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Abstract 
In this paper a semantical framework is developed that provides a logical description of the 
functionality of an interactive reasoning process. The concept of functionality description 
defines the functionality of a reasoning process abstracting from specific inference relations 
or knowledge bases. Moreover, a domain description is formalised. A number of properties of 
a functionality description are identified, and related to properties of the domain. It is 
established under which conditions a functionality, can be implemented by an inference 
relation and a knowledge base.  

 

 
Introduction 
 

In compositional agent- and knowledge-based systems the task or reasoning pattern is built 

up as a dynamic interaction between the components representing the subtasks; see [3], or 

[7]. Each of the primitive components is an interactive reasoning system based on an (often 

domain-specific) knowledge base. To design and specify compositional agent- and 

knowledge-based systems for complex tasks, the compositional design method DESIRE 

(DEsign and Specification of Interacting REasoning components; for instance see [2]) has 

been developed  

 To obtain a clear and well-defined analysis of the behaviour of such a dynamic 

compositional system, one has to start by defining the (interactive) role of a given primitive 

interactive component in such a system: a clear definition is needed of an interactive 

reasoning component’s functionality. In particular, to support reusability and maintainability 

a functionality description independent of the component’s specific internal knowledge 

representation, inference relations or implementation is required. This enables information 

hiding within a reasoning system: the component’s internal structure can be changed as long 

as its functionality remains the same.  

 In a compositional system questions concerning the behaviour of the whole system or 

satisfaction of the system’s functionality, can be decomposed into questions related to the 
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system’s compositional structure and questions for the case of a single primitive interactive 

reasoning component (cf. [12]).  

 This paper concentrates on the case of a primitive reasoning component and its 

interactions. For the reasons indicated, in this paper we analyse in more detail semantical and 

functional aspects of interactive reasoning components. It will be shown how to obtain in a 

semantical manner a logical description of reasoning that makes use of information "from 

outside"; in this case by "outside" we mean outside the reasoning component, but possibly 

inside the system. Such a logical description provides an explicit distinction between 

situation-independent knowledge in the knowledge base (described as a logical theory) and 

situation-specific information which can be used as an input, imported from the world 

situation outside (that is described as a given situation model). This perspective is similar to 

the perspective in [18] (and [10]), where the models representing specific information are 

called simulation structures.  

 

 

domain

description

declarative

functionality description

(input/output function)

reasoning component

specification

(knowledge base)

 
 

Fig. 1  Domain description, functionality description 

and reasoning component specification 

 

 On the one hand, from the computer science viewpoint, the framework enables us to 

define what a declarative functionality of a reasoning component is (the input/output 

possibilities provided by the component). We abstract from the dynamic aspects of the 

component: in this paper we are only concerned with what facts can be derived in a given 
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situation (information state), and not with at what time and in which order specific facts are 

derived. We prove that for any declarative functionality description a knowledge base 

specification in rule-format can be found such that the semantical consequence relation 

applied to this knowledge base and the additional input facts satisfies the required 

functionality. Reasoning components are able to draw partial conclusions if only a partial 

input information state is given. Therefore our formal description of the declarative 

functionality of a component also treats partiality of information both at the input side and 

the output side of the component. 

 On the other hand, from the logical viewpoint, this framework enables us to define in a 

direct and logical way when a reasoning component’s functionality is sound and complete 

with respect to the domain that is concerned. The central part of this paper is built up as 

shown in Fig. 1. 

 In Section 2 we define what a domain description is, and especially, in which manner 

world situations occurring in a domain and partial descriptions of them (information states) 

can be modelled (the lowest layer in Fig. 1). We will give some examples and prove some 

properties. In Section 3 we give a formal definition of a declarative functionality description 

of an interactive reasoning component and treat some examples (the middle layer in Fig. 1). 

Furthermore, we give some results on how well a declarative functionality description fits to 

(or describes) a given domain description (the lowest arrow in Fig. 1). In Section 4 it is 

defined what a reasoning component specification is (the highest layer in Fig. 1) and how 

well it fits to (or describes) a declarative functionality description (the highest arrow in Fig. 

1) and to a domain description (both arrows). In Section 5 it is shown for an application to a 

diagnostic process model how declarative functionality descriptions can be used to specify 

(required) properties of a primitive reasoning component in a concise and transparent 

manner. In the Appendix proofs can be found. Before treating this all, Section 1 provides an 

introduction to what an interactive reasoning component is. 

 

 

1  Interactive Reasoning 
 

In this section we explain the notions of interactive reasoning and of an interactive reasoning 

component. Logical descriptions will be given that will be used and extended in later 

chapters. In these logical descriptions the notion of (partial) model as known from logic 

plays an important role. We use partial models to represent information states of a reasoning 

component at a certain moment. Our logical descriptions will be based on partial 
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propositional logic. If (many-sorted) predicate logic with a finite number of object names 

and relation names is used, we can always use a propositional translation of the formulas to 

fall in the scope of propositional logic. 

 

1.1  Interactive reasoning by combining knowledge from theory and model 

Usually a reasoning component is described logically by a static theory  KB  (the knowledge 

base) which is given beforehand. From this theory conclusions can be derived using some 

inference mechanism. In case of an interactive reasoning component the information that 

serves as input facts during the reasoning is viewed as knowledge which is present from the 

start. In fact one deals with some extended theory  KB+  which additionally contains all 

information which could be put in from the outside. Using such information is essentially the 

using of knowledge elements from the theory  KB+  in the inference process, just like the 

knowledge from  KB  is used. This logical description enables one to simply apply the 

classical theory on derivability as studied in logic. This seems plain; however, there are some 

aspects which stay implicit or informal this way. 

 In fact there is not one theory  KB  but a whole variety of theories   KB+  which depend 

on situations that can occur in reality, part of which is represented by the input facts that are 

given to the component. This may be viewed as an implicit parametrization of the knowledge 

base. How can an explicit logical description of this parametrization be obtained ? Moreover, 

interactive reasoning components often have the property that during a session the input facts 

are added incrementally: for any moment there is only partial input information available. 

The component draws partial conclusions from this information; these conclusions may 

occasionally affect which other input facts are added. For example, in a complex reasoning 

task like diagnosis these dynamic effects are essential (see [17]). Therefore the knowledge 

base KB+  may be dynamic during the reasoning. 

 It turns out that some parts of the knowledge (the general or situation-independent 

knowledge) which can be used in the inference process can be described as a theory   KB  but 

other parts (situation-specific knowledge) are better described as a model  which represents 

the actual situation in reality, part of which is represented by the input facts. 

 In reasoning these two kinds of knowledge are combined by an interactive process as 

depicted in Fig. 2. Here the lowest layer depicts the world situation we are interested in; the 

shaded area of the world situation is the part of the world situation that is not observable. 

Since we cannot observe it, we are, in particular, interested in drawing conclusions about this 

part. 
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Fig. 2  Interactive reasoning 

 This can be done by reasoning, as performed by the reasoning component in the highest 

layer in Fig. 2. The world situation is modelled in some manner: we are only interested in 

some types of information, and the reasoning component requires a strict format of inputs. 

Therefore we use a situation model (the middle layer in Fig. 2). The reasoning makes use of 

observable facts from the world situation (the arrows on the left side, pointing upwards), as 

modelled by the situation model. In reasoning it applies general domain knowledge as stored 

in KB. This reasoning process provides additional information that can be used to extend the 

situation model (the highest right arrow, pointing downwards); this can be used to take a 

decision to carry out some action in the world situation (the lowest right arrow). 

 If the model representing the actual situation is a logical model of the theory which is 

used, and the inference mechanism of the component is sound, then logical conclusions 

derived in this way are always true in the model. In this paper we deal with these issues. The 

treatment we give provides a formal framework for interactive reasoning components as 

defined in the following section. 
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1.2  Logical description of an interactive reasoning component  

We consider a description in terms of propositional with a non-empty set of atoms  A  

containing two subsets  S  (possible input atoms) and  H  (possible output atoms). The set of 

atoms  A  collects all atomic propositions that are used in the reasoning component. The 

input atoms (sometimes called: observables) are the atoms for which a truth value may serve 

as an input to the component from the outside: from other reasoning components or from the 

outside world. The truth values of output atoms may be wanted by the user; since the 

component can derive them by logical inferences from the input atoms, the component may 

provide them to the user or to another component that needs them. It is possible that these 

two subsets contain all atoms, but it is also possible that there exist atoms outside these 

subsets; these intermediate atoms  can play a role as intermediate results or subgoals in 

inferences. In the general case they form some subset  I  of  A. Summarizing: 

 A   =  S � I � H              

 S   =  {s1, s2, ......}     I   =  {i1, i2, ......}    H  =  {h1, h2, ......}�

Notice that these sets may have nonempty intersections, although in the examples given 

below we deal with a disjoint union. From these atoms the set of propositional formulas can 

be built up by using the logical connectives  ª��Ó��µ��Å �  Applications in knowledge bases are 

often based on a subset of these propositions, namely propositions in rule-format. These are 

propositions in implication form where the if-part consists of a conjunction of literals and the 

then-part consists of one literal (a literal is the basic unit of information we use: it is an atom 

or the negation of an atom). As a special case of  formulas in rule-format, we allow single 

literals. These are to be interpreted as general facts (they may be viewed as rules with an 

empty condition-part). Examples of propositions in rule-format are the ones in Fig. 3 below.  

 
� rule 1 s1 ª�s2 µ� i1 

� rule 2� i1 ª�s3�µ� h1 

� rule 3� i1�ª�Å�s3� µ� Å�h1 

� rule 4� i1�ª�Å�s3� µ� h2  

� rule 5�  s3� µ� Å�h2 

� rule 6� � s4� µ� h1 

      

 Fig.  3  Example of a knowledge base 
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    To obtain a formal description of the interaction of the reasoning component with the 

outside, we will have to give a formal description of all situations the component may get in 

touch with (for instance all possible patients). For instance one may think of patient models 

containing all factual knowledge on some patient, such as symptoms, diseases etcetera. The 

reasoning is supposed to be always about one of these situations; in one session the user 

always gives the component information about a fixed one of them. This excludes a user who 

gives incorrect or arbitrary answers: we expect a user to transform factual knowledge from 

the situation that is considered to the component in a correct manner.  

 We define a situation model  as a truth assignment to the atoms. Some examples of 

situation models related to the knowledge base of Fig. 3 may be obtained by taking the 
following truth-assignments, corresponding to the tuple  < s1, s2, s3, s4; i1 ; h1, h2 >. 

 
           M1 :   < 1, 1, 1, 0; 1; 1, 0 > 

       M2 :   < 1, 1, 0, 0; 1; 0, 1 > 

        M3 :   < 0, 0, 0, 1; 0; 1, 0 > 

 

  Fig. 4  Some situations for  KB  from Fig. 3 

 

Notice that these situation models are models of the theory  KB (i.e. in each situation  M  

every rule of  KB  is true in  M). In this way one can represent knowledge which is situation-

specific (facts from reality) in the form of truth assignments. Below we will give a number of 

definitions to explain this point more precisely.  

 During a reasoning process at each moment in the system only a part of the information 

as given by a situation model is available. To represent this partiality we make use of partial 

(situation) models: assignments of truth values from {0, 1, u} to each of the atoms. Here the  u  

denotes undefined or unknown. Notice that the models as defined above (e.g. in Fig. 4) are 

included here as the truth assignments where to no atom an  u  is assigned; we distinguish 

them as the complete models among the partial models. Therefore the set of complete models 

is a subset of the set of partial models. Sometimes partial models that are not complete will 

be called incomplete models. So the word  "partial" means "maybe complete, maybe 

incomplete". 

 A partial model  may be constructed by replacing in any model as above some symbols  

0  or  1  by the symbol  u; examples of partial models are:  
   N1 :   < 1, u, 1, 0; u; u, 0 > 

   N2 :   < 1, 1, u, u; 1; u, u >  
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It is easy to see that, for the complete models given in Fig. 4, there may exist several 

hundreds of partial models, representing all information states of the component that 

eventually may occur; of course we will not enumerate them.  

 The dynamics of the reasoning of a component may be described by representing the 

trace of subsequent information states by a sequence of partial models. Each inference step 

constructs a new partial model as a refinement of the current partial model by adding to it the 

derived information. To illustrate this, in Fig. 5 we give an example that is related to the 

knowledge base in Fig. 3; here the tuples correspond to  
< s1, s2, s3, s4; i1 ; h1, h2 >. 

