For al traces, at all time pointsif at the input the information is available that some
hypothesis h already was assessed, then it will not be at the output that it isin focus:

VOME Traces(HD) V't Vh

[statep(OM_, t, input(HD)) |= assessed(h) = stateyp(OM, t, output(HD)) | focus(h) |
Suppose a candidate component to be used for Hypothesus Determination is described by
functionality description o. Then the above property can be reformulated to the following
property of o:

M |=assessed(h) = a(M) | focus(h)]
The second proerty to be satisfied by Hypothesis Determination is focus effectiveness; this
means that as long as not all hypotheses have been assessed, and no hypothesis has been
confirmed, there will be generated focus hypotheses. In the temporal language of [6] thisis
expressed as follows. For al traces and time points, if there exists at least one hypothesis for
which no information is at the input that it was assessed, and for no hypothesis thereis

39

information on the input that it was confirmed, then there exists at least one hypothesis such
that on the output there isinformation that it isin focus:

VM ETraces(HD) V't

[T stateyp(OM_, t, input(HD)) | assessed(h) A Vh stateg(OM, t, input(HD)) |# confirmed(h)]

= [Ih stateyp (O, t, output(HD)) |= focus(h’)]
This property can be reformulated to the following property of o:

[3h M |#assessed(h) & Vh M | confirmed(h)] = Th’ a(M) |= focus(h?)
In conclusion, a component can be chosen to play the role of Hypothesis Determination in the
diagnostic model if these two properties hold for its functionality description.

In asimilar manner the properties 'observation effectiveness and 'observation efficiency’ of
the component Observation Determination reduce to static properties of functionality
descriptions. Observation efficiency means that no observations are generated that already
were performed:

VM ETraces(0D) Vt Vo

[stateop(OM, t, input(OD)) |= observed(o) = stategp(OM, t, output(OD)) | to_be_observed(o)]
Thisisreformul ated as

M |= observed(0) = (M) |# to_be_observed(o)]
Observation effectiveness means that if there exists at |east one hypothesisin focus, and not
all observations have been performed, then at least one observation is generated.
VIMETraces(OD) V't Vh

[Jo stategp(OM_, t, input(OD)) | observed(o)

A stategp(OM, t, input(OD)) |= focus(h) =
Jo stategp(OM_, t, output(OD)) |= to_be_observed(o’)]

Thisisreformulated as

[30,h M | observed(o) & M |= focus(h)] = Fo~a(M) |= to_be_observed(o’)

One of the required properties of Hypothesis Evaluation is assessment decisiveness, which
means that if for al possible observations, observation results have been input, then for every
hypothesis an assessment can be derived:

VIME Traces(HE) V't
[Vo [state,e(OM_, t, input(HE)) |[= o Vv state (M, t, input(HE)) [— 01 =

Vh [statee(OM, t, output(HE)) |[= h Vv state,e(OM, t, output(HE)) |= — h]

This can be reformulated for a functionality description as:

YOo[M|Fo v M|E=0] = Vh[aM)|=h v aM) [==h]
This property is a special case of a property that is sometimes called decisiveness. The
functionality description « is called decisive if for all complete input models, also the
generated model is complete:

M e Wi, = a(M) IS complete

In this section it was shown in an example (based on [6]) how required properties of
candidate primitive components for a generic model can be formulated as properties of their
functionality description which specifies their functionality independent of specific details of
interna knowledge representation, inference relations or implementation.

6 Conclusions

This paper contributes a semantical framework that provides alogical description of the
functionality of interactive reasoning. The concept of functionality abstracts from specific
inference relations or knowledge representation. A number of properties of afunctionality
description are identified, and related to (formalized) characteristics of the domain. It is
characterised under which conditions a functionality description can be implemented by an
inference relation and a knowledge base.

It turns out that our semantical framework may provide adequate logical descriptions for
the functionality of an interactive reasoning component. In particular the relation of the
conclusions that may be drawn by a component and the situation in reality that is concerned
may be made more transparant by our framework. Furthermore, the formal definitions of
soundness, compl eteness and empirically foundedness as given above enable us to establish
the (meta-)logical connections between these concepts.

The semantic formalisation using information states can a so be exploited to formalise the
dynamics of areasoning process. The intermediate reasoning steps can be formalised as traces
of information states, as briefly sketched in Section 1.2. To specify the dynamics of such
traces variants of temporal logic can be used. For specific classes of nhonmonotonic reasoning
methods this has been worked out in [7], [8], [9].