 
   N1 :   < 1, 1, 0, u; u; u, u > 

 inference step 1: rule 1 

   N2 :   < 1, 1, 0, u; 1; u, u > 

 inference step 2: rule 3 

   N3 :   < 1, 1, 0, u; 1; 0, u > 

 inference step 3: rule 4 

   N3 :   < 1, 1, 0, u; 1; 0, 1 > 

 

     Fig. 5  Example of a reasoning trace 

 
Here the initial facts  s1, s2, Å�s3  are observations, done in the world situation that is reasoned 

about; this may be modelled by: 

     M  =  < 1, 1, 0, 0; 1; 0, 1 >  

Furthermore, we assume that the initial information we know is about  s1, s2, s3. As pointed 

out earlier, for the atomic statements on which no truth value  0  or  1  is known the symbol  u  

is noted. The reasoning is data-driven and based on chaining; it stops if no new conclusions 

can be derived anymore. The chain of partial models constructed by this reasoning process 

is: 
               N1  ���12  ���13       

Here  �� is the refinement relation between partial models (i.e. in  N2  more information is 

known than in  N1, et cetera). Notice that   Ni ��0  for each i. 

 We finish this section by summing up some of the properties we assume reasoning 

components have: 

- the component can be used by putting in some input facts (data-driven, forward) as well 

as by asking a query to it (goal-directed, backward) or a combination of these. 
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- the component can draw (partial) conclusions from partial input information: not for all 

possible input facts truth values are needed 

- the input facts are not changed by the processing of the component; i.e., once a fact has 

been input as a true fact it remains true during the inference proces (conservatism) 

- if a larger set of input facts is given to the component, also the set of derivable facts is 

larger (monotonicity) 

 

1.3 Information states in an implemented system 

In an implementation of a reasoning component in an Expert System Shell, the information 

state of the component is represented by what is often called the (dynamic) facts base. The 

relation of such a representation with a partial model may be viewed as depicted in Fig. 6. 

Here the horizontal arrow depicts that the information state in the system represents (a part 

of) the world situation that is reasoned about. The vertical arrows depict that both the 

information state of the system and the world situation can be formalized by the use of a 

partial model. 

 

 

partial 
model

information 
    state

  world 
situation

world system

 formal model  
 

Fig. 6  World, system and formal model 

 

 The facts in the facts base are usually represented by objects and attributes of them. We 

will show how such representations can be formalized in the form of a partial model. An 

attribute with a boolean value such as in 

        bird1.female = false 

encodes the information that the atomic statement 

   female(bird1) 
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is false; this corresponds to the symbol  0  in a partial model, assigned to the atom  

female(bird1). Similarly, a boolean value true corresponds to a symbol  1  in a partial model; for 

instance  male(bird1)  has the truth value  1. An attribute with a non-boolean value codes a set 

of atomic statements. For example the expression 

        bird1.color = grey 

encodes the information that the atomic statement 

   color(bird1, grey) 

is true. In the same time we can have the information that  color(bird1, red)  is false. The 

attributes for which no values are filled in in the objects base may be interpreted as 

"unknown" or as "undefined". These express the partiality of the information state; they 

correspond to the symbols  u  in a partial model. Assume that we do not have information 

about the size. Then both 

  size(bird1, tall) 

  size(bird1, small)  

are unknown. So this for simple example we can build the partial model, corresponding to   

 <female(bird1), male(bird1), color(bird1, grey), color(bird1, red), size(bird1, tall), size(bird1, small)> 

in the following manner: 

  < 0, 1, 1, 0, u, u > 

Notice that there may be some dependencies between the different atoms. we will not discuss 

these at this place. 

 

 

2  Domain Descriptions 
 

In section 1 we have sketched how a reasoning component relates to the domain that is 

concerned, and the specific world situation it is reasoning about. To be able to compare the 

conclusions drawn by a reasoning component to the facts in this world situation in the 

domain, a formal framework is needed for describing the domain and the interaction of the 

reasoning component with it. Therefore below we will start by giving more precise 

definitions that constitute a formal framework to describe a domain. In section 3 and 4 the 

relation between a domain and a reasoning component is defined more formally. 

 

2.1  Describing world situations by complete models 

We start by giving the definition of the language elements to describe a domain. In this paper 

we will work only with finite propositional logical languages.  
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Definition 2.1 

A (propositional) signature  Ë  is a 3-tuple  < InSig(Ë); IntSig(Ë); OutSig(Ë) >  where  InSig(Ë), 

IntSig(Ë), OutSig(Ë) are ordered sets of atom names, respectively called the input signature, the 

internal signature and the output signature. The input and output signatures may contain 

common atom names, but the internal signature is disjoint from them. In this paper all 

signatures are assumed to be finite. 

The corresponding sets of literals are denoted by  InLit(Ë), IntLit(Ë), OutLit(Ë), while their 

union is denoted by  Lit(Ë). If  M  is a (partial) model based on this signature, then we say  M  

is of signature Ë .  

The signature  Ë’  is called a subsignature of  Ë  if  InSig(Ë	)�¢�InSig(Ë), IntSig(Ë	)�¢ IntSig(Ë)  and 

OutSig(Ë	) ¢�OutSig(Ë). 

 

 Each of the input, internal and output signatures are viewed as special cases of 

subsignatures. The following is an example of a signature: 
  < s1, s2, s3, s4; i1 ; h1, h2 >. 

In this paper we often consider only the relations between inputs and outputs; in that case we 

leave out the internal signature. 

 

Definition  2.2 

A domain description  W  for  Ë  is a non-empty set of complete truth assignments to the 

atoms.  

 

 In section 1, Fig. 4, an example of a domain description is shown. We assume   W  is an 

(arbitrary) given set of situations, representing these situations that actually occur in reality. 

This enables us to disregard from non-existing world situations with some as yet unknown 

combination of observables and hypotheses. As discussed in section 1, the reasoning is 

supposed to be always about one of these situations: we expect a user to transform factual 

knowledge from the situation in a correct manner.  

Remark: unless the example suggests, in practice the set  W  will not be enumerated; it 

simply will be established that such a set exists, and maybe some typical and/or critical 

examples of situation models will be described and used as a test set.  
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2.2  Describing information states by partial models 

During a reasoning process, only a part of the information about a world situation is 

available to the reasoning system. At any moment the system’s information state can be 

described by a partial model, as has been discussed in the sections 1.2 and 1.3. In this section 

we will give the formal framework. 

 A (partial) model  M  of signature Ë  is an assignment of truth values from {0, 1, u} to the 

atoms of  Ë. By  M(a)  we will denote the truth value assigned to atom  a. We call  M  a 

complete model if for all atoms  a  the truth value  M(a) is not  u. Let  V  be a non-empty set of 

partial models of signature  Ë. By  P(V)  we denote the set of all partial models that may be 

refined to a model in  V, and by  C(V)  we denote the set of complete models in  V. Notice 

that  C(V) ¢ V  and  V ¢ P(V) but in general  P(V) ¢ V  and  V ¢ C(V)  are not the case.  A 

relevant example is  V  =  P(W), where  W  is a domain description. In this case C(P(W))  =  W. 

    If  M � P  we denote by  Lit(M)  the set of literals which are true in  M, and by  InLit(M)  the 

set of input literals which are true in  M. Similarly  OutLit(M)  denotes the set of output 

literals which are true in  M. These sets of propositions correspond to the restrictions of the 

model  M  to the restricted sets of atoms  S  and  H. These restricted models are sometimes 

called reducts (also see [5]); the reduct of  M  to  a subsignature  Ë’  is denoted by  M|Ë’.  

 Suppose  Ë’  is a subsignature of  Ë  and  M’  is a model of signature  Ë	. The trivial 

expansion   M  of  M’  to the signature  Ë  is the model of signature  Ë   created from  M’  by 

assigning a  u  to any atom outside Ë’. 

 Let  M  be a model of signature Ë .The model  In(M)  is defined as the trivial expansion 
of  M|Ëin to the signature  Ë. This model represents the input part of  M; similarly  Out(M)  

represents the output part of  M. For example, the input parts of the models of Fig. 4 are 

given in Fig. 7. 

 
 reduct to  Ëin input part 

 M1|Ëin : < 1, 1, 1, 0 > In(M1) :   < 1, 1, 1, 0; u; u, u > 

 M2|Ëin : < 1, 1, 0, 0 > In(M2) :   < 1, 1, 0, 0; u; u, u > 

 M3|Ëin : < 0, 0, 0, 1 > In(M3) :   < 0, 0, 0, 1; u; u, u > 

 

    Fig. 7  Input parts of the models in Fig. 4  

 

The user (or other component) who is interacting with the reasoning component can only 

provide information about the input part of the situation that is concerned. Notice that 

  InLit(M)    =  Lit(In(M)) 
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  OutLit(M)  =  Lit(Out(M)) 

If  W  is a domain description then the related set of complete input models (resp. of 

complete output models), denoted by  In(W)  (resp.  Out(W) ), is the set of all possible 

complete input (resp. output) models from models of  W, that is: 

  In(W)  =  {In(M) | M � W }  

  Out(W) =  {Out(M) | M � W }  

A model  M  of signature  Ë  with  M(a) = u  for all atoms  a  not in InSig(Ë) is called an input 

model. Similarly, M  is called an output model  of signature  Ë  if  M(a) = u  for all atoms  a  
not in OutSig(Ë). We will use the symbols  Pin, Pout for non-empty sets of input models, 

respectively output models. If all these models are complete with respect to InSig(Ë) resp. 
OutSig(Ë) they are denoted by respectively Win, Wout. Notice that the models In(M) resp. 

Out(M) are input resp. output models in this sense. If no confusion is expected, for 

convenience we sometimes will leave out the  u’s; for instance we may write < 1, 1, 1, 0 > for 

the input model < 1, 1, 1, 0; u ; u, u >. 

 By  M���p  (to be read as: M  satisfies  p) we denote that the proposition  p  is true in the 

model  M  according to the strong Kleene semantics. The combination tables for truth values 

according to this approach to partial semantics are given by: 

 
   ¬ ϕ

0
1
u

1
0
u

ϕ∧ψ 1 0 u
1
0
u

1 0 u
0 0 0
u 0 u

ϕ∨ψ

1
0
u

1 0 u
1 1 1
1 0 u
1 u u

1
0
u

1 0 u
1 0 u
1 1 1
1 u u

ϕ→ψ

 
 

For more information on partial logic, see [1], [14]. By  Ò  we denote the empty partial model 

that contains no information at all: only  u’s are assigned. The refinement relation  �  between 

partial models is defined by 

M ��1  if for every atom  a  it holds M(a) ��1�D��(i.e., point by point), where the partial 

ordering of truth values is defined by  unknown < true, unknown < false. 

 

Lemma 2.3 

Suppose�Ë	  is a subsignature of Ë, and M, N are models of signature Ë���

a)  M ��1  if and only if for all literals  c  it holds 

  M ��c  ¶  N ��c 

b)  If  M ��1  then  M|Ë’  ���1_Ë’. 

c)  If  M’, N’ are of signature Ë	  and M, N are their trivial expansions to  Ë  then  M ��1  if and 

only if  M’ ��1
. 
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Let  V  be a non-empty set of partial models. If  M ��P(V) then by  M��|� � ��p  (to be read as: M  

forces  p  with respect to  V) we denote that for every refinement  N  of  M  in  V  it holds  

N���p: 
   M��|� � ��p   ²���j�N  �� V   [ M ��1��¶��N���p ] 

The semantic consequence relation restricted to models in  V, denoted by  F�� � �p  is defined 

by: for all models  M’ in  V  with  M’ � F  it holds  M’�� �p. 

There is a connection between the forcing relation and the semantic consequence relation 

restricted to models in  V, namely: 
  M��|� � ��p   ²���Lit(M)�� � �p 

 We say the members of  V  agree on the atom  a  if for all  M � V  the atom  a  has the 

same truth value in  M. In the other case we say the members of  V  disagree on  a. For a 

nonempty set  V  of partial models the greatest common information state of  V  is the partial 

model  N, denoted by  N = gci(V),   such that for all  M � V  it holds  N ��0  and for any  N’  

satisfying this condition it holds  N’ ��1. One may view this as the maximal information on 

which all members of  V  agree. This model  gci(V)  can be constructed as follows: for any 

atom  a  on which all members of  V  agree, take this truth value, and if the members of  V  

disagree take the truth value u. As an example, take the set  V  consisting of the partial 

models: 

    < 1, 1, 0, 1 > 

    < 1, u, 0, u > 

    < 0, 0, 0, u > 

In this case we have 

  gci(V)  = < u, u, 0, u > 

Notice that, just like the refinement relation, the operation  gci  is taken point by point. The 

following Lemma will be useful later on. 

 

Lemma  2.4 
a)  Suppose  V1  and  V2  are nonempty and for every  N  in  V2  there exists a  M  in  V1  such 

that  M ��1. Then gci(V1)  ���JFL�92). In particular this holds if  V2  ¢��V1. 

b)  If  M  is given such that for every  N in  V  it holds  M ��1, then  M ���JFL�9�� 

 

 For any partial model  M ��P(V)  this  gci-construction can be applied to the set of 
refinements in  V  of  M, i.e. to  V0 = { N � V | M ��1�`. The resulting greatest common 

information state of  V0  is called the semantic closure of  M  with respect to  V, and is 
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denoted by  scV(M). This refinement of   M  satisfies precisely the literals that are forced by  

M  with respect to  V. This and some other properties that we will use later on are included in 

Lemma 2.5 below. As an example, the semantic closure of   
  M0  = < 1, u, u, u; u; u, u >   

with respect to the domain description  W  in Fig. 4 is the greatest common information state 
of  {M1, M2}; therefore 

  scW(M0)  =  < 1, 1, u, 0; 1; u, u > . 

Notice that a semantic closure belongs to  P(V)  but in general does not belong to  V  and is 

not complete, even if all models in  V  are complete. 

 

Lemma 2.5 

Suppose M, N ��P(V). 

a)  For any literal  d  it holds 
 scV(M)  � d  ²  M�^�V  d 

b)  For all partial models  M, N ��P(V) it holds:  
   (i)  If  M ��1�� V  then  scV(M) ��1 

  (ii)  M ��VFV(M)   

 (iii)  M ��1��¶  scV(M) ��VFV(N)   

c)  M ��VFV(N)  ¶  scV(M) ��VFV(N)   

and in particular  scV(scV(M)) = scV(M)  

d)  If every complete refinement of  M  is a member of  V  then  scV(M) = M. In particular this 

holds for every complete model  M  in  V. 

  

The formalisation of information states by partial models above is based on propositional 

logic; for a many-sorted first order logic formalisation  of information states by partial 

models, see [13]. 

   

2.3  Empirically founded domains 

In the philosophy of science, for instance as in [11], criteria are given which a certain domain 

(an empirical science) must satisfy in order to have an empirical basis. Informally stated, 

such a criterion requires that every statement on the domain is essentially testable. This 

means that there exists a number of tests such that the statement is true if and only if a 

certain logical (boolean) combination of outcomes of these tests is satisfied. In our logical 

framework such a combination may be described formally as a proposition in terms of the 

input atoms; this will be shown in section 4. In terms of a domain description empirically 
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foundedness means that the truth value of each output atom is uniquely determined by the 

truth values of the inputs. After the following Lemma we will give a formal definition for 

this. 

 

Lemma  2.6 

Let a domain description be given by  W. Then the following conditions are equivalent: 

 (i)  For every pair of situations  M, N � W  which satisfy the same input literals it holds  

    that they also satisfy the same output literals, i.e.: 

    if  M, N � W  then  

����������������������In(M) = In(N)��¶��Out(M) = Out(N) 

(ii)  For all  M � Win  the model  scW(M)   is complete.�

 

Definition  2.7 

Let a domain description be given by  W. The domain  W  is called  empirically founded if 

one of the (equivalent) conditions of Lemma 2.6 is satisfied. 

 

    In case  H = A  these definitions provide that the models  M � W  are characterised uniquely 

by their input parts (notice that in this case the sets  S  and  H  will have a nonempty 

intersection). Notice also that the example in Fig. 4 satisfies these definitions; also in this 

example the models are characterised by their input parts. 

    In many disciplines one tries to build up a domain in such a manner that it is empirically 

founded. For instance in medical domains for every disease one tries to give a testable 

criterion which determines in what cases the disease occurs. In some cases these criteria are 

not correct or they are incomplete. However, there also exist many cases in which essentially 

correct and complete criteria are available, although in practical situations some of these 

criteria are not testable in an easy manner. For instance, for testing a certain criterion the 

patient has to be referred to a specialist, or the test is expensive, or risky, or takes a long 

time, et cetera. This may imply that for some time one has to draw (heuristic) conclusions 

from incomplete knowledge. In this paper we will not discuss this heuristic approach to 

incomplete knowledge; in [17] a treatment of this can be found. 

 

2.4  Example  

The following example shows how sometimes the set of observables (input atoms) can be 

extended to obtain an empirically founded domain. The domain  W  consists of the following 
truth assignments, corresponding to signature  < s1, s2, s3; h1, h2 >: 
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                          M1 :   < 1, 1, 0; 1, 0 > 

                          M2 :   < 0, 1, 1; 1, 1 > 

                          M3 :   < 0, 1, 1; 1, 0 > 

                          M4 :   < 1, 0, 1; 0, 0 > 

 

                           W  =  {M1, M2, M3, M4}. 

   

                   Fig. 8  Domain, not empirically founded 

 

The domain described by  W  is not empirically founded: both  M2  and  M3  satisfy the same 

input literals but differ in the output literals they satisfy: condition (i) of Lemma 2.6 fails. 
 Now we extend the set  A  by a fourth input atom  s4. This  s4   holds in the second and 

fourth situation but not in the first and third one. The set  W’  is given by the following truth 
assignments, corresponding to  < s1, s2, s3, s4; h1, h2 >. 

 
                          M’1 :   < 1, 1, 0, 0; 1, 0 > 

                          M’2 :   < 0, 1, 1, 1; 1, 1 > 

                          M’3 :   < 0, 1, 1, 0; 1, 0 > 

                          M’4 :   < 1, 0, 1, 1; 0, 0 > 

 

                            W’  =  {M’1, M’2, M’3, M’4}. 

 

                     Fig. 9  Domain, empirically founded 

 

The domain described by  W’  is empirically founded, as may be easily verified by the use of 

Lemma 2.6(i). 

 

 

3  Declarative Functionality Descriptions 
 

After having defined in section 2 more precisely what a domain description is, we now turn 

to the properties of a reasoning component related to a given domain. By the declarative 

functionality of a reasoning component we mean what the component is able to derive, given 

certain specific input data. Notice that in our terms funcionality is not covered by simply 



 

 

 

 

 
 
 
 

18 

describing what type of inputs in general may be needed, and separate from this what type of 

output in general may be produced. In our case by functionality we mean to describe for any 

set of specific input data, what specific output data in particular will or should occur, given 

these input data. 

 In this section, for a given domain description we treat what (declarative) functionality 

may be required from a reasoning component, in order to cover the domain description. 

Therefore we define what a declarative functionality description of a reasoning component is 

in section 3.1. Furthermore, the notions of soundness and completeness of a declarative 

functionality description with respect to a given domain description are defined in section 

3.2. In section 4, in addition it will be treated in what format a component’s knowledge base 

can be specified and when this specification meets the requirement as posed by a declarative 

functionality description. 

 

3.1  Definitions, constructions and examples 

In case of an empirically founded domain it looks rather trivial how a corresponding 

reasoning component’s functionality should be defined. Given a complete input model, the 

output of the component simply is prescribed by the unique model from  W  that refines the 

input model. In the case of the empirically founded  W’  of Fig. 9 we could simply define the 

component’s declarative functionality by the mapping  m: In(W’)  µ  W’  given by 

 

  < 1, 1, 0, 0 >  µ  < 1, 1, 0, 0; 1, 0 > 

  < 0, 1, 1, 1 >  µ  < 0, 1, 1, 1; 1, 1 > 

  < 0, 1, 1, 0 >  µ  < 0, 1, 1, 0; 1, 0 > 

  < 1, 0, 1, 1 >  µ  < 1, 0, 1, 1; 0, 0 > 

 

Notice that for convenience we include the input parts in the resulting models.

 This seems a rather straightforward approach. However, there are two complications that 

require a more detailed analysis. Firstly, the domain may not be empirically founded at all; in 

that case there is no unique refinement in  W. So some output literals will have to remain 

indeterminate. Secondly, a reasoning component is expected to give some (partial) answers 

in the case of an incomplete input model as well. These partial answers cannot be read 

directly from the complete models in  W. Both complications have to do with incomplete 

information (in input and/or in output). We will extend the above approach by using partial 

models both for input models and output models to specify these incompletenesses. 
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 In this section we consider the following example of a domain description. The 
signature is given by  < s1, s2; h1, h2 >. The domain  W  is given by the following situation 

models: 

 
  M1 :   < 0, 0; 0, 0 > 

  M2 :   < 0, 1; 0, 1 > 

  M3 :   < 1, 0; 0, 0 > 

  M4 :   < 1, 0; 1, 0 > 

  M5 :   < 1, 1; 1, 1 > 

 

  Fig. 10  Example domain 

 

Notice that this domain is not empirically founded: both  M3  and  M4  have the same input 

part, but they have different output parts. 

 In this case we can define a corresponding declarative functionality description by the 

mapping  m: In(W)  µ  P, where  P  =  P(W), given by: 

 

  < 0, 0 >  µ  < 0, 0; 0, 0 > 

  < 0, 1 >  µ  < 0, 1; 0, 1 > 

  < 1, 0 >  µ  < 1, 0; u, 0 > 

  < 1, 1 >  µ  < 1, 1; 1, 1 > 

 

           Fig. 11  Functionality description for complete input models 

 

Here a  u  is assigned to the output atoms on which there is no common opinion in  W, given 

the complete input model.  So, Fig. 11 is constructed by taking the greatest common 

information state of the refinements of (the trivial expansion of)  < 1, 0 >  in  W, in other 
words by taking  scW(< 1, 0 >) , where  < 1, 0 >  is identified with its trivial expansion.  This 

indicates a simple quite natural technique to solve the first one of the complications 

mentioned above, by simply allowing partial models in the range of  m.  

 The second complication as mentioned above deals with the case of incomplete input 

information. For example, suppose the partial input model  < u, 1 >  is given. What should the 
reasoning component conclude about  h1  and h2  in this case ? A trivial answer could be: 

nothing, i.e. assign  u  to both  h1  and h2. However, if  W  is inspected it turns out that there 

are only two refinements of (the trivial expansion of)   < u, 1 >  in  W, namely: 
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  M2 :   < 0, 1; 0, 1 > 

  M5 :   < 1, 1; 1, 1 > 

These two situation models disagree on  h1, but they agree that  h2  is true. Therefore the 

reasoning component may be expected to give as an answer:  < u, 1; u, 1 >. This is the greatest 

common information state of all refinements in  W  of the given partial input model  < u, 1 > , 
i.e.  scW(< u, 1 >)  =  gci({M2, M5}). So there are methods to obtain a non-trivial extension of the 

functionality description  m: In(W) µ  P  to a mapping         m: P(In(W))  µ  P. In our example 

this leads to the mapping  m  as defined by Fig. 12. 

 

  < 0, 0 >  µ  < 0, 0; 0, 0 > 

  < 0, 1 >  µ  < 0, 1; 0, 1 > 

  < 0, u >  µ  < 0, u; 0, u > 

  < 1, 0 >  µ  < 1, 0; u, 0 > 

  < 1, 1 >  µ  < 1, 1; 1, 1 > 

  < 1, u >  µ  < 1, u; u, u > 

  < u, 0 >  µ  < u, 0; u, 0 > 

  < u, 1 >  µ  < u, 1; u, 1 > 

  < u, u >  µ  < u, u; u, u > 

 

              Fig. 12  Functionality description  m  for partial input models 

 

Here any right hand side is obtained by taking the greatest common information state of all 

refinements in  W  of the corresponding left hand side (i.e. by taking its semantic closure). 

We summarize the construction of the mapping  m   from the domain description as carried 

out above. 

 

Construction of a functionality description from a domain description 

 

1.  List all possible (partial) input models and take any of them; 

  as an example we choose  < u, 0 > 

2.  For any input model  M  collect the situations from  W  that refine  M  in a set  V(M); 
  according to Fig. 10 this set consists of  M1, M3, and  M4. 

3.  Take the greatest common information state of this set:  gci(V(M)); 

  this is  < u, 0; u, 0 > 

4.  Define  m(M)  =  gci(V(M)). 
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5.  Repeat this for all other input models. 

 
 It turns out that this construction results in a mapping  m: Pin  µ  P  which satisfies a 

number of nice properties as defined by the following:  

 

Definition 3.1 
Suppose a signature  Ë  is given, a non-empty set of complete input models  Win  for  Ë  and a 

mapping  m: Pin  µ  P,  where  Pin  =  P(Win)  and  P  is a set of partial models for Ë .  

a)  The mapping  m  is called conservative if for all  M � Pin  it holds: 

  M  ���m(M)  

b)   The mapping  m  is called monotonic if for all  M, N � Pin  it holds:  

  M  ���1��¶  m(M)  ���m(N)  

c)   The mapping  m  is called self-bounded if for all  M, N � Pin  it holds:  

  

  M  ���m(N)�¶  m(M)  ���m(N)  

d)   The mapping  m  is called well-informed  if for all  M � Pin  it holds:  

� � Out(m(M))  =  gci({Out(m(N)) |  N � Win  &  M ��1�`� 

e)  The mapping  �: Pin  µ  P such that for all  N � Win  it holds  m(N) = �(N)  is called better 

informed than  m   if  Out(m(M))  ���2XW��(M))  for all   M � Pin. 

f)   The mapping  m  does not affect inputs if for all  M � Pin  it holds:  

� � m(M)|Ëin  =  M|Ëin  

g)   The mapping  m  is called regular  if it does not affect inputs that are no outputs, i.e. if for 
all  M � Pin  it holds:  

� � m(M)|Ëin\out  =  M|Ëin\out  

where  Ëin\out  is the part of the input signature that is not included in the output signature. 