41

The semantic framework for reasoning components introduced here can be incorporated
in asemantic formalisation of a compositional reasoning system, as presented in [4]. In [4] the
semantic formalisation of the functionality of a primitive component was left open; it was
taken as an assumed building block on top of which the compositional dynamics were defined
semantically. The current paper fills this gap by providing a semantic formalisation of the
building block. In [12] some results can be found on compositioon verification of agent-based
reasoning systems. In this paper it has been addressed how properties of primitive components
are related to (dynamic) properties of a compositional reasoning system as awhole.

In Section 5 above it has been shown how (required) properties of primitive components
within a compositional system can be related to properties of declarative functionality
descriptions of candidate components. Since these properties abstract from specific
knowledge representation or inference, reuse and maintainability is supported: whatever is
changed within such a candidate component, it does not matter as long as the functionality
description remains the same or at |east has the same relevant properties (information hiding).
Other future investigations are planned in the relation between the semantical approach
introduced above and recent work on input-output logics (cf. [15]).

Acknowledgements
The research reported here has benefit from discussions with Catholijn Jonker, Pieter van
Langen, I1zak van Langevelde and Leon van der Torre.

References

1. S Blamey, Partia Logic, in: D. Gabbay and F. Guenthner (eds.), Handbook of Philosophica Logic, Vol.
111, 1-70, Reidel, Dordrecht, 1986.

2. Brazier, FM.T., Jonker, C.M., and Treur, J., Principles of Compositional Multi-agent System
Development. In: J. Cuena (ed.), Proceedings of the 15th IFIP World Computer Congress, WCC'98,
Conference on Information Technology and Knowledge Systems, IT& KNOWS98, 1998, pp. 347-360. To
be published by I10S Press.

3. Brazier, F. M. T., Jonker, C. M., Treur, J., and Wijngaards, N.J.E, (2000), On the Use of Shared Task
Modelsin Knowledge Acquisition, Strategic User Interaction and Clarification Agents. International
Journal of Human-Computer Sudies, vol. 52, 2000, pp. 77-110.

4. Brazier, F.M.T., Treur, J., Wijngaards, N.J.E. and Willems, M., Temporal semantics of compositional task
models and problem solving methods. Data and Knowledge Engineering, vol. 29(1), 1999, pp. 17-42.

5. C.C. Chang, H.J. Keider, Model theory, North Holland, 1973

42

10.

11.
12.

13

14.

15.
16.

17.

18.

Cornelissen, F., Jonker, C.M., and Treur, J., Compositional verification of knowledge-based systems: a case
study in diagnostic reasoning. In: E.Plaza, R. Benjamins (eds.), Knowledge Acquisition, Modelling and
Management, Proceedings of the 10th European Knowledge Acquisition Workshop, EKAW97, Lecture
Notesin Al, vol. 1319, Springer Verlag, Berlin, 1997, pp. 65-80.

Engelfriet, J., and Treur, J., Temporal Theories of Reasoning. Journal of Applied Non-Classical Logics, 5,
1995, pp. 239-261.

Engelfriet J.,, Treur J. Executable Tempora Logic for Nonmonotonic Reasoning. Journal of Symbolic
Computation, vol. 22, 1996, pp. 615-625.

Engelfriet J., and Treur J. Specification of Nonmonotonic Reasoning. Journal of Applied Non-Classical
Logics, vol. 10, 2000, pp. 7-27

E. Giunchiglia, P. Traverso and F. Giunchiglia, Multi-context Systems as a Specification framework for
Complex Reasoning Systems, In: J. Treur and Th. Wetter (eds), Formal Specification of Complex
Reasoning Systems, Ellis Horwood, 1993, pp. 45-72.

C.G. Hempel, Philosophy of Science, Prentice-Hall, Englewoods Cliffs, 1966

Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent Systems. a Formal Analysis of Pro-
activeness and Reactiveness. In: W.P. de Roever, H. Langmaack, A. Pnueli (eds.), Proceedings of the
International Workshop on Compositionality, COMPOS97. Lecture Notesin Computer Science, vol.

1536, Springer Verlag, 1998, pp. 350-380.

. P.H.G. van Langen and J. Treur, Representing world situations and information states by many-sorted

partial models, Report PE8904, University of Amsterdam, Department of Mathematics and Computer
Science, 1989.

T. Langholm, Partiality, Truth and Persistance, CSLI| Lecture Notes No. 15, Stanford University, Stanford,
1988.

D. Makinson, L. van der Torre, Input/output logics. Journal of Philosophical Logic 29 (2000) 383-408.
J. Treur, Completeness and definability in diagnostic expert systems. Proc. European Conference on
Artificia Intelligence, ECAI 1988, pp. 619 - 624

Treur, J., Heuristic reasoning and relative incompleteness. International Journal of Approximate
Reasoning, vol. 8, 1993, pp. 51-87.

R.W. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, Artificial Intelligence 13
(1980), pp. 133-170

Appendix: Proofs

Lemma 2.6
Let adomain description be given by W. Then the following conditions are equivalent:
(i) For every pair of situations M, N e W which satisfy the same input literals it holds
that they aso satisfy the same output literals, i.e.:
if M,Ne W then
IN(M) =In(N) = Out(M) = Out(N)
(if) Fordal M e Wi themodd sc,, (M) iscomplete.

Pr oof
(i) = (ii) Let N beacompletemodel in W refining M € Wjp,. From (i) it follows that all

complete models N’ in W refining M are the same. Therefore scy (M) =N e W.
(if) = (i) Thisfollowsfrom Lemma2.5b)(i). [|

Lemma3.2
Suppose asignature X isgiven, anon-empty set of complete input models W, for X

and amapping o: Pjn — P, where Pjy = P(Wjn) and P isaset of partial models for =

a) o isconservativeif andonly if M <In(o(M)) foral M e Pjp

b) If o isconservative and self-bounded then o is monotonic.
c) If o isconservative then the following are equivalent:
(i) o issef-bounded
(i) o ismonotonic and for al M e Pjp it holds
o(In(e(M))) = a(M)
If, moreover, Xin = Zqut thenthisisequivalent to
(i) oo ismonotonicand a(a(M)) = o(M) foral M e Pjp (idempotency).
d) If o doesnot affect theinputsand o is conservative then the following are equival ent:
(i) o ismonotonic
(i) o isself-bounded.
e) If a,p: Pijn —» P aremappingssuchthat for all N e Wjp it holds a(N) =B(N), a is
monotonic and B iswell-informed, then 3 is better informed than o.
f) Ifo, B : Pin —» P aremappingssuchthat for all N € Wjp itholds o(N) = B(N) and
both mappings are monotonic and well-informed then for all M € Pjp, it holds

Out(o(M)) = Out(B(M)) .

Proof
a) Thisfollowsfrom Lemma 2.3b).
b) If M <N then by conservativeness M < N < o(N). By self-boundedness this implies
tha (M) < o(N), i.e. o0 ismonaotonic.
c) (i) = (i) Since In(a(M)) < (M), by self-boundednessitistrivia that
o(ln(a(M))) < a(M).
On the other hand from M < o(M) (conservative) it followsthat M < In(o(M)), and again
by conservativity
M < In(a(M)) < ol (a(M))).
Applying self-boundednessyields o(M) < ol (ou(M))) and finishes the proof.
(if) = (i) Suppose M < o(N), then by Lemma 2.3b) we have
M =M|[Zin < a(N)[Zin = In(o(N));
hence M < In(a(N)).
From monotonicity it follows o(M) < a(In(a(N))) = cu(N). This proves (i).
The final statement of c) istrivia.
d) Thisfollowsfrom b) and c).
€) Let M € Pjn begiven. From monotonicity of o it followsthat forany N e Wi, with
M <N itholds: a(M) < a(N) = B(N). Therefore by Lemma 2.4b) we have
(M) < gei({B(N) | N e Wjn, M<N})
Finally, from well-informedness of 3 it follows that
out(gci({B(N) | N e Win, M <N})=0ut(B(M))

f) Thisfollowsfrom application of €) in two directions. [|

Theorem 3.4
Let anon-empty set of complete input models Wi, for signature £ begivenand aset V

of partial models of signature X such that Wi, < P(V). Definethe mapping o: Wip — P,
where P=P(V), by a(M)=sc,(M) fordl M e Pjp.

Then o isadeclarative functionality description.
In particular thisholdsif V isadomain description W, and Wi = In(W).