   

 As a result of the analysis above, we use these properties to define the notion of a 

declarative functionality description. However, first we establish some logical relations 

between these properties, for instance: 

 

Lemma 3.2 
Suppose a signature  Ë  is given, a non-empty set of complete input models  Win    for  Ë  and 

a mapping  m: Pin  µ  P,  where  Pin  =  P(Win)  and  P  is a set of partial models for Ë .  

a)  m  is conservative if and only if  M � In(m(M))  for all  M � Pin 

b)  If  m  is conservative and self-bounded then  m  is monotonic. 
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c)  If  m  is conservative then the following are equivalent: 

  (i)  m   is self-bounded 
 (ii)  m   is monotonic and for all  M � Pin  it holds   

  m(In(m(M)))  =  m(M) 

 If, moreover,  Ëin  =  Ëout   then this is equivalent to 

 (iii)  m   is monotonic and  m(m(M))  =  m(M) for all  M � Pin (idempotency). 

d)  If   m  does not affect the inputs and  m  is conservative then the following are equivalent: 

  (i)  m  is monotonic  

 (ii)  m  is self-bounded. 
e)  If   m, �: Pin  µ  P  are mappings such that for all  N � Win  it holds  m(N) = �(N) , m  is 

monotonic and  �  is well-informed, then �  is better informed than  m.  
f)  If m, �  : Pin  µ  P  are mappings such that for all  N � Win  it holds  m(N) = �(N) and both 

mappings are monotonic and well-informed then for all  M � Pin  it holds  

   Out(m(M)) = Out(�(M)) .�

 

 A declarative functionality description should satisfy some of the properties introduced 

above to exclude pathological examples that cannot be realized by reasoning components as 

described in section 1.4. On the other hand the notion should not be too restrictive. The 

following definition will provide such a notion, as will become clear in the rest of this paper. 

 

Definition  3.3 

Suppose a signature  Ë  is given.  

a)  A declarative functionality description for  Ë  consists of  a non-empty set of complete 
input models  Win  for Ë  and a mapping  m: Pin  µ  P,  where  Pin  =  P(Win)  and  P  is a set of 

partial models for Ë , such that   m  is conservative and self-bounded. 

b)  If  m   is a declarative functionality description, then a well-informed refinement of  m  is a 
well-informed  �  such that for all  N � Win  it holds  Out(m(N)) = Out(�(N)) . 

 

 If no confusion is expected, for convenience we often omit the word "declarative". An 

example of a functionality description is the  m   as constructed in Fig. 12. This can be stated 

as the following more general Theorem. 

 

Theorem 3.4 
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Let a non-empty set of complete input models  Win  for signature  Ë��be given and a set  V of 

partial models of signature  Ë��such that  Win ¢ P(V). Define the mapping  m: Win µ P , where  

P = P(V) , by  m(M) = scV(M)  for all  M � Pin.   

Then  m  is a declarative functionality description. 
In particular this holds if V is a domain description W, and Win = In(W). 

�

 In fact, the functionality description  m� = scW   additionally satisfies the property of 

well-informedness. We do not prove this here, since it will follow from more general results 

later on (Theorem 3.7 and Proposition 3.8). Definition 3.3 allows more functionality 

descriptions than that one (see section 3.2). But there are restrictions as well. For example it 
is not possible to express a functionality of a component that makes  h1  true if  s1  is 

unknown (1) and makes  h1  unknown else (2):  

 

   < 0 >  µ  < 0; u > 

   < 1 >  µ  < 1; u > 

   < u >  µ  < u; 1 > 

 

  Fig. 13  Not a functionality description 

 

This mapping does not satisfy the monotonicity condition: monotonicity would require that 
(1) implies that  h1  is also true in case  s1  is true or false, which contradicts (2). In fact the 

conditions of Definition 3.3 imply that it is possible to satisfy the functionality description 

by an ordinary monotonic deduction system. This will be treated in more detail in section 4. 

 

3.2  Soundness and completeness 

Definition 3.3 above does not say anything about how well such a functionality description 

fits to a given domain description. The example as constructed in section 3.1 does cover the 

concerning domain description, but a slight change may provide a different functionality 

description that does not quite fit to the domain description. For example, this is the case if 

the third line is changed to 

  < 0, u >  µ  < 0, u; u, u > 

In this section we define additional requirements of soundness and completeness that should 

be satisfied by a functionality description in order to cover a given domain description.  

�

Proposition  3.5 
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Suppose a domain description is given by signature  Ë  and non-empty set of situation 
models  W. Let  m: Pin  µ  P  be a functionality description, where  Pin = P(In(W))  and  P = 

P(W). The following conditions are equivalent: 
  (i)   For all  M � Pin  each  h � OutLit(Ë)  that is true in  m(M)  is also true in all  

 complete refinements of  M  in  W, i.e.  
 if   h���OutLit(Ë)  and  M���Pin  then   

� � m(M)����h   ¶���M�^��W  h 

 (ii)   For all  M � Win  each  h � OutLit(Ë)  that is true in  m(M)  is also true in all  

 complete refinements of  M  in  W, i.e.  
 if   h���OutLit(Ë)  and  M���Win  then   

� � m(M)����h   ¶���M�^�W  h 

(iii)   For all  M � W  each  h � OutLit(Ë)  that is true in  m(In(M))  is also true in  M, i.e.  

 if   h���OutLit(Ë)  and  M���W  then   

� � m(In(M))����h   ¶���M��  h�

 

 In Definition 3.6 we will use the three equivalent conditions of Proposition 3.5 to define 

soundness of a functionality description with respect to a given domain description. Similar 

notions for completeness are only equivalent under the stronger assumption that   m   is well-

informed. Therefore in Definition 3.6 we distinguish between two versions of completeness: 

a strong notion and a weak one. 

 

Definition  3.6 

Suppose a domain description is given by signature  Ë  and non-empty set of situation 
models  W. Let  m: Pin  µ  P  be a functionality description, where  Pin  =  P(Win)  and  P = 

P(W). 

a)  We call  m   sound with respect to  W  if the one of the (equivalent) conditions of 

Proposition 3.5 is satisfied. 
b)  We call  m   (strongly) complete with respect to  W  if for all  M � Pin  for each  h � 

OutLit(Ë) that is true in all complete refinements of  M  in  W,  this  h  is also true in  m(M), i.e. 
if   h���OutLit(Ë)  and  M���Pin  then    

� � M�^�W  h����¶���m(M)����h �����

E���We call  m   weakly complete (w-complete) with respect to  W  if for all  M � Win  for each  

h � OutLit(Ë) that is forced by  M ,  this  h  is also true in  m(M), i.e.  

if   h���OutLit(Ë)  and  M���Win  then    
� � M��^�W h����¶���m(M)����h ����
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d)  If both the conditions a) and b) are satisfied we say that  m  covers  W. If both the 

conditions a) and c) are satisfied we say that  m  weakly covers (w-covers)  W. 

 

 It is easy to verify that the final functionality description  m   as constructed in Fig. 12 in 

section 3.1 covers the given domain description. 

 

 

 

  < 0, 0 >  µ  < 0, 0; 0, 0 > 

  < 0, 1 >  µ  < 0, 1; 0, 1 > 

  < 0, u >  µ  < 0, u; u, u > 

  < 1, 0 >  µ  < 1, 0; u, 0 > 

  < 1, 1 >  µ  < 1, 1; 1, 1 > 

  < 1, u >  µ  < 1, u; u, u > 

  < u, 0 >  µ  < u, 0; u, u > 

  < u, 1 >  µ  < u, 1; u, u > 

  < u, u >  µ  < u, u; u, u > 

 

               Fig. 14  Not well-informed functionality description extending Fig. 11 

 

 An example where completeness is not satisfied, whereas w-completeness is satisfied is 

if in the lines concerning incomplete input models we replace in the example in section 3.1 

the output truth values in the right hand side by  u (see Fig. 14). This example is in some 

sense the contrary of a well-informed refinement of  m . One could call it badly informed. 

 The following theorem shows that, given a domain description, there exists a unique 

regular functionality description that covers it. 

 

Theorem  3.7 

Suppose a domain description is given by signature  Ë  and non-empty set of situation 
models  W. Let  m: Pin  µ  P  be a functionality description, where  Pin  =  P(Win)  with  Win = 

In(W)  and  P = P(W). Then the following hold: 

a)  The following conditions are equivalent: 

   (i)  The functionality description  m  is sound with respect to  W  
  (ii)  Out(m(M)) ��2XW�VFW(M))  for all  M � Pin. 

 (iii)  m(M) ��VFW(M)  for all  M � Pin. 
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b)  The following conditions are equivalent: 

   (i)  The functionality description  m  is w-complete with respect to  W  
  (ii)  Out(m(M)) ��2Xt(scW(M))  for all  M � Win. 

 (iii)  m(M) ��VFW(M)  for all  M � Win. 

c)  The functionality description  m  is complete with respect to  W  if and only if   
  Out(m(M)) ��2XW�VFW(M))  for all  M � Pin. 

d)  The following conditions are equivalent: 

   (i)  The functionality description  m  w-covers  W  
  (ii)  Out(m(M)) = Out(scW(M))  for all  M � Win. 

 (iii)  m(M) = scW(M)  for all  M � Win. 

e)  The functionality description  m  covers  W  if and only if   
  Out(m(M)) = Out(scW(M))  for all  M � Pin. 

 There exists a functionality description that covers  W, namely  scW. 

f)  If  m  w-covers  W , then the domain description given by  W  is empirically founded if and 

only if for every  M � In(W)  the model  m(M)  is complete. 

 

It turns out that the additional condition of well-informedness is strong enough to make w-

completeness equivalent to completeness: 

 

Proposition 3.8 
Suppose a signature  Ë  is given with a non-empty set of complete input models  Win  and  P  

is a set of partial models for Ë. Assume the mapping  m: Pin  µ  P,  where  Pin  =  P(Win) , is a 

declarative functionality description for  Ë.  Moreover, let a domain description  W  for 
signature  Ë  with  In(W) =  Win  be given.  

Then the following conditions are equivalent: 

 (i)  W  is covered by  m���


KK���W  is w-covered by  m���CPF���m��KU�YGNN�KPHQTOGF��

 

 From Theorem 3.7 and Proposition 3.8 it follows that in the situation of Theorem 3.4 the 
functionality description given by  m = scW  is well-informed. 

 A most simple example of a functionality description not satisfying well-informedness 
for signature  < s1; h1 > is given by the following: 

 

  < 0 >  µ  < 0; 1 > 

  < 1 >  µ  < 1; 1 > 
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  < u >  µ  < u; u > 

 

            Fig. 15  Simple example of a not well-informed functionality description 

 

One may raise the question whether or not reasoning components that satisfy this type of 

functionality description are desirable. In section 4 we will return to this issue. 

 The question may arise whether for any given functionality description  m   a domain 

description can be found that is covered by  m; this is the reverse situation of Theorem 3.7 

above. According to Theorem 3.7e) this question can be formulated equivalently as: given   m 
, does there exist a  W  such that  Out(m(M)) = Out(scW(M))  for all  M � Pin.  It turns out that 

any  m  can be expressed in this way if and only if  m  is well-informed, as is shown by 

Theorem 3.9. 

 

Theorem 3.9 
Suppose a signature  Ë  is given,  Win  is a non-empty set of complete input models and  P  is 

a set of partial models for Ë. Assume  m: Pin  µ  P  is a declarative functionality description 

for  Ë,  where  Pin  =  P(Win).   

Then a domain description  W*  for  Ë  with  In(W*) =  Win  can be obtained that is w-covered 

by  m. One can construct  W*  from  m  by taking   
 W* = { N | N is a complete model of signature Ë� & qM���Win  �m(M) ��1`.  

Moreover,  W*   is covered by  m��KH�CPF�QPN[�KH��m��KU�YGNN�KPHQTOGF��

For every domain description  W  with  In(W) =  Win  for which  m  is sound,  W  is contained 

in  W*.�

 

Corollary 3.10 
Suppose a signature  Ë  is given, Win  is a non-empty set of input models for Ë��and  P  is a set 

of partial models for Ë. Assume  m: Pin  µ  P,  where  Pin  =  P(Win) �  is a declarative 

functionality description for  Ë.   
Then there is a well-informed declarative functionality description   �: Pin  µ  P  that is a 

well-informed refinement of  m���This���� is better informed�VJCP��m��; in particular, it holds   
  Out(m(M)) � Out(�(M)) = Out(scW*(M))   

for CNN� M � Pin , with  W*  as in Theorem 3.9.�

 

 Not surprisingly, the well-informed declarative functionality description  �   related to a 

given  m   as obtained in Corollary 3.10, sometimes is called the well-informed refinement of  

m. 
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4  Specifications of Interactive Reasoning Components 
 

The examples of functionality descriptions given in section 3 are defined by enumerating 

complete tables for the mappings. In the context of systems that acquire their knowledge by 

learning from examples (cases), this may have some practical relevance: the tables may be 

used as a representation of the cases that were encountered in the past, and the functionality 

embodied by this history. However, in practical situations concerning knowledge-based 

systems that do not learn from examples, tables are not an efficient manner of specification. 