Pr oof
Apply Lemma 2.5 to conclude that o is conservative and self-bounded. [|

Proposition 3.5

45

Suppose adomain description is given by signature X and non-empty set of situation
models W. Let a: Pjn — P beafunctionality description, where Pj, = P(In(W)) and P

= P(W). The following conditions are equivalent:
(i) Foral M e Pjn each h e OutLit(X) thatistruein o(M) isalsotruein all

complete refinementsof M in W, i.e.
if he OutLit(Z) and M € Pj then
oM)e h = MIEy h
(i) Foral M e Wjn each h e OutLit(X) thatistruein o(M) isasotrueinal
complete refinementsof M in W, i.e.
if he OutLit(Z) and M € Wj then
oM)E h = MIFy h
(ili) Foral M e W each he OutLit(X) thatistruein o(ln(M)) isasotruein M, i.e
if he OutLit(X) and M € W then
o(InM))E h = ME h

Pr oof

(i) = (i) Thisfollowsfrom Wijn < Pjn.

(if) = (iii) If M e W then application of condition (ii) to In(M) provides In(M) I=\, h.
Hence M = h.

(ili) = (i) Suppose M € Pjn and a(M)E h.Letany Ne W begivenwith M <N. By
Lemma 2.3b) we have M <In(N) € Wjpn. From monotonicity of o it followsthat o(M) <
o(In(N)). Since ou(M) = h thisimplies o(In(N)) = h. From condition (iii) it follows that
N = h.Summarizing: forany Ne W with M <N wehave provedthat N~ h,i.e.

M Iy h. Thisproves(i). [|

Theorem 3.7

Suppose adomain description is given by signature X and non-empty set of situation
models W. Let a: Pjn — P beafunctionality description, where Pijn = P(Wijp) with

Win =1n(W) and P =P(W). Then thefollowing hold:
a) Thefollowing conditions are equivalent:
(i) Thefunctionality description o is sound with respectto W
(i) Out(cu(M)) < Out(seyy(M)) foral M e Pjp.
(iii) (M) <seyw(M) foral M e Pjp.
b) The following conditions are equivalent:
(i) Thefunctionality description o isw-complete with respect to W

(i) Out(ce(M)) = Out(seyy(M)) foral M e Wip.
(iii) (M) =sey(M) foral M e Wijp.
¢) Thefunctionality description o iscomplete with respect to W if and only if
Out(o(M)) = Out(se\y(M)) foral M e Pjp.
d) Thefollowing conditions are equivalent:
(i) Thefunctionality description o w-covers W
(i) Out(o(M)) = Out(scyy(M)) foral M e Wip.
(iii) (M) =scy(M) foral M e Wip.
€) Thefunctionality description o covers W if and only if
Out(ao(M)) = Out(scyy(M)) fordl M e Pjp.
There exists afunctionality description that covers W, namely scy.
f) If o w-covers W , then the domain description given by W isempirically founded if
and only if for every M e In(W) themode o(M) iscomplete.

Proof
a) Let M € Pjp begiven. From Lemma2.5q) it followsthat for any h € OutLit(X) it

holds sc\,(M) = h if andonly if M I=\, h. Therefore soundnessis equivalent to:
foreach M € Pjy andall h e OutLit(X) itholds

oM)E h = so(M) Eh
This proves (i) < (ii) of a).
It is clear that this condition follows from a(M) <se, (M) . This proves (iii) = (i) of a).
We will now prove (ii) = (iii). Assume (ii) holds. We will provethat a(M) <sc\ (M) . By
(i), for any given M € Pj wehave: for all h e OutLit(X) it holds

oM)E h = scy(M) = h
Therefore o(M)[Zqy; < seyw(M)[Zgyt -
Since we assume that only input and output signatures are involved in functionality

descriptions (and no interna signatures), the only thing that remains to be proved isthat it
aso holds a(M)|%;, < sey(M)[Z;,, . Notice that
sew(M)[Zin = gci({M’[M < M' € W}[Z;,
=gc({In(M’)|M <M' e W}
If M<M'e W then M =1n(M) <In(M'"), and by monotonicity it follows that
o(M) < a(In(M")) and therefore by Lemma 2.3b) we have
a(M)[Zi, < a(In(M?))[Zip,.

By conservatism we have In(M") < o(In(M’)). Therefore we derive
In(M") = In(M")[Ziy < a(In(M")IZ, -

47

Now In(M’) € Wjp, soit hasno real refinements (except itself).
Therefore o(In(M’))[Z;,, = In(M’) and thus
o(M)[Zi, < oIn(M?)[Zi = In(M”)
By Lemma 2.4 thisproves a(M)|Z;, < gei({In(M")| M <M' € W}) = scp(M)|[Z;..
This proves (ii) = (iii) of a).
b) The proof of b)(i) < (ii) issimilar to the proof of 8)(i) < (ii).
For the proof of (ii) < (iii), notice that for M acomplete input model, since o and scy,
are conservative, theinput parts of o(M) and sc, (M) both areequal to M.
¢) Thisissimilar to the proof of a)(i) < (ii).
d) Thisfollowsfrom a) and b).
e) Thefirst part of thisfollowsfrom @) and c). From Theorem 3.4 it follows that the
mapping defined by sc,, : M — sc (M) fordl M e Pj, isadeclarative functionality

description; by thefirst part of €) it covers W.
f) Thisfollowsfrom d) and Lemma 2.6. [|

Proposition 3.8
Suppose asignature X is given with anon-empty set of complete input models Wi, and P

isaset of partial models for X. Assume the mapping o: Pjn — P, where Pjn = P(Wip) ,
isadeclarative functionality description for X. Moreover, let adomain description W for
signature £ with In(W) = Wi begiven.

Then the following conditions are equivalent:

(i) W iscoveredby o

(ii) W isw-coveredby o and o is well-informed.

Proof
(i) = (i) Let M € Pj begiven. We haveto provethat o is well-informed, i.e.

Out(a(M)) = Out(gci(V4))
where

Vi={oN)| Ne Wj, & M<N}
Forany N e Wjn with M <N, from monotonicity it followsthat ou(M) < a(N).
Therefore by Lemma 2.4b)

o(M) < gci(Vy) Q)
Thisimplies one side of what we have to prove. The other side isthe harder part. Since W
iscovered by o by Theorem 3.7 we have

Out(o(M)) = Out(scy(M)) = Out(gci(V5))
with

Vo={Ne W|M<N}
We will apply Lemma 2.4a) to the sets V, and V,. Suppose an arbitrary N e V, isgiven,
then Ne W and M <N .Take M’ =In(N) € Wjp ; thisis acomplete model with respect
to theinput signature. By Lemma2.3b) M <M',s0 a(M’) € V,.Sinceo. covers W it
also w-covers W; further N iscomplete. Therefore by Theorem 3.7d) we have

o(M’) =scy(M’) <scy(N) =N
This shows us that the conditions of Lemma 2.4a) are satisfied. Applying this lemma provide
S

gei(Vy) < gei(Vy) = soy(M)
Therefore

Out(gci(V4)) < Out(scy(M)) = Out(a(M)). (2
Thisisthe other side of what we had to prove. From (1) and (2) it follows that

o is well-informed.
(i) = (i) Suppose W isw-covered by awell-informed o. Then by Theorem 3.7d) we have
scw(M) = a(M) foral M e Wjp. By applying Lemma 3.2f) we derive that Out(sc,,(M)) =

Out(a(M)) forall M e Pjp. From Theorem 3.7¢€) it follows that (i) holds. [|

Theorem 3.9
Suppose asignature X isgiven, Wi isanon-empty set of complete input modelsand P

isaset of partial modelsfor X. Assume o: Pj, — P isadeclarative functionality
description for X, where Pjn = P(Wip).
Then adomain description W* for £ with In(W*) = Wi, can be obtained that isw-
covered by . One can construct W* from o by taking

W* ={ N | Nisacomplete model of signatureX & IM € Wi, a(M)<N}.
Moreover, W* iscovered by o if and only if o is well-informed.
For every domain description W with In(W) = Wi for which o issound, W is

contained in W*.