Therefore a more condensed form of specification is needed. This will be treated in this 

section.  

 As already sketched in section 2, the declarative aspects of a reasoning component are 

determined by the specification of a knowledge base that enables the component, using a 

suitable fixed inference relation, to derive new (output) facts from given input facts. In 

section 4.1 we make a choice on the format in which the knowledge base is specified. We 

will leave the inference relation unspecified. Instead here we will define a suitable notion of 

a semantic consequence relation. In principle a choice of a strict format for the knowledge 

implies a restriction on the expressiveness. However, we will prove in section 4.3 that for 

any relevant well-informed functionality description a knowledge base specification in the 

chosen format is possible such that by the semantic consequence relation the required 

(declarative) functionality is obtained. This means that any derivability relation that is sound 

and complete with respect to this semantic consequence relation is able to derive from a 

given input information state by use of the knowledge base the right conclusions. In another 

report it will be discussed that chaining provides such a suitable derivability relation. 

 

4.1  Some definitions 

By  KB  (the knowledge base) we denote the knowledge which may be used by the reasoning 
component to derive output literals from the available information on inputs. Recall that  Pin  

is the non-empty set of all possible partial input models. If  M � Pin, and c is a conjunction of 

literals, then by   M �KB c�  we will denote that  c� semantically follows  from the information 

of  M  by use of  KB, i.e. is a semantic consequence of the theory Lit(M)���KB. The notions of 

rule-format, semantic consequence and reasoning component specification can be defined 

formally as follows: 

 

Definition 4.1 
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Let  Ë� be a signature and  KB  a set of propositions for Ë. 

a)  A proposition in rule-format, or simply a rule is a proposition of one of the following two 

forms: 

   (i)   d  where  d  is a literal; these rules are sometimes called general facts 

 (ii)   c µ d   where  c  is a conjunction of literals and  d  is a literal 

b) We call  KB  consistent with respect to the input model  M  if there exists a model  N  

with  M ��1 and N���KB. 

c)  If  KB  is consistent with respect to the input model  M  then the semantic consequence 
relation  M �KB c is defined as: for all models  N  for Ë��with  M ��1 and  N���KB  it holds� 

N���c��

d)  A (declarative) reasoning component specification consists of a finite signature  Ë , a 

finite non-empty set of rules for this signature  KB (knowledge base), and a finite set of input 
models  Pin = P(Win)  where  Win   is a non-empty set of complete input models for the 

related input signature. 

 

 Notice that the fact that we restrict the rule format to one conclusion only is not an 
essential restriction: every implication  c µ d  where both  c  CPF� d =  d1 ª��... ª��dk   are 

conjunctions of literals can simply be rewritten to a set of rules   c µ d1, ..., c µ dk  in the 

sense of Definition 4.1a). 
 The notion of consistency can be tested for a given subset of  Pin ; however, this does 

not guarantee that the component reasons sound with respect to a functionality description or 

domain description. This (stronger) notion of soundness will be explained further in section 

4.2.  
 For a reasoning component that is consistent with respect to  M � Pin  we define the 

consequence model  consKB(M)  of  M  as the partial model where all literals that semantically 

follow are true, and the others are unknown, i.e. for all atoms  a  it holds 
  consKB(M)(a)  = 0  if  M � ���  Å�a 

   1  if  M � ���  �a 

   u  else 

It is easy to verify that 
  M � ���  �a  ²��M |�Mod(KB) �a 

and 
  consKB(M)  =  scMod(KB) (M) 

where  Mod(KB)  is the set of all models of KB. 
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Lemma 4.2 
Suppose a signature  Ë  is given and   Win   is a non-empty set of input models. Take for  P  

the set of all partial models of signature  Ë   and  Pin  = P(Win). Let  a consistent reasoning 

component specification for  Ë   and  Pin  be given by  KB.   

Then the mapping  consKB : Pin µ�P  given by  M µ��consKB(M)  is a well-informed 

(declarative) functionality description. Moreover, consKB = scMod(KB). 

�

Definition 4.3 
Suppose a signature  Ë  is given and   Win   is a non-empty set of input models. Take for  P  

the set of all partial models of signature  Ë   and  Pin  = P(Win). Let  a consistent reasoning 

component specification for  Ë   and  Pin  be given by  KB.   

a)  We call  consKB  the well-informed functionality description related to  (or specified by ) 

the given reasoning component specification, or if no confusion is expected we simply call it 

the well-informed functionality description related to (or specified by )  KB. 
b)  We call two reasoning component specifications with the same set of input models  Pin  

equivalent if they specify the same functionality description. 

c)  We say a functionality description  m  is covered by the well-informed functionality 
description related to the reasoning component specification given by  KB  if for all  M � Pin  

it holds   Out(m (M)) =  Out(consKB (M)). 

 

4.2  Soundness and completeness 

In this section we give precise definitions of soundness and completeness of the well-

informed functionality description related to a reasoning component specification with 

respect to a given domain description. In view of Definition 4.3 this can be done very easily: 

 

Definition 4.4 
Suppose a signature  Ë  is given and  Win  is a non-empty set of input models and  W  a 

domain description for   Ë  and   Win . Let  a consistent reasoning component specification 

for  Ë   and  Pin  be given by  KB.   

The quality of a reasoning component specification with respect to a given domain 

description can be expressed by respectively soundness, completeness, w-completeness, 

covering with respect to the given domain description of the well-informed functionality 

description related to the reasoning component specification.  
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 It is easy to verify that the well-informed functionality description related to a reasoning 

component specification given by  KB  is sound with respect to  W  if and only if every model   

M � W  is a model of  KB. Collecting this, together with the connections formulated in  

Definition 3.6, Theorem 3.7 and Proposition 3.8,  we obtain the following statements for 

these notions: 

 

Proposition 4.5 

Suppose Ë  is a signature, and a domain description is given by  W  and a non-empty set of 
input models  Win. Let  a consistent reasoning component specification for  Ë   and  Pin  = 

P(Win)  be given by  KB, and  m   the well-informed functionality description related to the 

reasoning component specification given by  KB. 

a)  The following conditions are equivalent: 

  (i) m  is sound with respect to the domain description given by  W. 

 (ii) The output literals, which semantically follow using the knowledge base  KB  from input 
literals which are true in a given input model  M���Pin��� are true in  

 all complete refinements of  M  in  W, i.e.  
 if   h���OutLit(Ë)  and  M���Pin  then 

� � M �� ��� �h ��¶���M �^�W �h���

 (iii) The output literals, which semantically follow using the knowledge base  KB  from  
 input literals which are true in a given complete input model  M���Win��� are true in all 

 complete refinements of  M  in  W, i.e.  
 if   h���OutLit(Ë)  and  M���Win  then 

� � M �� ��� �h ��¶���M �^�W �h���

 (iv) For all  M � W  each  h � OutLit(Ë)  that semantically follow using the knowledge  

 base  KB from input literals which are true in  M��is true in  M, i.e.  

 if   h���OutLit(Ë)  and  M���W  then   
� � In(M)�� � � ��h   ¶���M��  h 

 (v) For all  M � Pin  it holds   

  consKB(M)  �  scW(M)    

 (vi) Every  M � W  is a model of  KB. 

 

b)  The following conditions are equivalent: 

  (i) m   is complete with respect to  W. 

 (ii) m   is w-complete with respect to  W. 
(iii) For any input model  M � Pin  and for any output literal  h  which is true in all complete  
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 refinements of  M  in  W, this   h  semantically follows from  M  using  KB,  
 i.e. if   h���OutLit(Ë)  and  M���Pin  then 

�������������������������������������M �^�W �h�   ¶�  M � ���  h 

(iv) For all  M � Pin  it holds 

  Out(consKB(M))  �  Out(scW(M)). 

 (v) For any complete input model  M � Win  and for any output literal  h  which is true in  

 all complete refinements of  M  in  W, this  h  semantically follows from  M  using  KB,  
 i.e. if   h���OutLit(Ë)  and  M���Win  then 

�������������������������������������M �^�W �h�   ¶�  M � ���  h 

(vi) For all  M � Win  it holds 

  consKB(M)  �  scW(M). 

c) The following holds:  m   covers  W  if and only if   
  Out(consKB(M))  =  Out(scW(M))  for all  M � Pin.        �

�

 In practice, in a reasoning component specification often the set of input models  Pin   is 

not mentioned. We will interpret this omission as if this set of input models is meant to be 

the set of all partial models for the input signature (all truth assignments that are theoretically 

possible). However, in practical domains, often not all theoretically possible input models 

are used, for instance since there are semantical dependencies between the input atoms. In 

these cases there may be theoretically possible input models that do not make sense in 

reality, and especially, there is no (domain) knowledge on what output should be expected 

for these input models. This means that in such a domain it is essentially impossible to prove 

soundness and completeness, as long as no restriction is put on the set of input models.  

 On the other hand, in practice it is often unfeasable to enumerate the set of all relevant 

input models, so in any case practical problems can be expected in proving soundness and 

completeness. What can be done is to collect (during knowledge acquisition) a set of typical, 

and critical examples of input models, and use this as a representative test set. Another 

possible approach is, as a part of the knowledge acquisition process, to make explicit all 
semantic dependencies between input atoms, and use these as constraints to specify  Pin. This 

approach has not been tried out yet.  

 

4.3  Existence of reasoning component specifications 

In this section we show that for any well-informed functionality description  m   a reasoning 

component specification can be found such that its related well-informed functionality 

description gives the same reults as  m, and that this can be done in a minimal sense. To 
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illustrate these issues we return to the example in section 3.1 of a domain description given 

by  W  and a well-informed functionality description  m , given by Fig. 12. If we involve only 

complete input models we may create from  m  a knowledge base. This can be done by simply 

taking for each complete input model the conjunction of all input literals that are true, and 

use this as the condition of a rule, while the conclusion is given by the image under  m . This 

results in the knowledge base of Fig. 16. 
 This knowledge base  KB  is consistent and satisfies  Out(m(M))  �  Out(consKB (M)) for all  

M � Pin . But this is not an adequate specification, since in the first place using it one cannot 

conclude anything in a clear and direct manner from incomplete input models: some of the 

rules are more complicated than is needed. Secondly,  it contains too many rules: it contains 

more rules than are needed, as we will see later on.  

 
� � Å�s1�ª�Å�s2� µ� Å�h1 

� � Å�s1�ª��s2� µ� Å�h1 �

� � �s1�ª��s2� µ� �h1 

� � Å�s1�ª�Å�s2� µ� Å�h2 

� � Å�s1�ª��s2� µ� �h2 

� � �s1�ª�Å�s2� µ� Å�h2 

� � �s1�ª��s2� µ� �h2 

 

                                  Fig.  16  Knowledge base weakly covering m�

 

 The first problem can be solved by adding to this knowledge base rules that are based on 

incomplete input models as well. Consider, for example, the third line of the functionality 

description  m   in Fig. 12: 

  < 0, u >  µ� < 0, u; 0, u > 

If  M  is any model in  Pin  refining the left hand side (i.e.  < 0, u > ��0), then by monotonicity   

  < 0, u; 0, u >  =  m(< 0, u >)  ���m(M) 

Therefore for any  M � Pin  it holds:  

  if  < 0, u > ��M  then   < 0, u; 0, u >  ���m(M)  
Since < 0, u > ��0  is equivalent to  M ��Å�s1  and < 0, u; 0, u >  ���m(M)   is equivalent to  M 

��Å�s1  and additionally  m(M) �� Å�h1, we can restate the above if-then rule by the rule   

Å�s1��µ��Å�h1. Doing this for all relevant lines of Fig. 12, this results in the extension of  KB  

given in Fig. 17. 
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 By this knowledge base we obtain a reasoning component specification that is able to 

conclude from partial input information in a direct manner. But the second problem has 

become worse: the number of rules has even increased to 10: this is still a very inefficient 

specification.  

 

�        Å�s1� µ� Å�h1 

�        Å�s2� µ� Å�h2 

�          s2� µ� �h2 

 

� �����������������Fig. 17  Extension of the knowledge base of Fig. 16 covering m�

 

 However, sometimes a number of the earlier rules are a special case of one new rule 

with less conditions. For instance, it is easy to see that the 10th rule makes the rules 5 and 7 

superfluous, since both the complete input models related to the rules 5 and 7 are refinements 

of the incomplete input model related to rule 10. This enables us to prune the knowledge 

base until we obtain a minimal form for it. Comparatively, in practice knowledge bases are 

acquired from experts who have streamlined and minimized the storage of their knowledge 

in the past.  