Proof

Take the domain description given by
W* ={ N | Nisacomplete model of signature¥X & IM € Wi, o(M) <N}

It iseasy to verify that In(W*) = Wjp.
Wewill provethat W* isw-covered by o ; first wetreat soundness. Letan M e Pj, be

given. By the choice of W* above and by Lemma 2.3b) we can rewrite
scyw+(M) =gci {Ne W* |M <N} =gci(V,)
with

49

V,={N|Nisacompletemodel & M <N & IM’ € Wjn a(M’) <N}
We will provethat o(M) islessthan or equal to every member of V.. Let amember N of
V, begiven, with M’ € Wj suchthat a(M’) <N . Thenboth M <N and M’ <a(M’) <
N, while M’ =1n(N). From Lemma 2.3b) it followsthat M <M'. Therefore, by
monotonicity (M) < a(M’) < N. By applying Lemma 2.4b) it follows that

(M) < gci(Vy) = soy«(M) (€)

This proves soundness of o with respectto W*.
Next we will treat w-completeness. We are done if we prove that scy«(M) < a(M) for al
M € Wijp. Letsuchan M begiven. Then we have M < a(M). Notice that by our choice of

W* every completerefinement of a(M) isin W*; therefore by Lemma 2.5b) and 2.5a):
SOy« (M) < seyy«(aU(M)) = (M) (4)
This proves the w-completeness of o with respect to W*. From (3) and (4) it follows that
o w-covers W+,
By Proposition 3.8 o iswell-informed if and only if o covers W*.
Finally wewill provethat for any W suchthat oo issound with respectto W it holds W
c W*. Suppose M € W isgiven, then by Theorem 3.7a) from soundness of o with
respect to W it follows that
o(In(M)) <sey(IN(M)) <M
Therefore M € W*.]

Corollary 3.10
Suppose asignature X isgiven, Wi, isanon-empty set of input modelsfor £ and P isa

set of partial models for . Assume o: Pj, — P, where Pjn = P(Wjp), isadeclarative

functionality description for X.
Then thereis awell-informed declarative functionality description B: Pj, — P thatisa

well-informed refinement of o . This B isbetter informed than o ; in particular, it holds
Out(o(M)) < Out(B(M)) = Out(scyy«(M))
forall M € Pjp, with W* asin Theorem 3.9.

Proof

First we prove the existence of such a 3. Apply Theorem 3.9 to the functionality description
o.. By Theorem 3.7 theresulting domain W* is covered by the well-informed 3 = sty .
From Theorem 3.9 it followsthat W* isw-covered by o . From Theorem 3.7b), applied to

o it followsthat
Out(a(N)) = Out(scy+(N)) = Out(B(M))

50

forall N e Wjp. From Lemma 3.2¢) it followsthat [is better informed than o. This
proves the existence. [|

Lemmad4.2
Suppose asignature X isgivenand Wi isanon-empty set of input models. Take for P

the set of all partial models of signature ¥ and Pj, = P(Wjp). Let aconsistent reasoning
component specification for ¥ and Pjn begivenby KB.

Then the mapping consgg : Pin — P givenby M — conscg(M) isawell-informed
(declarative) functionality description. Moreover, Consk g = Sy od(k B)-

Proof
Since consgg = SCyoq(kp) this follows from Theorems 3.4, 3.7 and Proposition 3.8. B

Lemma 4.6
Assume asignature X isgiven, Wi isanon-empty set of complete input modelsand P a

set of modelsfor £ . Assume o : Pjn — P where Pjn = P(Wjp) isafunctionality
description. The non-empty set of rules KB, is constructed as follows. For each output
literal h, take
Tth) ={MePy, |a(M)E=h}

and mT(h) the set of minimal (with respect to the refinement relation) elementsin T(h).
Define KB, by the following set of rules

KBy = {h | AemT(h)} u {Con(Lit(M)) - h | Me mT(h),M#A}
where Con(..) means taking the conjunction of a set of literals.

Then a consistent reasoning component specification is obtained with signature X,
knowledge base KB, and set of partial input models Pj; such that for all complete models

M e Wip it holds (M) = KB,

Pr oof
Supposeamodel M € Wijp isgiven. Wewill provethat a(M) = KB,,. Thisalsoimplies

consistency. First we treat the general factsin KB,. Assume h e KB, so A € mT(h).
Therefore o(A) E h. From monotonicity it followsthat ou(M) = h. Next we treat arule that

isno genera fact, say
Con(Lit(Mg)) — h

with Mge mT(h). Since M iscomplete, from not M = Con(Lit(M)) it follows that
M E - Con(Lit(Mq))

51

By the strong Kleene rule for implication in that case the ruleistruein M, independent of

the truth value of h. By conservatism the same holds for a(M). In the other case
M E Con(Lit(Mq))

Thisimpliesthat M < M. Therefore, by monotonicity we have o(Mg) < ou(M). Now from
Mqoe mT(h) itfollowsthat a(Mg) E h, hence a(M) E h. Sodsointhiscasetheruleis

truein o(M). [|

Theorem 4.7
Assumeasignature X isgiven, Pj, isanon-empty set of partial input modelsfor £ and

let o : P, > P(W) beawell-informed functionality description.