 Here, in our example it can be shown how such a minimization can be done. For 
example, instead of considering all partial input models  M � Pin  for which m(M) �  h1, we 

only take the  M � Pin  among them that are minimal in  Pin , i.e. such that there does not 

exist an  M’ � Pin   with  m(M) �  h1  such that  M’ ��0  and  M’ ��M. Inspecting  Pin, for each of 

the four output literals  h1, Å�h1, h2, Å�h2  we find one non-trivial minimal element. Using 

these we obtain the following more concise knowledge base (which is a subset of the 

knowledge base above): 

 
� � �s1�ª��s2� µ� �h1 

�  Å�s1� µ� Å�h1 

�  Å�s2� µ� Å�h2 

�   s2� µ� �h2 

 

                            Fig. 18  Minimal knowledge base covering  m�

�
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By this knowledge base a specification is obtained such that its related well-informed 

functionality description has the same output models as m  (it covers   m ) and which is 

minimal in the sense that will be defined below more precisely. 

 In the context of the example above we gave an informal description of a construction 

showing that for a given well-informed functionality description  m   there exists a reasoning 

component specification such that its related well-informed functionality description is 

covering m . Summarized, the procedure can be described using truth tables as shown below. 

Here a right hand side of the functionality description is interpreted as a truth-table (by 

example we take the one of Fig. 12): 

 
 s1 s2 h1 h2 T(h2) mT(h2) 

 
______________________________________________________________________ 

 0 0 0 0   (1) 

 0 1 0 1  +    e (2) 

 0 u 0 u    (3) 

 1 0 u 0    (4) 

 1 1 1 1  +    e  (5) 

 1 u u u    (6) 

 u 0 u 0    (7) 

 u 1 u 1  +    V  (8) 

 u u u u    (9) 

 

                   Fig. 19  Truth table representing the functionality description of Fig 12 

 

The lines correspond to partial output models as described by the well-informed functionality 

description, and the columns correspond to the truth values for the atom mentioned above it. 

The procedure runs as follows: 

 

Minimal knowledge base construction 

 

1. Select one of the output literals; 
 as an example we choose  h2 

2. Collect all lines in the table where the  h2-column shows that  h2  is true (the set T(h2)); 

 this results in the lines 2, 5, 8 
3. Delete from this list the ones that are refinements of other lines (the set  mT(h2)); 
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 here the lines 2 and 5 are deleted since the input parts of them are refinements of the  

 input part of line 8 

4. For each of the remaining lines, construct a rule with as condition part the conjunction  
 of input literals that are true and with  h2  as conclusion;  

 in our example this results in the rule   s2��µ��h2 

5. Repeat this procedure for all other output literals; 
 so do the same for  h1, Å�h1, Å h2. 

 

We will define this construction more formally and prove that it provides indeed a 

specification covering m . Moreover, we will prove that it results in a minimal specification. 

The example and procedure described above may help to understand the ideas behind the 

formal approach below. Notice that this is an extension to partial logic of the wellknown 

theorem from propositional logic, stating that any boolean function can be expressed as a 

combination of negation, conjunction and disjunction. 

 

Definition 4.5 

Let  a consistent reasoning component specification be given by signature  Ë, a knowledge 
base  KB, and non-empty set of partial input models Pin. Then it is called minimal if for every 

rule in  KB, and every generalization of it by omitting one of the conditions, replacing the 

rule by its generalization makes a knowledge base that is not equivalent to  KB. 

 

Lemma 4.6 
Assume a signature  Ë  is given,  Win  is a non-empty set of complete input models and  P  a 

set of models for  Ë . Assume   m : Pin µ P  where  Pin = P(Win)  is a functionality description. 

The non-empty set of rules  KB �   is constructed as follows. For each output literal  h, take   

  T(h)  =  { M ��Pin  | m(M) � h }   

and  mT(h)  the set of minimal (with respect to the refinement relation) elements in  T(h). 
Define  KB �   by the following set of rules 

 KB �   =  { h  |  Ò � mT(h) }  ���{ Con(Lit(M))  µ  h  |  M � mT(h), M ��Ò } 

where Con(..)  means taking the conjunction of a set of literals. 

Then a consistent reasoning component specification is obtained with signature  Ë, 
knowledge base  KB � , and set of partial input models Pin  such that for all complete models 

M ��Win��it holds  m(M)���KB � .  

 

Theorem 4.7 
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Assume a signature  Ë  is given,  Pin  is a non-empty set of partial input models for  Ë  and let   

m : Pin µ P(W)  be a well-informed functionality description.  

Then the well-informed functionality description related to the consistent reasoning 
component specification with signature  Ë, knowledge base  KB � , and a set of partial input 

models Pin  covers  m. This reasoning component specification is minimal. 

 

 Applying the construction of Lemma 4.6 above to the not well-informed functionality 

description of Fig. 15 gives the knowledge base of Fig.  20. Notice that here two different 
minimal elements occur in the set  T(h1). 

 
       s1  µ  h1  

   Å�s1  µ  h1  

 

     Fig. 20  Knowledge base based on a not well-informed functionality description. 

 
A reasoning component specified by this knowledge base  KB1  has  h1  as a semantic 

consequence (independent of whether or not input information is given). However, the 
original functionality description gives as an output the truth value  unknown  to  h1  if the 

truth value  unknown  of  s1 is given as an input. This illustrates the plain fact that any 

functionality description that is not well-informed cannot be covered by the well-informed 

functionality description related to any knowledge base. The reasoning component is able to 
derive h1  from  KB1  by use of any complete inference relation such as resolution or natural 

deduction. But using chaining KB1 is not able to derive  h1  if nothing is known about  s1.  

 This contrasts with the knowledge base  KB2  just consisting of the general fact  h1; with  

KB2  a component using any complete inference relation derives the same conclusions as 

with  KB1. With chaining as an inference relation this time it is also able to derive always  h1 

. It turns out that using chaining we are able to distinguish the two different functionality 
descriptions as discussed by the two knowledge bases  KB1 and  KB2  where other (so-called 

complete) inference relations are not able to distinguish a functionality description from its 

well-informed refinement. Since this concerns distinctions that are relevant in practice, this 

phenomenon will be analysed in more detail in another report. 

 The following Proposition describes the case of empirically founded domains. 

 

Proposition  4.8 
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Let a domain description for signature  Ë  and a non-empty set of input models  Win  be given 

by  W. Suppose  m  is a declarative functionality description w-covering  W  and  KB  defines 

a reasoning component specification such that its related well-informed functionality 

description covers  m. 

The following conditions are equivalent: 

  (i)  The domain described by  W  is empirically founded 
 (ii)  For every  M���Win  the model  m(M)  is complete 

(iii)  For every  M���Win  and output literal  h  it holds either  M �KB  h  or  M �KB  Å�h 

(iv)  For any output literal  h� there exists a proposition  p  in terms of input literals such  

     that  h  is true in a situation  M � W  if and only if  p  is true in  M  

     (explicit definability),  i.e.: for every  M � W  it holds 

������������������������ M����h��²��M���p 

 

 

5   Applications 
 
In this section it is shown how the semantical framework introduced in this paper can be 

applied to a process model for diagnostic reasoning (see [6]) . The processes at different 

abstraction levels of this generic diagnostic model are given in Fig. 21. The primitive 

component Hypothesis Determination generates hypotheses that are validated by the 

component Hypothesis Validation. The latter component is not primitive: it is composed of 

the primitive components Observation Determination, Observation Execution, and 

Hypothesis Evaluation.  

 

 
Diagnostic Reasoning

Hypothesis Determination

Observation 
Determination

Hypothesis 
Evaluation

Hypothesis Validation

Observation 
Execution  
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Fig. 21  Processes at different abstraction levels in the diagnostic process model 

 

 

In [6] it is shown how (dynamic) properties of the process model as a whole can be reduced 

to properties of Hypothesis Determination, and how properties of Hypothesis Validation can 

be reduced to properties of Observation Determination, Observation Execution, and 

Hypothesis Evaluation. Since the primitive components were left open in this generic model, 

here the story ends in [6]. To apply the generic model, instantiations of these primitive 

components are needed, for example selected from a library of components. The functionality 

of these components can be described by functionality descriptions. However, using the 

approach of [6], the model as a whole is only guaranteed to work properly if the properties of 

the primitive components presented in [6] are in some sense satisfied by these functionality 

descriptions. In this section we shown how these properties can be formulated as properties of 

functionality descriptions. 

The component Hypothesis Determination should satisfy focus efficiency and focus 

effectiveness. Focus efficiency means that no hypotheses are chosen in focus that already 

have been assessed. In the temporal language used in [6] this is expressed in the following 

form. For all traces, at all time points if at the input the information is available that some 

hypothesis h already was assessed, then it will not be at the output that it is in focus: 

 �4�Traces(HD) �t �h 

  [ stateHD(4 , t, input(HD)) |= assessed(h) �  stateHD(4 , t, output(HD)) |z focus(h) ] 

Suppose a candidate component to be used for Hypothesus Determination is described by 

functionality description D. Then the above property can be reformulated to the following 

property of D:  

 M  |= assessed(h) �  � (M) |z focus(h) ] 

The second proerty to be satisfied by Hypothesis Determination is focus effectiveness; this 

means that as long as not all hypotheses have been assessed, and no hypothesis has been 

confirmed, there will be generated focus hypotheses. In the temporal language of [6] this is 

expressed as follows. For all traces and time points, if there exists at least one hypothesis for 

which no information is at the input that it was assessed, and for no hypothesis there is 
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information on the input that it was confirmed, then there exists at least one hypothesis such 

that on the output there is information that it is in focus: 

 �4�Traces(HD) �t   

 [�h stateHD(4 , t, input(HD)) |z assessed(h) � �h stateS(4 , t, input(HD)) |z confirmed(h)]  

 ��[ �h’ stateHD(4 , t, output(HD)) |= focus(h’) ] 

This property can be reformulated to the following property of D:  

 [ �h M  |z assessed(h) &  �h M |z confirmed(h)]  �  �h’  � (M) |= focus(h’)  

In conclusion, a component can be chosen to play the role of Hypothesis Determination in the 

diagnostic model if these two properties hold for its functionality description. 

 In a similar manner the properties ’observation effectiveness’ and ’observation efficiency’ of 

the component Observation Determination reduce to static properties of functionality 

descriptions. Observation efficiency means that no observations are generated that already 

were performed: 

 �4�Traces(OD) �t �o 

  [ stateOD(4 , t, input(OD)) |= observed(o) �  stateOD(4 , t, output(OD)) |z to_be_observed(o) ] 

This is reformulated as 

  M |= observed(o) �  � (M) |z to_be_observed(o) ] 

Observation effectiveness means that if there exists at least one hypothesis in focus, and not 

all observations have been performed, then at least one observation is generated. 

�4�Traces(OD) �t �h 

  [�o  stateOD(4 , t, input(OD)) |z observed(o)  

    � stateOD(4 , t, input(OD)) |= focus(h) �   

     �o’ stateOD(4 , t, output(OD)) |= to_be_observed(o’) ] 

This is reformulated as 

 [ �o,h  M  |z observed(o) & M |= focus(h)]  �  �o'  � (M) |= to_be_observed(o’) 

One of the required properties of Hypothesis Evaluation is assessment decisiveness, which 

means that if for all possible observations, observation results have been input, then for every 

hypothesis an assessment can be derived: 

�4�Traces(HE) �t   

 [�o [ stateHE(4 , t, input(HE)) |= o ��  stateHE(4 , t, input(HE)) |= � o ] �  

  �h [ stateHE(4 , t, output(HE)) |= h ��  stateHE(4 , t, output(HE)) |= � h ] 



 

 

 

 

 
 
 
 

41 

This can be reformulated for a functionality description as: 

 �o [ M  |= o ��  M |= � o ]  �  �h [ � (M) |= h ��  � (M) |= � h ] 

This property is a special case of a property that is sometimes called decisiveness: The 

functionality description �  is called decisive if for all complete input models, also the 

generated model is complete: 

   M �  Win � � (M) is complete 

In this section it was shown in an example (based on [6]) how required properties of 

candidate primitive components for a generic model can be formulated as properties of their 

functionality description which specifies their functionality independent of specific details of 

internal knowledge representation, inference relations or implementation. 

 

 
6  Conclusions 
 
This paper contributes a semantical framework that provides a logical description of the 

functionality of interactive reasoning. The concept of functionality abstracts from specific 

inference relations or knowledge representation. A number of properties of a functionality 

description are identified, and related to (formalized) characteristics of the domain. It is 

characterised under which conditions a functionality description can be implemented by an 

inference relation and a knowledge base.  

 It turns out that our semantical framework may provide adequate logical descriptions for 

the functionality of an interactive reasoning component. In particular the relation of the 

conclusions that may be drawn by a component and the situation in reality that is concerned 

may be made more transparant by our framework. Furthermore, the formal definitions of 

soundness, completeness and empirically foundedness as given above enable us to establish 

the (meta-)logical connections between these concepts. 

 The semantic formalisation using information states can also be exploited to formalise the 

dynamics of a reasoning process. The intermediate reasoning steps can be formalised as traces 

of information states, as briefly sketched in Section 1.2. To specify the dynamics of such 

traces variants of temporal logic can be used. For specific classes of nonmonotonic reasoning 

methods this has been worked out in [7], [8], [9]. 
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 The semantic framework for reasoning components introduced here can be incorporated 

in a semantic formalisation of a compositional reasoning system, as presented in [4]. In [4] the 

semantic formalisation of the functionality of a primitive component was left open; it was 

taken as an assumed building block on top of which the compositional dynamics were defined 

semantically. The current paper fills this gap by providing a semantic formalisation of the 

building block. In [12] some results can be found on compositioon verification of agent-based 

reasoning systems. In this paper it has been addressed how properties of primitive components 

are related to (dynamic) properties of a compositional reasoning system as a whole.  

 In Section 5 above it has been shown how (required) properties of primitive components 

within a compositional system can be related to properties of declarative functionality 

descriptions of candidate components. Since these properties abstract from specific 

knowledge representation or inference, reuse and maintainability is supported: whatever is 

changed within such a candidate component, it does not matter as long as the functionality 

description remains the same or at least has the same relevant properties (information hiding). 

Other future investigations are planned in the relation between the semantical approach 

introduced above and recent work on input-output logics (cf. [15]).  
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Appendix:  Proofs 
 
Lemma  2.6 

Let a domain description be given by  W. Then the following conditions are equivalent: 

 (i)  For every pair of situations  M, N � W  which satisfy the same input literals it holds  

    that they also satisfy the same output literals, i.e.: 

    if  M, N � W  then  

����������������������In(M) = In(N)��¶��Out(M) = Out(N) 
(ii)  For all  M � Win  the model  scW(M)   is complete. 

 

Proof 
(i) ¶�(ii)  Let  N  be a complete model in  W  refining  M � Win. From (i) it follows that all 

complete models  N’  in  W  refining  M  are the same. Therefore  scW(M) = N � W. 

(ii) ¶�(i)  This follows from Lemma 2.5b)(i).                                                  ��

 
 

Lemma 3.2 
Suppose a signature  Ë  is given, a non-empty set of complete input models  Win    for  Ë  

and a mapping  m: Pin  µ  P,  where  Pin  =  P(Win)  and  P  is a set of partial models for Ë 

.  
a)  m  is conservative if and only if  M � In(m(M))  for all  M � Pin 

b)  If  m  is conservative and self-bounded then  m  is monotonic. 

c)  If  m  is conservative then the following are equivalent: 

  (i)  m   is self-bounded 
 (ii)  m   is monotonic and for all  M � Pin  it holds   

  m(In(m(M)))  =  m(M) 
 If, moreover,  Ëin  =  Ëout   then this is equivalent to 

 (iii)  m   is monotonic and  m(m(M))  =  m(M) for all  M � Pin (idempotency). 

d)  If   m  does not affect the inputs and  m  is conservative then the following are equivalent: 

  (i)  m  is monotonic  

 (ii)  m  is self-bounded. 
e)  If   m, �: Pin  µ  P  are mappings such that for all  N � Win  it holds  m(N) = �(N) , m  is 

monotonic and  �  is well-informed, then �  is better informed than  m.  
f)  If m, �  : Pin  µ  P  are mappings such that for all  N � Win  it holds  m(N) = �(N) and 

both mappings are monotonic and well-informed then for all  M � Pin  it holds  

   Out(m(M)) = Out(�(M)) . 
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Proof 

a)  This follows from Lemma 2.3b). 

b)  If  M ��1  then by conservativeness  M ��1���m(N). By self-boundedness this implies 

that  m(M)  ���m(N), i.e. m  is monotonic.  

c)  (i) ¶ (ii)  Since  In(m(M))  ���m(M), by self-boundedness it is trivial that   

  m(In(m(M)))  ���m(M).  

On the other hand from  M  ���m(M)  (conservative) it follows that  M � In(m(M)), and again 

by conservativity    

  M � In(m(M)) ��m(I(m(M))).  

Applying self-boundedness yields  m(M) ��m(I(m(M)))  and finishes the proof. 

(ii) ¶ (i)  Suppose  M ��m(N), then by Lemma 2.3b) we have   
  M = M|Ëin ��m(N)|Ëin  = In(m(N));  

hence M � In(m(N)).  

From monotonicity it follows  m(M) ��m(In(m(N))) = m(N). This proves (i). 

The final statement of c) is trivial. 

d)  This follows from b) and c). 
e)  Let  M � Pin  be given. From monotonicity of  m  it follows that for any   N � Win   with   

M ��1  it holds: m(M)  ���m(N) = �(N). Therefore by Lemma 2.4b) we have 
� � m(M)  ���JFL�^�(N) |  N � Win ,  M ��1 }) 

Finally, from well-informedness of  �  it follows that 
  Out(gci({�(N) |  N � Win ,  M ��1 }) = Out(�(M)) 

f)  This follows from application of e) in two directions. ��

 
 

Theorem 3.4 
Let a non-empty set of complete input models  Win  for signature  Ë��be given and a set  V 

of partial models of signature  Ë��such that  Win ¢ P(V). Define the mapping  m: Win µ P , 

where  P = P(V) , by  m(M) = scV(M)  for all  M � Pin.   

Then  m  is a declarative functionality description. 
In particular this holds if V is a domain description W, and Win = In(W). 

 

Proof 
Apply Lemma 2.5 to conclude that  m  is conservative and self-bounded.        ��

�

Proposition  3.5 
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Suppose a domain description is given by signature  Ë  and non-empty set of situation 
models  W. Let  m: Pin  µ  P  be a functionality description, where  Pin = P(In(W))  and  P 

= P(W). The following conditions are equivalent: 
  (i)   For all  M � Pin  each  h � OutLit(Ë)  that is true in  m(M)  is also true in all  

 complete refinements of  M  in  W, i.e.  
 if   h���OutLit(Ë)  and  M���Pin  then   

� � m(M)����h   ¶���M�^��W  h 
 (ii)   For all  M � Win  each  h � OutLit(Ë)  that is true in  m(M)  is also true in all  

 complete refinements of  M  in  W, i.e.  
 if   h���OutLit(Ë)  and  M���Win  then   

� � m(M)����h   ¶���M�^�W  h 

(iii)   For all  M � W  each  h � OutLit(Ë)  that is true in  m(In(M))  is also true in  M, i.e.  

 if   h���OutLit(Ë)  and  M���W  then   

� � m(In(M))����h   ¶���M��  h 

 

Proof 
(i) ¶ (ii)  This follows from   Win ¢�Pin. 

(ii) ¶ (iii)  If  M���W  then application of condition (ii) to  In(M)  provides  In(M)�^�W  h. 

Hence  M��  h . 
(iii) ¶ (i)  Suppose  M���Pin  and   m(M)����h . Let any  N���W  be given with  M ��1. By 

Lemma 2.3b) we have  M ��,Q�1� ��Win. From monotonicity of  m  it follows that  m(M) ��

m(In(N)). Since  m(M)����h  this implies  m(In(N))����h. From condition (iii) it follows that  

N��  h . Summarizing: for any  N���W  with  M ��1  we have proved that  N��  h, i.e.  
M�^�W  h . This proves (i).    ��

 
 

Theorem  3.7 

Suppose a domain description is given by signature  Ë  and non-empty set of situation 
models  W. Let  m: Pin  µ  P  be a functionality description, where  Pin  =  P(Win)  with  

Win = In(W)  and  P = P(W). Then the following hold: 

a)  The following conditions are equivalent: 

   (i)  The functionality description  m  is sound with respect to  W  
  (ii)  Out(m(M)) ��2XW�VFW(M))  for all  M � Pin. 

 (iii)  m(M) ��VFW(M)  for all  M � Pin. 

b)  The following conditions are equivalent: 

   (i)  The functionality description  m  is w-complete with respect to  W  
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  (ii)  Out(m(M)) ��2XW�VFW(M))  for all  M � Win. 

 (iii)  m(M) ��VFW(M)  for all  M � Win. 

c)  The functionality description  m  is complete with respect to  W  if and only if   
  Out(m(M)) ��2XW�VFW(M))  for all  M � Pin. 

d)  The following conditions are equivalent: 

   (i)  The functionality description  m  w-covers  W  
  (ii)  Out(m(M)) = Out(scW(M))  for all  M � Win. 

 (iii)  m(M) = scW(M)  for all  M � Win. 

e)  The functionality description  m  covers  W  if and only if   
  Out(m(M)) = Out(scW(M))  for all  M � Pin. 

 There exists a functionality description that covers  W, namely  scW. 

f)  If  m  w-covers  W , then the domain description given by  W  is empirically founded if 

and only if for every  M � In(W)  the model  m(M)  is complete. 

 

Proof 
a)  Let  M � Pin  be given. From Lemma 2.5a) it follows that for any  h � OutLit(Ë)  it 

holds  scW(M)  � h  if and only if  M�^�W  h. Therefore soundness is equivalent to: 

for each  M � Pin  and all  h � OutLit(Ë)   it holds   

� � m(M)����h   ¶���scW(M)  � h 

This proves (i) ² (ii)  of a). 
+V�KU�ENGCT�VJCV�VJKU�EQPFKVKQP�HQNNQYU�HTQO��m(M) ��VFW(M) . This proves (iii) ¶ (i) of a)��

We will now prove (ii) ¶ (iii). Assume (ii) holds. We will prove that  �m(M) ��VFW(M) . By 

(ii), for any given  M � Pin  we have: for all  h � OutLit(Ë)   it holds   

� � m(M)����h   ¶���scW(M)  � h 

Therefore �m(M)|Ëout ��VFW(M)|Ëout . 

Since we assume that only input and output signatures are involved in functionality 

descriptions (and no internal signatures), the only thing that remains to be proved is that it 
also holds  m(M)|Ëin ��VFW(M)|Ëin . Notice that 

  scW(M)|Ëin = gci({M’| M ��0
�� W}|Ëin 

                  = gci({In(M’)| M ��0
�� W} 

+H��M ��0
�� W� then  M = In(M) ��,Q�0
�, and by monotonicity it follows that  

m(M) ��m(In(M’)) and therefore by Lemma 2.3b) we have 
  m(M)|Ëin ��m(In(M’))|Ëin.  

By conservatism we have In(M’) ��m(In(M’)). Therefore we derive 
  In(M’) = In(M’)|Ëin  ��m(In(M’))|Ëin .  



 

 

 

 

 
 
 
 

48 

Now  In(M’) � Win,  so it has no real refinements (except itself).  

Therefore m(In(M’))|Ëin = In(M’)  and thus  

� � m(M)|Ëin ��m(In(M’))|Ëin = In(M’)  

By Lemma 2.4 this proves �m(M)|Ëin ��JFL�^,Q�0
�_�0���0
�� W}) = scW(M)|Ëin��

This proves (ii) ¶ (iii) of a). 

b)  The proof of b)(i) ² (ii) is similar to the proof of a)(i) ² (ii). 
For the proof of (ii) ² (iii), notice that for  M a complete input model, since  m  and scW   

are conservative, the input parts of  m(M)  and  scW(M)  both are equal to  M. 

c)  This is similar to the proof of a)(i) ² (ii). 

d)  This follows from a) and b). 

e)  The first part of this follows from a) and c). From Theorem 3.4  it follows that the 
mapping defined by �scW�: M µ scW(M)  for all  M � Pin  is a declarative functionality 

description; by the first part of e) it covers  W.  
f)  This follows from d) and Lemma 2.6. ���������������������������

�

Proposition 3.8 
Suppose a signature  Ë  is given with a non-empty set of complete input models  Win  and  P  

is a set of partial models for Ë. Assume the mapping  m: Pin  µ  P,  where  Pin  =  P(Win) , 

is a declarative functionality description for  Ë.  Moreover, let a domain description  W  for 
signature  Ë  with  In(W) =  Win  be given.  

Then the following conditions are equivalent: 

 (i)  W  is covered by  m���


KK���W  is w-covered by  m���CPF���m��KU�YGNN�KPHQTOGF��

�

2TQQH�
(i) ¶�(ii)  Let  M � Pin be given. We have to prove that  m �KU�YGNN�KPHQTOGF��K�G��

� � �Out(m(M))  =  Out(gci(V1)) 

where   
  V1 = {�m(N) |  N � Win  &  M ��1�` 

For any  N � Win  with  M ��1, from monotonicity it follows that  m(M) ��m(N).  