Then the well-informed functionality description related to the consistent reasoning
component specification with signature X, knowledge base KB, and a set of partial input
models Pj, covers o. This reasoning component specification is minimal.

Proof

We will prove that the well-informed functionality description of the reasoning component
specification with KB = KB, givenin Lemma4.6 coverso. First we prove
Out(consg g (M)) < Out(a(M)) for all M € Pjp. Let the output literal h € OutLit(X) and
M € Pjn begivenwith M Egg h. By Lemma4.6 forevery N e Wi, with M <N the
model o(N) isamodel of KB, hence o(N) = h. By well-informedness a(M) E h.
Next we prove Out(consgg (M)) = Out(c. (M)) for dl M e Pjp. Suppose we are given
h e OutLit(X) andan M € Pjy with o(M) = h.Wewill show that M &g h. Since
a(M) £ h wehave M € T(h). Takeaminimal element M’ in T(h) with M’ <M. If M’
= A, thenfrom M’ € mT(h) itfollows he KB, so M kg h and we are done. In the
other casethat M’ # A we have thefollowing rulein KB:

Con(Lit(M")) — h
From M’ <M itfollowsthat M = Con(Lit(M")) . Therefore for any partial model N with
N>M and N KB itholds N~ Con(Lit(M")). SinceN KB it holds
N = Con(Lit(M’)) — h. Therefore, (by the strong Kleene truth value combination table)
wehave N = h. Thisproves M Egg h.
Therefore the well-informed functionality related to the reasoning component specification
as constructed covers the given functionality description o. Finally we show it is minimal.
Suppose we obtain KB’ from KB by leaving out one of the conditions in the condition
part of arule

52

Con(Lit(M)) — h
with M € mT(h) c T(d) and M # A . Theresulting condition part corresponds to a partial
model M’ <M with M’ # M. Since M wasminimal in T(h), itholds M’ ¢ T(h);
therefore a(M’) # h, while M’ =5 h. So thisknowledge base KB’ would not be
equivalent to KB. This provesthat the constructed KB isminimal. [|

Proposition 4.8
Let adomain description for signature £ and a non-empty set of input models Wi be
given by W. Suppose o isadeclarative functionality description w-covering W and KB
defines a reasoning component specification such that its related well-informed functionality
description covers .
The following conditions are equivalent:
(i) The domain described by W isempirically founded
(ii) Forevery M € Wi themodel (M) iscomplete
(iii) Forevery M € Wi and output literal h it holdseither M =g h or Mg = h
(iv) For any output literal h there exists aproposition p intermsof input literals such

that h istrueinasituation M € W if andonly if p istruein M

(explicit definability), i.e.: forevery M e W it holds

ME he MEp

Proof
(i) & (ii) Thisfollowsfrom Theorem 3.7b).
(if) = (iii) Let acompleteinput model M € Wi, and an output literal h be given.
Suppose M Eyg h isnot the case. Thisimpliesthat not consgg(M) = h. SinceKB
defines a reasoning component specification such that its related well-informed functionality
description is covering o, thereforenot a(M) = h. From completeness of (M) it follows
that Out(consgg(M)) = Out(aw(M)) = - h, hencewehave M Exg - h.
(iif) = (i) Following the lines of the above proof in the reversed order this can easily be
established.
(i) = (iv) Thisproof isavariant of the construction in Theorem 4.6. Let an output literal h
be given. Take an indexing of al Mje W with Mj & h; weshow that h isexplicitly
definable by the proposition

p = Dis{Con(Lit(In(Mj))) |i =1, .., k}

where Dis stands for the disjunction of a set of formulas. If M € W isgiven with
M E p, then M E Con(Lit(In(Mj))) for some i, so In(M) =In(Mj). From (i) and

53

MjE h itfollowsthat also M = h. Conversely, suppose M & h,then M =M; for some
i. Then M £ Con(Lit(In(Mj))), so M = p. We have proved that for every

M e W itholdsthat M = p< M E h.
(iv) = (i) Thisiseasy to verify.]