Therefore by Lemma 2.4b) 
  m(M)  �� gci(V1)   (1) 

This implies one side of what we have to prove. The other side is the harder part. Since  W  

is covered by  m   by Theorem 3.7 we have   
  Out(m(M)) = Out(scW(M)) = Out(gci(V2))  

with   
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  V2 = { N � W | M ��1�` 

We will apply Lemma 2.4a) to the sets  V1 and V2. Suppose an arbitrary  N � V2  is given, 

then  N � W  and  M ��1 . Take  M’ = In(N) � Win ; this is a complete model with respect 

to the input signature. By Lemma 2.3b)   M ��0
, so  m(M’) � V1 . Since m   covers  W  it 

also w-covers  W; further  N  is complete. Therefore by Theorem 3.7d) we have 
� � m(M’) = scW(M’) ��VFW(N) = N 

6JKU�UJQYU�WU�VJCV�VJG�EQPFKVKQPU�QH�.GOOC����C��CTG�UCVKUHKGF��#RRN[KPI�VJKU�NGOOC�RTQXKFG

U�

� � gci(V1)���gci(V2) = scW(M)   

Therefore   
  Out(gci(V1))���Out(scW(M)) = Out(m(M)).  (2) 

This is the other side of what we had to prove. From (1) and (2) it follows that  

m��KU�YGNN�KPHQTOGF.  
(ii) ¶�(i)  Suppose  W  is w-covered by a well-informed  m. Then by Theorem 3.7d) we have  
scW(M) =  m(M)  for all  M � Win. By applying Lemma 3.2f) we derive that Out(scW(M)) =  

Out(m(M))  for all  M � Pin. From Theorem 3.7e) it follows that (i) holds.  ��

�

Theorem 3.9 
Suppose a signature  Ë  is given,  Win  is a non-empty set of complete input models and  P  

is a set of partial models for Ë. Assume  m: Pin  µ  P  is a declarative functionality 

description for  Ë,  where  Pin  =  P(Win).   

Then a domain description  W*  for  Ë  with  In(W*) =  Win  can be obtained that is w-

covered by  m. One can construct  W*  from  m  by taking   
 W* = { N | N is a complete model of signature Ë� & qM���Win  �m(M) ��1`.  

Moreover,  W*   is covered by  m��KH�CPF�QPN[�KH��m��KU�YGNN�KPHQTOGF��

For every domain description  W  with  In(W) =  Win  for which  m  is sound,  W  is 

contained in  W*. 

 

Proof 

Take the domain description given by 
 W* = { N | N is a complete model of signature Ë� & qM���Win  �m(M) ��1` 

It is easy to verify that  In(W*) = Win. 

We will prove that  W*  is w-covered by  m ; first we treat soundness. Let an   M�� Pin�  be 

given. By the choice of  W*  above and by Lemma 2.3b) we can rewrite   
  scW*(M)  = gci { N � W* | M ��1�`� �JFL�92) 

 with 
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  V2 = { N | N is a complete model & M ��1�	�qM’ � Win  m(M’) ��1�` 

We will prove that   m(M)  is less than or equal to every member of V2. Let a member  N  of 

V2 be given, with  M’ � Win  such that  m(M’) ��1�. Then both  M ��1  and M’ ��m(M’) ��

N, while  M’ = In(N). From Lemma 2.3b) it follows that  M ��0
.  Therefore, by 

monotonicity m(M) ��m(M’) ��1. By applying Lemma 2.4b) it follows that 
   m(M)  �  gci(V2)  =  scW*(M) (3) 

This proves soundness of   m  with respect to  W*.  
Next we will treat w-completeness. We are done if we prove that  scW*(M) ��m(M)  for all  

M � Win. Let such an  M  be given. Then we have  M ��m(M). Notice that by our choice of  

W*  every complete refinement of  m(M)  is in  W*; therefore by Lemma 2.5b) and 2.5a): 
   scW*(M) ��VFW*(m(M)) = m(M)        (4) 

This proves the w-completeness of  m  with respect to  W*. From (3) and (4) it follows that  

m  w-covers  W*.  

By Proposition 3.8  m  is well-informed if and only if  m  covers  W*. 

Finally we will prove that for any  W  such that  m   is sound with respect to  W  it holds  W 

¢ W*. Suppose  M � W  is given, then by Theorem 3.7a) from soundness of  m  with 

respect to  W it follows that 
   m(In(M))���VFW(In(M)) ��0� 

Therefore  M � W*.      ��

 

Corollary 3.10 
Suppose a signature  Ë  is given, Win  is a non-empty set of input models for Ë��and  P  is a 

set of partial models for Ë. Assume  m: Pin  µ  P,  where  Pin  =  P(Win) �  is a declarative 

functionality description for  Ë.   
Then there is a well-informed declarative functionality description   �: Pin  µ  P  that is a 

well-informed refinement of  m���This���� is better informed�VJCP��m��; in particular, it holds   
  Out(m(M)) � Out(�(M)) = Out(scW*(M))   
for CNN� M � Pin , with  W*  as in Theorem 3.9. 

 

Proof 

First we prove the existence of such a  �. Apply Theorem 3.9 to the functionality description  
m. By  Theorem 3.7 the resulting domain  W*  is covered by the well-informed  � = scW* . 

From Theorem 3.9 it follows that  W*  is w-covered by  m�. From Theorem 3.7b), applied to  

m   it follows that   
   Out(m(N)) =  Out(scW*(N)) =  Out(�(M))   
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for all  N � Win. From Lemma 3.2e) it follows that  �  is better informed than  m. This 

proves the existence.  ��

�

Lemma 4.2 
Suppose a signature  Ë  is given and   Win   is a non-empty set of input models. Take for  P  

the set of all partial models of signature  Ë   and  Pin  = P(Win). Let  a consistent reasoning 

component specification for  Ë   and  Pin  be given by  KB.   

Then the mapping  consKB : Pin µ�P  given by  M µ��consKB(M)  is a well-informed 

(declarative) functionality description. Moreover, consKB = scMod(KB). 

 

Proof 
Since  consKB = scMod(KB)  this follows from Theorems 3.4, 3.7 and Proposition 3.8.  ��

�

Lemma 4.6 
Assume a signature  Ë  is given,  Win  is a non-empty set of complete input models and  P  a 

set of models for  Ë . Assume   m : Pin µ P  where  Pin = P(Win)  is a functionality 

description. The non-empty set of rules  KB �   is constructed as follows. For each output 

literal  h, take   
  T(h)  =  { M ��Pin  | m(M) � h }   

and  mT(h)  the set of minimal (with respect to the refinement relation) elements in  T(h). 
Define  KB �   by the following set of rules 

 KB �   =  { h  |  Ò � mT(h) }  ���{ Con(Lit(M))  µ  h  |  M � mT(h), M ��Ò } 

where Con(..)  means taking the conjunction of a set of literals. 

Then a consistent reasoning component specification is obtained with signature  Ë, 
knowledge base  KB � , and set of partial input models Pin  such that for all complete models 

M ��Win��it holds  m(M)���KB � .  

 

Proof 
Suppose a model  M ��Win  is given. We will prove that  m(M)���KB � . This also implies 

consistency. First we treat the general facts in  KB � . Assume  h ��KB � ��UQ Ò � mT(h). 

Therefore   m(Ò)���h. From monotonicity it follows that  m(M)���h. Next we treat a rule that 

is no general fact, say 
  Con(Lit(M0))  µ  h  

with  M0 � mT(h). Since  M  is complete, from not M���Con(Lit(M0)) it follows that   

  M���Å�Con(Lit(M0)) 
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By the strong Kleene rule for implication in that case the rule is true in  M, independent of 

the truth value of h. By conservatism the same holds for m(M). In the other case 
  M���Con(Lit(M0)) 

This implies that  M0 ��0. Therefore, by monotonicity we have  m(M0) ��m(M). Now from 

M0 � mT(h)  it follows that  m(M0) � h , hence  m(M) � h. So also in this case the rule is 

true in m(M).    ��

 

 

Theorem 4.7 
Assume a signature  Ë  is given,  Pin  is a non-empty set of partial input models for  Ë  and 

let   m : Pin µ P(W)  be a well-informed functionality description.  

Then the well-informed functionality description related to the consistent reasoning 
component specification with signature  Ë, knowledge base  KB � , and a set of partial input 

models Pin  covers  m. This reasoning component specification is minimal. 

 

Proof 

We will prove that  the well-informed functionality description of the reasoning component 
specification with  KB = KB �    given in Lemma 4.6 covers m.  First we prove   

Out(consKB (M)) � Out(m(M)) for all M���Pin. Let the output literal  h���OutLit(Ë)  and  

M���Pin  be given with  M �� ��� �h . By Lemma 4.6  for every  N ��Win  with  M ��1 the 

model  m(N)  is a model of KB, hence m(N) ��h. By well-informedness  m(M) � h.   
Next we prove  Out(consKB (M)) � Out(m�(M)) for all M���Pin. Suppose we are given     

h���OutLit(Ë)  and an  M���Pin  with  m(M) �� �h�� We will show that� M � ���  h. Since  

m(M) �� �h  we have  M � T(h). Take a minimal element  M’  in  T(h)  with  M’ ��0. If  M’ 
= Ò, then from  M’ � mT(h)  it follows  h � KB, so  M � ���  h  and we are done. In the 

other case that  M’ ��Ò  we have the following rule in  KB: 

  Con(Lit(M’))  µ  h  

From  M’ ��0   it follows that  M � Con(Lit(M’)) . Therefore for any partial model  N  with   

N ��0  and  N � KB  it holds  N � Con(Lit(M’)). Since N � KB  it holds  

N � Con(Lit(M’))  µ  h . Therefore, (by the strong Kleene truth value combination table) 
we have  N � h. This proves  M � ���  h. 

Therefore the well-informed functionality related to the reasoning component specification 

as constructed covers the given functionality description  m. Finally we show it is minimal. 

Suppose we obtain  KB’  from  KB  by leaving out one of the conditions in the condition 

part of a rule 
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  Con(Lit(M))  µ  h  
with  M � mT(h) ¢ T(d) and M ��Ò . The resulting condition part corresponds to a partial 
model  M’ ��0 with  M’ ��0. Since  M  was minimal in  T(h), it holds  M’ ½�T(h); 
therefore m(M’) ��h, while  M’ �KB’  h. So this knowledge base  KB’  would not be 

equivalent to  KB. This proves that the constructed  KB  is minimal. ��

�

Proposition  4.8 
Let a domain description for signature  Ë  and a non-empty set of input models  Win  be 

given by  W. Suppose  m  is a declarative functionality description w-covering  W  and  KB  

defines a reasoning component specification such that its related well-informed functionality 

description covers  m. 

The following conditions are equivalent: 

  (i)  The domain described by  W  is empirically founded 
 (ii)  For every  M���Win  the model  m(M)  is complete 

(iii)  For every  M���Win  and output literal  h  it holds either  M �KB  h  or  M �KB  Å�h 

(iv)  For any output literal  h� there exists a proposition  p  in terms of input literals such  

     that  h  is true in a situation  M � W  if and only if  p  is true in  M  

     (explicit definability),  i.e.: for every  M � W  it holds 

������������������������ M����h��²��M���p 

 

Proof 

(i) ² (ii)  This follows from Theorem 3.7b). 
(ii) ¶ (iii)  Let a complete input model  M���Win  and an output literal  h  be given. 

Suppose  M �KB  h  is not the case. This implies that not  consKB(M) �  h . Since KB  

defines a reasoning component specification such that its related well-informed functionality 

description is covering  m, therefore not  m(M) �  h. From completeness of  m(M)  it follows 
that  Out(consKB(M)) = Out(m(M)) �  Å h , hence we have  M �KB  Å h . 

(iii) ¶ (ii)  Following the lines of the above proof in the reversed order this can easily be 

established. 

(i) ¶ (iv)  This proof is a variant of the construction in Theorem 4.6. Let an output literal  h  
be given. Take an indexing of all  Mi ��W  with  Mi ��h ; we show that  h  is explicitly 

definable by the proposition 
                        p = Dis{Con(Lit(In(Mi))) | i = 1, .. , k}  

where  Dis  stands for the disjunction of a set of formulas. If  M ��W  is given with   
M ��p, then  M � Con(Lit(In(Mi)))  for some  i , so  In(M) = In(Mi). From (i) and   
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Mi ��h  it follows that also  M���h.  Conversely, suppose  M ��h, then   M = Mi  for some 

i. Then  M ��Con(Lit(In(Mi))),  so  M � p.  We have proved that for every    

M ��W  it holds that  M���p ²��M���h.  
(iv) ¶ (i)  This is easy to verify.   ��

�
 

�

�

�


