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Abstract 

An important ingredient in agent-mediated Electronic Commerce is the presence of intelligent 
mediating agents that assist Electronic Commerce participants (e.g., individual users, other agents, 
organisations). These mediating agents are in principle autonomous agents that will interact with 
their environments (e.g. other agents and web-servers) on behalf of participants who have 
delegated tasks to them. For mediating agents a (preference) model of participants is indispensable. 
In this paper, a generic mediating agent architecture is introduced. Furthermore, we discuss our 
view of user preference modelling and its need in agent-mediated electronic commerce. We survey 
the state of the art in the field of preference modelling and suggest that the preferences of electronic 
commerce participants can be modelled by learning from their behaviour. In particular, we employ 
an existing machine learning method called inductive logic programming (ILP). We argue that this 
method can be used by mediating agents to detect regularities in the behaviour of the involved 
participants and induce hypotheses about their preferences automatically. Finally, we discuss some 
advantages and disadvantages of using inductive logic programming as a method for learning user 
preferences and compare this method with other approaches. 
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1.  Introduction 

The explosive growth of electronic markets and retail Electronic Commerce has resulted in an 
overload of online information and products. The effectivity and success of this market depends on 
the amount of automated Electronic Commerce processes and services that are available online. 
Finding, comparing, buying, selling and customising items via the World Wide Web, automatic 
negotiation and personalised recommendation services are examples of such processes and services. 
Some of these processes and services are already available on the World Wide Web though in 
limited forms. For example, search engines like Altavista and Yahoo help people to locate items on 
the web and online shop sites such as Jango [44], Amazon [39] and Moviefinder [46] offer personal 
recommendation services to advise their customers about products that may be interesting to them. 
Also, online auction sites such as eBay [42] and AuctionBot [40] provide automatic bid proposal 
services such that a customer needs not to be online during a chosen auction. Finally, in the 
forthcoming marketplaces such as MarketMaker [45] users can create agents and delegate various 
tasks such as buying, selling, and searching items to them. These agents are able to negotiate with 
each other in order to perform delegated tasks. These services help customers to avoid the large 
search space of available items or the need to be involved in all required activities. 

In general, to support users on the World Wide Web, various types of agents can be developed. For 
example, to support brokering processes in electronic commerce, agents can be developed that 
support a user offering products (or services) at the World Wide Web. Also, agents can be 
developed that support a user searching for information or products within the scope of user’s 
interest. Of course, agents can be developed to combine both functionalities as well. Moreover, 
mediating agents can be developed that communicate with both agents, i.e. with agents that provide 
information or products and with agents that ask for information or products. Recently a few 
applications of mediating agents have been addressed for this area; for example, see [9], [10], [22], 
[27], [33], [35]. In general, applications like these are implemented in an ad hoc fashion without an 
explicit design at a conceptual level.  

The aim of this paper is twofold. On the one hand, a generic agent architecture for mediating agents 
acting in brokering processes is introduced which has been designed in a principled manner, using 
the compositional development method for multi-agent systems DESIRE. The agent architecture 
can be instantiated by adding specific types of knowledge to support functionalities and behaviour 
required. Depending on the choice of these requirements, an agent is created for a specific 
application by including the appropriate types of knowledge. For example, a search agent with 
functionality restricted to (incidental) search for information upon a user’s request can be built by 
adding only knowledge needed for this task. Such an agent, for example, is not able to store and 
maintain the user’s query or information that has been found, nor is it able to provide information to 
other agents. If these functionalities are required as well, the necessary types of knowledge have to 
be added. On the other hand, we present an overview of some existing approaches in preference 
modelling and briefly discuss them. It is discussed that each approach is appropriate for certain 
classes of applications. Finally, we explore in more detail the use of Inductive Logic Programming 
(ILP) as a possible method for automatic preference modelling. We explain how this method can be 
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employed in order to induce preference models. The (dis)advantages of this method are discussed 
and some experimental results are presented.  

In Section 2 an example problem domain for brokering processes is sketched. Section 3 introduces 
the design of the generic architecture for mediating agents. The different types of knowledge are 
presented in Section 4. In Section 5 the behaviour of the system is analysed by giving an overview 
of which types of knowledge are needed for which types of basic functionalities. In Section 6 an 
overview is given of recent literature on preference modelling, showing the need for an automatic 
approach to user preference modelling. Finally, Section 7 shows that Inductive Logic Programming 
is a possible technique for constructing preference models and may be useful as an algorithm for the 
production of a classification tree that can be used to match products against preferences. 

2.  Electronic Commerce and Brokering 

The process of brokering as often occurs in Electronic Commerce involves a number of agents. A 
provider agent that provides information about products to other (human or computer) agents may 
support a user offering products. A user looking for products may be supported by a personal 
assistant agent that takes its user’s queries and contacts other agents or looks at the Web directly to 
find information on products within the user’s scope of interest. Such a personal assistant agent may 
contact either provider agents immediately, or mediating agents, which in turn have contact with 
provider agents, or other mediating agents. Depending on the application, the chain of agents 
involved may include zero or more mediating agents.  

The domain analysed for the agent architecture presented here is the domain of brokering 
(scientific) papers. Although this domain might not be considered as a real electronic commerce 
application (for instance because electronic commerce applications usually involve money as an 
important attribute of domain items), we have chosen it because of the easy access to data needed to 
do experiments. Moreover, we believe that our approach is general and thus can be applied to any 
domain consisting of any set of attributes. In particular, we will show that both proposed learning 
method and the agent architecture are flexible enough to be applied to real electronic commerce 
applications.  

The domain of scientific papers has a number of aspects in common with other domains within the 
area of electronic commerce. The task of a provider agent is to inform other researchers on papers 
available on Internet (a marketing aspect). For example, an agent related to a Web site of a research 
group announces new papers included in their Web site. If a researcher is looking for a paper with 
certain characteristics (scope), a personal assistant agent can ask other agents for information on 
papers with these characteristics. To be able to tune the information provided to users, a number of 
scopes of interest can be maintained for each of the users. For example, one of the users may be 
interested in papers on certain topics, such as work flow management systems, but also in papers on 
agents and the World Wide Web.  

Topics can be basic (e.g., ‘work flow management systems’, or ‘agents’, or ‘World Wide Web’), or 
a combination of a number of topics (e.g., ‘agents and World Wide Web’). In the latter case the user 
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interest is limited to papers which address both topics. Moreover, if it is added that the user is only 
interested in papers from the years 1995 to 1997, then either year in the range 1995-1997 is meant. 
Topics can be matched with, for instance, the set of keywords of a paper, or with the abstract, or the 
paper as a whole. In some disciplines, such as Medicine, an ontology of topics has been developed 
that serves more or less as a standard. Besides topics also other attributes of papers can be used to 
define a scope of interest, for example an author, a year, a research group, et cetera. These attributes 
can also be used in combination with each other. For this example, a shared ontology of topics is 
assumed. All agents in the brokering process express their information and interests using this 
shared ontology. It is assumed that the following attributes of a paper are available and can be used: 
title, authors, affiliation(s) of the authors, location on the World Wide Web where it can be found, 
topics covered by the paper, abstract, year, and reference. This information can be used to identify 
papers that are of interest to a user, but also forms the source for the information that can be 
provided to a user when a paper is proposed to him or her. 

3.  Design of the Generic Mediating Agent 

The generic mediating agent presented in this paper offers a reusable agent that can be applied 
(reused) in the context of a multi-agent system which can take different forms. One simple 
possibility is that the mediating agent serves as a personal assistant representing a buyer and 
communicates with this user and with other software agents that represent sellers. The generic 
mediating agent supports the user profiling involved, but also maintenance of information on 
sellers. More complex possibilities can involve, in addition, communication between buyer personal 
assistant agents, for example, to combine requests and form coalitions. The generic mediating agent 
does not exclude this possibility, but no explicit structures have been added yet to support this. 
Another possibility is to use the generic mediating agent as the basis for a broker agent which 
communicates both with buyer representative agents and seller representative agents.  

For the design of the generic mediating agent the following main aspects are considered: process 
composition, knowledge composition, and relations between knowledge and process composition, 
as discussed in [6]. A compositional generic agent model (introduced in [8]), supporting the weak 
agency notion (cf. [37]) is used. At the highest abstraction level within an agent, a number of 
processes can be distinguished that support interaction with the other agents. First, a process that 
manages communication with other agents, modelled by the component agent interaction management 
in Figure 1. This component analyses incoming information and determines which other processes 
within the agent need the communicated information. Moreover, outgoing communication is 
prepared. Next, the agent needs to maintain information (including indications of specific interests 
and preference models built over time) on the other agents with whom it co-operates: maintenance of 

agent information. The component maintenance of world information is included to store world information 
(e.g., information on attributes of products). The process own process control defines different 
characteristics of the agent and determines foci for behaviour. The component world interaction 

management is included to model interaction with the world (with the World Wide Web world, in the 
example application domain): initiating observations and receiving observation results. 
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The agent processes discussed above are generic agent processes. Many agents perform these 
processes. In addition, often agent-specific processes are needed: to perform tasks specific to one 
agent, for example directly related to a specific domain of application. In the current example the 
agent has to determine proposals for other agents. In this process information on available products 
(communicated by information providing agents and kept in the component maintenance of world 

information), and about the interests of agents and their preference models (kept in the component 
maintenance of agent information), is combined to determine which agents might be interested in which 
products. For the mediating agent this agent-specific task is called determine proposals. Figure 1 
depicts how the mediating agent is composed of its components. 
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Figure 1  Composition at the highest level within the mediating agent 

Part of the exchange of information within the generic agent model can be described as follows. The 
mediating agent needs input about interests, put forward by agents, and information about attributes 
and evaluations of available products that are communicated by information providing agents. It 
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produces output for information agents about proposed products and the attributes of these products. 
Moreover, it produces output for information provider agents about interests. In the information 
structures (called information types) that express communication information, the subject of the 
communication and the agent from or to whom the communication is directed are expressed. This 
means that communication information consists of statements about the subjects that are 
communicated.  

Within the mediating agent, the component own process control uses belief input information and 
generates focus information: to focus on a scope of interest to be given a preferential treatment, i.e., 
pro-active behaviour will be shown with respect to this focus. The component agent interaction 

management has the same input information as the agent (incoming communication), extended with belief 

info and focus info. The output generated includes part of the output for the agent as a whole (outgoing 

communication), extended with maintenance info (information on the world and other agents that is to be 
stored within the agent), which is used to prepare the storage of communicated world and agent 
information. Information on attributes of products is stored in the component maintenance of world 

information. In the same manner, the beliefs of the agent with respect to other agents’ profiles (provider 

attribute info, preference model info, and interests) are stored in maintenance of agent information. The agent 
specific task determine proposal uses information on product attributes, preference models, and agent 
interests as input to generate proposals as output. For reasons of space limitation the generic and 
domain-specific information types within the agent model are not presented; for more details [19]. 

4.  Generic and Domain Specific Knowledge 

The different knowledge abstraction levels introduced for information types can also be exploited to 
structure the knowledge. Abstract knowledge can be formulated in terms of scopes, abstracting from 
attributes and values. Other more specific knowledge is used to perform the abstraction step: it can 
be used to derive conclusions in terms of scopes from input in terms of attributes and values. The 
knowledge bases are discussed below in the context of the component in which they are used. 
Knowledge bases not specified in this paper can be found in [19]. 

4.1.  Agent Specific Task: Determine Proposals 

To determine proposals fitting a given scope of interest, information on products has to be 
compared to this scope of interest. To this end, the information on products, expressed in terms of 
their attributes has to be aggregated to information in terms of scopes. This can be derived using 
two knowledge bases, attribute and scope kb, which defines the relations between attributes and scopes 
in general, and product scope abstraction kb, which identifies for which scope(s) a product is relevant. 
The composition of the knowledge in these two knowledge bases supports reuse. For example, if in 
one of the two knowledge bases, modifications are made, the other knowledge base still can be 
used. Moreover, the first knowledge base is specified independent of knowledge about products. It 
can be (re)used within the component maintenance of agent information as well, as will be shown below. 
Given information on the scopes of products, by the knowledge base strict match kb it is defined how 
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proposals to agents can be generated by matching the scopes of products and the scopes in which an 
agent is interested. For strict matching it consists of only one element. 

Knowledge base strict match kb 

if interested_in(A:AGENT, S:SCOPE) 
   and in_scope(P:PRODUCT, S:SCOPE) 
then is_possibly_interesting_for(P:PRODUCT, A:AGENT, S:SCOPE)  

This knowledge simply states that if a product is in a scope an agent is interested in, then this 
product is possibly interesting for this agent. Alternative knowledge bases can be used for non-strict 
matching. Using a method to determine a predicted rating (e.g., the classification tree that is 
constructed by the learning algorithm described in Section 7), the products that are possibly 
interesting for a user are classified with a predicted rating. In a selection phase only those products 
that have a sufficiently high predicted rating are presented to the user. 

Knowledge base proposal_selection kb 

if is_possibly_interesting_for(P:PRODUCT, A:AGENT, S:SCOPE) 
   and has_acceptable_predicted_rating(P:PRODUCT, A:AGENT) 
then is_interesting_for(P:PRODUCT, A:AGENT, S:SCOPE)  

By adapting the predicted rating to his or her own preferences the user influences the learning 
method contained within the component maintenance of agent information and thereby indirectly 
influences the predicted rating knowledge (e.g., the form of the classification tree discussed in 
Section 7) used within the current component (determine proposals). 

4.2.  Agent Interaction Management 

The component agent interaction management makes use of five knowledge bases: (1) for incoming 
communication from agents asking for information on products, (2) incoming communication from 
agents giving their evaluation of products (necessary for constructing preference models), (3) 
incoming communication from agents providing information, (4) outgoing communication to agents 
interested in information on products, and (5) outgoing communication to agents providing 
information. 

4.2.1.  Incoming Communication 

If an agent communicates her or his interests to a mediating agent, then this information is 
identified as new agent interest information that is currently believed (which can be forgotten after 
the agent has reacted on it: knowledge base agent interest identification kb) or that has to be stored (in 
which case it can be remembered later: knowledge base agent interest maintenance identification kb). A 
condition for storage of interests information is that the type of contract is persistent. For agents 
with a weaker type of contract no requests are stored, and instead of building a user specific 
preference model a default preference model can be used. 
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Knowledge base  agent interest maintenance identification kb 

if  communicated_by(interest(S:SCOPE), V:SIGN, A:AGENT) 
   and belief(has_contract(A:AGENT, contract_type(persistent, Y)), pos) 
then new_agent_info(interested_in(A:AGENT, S:SCOPE), V:SIGN) 

If an agent communicates that he or she wants to subscribe for a contract of a certain type, then this 
information is identified as new contract information that has to be stored. This identification makes 
use of the following knowledge base. 

Knowledge base  subscription identification kb 

if  communicated_by(subscription_for(C:CONTRACT_TYPE), V:SIGN, A:AGENT) 
then new_agent_info(has_contract(A:AGENT, C:CONTRACT_TYPE), V:SIGN) 

If an agent has a persistent type of contract with the mediating agent, then evaluations of products 
given by that agent have to be identified, so that they can be used in the maintenance of his/her 
preference model. 

Knowledge base  agent preference information identification kb 

if  communicated_by(is_rated_as(P: PRODUCT, R: RATING), V:SIGN, A:AGENT) 
   and belief(has_contract(A:AGENT, contract_type(persistent, Y)), pos) 
then new_agent_info(is_rated_as_by(P: PRODUCT, R: RATING, A:AGENT), V:SIGN) 

If an agent communicates information about products it provides, this incoming information is 
analysed, new world information is identified as new information that can be used immediately and 
forgotten afterwards (knowledge base provider info identification kb), or has to be stored (knowledge base 
provider info maintenance identification kb). If an agent communicates information about products it 
provides, this incoming information can also be analysed, in order to obtain new agent information 
on the scopes of the information the agent (apparently) can provide. This is expressed by: 

Knowledge base provider scope maintenance identification kb: 

if  communicated_by(attribute_has_value(P:PRODUCT, A:ATTRIBUTE, V:VALUE), pos, A:INFO_PROVIDER) 
then new_agent_info(can_provide(A:INFO_PROVIDER, A:ATTRIBUTE, V:VALUE), pos) 

4.2.2.  Outgoing Communication 

New information (product identification, scope, predicted rating, or attribute information) on a 
product that may be interesting for an agent is communicated to this agent. This is expressed in the 
following knowledge base: 

Knowledge base proposal communication kb: 

if belief (is_interesting_for(P:PRODUCT, A:AGENT, S:SCOPE), pos) 
   and belief(attribute_has_value(P:PRODUCT, A:ATTRIBUTE, V:VALUE), pos) 
   and belief(product_has_predicted_rating_for(P:PRODUCT, R: RATING, A: AGENT), pos) 
then to_be_communicated _to(is_interesting(P:PRODUCT, S:SCOPE), pos, A:AGENT)  
   and to_be_communicated _to(attribute_has_value(P:PRODUCT, A:ATTRIBUTE, V:VALUE), pos, A:AGENT) 
   and to_be_communicated _to(product_has_predicted_rating(P:PRODUCT, R: RATING), pos, A: AGENT) 
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The agent only communicates to an information provider if a scope has been taken as a focus, and if 
the information provider can provide products on this scope. This is expressed by:  

Knowledge base info provider request kb  

if  in_search_focus(S:SCOPE) 
   and belief(can_provide_scope(A:AGENT, S:SCOPE), pos) 
then to_be_communicated _to(interest(S:SCOPE), pos, A:AGENT)  

4.3.  Own Process Control 

The types of proposals to be determined and the scopes on which to focus search are determined by 
means of the knowledge base focus kb, as indicated by the following knowledge base. The 
knowledge base focus kb is used within own process control component. For example, in the first 
knowledge element it is expressed that for an agent with a contract of any type, proposals will be 
determined that fit the agent’s interests. This is in contrast with, for example, the second knowledge 
element which expresses that only for agents with a persistent contract type, their scopes of interests 
will be chosen as persisting search foci (otherwise these scopes of interest will be forgotten after 
being handled). 

Knowledge base focus kb 

if  belief(has_contract(A:AGENT, C:CONTRACT:TYPE)) 
   and belief(interested_in (A:AGENT, S:SCOPE), pos) 
then product_to_be determined(in_scope (P:PRODUCT, S:SCOPE)) 
   and proposal_to_be determined(is_interesting_for(P:PRODUCT, A:AGENT, S:SCOPE)) 
 
if  belief(has_contract(A:AGENT, contract_type(persisting, search_for_info))) 
   and belief(interested_in (A:AGENT, S:SCOPE), pos) 
then in_persisting_search_focus(S:SCOPE) 
 
if  belief(has_contract(A:AGENT, contract_type(incidental, search_for_info))) 
   and belief(interested_in (A:AGENT, S:SCOPE), pos) 
   and not  search_focus_processed_for(S:SCOPE, A:AGENT) 
then in_incidental_search_focus(S:SCOPE) 
   and search_focus_chosen_for(S:SCOPE, A:AGENT) 
 
if  in_persistent_search_focus(S:SCOPE) 
then in_ search_focus(S:SCOPE) 
 
if  in_incidental_search_focus(S:SCOPE) 
then in_ search_focus(S:SCOPE) 
 
if  in_ search_focus(S:SCOPE) 
then provider_to_be_determined_for(S:SCOPE) 

4.4.  World Interaction Management 

The component world interaction management allows the agent to look for information by observation. 
This entails generation of observations to be performed and obtaining the observation results. The 
obtained observation results can be used incidentally after which the information is forgotten (using 
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knowledge base observation info identification kb) or maintained to be used later as well (using 
knowledge base observation maintenance identification kb), similar to agent interaction management. The agent 
only observes if a scope has been taken as a focus. This is expressed using knowledge base 
observation initiative kb.  

Knowledge base observation initiative kb  

if  in_search_focus(S:SCOPE) 
then to_be_observed(S:SCOPE)  

The actual execution of the observation does not take place within the agent, but in the external 
world. As part of the external world an engine can be used to search for products matching the 
pattern defined by the specified scope. The result of such an observation will be all information of 
any product that matches the scope. The knowledge base specified above is kept rather simple. To 
avoid too frequent repetition of observation, more sophisticated knowledge can be specified. 

4.5.  Maintenance of World and Maintenance of Agent Information 

In principle, the components maintenance of world information and maintenance of agent information store 
information. The knowledge base attribute and scope kb defined above is also used in the component 
maintenance of agent information. In addition, the knowledge base provider scope abstraction kb is defined; it 
is similar to the knowledge base product scope abstraction kb mentioned above. But most importantly 
with respect to user preference modelling, the product evaluations (as given by the user in response 
to products presented to him/her) are used to adapt the user preference model within the component 
maintenance of agent information. An example of a technique to be used is described in Section 7. 

5.  The Behaviour 

The behaviour of the mediating agent can be analysed in different ways. One way is to consider its 
basic functionalities with respect to its brokering task, and use these as building blocks to obtain 
behaviour. For example, its behaviour in terms of the weak notions of agency (autonomy, social 
ability, reactivity, and pro-activity) can be determined in terms of basic functionalities. Moreover, 
basic functionalities can be related to knowledge bases that are available within the agent. Using 
these two relationships, a relation can be identified between behaviour and available knowledge 
within the agent. 

5.1. Basic Functionalities Depending on the Agent’s Knowledge 

The mediating agent shows behaviour depending on certain basic functionalities. For the agent 
model presented, these basic functionalities have been specified in a declarative manner by the 
agent’s knowledge. For each of the basic properties of the agent it has been established which 
knowledge bases are required. By varying the choice of knowledge for the agent, different types of 
agents can be designed. 
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1.  Observation of information available within a certain part of the world 
Observation requires the ability to initiate observations, specified in the knowledge base observation 

initiative kb, and the ability to identify the information resulting from an observation, specified in the 
knowledge base observation info identification kb. Both knowledge bases can be used within the 
component world interaction management. 

2.  Communication with agents asking for information on products 
The basic functionality to communicate with agents asking for information on products requires the 
processing of incoming communication of asking agents and preparation of outgoing information. 
The incoming information may refer to scopes of interests of the asking agent, evaluations of 
products, or to subscription. The communicated scopes of interest are identified using the 
knowledge base agent interest identification kb. That an agent is providing feedback information 
regarding products is identified using knowledge base agent preference information identification kb. 
Incoming communication on subscription is identified using knowledge base subscription identification 

kb. Outgoing communication containing product information to agents that ask for information is 
prepared using knowledge base proposal communication info. All these knowledge bases are used within 
the component agent interaction management. 

3.  Communication with agents providing information on products 
Communicated information on products can be processed in two different ways. First, the product 
information can be identified, using knowledge base provider info identification kb. Second, from the fact 
that information is provided on a product with certain characteristics, it can be abstracted (from the 
given product) that this provider is able to offer (at least some) products with these characteristics in 
general. This is done using knowledge base provider scope identification kb. Communication to an agent 
that may be able to provide information is prepared using knowledge base provider request kb. All 
these knowledge bases are used within component agent interaction management. 

4.  Maintenance of acquired information on products 
The agent can identify that all communicated information on products has to be stored, using 
knowledge base provider info maintenance identification kb within component agent interaction management. 
Moreover, by knowledge base observation info maintenance identification kb, within component world 

interaction management, new observation results on products to be stored can be identified. 

5.  Maintenance of scopes of interest of agents and the preference models 
The agent can identify that the incoming requests of agents are to be maintained. This functionality 
is specified by the knowledge base agent interest maintenance identification, used within component agent 

interaction management. Feedback information regarding products is identified using knowledge base 
agent preference information identification kb, this knowledge base is also used within component agent 

interaction management. The feedback information itself is used for the maintenance of user preference 
models; for an example see Section 7. 

6.  Maintenance of scopes of products agents can provide 
Scopes of information agents can provide are stored, if the incoming communication is handled in 
an appropriate way using knowledge base provider scope maintenance identification kb, used within 
component agent interaction management.  
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7.  Own control 
Control of the agent’s own processes is defined by the knowledge base focus kb, used within 
component own process control. 
 

8.  Determining matches between products and scopes of interests 
To determine matches between products and scopes of interest the agent can use the knowledge 
bases attribute and scope kb, product scope abstraction kb, proposal selection kb, and strict match kb within 
component determine proposals. 

 

basic functionality knowledge specifying functionality in component  

1. observation observation initiative kb 

observation info identification kb 

WIM 

WIM 

2. communication with agents  
    asking for information 

agent interest identification kb 

subscription identification kb 

proposal communication kb 

agent preference information identification kb 

AIM  

AIM 

AIM 

AIM 

3. communication with agents  
    providing information 

provider info identification kb 

provider scope identification kb 

provider request kb 

AIM 

AIM 

AIM 

4. maintenance of product information observation info maintenance identification kb 

provider info maintenance identification kb 

 

WIM 

AIM 

AIM 

5. maintenance of scopes of interest and 
preference models 

agent interest maintenance identification kb  

agent preference information identification kb 

AIM 

AIM 

6. maintenance of scopes of  
    products agents can provide 

provider scope maintenance identification kb 

provider scope abstraction kb 

attribute and scope kb 

AIM 

MAI 

MAI 

7. own control Focus kb OPC 

8. match between products and  
    scopes of interests 

attribute and scope kb 

product scope abstraction kb 

strict match kb 

proposal selection kb 

DP 

DP 

DP 

DP 

Figure 2  Relation between basic functionalities and knowledge required 

 

Combinations of these functionalities define specific types of agents. For example, if a provider 
agent is designed, functionalities 2, 4, 5, 8 may be desired, whereas functionalities 1, 3, 6, 7 could 
be left out of consideration. If an agent is designed to support a user in finding information on 
products within a certain scope, functionalities 1, 3, 6, 8 (and perhaps 4) may be desired, whereas 2 
and 5 may be less relevant. For a mediating agent, or for an agent that has to play different roles, 
almost all functionalities (i.e., 1 to 8) may be desired. The generic agent architecture introduced in 
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Sections 3 and 4 can be instantiated in different manners to obtain, among others, the types of 
agents mentioned. The relation between the agent’s basic functionalities, its knowledge, and where 
the knowledge is used is summarised in the table in Figure 2. 

5.2.  Reactive, Pro-active, and Other Forms of Behaviour 

Depending on the choices made, the mediating agent can show reactive behaviour towards agents 
asking for information on products and provider agents. 

• In reaction to an agent that asks for products within a certain scope, the mediating agent 
determines which of the products it knows, fit to this scope, using either an already known 
preference model for that agent, or a default preference model. The available information on the 
resulting products is communicated to the agent (e.g., author, title, year, topics, abstract, 
location, and reference). 

• Once an agent interest is known to the mediating agent, it is reactive with respect to any 
information providing agent that announces a product that fits the agent’s scope, and has a 
sufficiently high predicted rating. In such a case the information on this product is 
communicated to this agent (i.e., to all relevant agents). 

Pro-active behaviour occurs when the mediating agent has as a characteristic that it is pro-active 
with respect to certain agents. A pro-active mediating agent, from time to time, takes the initiative 
to ask provider agents for information on products which match some of its subscribed request 
profiles. It may focus on an agent’s scopes of interest and actively select information providing 
agents and ask them whether they have products that fit in one of these scopes.  

The behaviour of the mediating agent may depend on other characteristics of the mediating agent as 
well. In the above example, the knowledge used within own process control was kept rather simple. 
It is not difficult to extend this knowledge in such a way that more complex forms of pro-active 
social behaviour are initiated and controlled. For example, it is also possible that the mediating 
agent pro-actively determines an expected scope of interest of an agent and proposes products that 
fit this expected scope of interest. 

6. Preference Modelling 

In this section, we survey the field of user preference modelling and discuss some existing 
approaches and related working systems. Basically, the preference model of a user can be used to 
determine how interesting is an item to that user. The preference model of a user can thus be used to 
select and prioritise items that may be interesting to that user. For example, a user may like French 
or German cars and prefer to have a German car above a French car. The structure and properties of 
preference models depend on the application area in which they are used. For example, in multi-
attribute decision systems (see [2],[21],[29],[36]) the user preference (utility) for an item is 
determined in terms of values of various attributes of the item and the preferences of the user 
towards those attributes (i.e., the importance of those attributes). In other application areas such as 
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recommendation systems, the preference model may be defined either in terms of statistical 
correlation between users and their rated items or in terms of a set of attribute values that describe 
the items. 

In general, the preferences of a user towards a set of items can be defined in terms of information 
concerning either the content of the items (content information) or the use of the items by a society 
of users (collaborative or social information). Roughly speaking, in the content-based approach a 
user is thought to like an item if the item is similar to other items that are liked by the user while in 
the collaborative-based approach a user is thought to like an item if the user is similar to other users 
who like the item. In the following, we use the term content-based preference model to indicate user 
preference models that are defined in terms of the content of items, and the term collaborative-based 
preference model to refer to user preference models that are defined in terms of collaborative 
information. In this paper, we assume that both the content information as well as the collaborative 
information can be used to construct user preference models for various kinds of applications, 
included automated negotiation in multi-agent systems where a model of user preferences is 
indispensable. 

The construction of a preference model is usually a time consuming and cumbersome job. In 
applications such as information retrieval, information filtering, or automated integrative 
negotiation, the user has to express her preferences towards various (combinations of) attributes and 
attribute values. In other applications such as recommendation systems, a user may be asked to rate 
several, sometimes hundreds, of items before an item can be recommended. There are various 
methods to acquire information concerning user preferences. For example, in some systems a user 
may be asked to fill-out a form consisting of questions (usually a large number of questions) about 
her preferences every time she uses the system. Instead of forms, systems may also ask a user to 
answer consecutive multiple-choice questions in an interview-like interaction. Yet, other systems 
(see [14]) derive the preferences of a user by suggesting an item to the user and ask her to correct 
this suggestion. The user corrects system’s suggestion by indicating why the suggested item does 
not match her needs. Based on these corrections, preference models of users are constructed or 
updated. Finally, some systems employ methods to induce the preferences of a user by observing 
the behaviour of that user over time (see [17],[23],[26],[30]). These methods are usually not 
intended to fully model user preferences, but to model the more frequent and predictable user 
preferences. It should be noted that applications that require huge efforts from their users risk to 
become ineffective and useless (see [24],[25]). Therefore, to model user preferences in an 
application a balance is to be found between the amount of interaction with the user and the 
necessary effectiveness of the constructed user profile. 

Modelling user preferences on the basis of content or collaborative information can be considered as 
a learning problem where the aim is to learn the so-called preference function for a certain user. The 
preference function for a user maps items from a certain domain to some values that express the 
importance of those items for that user. In this way, the structure of the chosen range is imposed on 
domain items. It is important to note that various types of preference functions may exist. The type 
of a preference function characterises the structure of preference model (see [21],[36]). For 
example, the range of one preference function may be the set of real numbers where the order of 
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real numbers reflects the degree of user interest. The range of another preference function may be 
the set consisting of two elements: LIKE and DISLIKE. In the first case, a partial order structure is 
imposed on the items and in the second case a nominal structure is imposed on the items, i.e. the 
preference function is a classification function.  

6.1. Collaborative-based Preference Modelling 

In the collaborative approach the preference model of a user is constructed on the basis of the items 
that are previously used and rated by that user and the preferences of other users represented as sets 
of rated items. Intuitively, in the collaborative approach an item is thought to be interesting for a 
user if other users who have similar taste are interested in that item too. The taste similarity of users 
is determined by a statistical correlation between users and their rated items. In this way, a group of 
users that rate items similarly are considered as having similar taste or interest. This approach to 
user preference modelling is often called “word of mouth” propagation. For example, consider the 
following data table representing the rating (a number between 1 and 10) that four users U1,…, U4 
have assigned to three papers P1,…, P3. An empty cell in the table indicates that the rating of a 
person for an item is unknown. 

 

 U1 U2 U3 U4 

P1 4 - 5 9 

P2 1 9 - 8 

P3 8 1 7 2 

It should be clear that persons U1 and U 3 have similar rating and therefore can be considered as 
having similar taste. Likewise, U 2 and U 4 show similar taste. These similarities can be used to 
predict the interest of users towards papers for which the rating is unknown. For example, the taste 
similarity between U 1 and U 3 suggests that the interest of U 3 towards the second paper is low, while 
the taste similarity between U 2 and U 4 may suggest that the interest of U 2 towards the first paper is 
high. 

Collaborative-based preference models have been used in retrieval and filtering systems to, 
respectively, retrieve and filter available items for certain users. In fact, the purpose of these 
systems is to assist a user by selecting, prioritising, and delivering available items according to the 
preferences of that user. In this way, the selected items are presented to a user in the order of their 
relevance for that user. These retrieval and filtering systems are often used as recommendation 
systems where users are informed about items that may be interesting to them. There have been 
several collaborative-based recommendation systems introduced in which the preferences of users 
are modelled automatically. Examples of online recommendation systems that employ collaborative 
approach are MovieFinder [46] and FireFly [43]. The preferences of a user are modelled 
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automatically by observing the behaviour of that user and applying different statistical methods to 
the observed behaviour (see [3],[17],[18],[34]).  

In collaborative-based recommendation systems, an item can be recommended to a user if the user 
has already rated a subset of items and thereby has expressed some of her preferences. For this 
reason, these recommendation systems construct an initial preference model for a new user by 
asking the user to rate a pre-selected set of items. However, a serious disadvantage of these systems 
is that new items cannot be recommended to anyone since items are recommended to users only 
when they are rated by some users. Note also that the quality of recommendations by systems that 
are based on collaborative approach increases as the number of users and the number of rated items 
increase. 

6.2. Content-Based Preference Modelling 

The content-based approach provides the preference model of a user on the basis of properties and 
attribute values of the items. Using content-based approach, an item is thought to be interesting for 
a user if that item has properties or attribute values as predicted by the preference model. It is 
important to note that, in contrast to the collaborative approach, the content-based approach can be 
applied only when items can be described in terms of properties and attribute values. Like 
collaborative-based preference models, the content-based preference models have been used in 
online recommendation systems such as BargainFinder [41] and Jango [44]. However, unlike 
collaborative-based preference models, the content-based preference models are also used in 
applications such as integrative negotiation where the utility function is defined in terms of user 
preferences towards various attribute values (see [2],[16],[21],[26],[36]). 

In general, content-based preference models are constituted by a set of attributes. For example, the 
set M = {Topic, Author, Year} of paper attributes may constitute the preference model of users for 
scientific papers. Given a set of attributes constituting the user preference model, the preferences of 
a user are often modelled by providing some values and rates for each attribute. First, for each 
attribute a rate may be given to indicate how important is an attribute. Then, for each attribute a set 
of possible attribute values should be given. Moreover, a rate should be assigned to each possible 
attribute value to indicate how preferred is that value. The assignment of rates to attribute values 
depends on the type of attribute values (e.g. nominal, ordinal, interval, and ratio). In fact, for 
nominal and ordinal attribute values a rate is assigned to each attribute value while for interval and 
ratio attribute values the inherent order of those values can be used to assign a rate to only a subset 
of those attribute values. The rate for other attribute values can then be derived by means of the 
inherent order of attribute values and the assigned rates to the subset of attribute values. For 
example, given the above set M of paper attributes, the preferences of a user may be modelled by 
the following set: 

{ Topic:9  = <Agent:9 , Negotiation:6 , AI:4>,  

Author:7 = <Jennings:8 , Zlotkin:8 , Maes:6>,  

Year:4  = <1999:9 , 1984:4> } 
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The numbers attached to attribute names and attribute values indicate user’s rates for those 
attributes names and attribute values, respectively. In this example, the values of the first two 
attributes (i.e. Topic and Author) have nominal type whereas the values of the third attribute (i.e. 
Year) have an interval type. Therefore, based on the rate of the two year values (i.e. 1999:9 and 
1984:4) and given the internal interval order of year values the rate of other year values can be 
derived (e.g. 1987:5, 1990:6, 1993:7, etc.). 

As the values of attributes may not always be known to a user, the user may also be asked to 
represent compensation values for the unknown attribute values, i.e. the loss of an attribute value is 
compensated by gain in the value of another attribute. The following table is an example of 
compensation values between paper attributes. 

 

 Topic Author Year 

Topic - 0.9 0.3 

Author 0.8 - 0.4 

Year 0.5 0.5 - 

Basically, this table shows how the loss of an attribute value should be gained in terms of other 
attribute. In this way, the compensation values can be considered as representing user preferences 
towards interdependencies between various attributes and can be used to determine the user 
preference towards an item for which some attribute values are missing. Note that these scenarios 
are quite usual in automated integrative negotiation system (see [2]). 

Although content-based preference models play an essential role in both recommendation systems 
as well as automated negotiation and decision theory, there is little attention in these studies for 
modelling, especially automated modelling, of content-based user preferences. An obvious and non-
automatic way to model user preferences is the so-called “deep interview” approach. In this 
approach, the user is asked to answer consecutive multiple-choice questions by means of which  
item attributes and their values are rated.  

A more interesting and semi-automatic way to model user preferences is the so-called “suggestion-
correction” approach. This approach assumes a partial preference model of user which may be a 
default model  in the worse case, i.e. when user is new to the system such that nothing is known 
about user except some default knowledge. For example, in applications such as computer selling 
systems or a travel agency systems some default knowledge about user such as “need-a-computer” 
or “want-to-go-to-holiday” can be assumed. Based on partial user preference model the system may 
suggest an item to that user and, if needed, the user corrects this suggestion by indicating why the 
suggested item does not satisfy her needs. In the case that the suggested item satisfies the needs of 
user the system stops. Otherwise, based on user’s correction response the system updates the 
preference model and suggests a new item, etc. This approach is employed in Eugene et. al. (see 
[14]) where user’s correction responses are considered as constraints. The constraints are then 
linked together to form a network of constraints. The resulting network of constraints represents the 
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preference model of user. Consequently, an item is thought to be interesting for a user when it 
satisfies the network of constraints that represents the preference model of that user. 

Finally, a fully automatic content-based approach to model user preferences is by discovering 
regularities among properties and attribute values of the used and rated items. Neural networks, 
genetic algorithms, principle component analysis, and all kinds of inductive learning methods are 
alternative techniques in automatic content-based preference modelling. Although the systems that 
employ automatic methods usually expect little effort from users, a new user is expected to make 
some effort and provide feedback to the system in order to ensure reasonable performance from the 
start. This is also true for the systems that are based on collaborative-based user preference models. 
It should also be noted that automatic methods to model user preferences is not only interesting for 
minimising the effort of users, but it may also be interesting for discovering the preferences of other 
involved participants. This is especially important for intelligent mediating agents that have to 
discover the preference models of other involved agents automatically (see Sections 3,4, and 5). 
Also, in cooperative multi-agent negotiation processes where an agent, who does not have a direct 
access to the preferences of her negotiating agent, likes to propose a bid that may be interesting to 
the negotiating agent as well. 

In the content-based approach preferences can be modelled independent of preference models of 
other involved participants. In fact, the preference model of a user can be constructed on the basis of 
the descriptions of the items for which the user preference are known. Moreover, the quality of the 
content-based preference models that are provided by automated methods depends on the number of 
items for which the user preferences are known. This quality is, however, independent of the 
number of other users or their preferences, as it is the case in collaborative approach. Another 
characteristic of the content-based approach, in contrast to the collaborative approach, is that a new 
item can immediately be decided to be interesting for a user without the need of being rated by 
other users. 

6.3. An Integrated Approach 

The collaborative-based and content-based approaches do not exclude each other and in fact they 
can be combined into an integrated approach to model user preferences (see [1]). Such a user 
preference model will be called integrated user preference model. An integrated user preference 
model is thus defined in terms of both collaborative as well as content information. In particular, an 
integrated user preference model is constructed in terms of a predefined set of attributes, as it is the 
case with the content-based user preference models. However, unlike the content-based preference 
models, there are two attributes in the integrated approach which are defined in terms of 
collaborative information. These attributes are called collaborative attributes. One collaborative 
attribute characterises a user and the second collaborative attribute characterises an item. 

In order to construct automatically the integrated preference model of a user, an inductive learning 
method is applied to a set of data entries (see [1]). Each data entry is an n-tuple of attribute values 
and represents the information about one user and one item that is liked by that user. Note that one 
may also consider the set of data entries in which an entry represents the information about one user 
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and one item that is disliked by that user. The value of the collaborative attribute that characterises a 
user is a set of items that is liked/disliked by that user and the value of the collaborative attribute 
that characterises an item is a set of users that like/dislike that item. Note that the values of the 
collaborative attributes are set values: their values are sets instead of individuals. In contrast to the 
collaborative attribute values, the values of other (non-collaborative) attributes are individual 
values. Given n users U1 ,…, Un and m scientific papers P1 ,…, Pm , the following is an example of a 
set of paper entries on which an inductive method can be applied. 

{ < Agent , Jennings , 1997 , {P2 , P4 , P9 } , {U1 , U7}    > , 

     < Negotiation , Zlotkin , 1994 , { P1 , P9 , P3, P5} , { U4, U2} > , 

   < AI , Maes , 1995 , {P2} , { U7, U4, U1} > } 

The sets containing scientific papers are values of the collaborative attribute that characterises a user 
and the sets containing users are values of the collaborative attribute that characterises a paper. In 
this way, collaborative information, which is translated into attribute values, together with content-
based information, which is also represented as attribute values, constitute the data to which an 
inductive learning method is applied to extract user preferences. It is important to note that the 
values of collaborative attributes can be very large sets when the numbers of users and items get 
large. This is a serious disadvantage of this integrated method.  

6.4. Effectiveness of Preference Models 

The effectivity of collaborative-based and content-based preference models depends on the 
applications they are used in. For example, collaborative-based preference models are effective for 
applications where either it is unrealistic to collect a large amount of information about the 
preferences of an individual user, or the number of users is too large. Using collaborative-based 
preference models is also effective for applications where the content of the items neither is 
available nor can be analysed automatically by a machine (e.g. items like a picture, video, sound, 
etc.). However, the collaborative-based preference models are less effective for applications like 
integrative negotiation (see [2],[15],[29]) in retail Electronic Commerce where negotiation is 
considered to be a decision making process over items that are described as multiple interdependent 
attributes. As explained, collaborative-based preference models are not defined in terms of attribute 
values and therefore they are less effective for applications like integrative negotiation. 

On the other hand, content-based preference models are effective in applications where data are 
represented in terms of attribute values such that no more information than available is required. 
Also, content-based preference models provide sound results even in situations where there is only 
one single user. When a content-based preference model is constructed automatically, it will 
provide sound results if it is constructed on the basis of a set of rated items that is large enough. 
Note that collaborative-based preference models will fail to provide sound results in such a case. 
Content-based preference models are thus appropriate for applications like integrative negotiation 
since they are in terms of various attribute values. Moreover, since the preference model of a certain 
user is in terms of attribute values, a new items which is not rated by any other users can be decided 
to be interesting for that particular user. As we mentioned above, providing a preference model by a 
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user in terms of various item’s attributes is a time consuming activity. Therefore, we believe that in 
these applications user preferences should be modelled automatically. In order to achieve this goal 
in a multi-agent setting, we employ inductive logic programming which enables an agent to induce 
the preferences of a user in terms of item’s attributes during its interactions with the user.  

7.  Automatic Preference Modelling with Inductive Logic Programming 

Inductive logic programming (see [28]) lies at the intersection of machine learning and 
computational logic, as used in logic programming.  It combines inductive machine learning with 
the representations of computational logic.  Computational logic (a subset of first order logic) is a 
more powerful representation language than the classical attribute-value representation typically 
used in machine learning.  This representational power is useful in the context of learning user 
preference models, because in this way more complex types of user preferences can be detected and 
described.  Another advantage of inductive logic programming is that it enables the use of 
background knowledge (in the form of Prolog programs) in the induction process. Given the fact 
that DESIRE uses first order logic as knowledge representation formalism, this allows for an easy 
integration of both systems. 

An ILP system takes as input examples and background knowledge and produces hypotheses as 
output. There are two common used ILP settings which differ in the representation of these data: 
learning from entailment ([11] compares different settings) and learning from interpretation (see 
[12]). We will use the second setting because of the time efficiency of this setting. In learning from 
interpretations, an example or observation of actions performed by the user — in this application 
requesting and rating a paper — can be viewed as a small relational database, consisting of a 
number of facts (such as ‘author(Smith)’ or ‘interest(high)’) that describe the specific properties of the 
example. An example may contain multiple facts about multiple relations. This contrasts with the 
attribute value representations where an example always corresponds to a single tuple for a single 
relation. We will show later that the extra flexibility gained with the learning from interpretations 
setting is very useful in user preference modelling (see Section 6). 

The background knowledge takes the form of a Prolog program. Using this Prolog program, it is 
possible to derive additional properties from the examples. Let us illustrate this by showing how we 
can introduce a taxonomy using background knowledge: 

topic(T)  ←  papertopic(T). 
topic(T)  ←  isa(It,T), topic(It). 
isa(agentsemantics,agent). 
isa(agentarchitecture,agent). 
isa(agent,artificial_intelligence). 

This Prolog program recursively defines the topic-relation: a paper has topic T if either T is the topic 
directly related to the paper (through the papertopic-relation) or T is above It (defined with the isa/2 
relation), an other topic related to the paper, in the taxonomy-lattice. By introducing the above 
background information the system adds to each example automatically all topic information: if we 
observe the user rating a paper with as topic agentarchitecture, the learning system adds that 
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agentarchitecture, agent and artificial_intelligence are topics for this paper and will use this information 
when learning hypotheses. 

There are two forms of induction: predictive and descriptive induction.  Predictive induction starts 
from a set of classified examples and a background theory, and the aim is to induce a theory that 
will classify all the examples in the appropriate class. On the other hand, descriptive induction starts 
from a set of unclassified examples, and aims at finding a set of regularities that hold for the 
examples. In the situation of a paper mediating agent, predictive induction could be used to predict 
the interest of a user in a paper. Descriptive induction on the other hand would try to find all 
regularities that hold in the set of examples, and would find rules such as: 

  If the author is Jennings and the user is interested, then the co-author is Wooldridge 

Notice that these types of rules — although maybe revealing interesting and unknown knowledge 
— are not useful for predicting the user’s interest.  Since our aim is to predict the user’s preference 
for unseen objects, we focus on predictive induction in the learning from interpretations setting, 
because in this system the focus is on finding rules useful for classification. This task can more 
formally be expressed as follows: 

Given: 
• a set of classes C, 
• a set of classified examples E, 
• a background theory B 
 
Find a hypothesis H such that: 

for all e � E, H ª e ª B � c, and H ª e ª B � c'  
where c is the class of the example e and c' � C - {c}.  

To make the discussion more concrete we focus on one ILP system: Tilde (see [4],[5]). This system 
performs predictive induction in the learning from interpretation setting by inducing logical 
decision trees from classified examples and background theory. Consider for example the 
background knowledge that is mentioned above. Suppose also a set of observations describing 
papers and the interest of a user in those papers. In this application we let the user rate his interest in 
a paper on a score from 1 to 10, where higher numbers indicate a higher interest. We build user 
models for each user individually, so we collect all observations from a certain user in one file. As a 
result there is no need to add information about which user made these observations to the data that 
will be given to the learning system. The following is an example of one such observation.  Notice 
that attributes (such as author) can have multiple values. 

papertopic(agentarchitecture). 
author(’Jennings’). 
author(’Mamdani’). 
aff(’Jennings’,’Queen Mary & Westfield College’).   
aff(’Mamdani’,’Imperial College’). 
interest(6). 

We included the affiliation of the authors in the example. One could argue that such information can 
be stored in background knowledge. However the fact that an author can belong to different 
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affiliations at the same time makes this a property which can’t be computed from the other 
information in the example and hence can’t be stored in background information. 

Starting from the background knowledge and a set of observations Tilde can build hypotheses 
(represented as first-order logic decision trees) which predict the user’s interest in a paper. The 
following is an example of such a hypothesis: 

topic(agents) ? 
+--yes: author(A), A = ’Jennings’ ? 
|       +--yes: author(B), aff(A,C), aff(B,D), C �  D ? 
|       |       +--yes: interest(6) 
|       |       +--no:  interest(4) 
|       +--no:  interest(3) 
+--no:  interest(1) 

Tilde uses the standard induction tree algorithm for building this trees: look for a test which best 
separates the examples in sets belonging to the same class and repeat this procedure in each leaf of 
this tree until a stopping criteria is reached. Notice that this is a greedy approach: selecting the best 
splitting test at each level of the tree doesn’t necessary result in the best global tree. Using look 
ahead, Tilde can make conjunctions of tests and use these as single tests, as clearly illustrated in the 
third line of the above tree.  

The above hypothesis states that the user has interest 1 in papers that are not about agents. If it’s a 
paper on agents written by Jennings the predicted interest value is 4 unless there is a co-author from 
a different affiliation, then the interest prediction is 6. Agent papers not written by Jennings have a 
predicted interest-value of 3. As this example shows, hypotheses can contain constants as well as 
variables. 

Notice that this very simple example shows the power of inductive reasoning. From a set of specific 
facts, a general theory containing variables is induced. It is not the case that the induced theory 
deductively follows from the given examples.  The Tilde system has the benefits (like most ILP 
systems) of being able to build complex hypotheses (using first order logic) and using background 
knowledge in finding these hypotheses. Moreover experiments have shown that the Tilde system 
scales nicely on large datasets (see [5]). More details of the Tilde system can be found in [4] and 
[5]. 

7.1.  User Preference Modelling with Tilde 

Following Section 6, we may define a user preferences model for a certain user u as a function ϕu 

mapping an observation o from the set of possible observations O onto a preference indicator value 
p from the set of possible preference indicator values P, a finite structured domain. Since Tilde can 
induce general hypotheses from specific observations and background knowledge, it can be used to 
induce ϕu automatically. This can be done by building a set of examples E, each example consisting 
of an observation o and ϕu(o) = p, the preference user u has for observation o. As the set of classes C 
we use the set of possible preference indicator values p from P. In this way we transform the 
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construction of ϕu into a learning task. We can also add background knowledge B with information 
the system can use in constructing ϕu. 

We illustrate this by an example.  Consider again the task of building a preference model for a user 
who is looking for interesting scientific papers as discussed in Section 2. In this context each 
observation consists of information about a paper: title, author, year of publication, type of 
publication (journal, conference proceeding, workshop proceeding) and the topic.  Attributes author 
and topic can be multi-valued. Other possible useful attributes are the affiliation of the author(s), the 
publishing company and the length of the article (number of words or pages). In background 
knowledge we put the general information that could help Tilde in constructing ϕu. As background 

knowledge we use an extension of the taxonomy on topics as introduced earlier in this section. 
However all other relevant information (e.g. background information on authors, publishers and 
affiliations) could be included as well. Finally one has to create a language bias, specifying which 
concepts Tilde is allowed to use in constructing ϕu. 

We conducted three types of experiments to answer three questions we had in mind: can the system 
detect complex rules, can the system detect rules if there is noise in the examples and can we 
construct user preference models from a small number of observations. For the first two 
experiments a set of 375 observations was used. All these experiments were performed on machine 
generated data. We produced 375 examples of paper descriptions and let the computer label them 
according to criteria we defined. These examples (but not the criteria used to label them) were then 
given to Tilde to learn user profiles. The reason for this type of experiments is to determine whether 
the agent would be able to find user patterns under the assumption that these exist. The question 
whether useful user patterns do exist is not answered by these experiments because it is application 
and user dependent.  

For the first experiment we labelled all our examples using increasingly more complex rules: 

1. If published before 1992 then interesting else not interesting. 

2. If published before 1992 or if it is a journal paper then interesting else not. 

3. If published before 1992 or if it is not a journal paper then interesting else not 

4. If published before 1992 or if it is a journal paper or it is a paper by Jennings then interesting 
else not. 

5. If published before 1992 or if it is a journal paper written in 1998 then interesting else not. 

No background knowledge was used in these experiments. Each time we labelled all 375 examples 
according to one of the above rules and let the system learn on all these examples. We then inspect 
the user preference model produced to see if they match the rule used to label the examples. When 
using rule 1 no problems are encountered. Rule 2 adds a disjunction, but this easy for the system to 
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learn because it’s just an adding another branch. Rule 3 complicates rule 2 by using a negation of 
one of the tests. But this as well is easy for the system to learn because negating a test is the same as 
switching both branches at the node that corresponds with this test. Rule 4 extends rule 2 by adding 
another disjunction. In the example set there were only three examples of non-journal papers by 
Jennings published after 1991 but even then Tilde was able to find the correct user preference 
model. The fifth rule could be learned by Tilde, but only when look ahead (testing conjunctions of 
tests in stead of single tests) is enabled. Look ahead however increases the time to build the decision 
tree so when we test Tilde on this data set without look ahead it finds an user preference model 
which nearly matches the correct hypothesis: it has one test more, and misclassifies 1 out of the 375 
examples. 

Most of the time, a user doesn’t behave completely according to rules. For instance, a user may be 
interested in Jennings’ papers, but some of these papers he will rate as non interesting for different 
reasons. For a user preference modelling system to be useful, it should be able to cope with such 
‘noise’ in the observations. We tested this by introducing noise in the experiment mentioned above. 
We labelled examples according to rule 1 and added 5%, 10% and 15% of noise (this means that 
such a portion of the examples were random labelled1). To test the preference models we performed 
a cross validation: the dataset is divided in equal sets, all but one set is used to learn a preference 
model, which is then tested on the remaining set. This procedure is repeated with another set as 
testset until every set has once been used as testset. We performed this experiment first with rule 1. 
The system found user preference models that were as accurate as possible: respectively 95%, 90% 
and 85% accuracy. The system had learned in each case the correct preference model (and so would 
have a predictive accuracy of 100% if there is no noise in the testset). If we repeat this experiment 
with rule 3 the accuracies are comparable. The time to induce these user preference functions 
doesn’t increase when the percentage of noise increases. However, if we perform this experiment 
with a rule that has a disjunction only supported by few observations (as in the author is Jennings 
branch of rule 4) we see that the accuracy on the testset remain the same but the system doesn’t find 
a correct preference model. This occurs when there are more observations supporting random 
patterns created by the noise than the regular patterns. However, if the noise level is so high, can we 
consider this part of the user’s preference? 

In a final experiment we try Tilde to learn from few examples. Simple ϕ functions can be learned 

from as few as ten examples. When learning rule 4 in the first experiment we also noticed that, 
although only 3 out of the 375 examples supported this disjunction, the system was able to detect 
this and include it in the preference model. Tilde can be used to model the user preferences based on 
few examples and will build a simple model. When more observations become available that don’t 
agree with the initial simple hypothesis, Tilde will construct a more complex hypothesis. From 
these experiments we can see that the Tilde system is able to learn simple user preference functions 
from few examples. Preference functions can be learned even when the observations are noisy. 

                                                 

1 interest is indicated by an integer between 1 and 10, were we used 1 for uninteresting and 10 for interesting. With 

random, we don’t mean random either 1 or 10 but a random integer between 1 and 10 
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From previous experiments [32] we can conclude that in an attribute-value setting Tilde performs 
comparable with classic machine learning systems. In the next section we will elaborate more on 
the advantages and disadvantages of the ILP-approach compared with more classical machine 
learning algorithms in learning preference functions  

7.2.  Advantages and Disadvantages of ILP in User Preference Modelling 

In the previous section we briefly illustrated the Tilde algorithm on a simple dataset. We will now 
introduce the specific ILP-features and illustrate how these are useful in user preference modelling 
by applying them to the above example. 

Because in ILP examples are represented as a set of facts, it is easy to represent examples where 
attributes have multiple values. This is common in many electronic commerce applications: books 
can have multiple authors, songs can have multiple songwriters and performers, …, movies have 
multiple actors,… . If you want to represent such information in an attribute-value setting, you have 
to introduce multiple attributes of the same type (e.g. author1, author2, …). This however results in 
two problems: the number of these attributes has to be fixed in advance (e.g. maximum 5 authors) 
and attribute-value learners will take the order of the attributes into account (e.g. if author3 = 
Jennings then interesting) while in many applications this will be irrelevant. ILP systems can 
represent multi-valued attributes without these disadvantages: facts can occur more than once and 
are unordered. We illustrated this already in the paper example. 

One can also easily extend the learning task just by extending the examples. Let’s illustrate this. 
The user preference model learned in previous examples was solely based on features of the paper 
itself, there was no use of the collaborative modelling approach as discussed in Section 6.2. 
However, extending the learning task to incorporate this collaborative modelling is very easy: each 
example still consists of the paper observations o (authors, title, type, …), but instead of one 
indication of the preference of one user, the example also contains the preference of all users who 
read this paper. An example could then look like this: 

papertopic(agentarchitecture). 
author('Jennings'). 
author('Mamdani'). 
aff('Jennings','Queen Mary & Westfield College'). 
aff('Mamdani','Imperial College'). 
interest(user12,6). 
interest(user23,4). 
interest(user76,4). 

 
 
 
 
 
A possible resulting tree for user 23 could then be like this: 
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author(’Jennings’) ? 
+--yes: interest(user12,A), A<5 ? 
|       +--yes: interest(user23,8) 
|       +--no:  interest(user23,4) 
+--no:  interest(user23,1) 

If it is a Jennings paper and user 12 has read it and had low interest in it, then the interest of user 23 
will be 8, if user 12 had not read it or had an high interest in it, user 23 has an interest of 4. If it is no 
Jennings paper the interest of user 23 is 1. So the ϕu function is based on a mixture of properties of 

the paper and the interests of other users. 

First notice that this collaborative modelling approach is more flexible than other collaborative 
approaches in which for user u users u’ are identified such that ϕu (o) = ϕu’ (o) for many 
observations o, while in this approach we identify for user u users u’ such that ϕu (o) = fu’(ϕu’ (o)) for 

observations o that obey to certain conditions (namely the tests higher up the decision tree), and fu’ a 
function mapping the preferences of user u’ onto the preferences of user u. Also notice that the 
above approach nicely merges the two approaches (collaborative and content based) into one 
integrated approach in a natural and easy way, due to the flexibility of inductive logic programming. 
Of course, in stead of information about specific users, information about clusters of users can be 
calculated using background knowledge (see next paragraph) and used (e.g. ‘if the interest of the 
students in this paper is low then …’). 

It is very common in ILP to extend the dataset by introducing background knowledge, formulated in 
the form of static facts (e.g. situated_in(‘Imperial College’,’London’).) or in the form of rules (e.g. 
situated_in(A,C) ← situated_in(A,B), situated_in(B,C) ) which allow to infer new facts from the knowledge 
already available in the background knowledge and the example. We illustrated the use of 
background knowledge by introducing a taxonomy, but since Prolog is Turing complete, any 
computable information can be added to the example. This allows for easy integration of ILP 
systems with other systems. For instance, in the above example we could use a clustering algorithm 
to find descriptions for clusters of users. This information could be added to the background 
knowledge of Tilde so the system could use the result of the clustering algorithm. Another example 
of the flexibility is the fact that integrating Tilde with DESIRE was very easy: background 
knowledge translated information in DESIRE representation into the representation in which the 
learning task was expressed. 

ILP is based on logic programming, a declarative programming formalism. Due to its declarative 
nature, input as well as output of ILP systems are readable (for humans as well as for computers), in 
contrast to sub-symbolic systems like neural networks. This is a very important feature in the 
context of agents for electronic commerce because ILP user models can easily be translated to 
English sentences. In this way the user can check and understand his preference model the agent has 
built. Users will probably be more likely to delegate tasks to agents they can understand and check 
than to ‘black box’ agents. 

As illustrated above, ILP has some advantages compared with other concept learning methods. Due 
to the use of background knowledge and the use of first order logic as representation language, ILP 
is especially suited in knowledge intensive learning tasks where the data is mainly symbolic. If 
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there is only few or no background knowledge used and the observations can easily be expressed in 
an attribute-value representation, traditional concept learning algorithms such as C4.5 [31] will 
result in a comparable user model while these systems require less computing power. Although the 
ILP method can handle numeric attributes, it’s mainly focussed on symbolic datasets. If the 
observations of the user are expressed as numbers (for example sensor readings (blood pressure, 
brain activity, …)) and the user preference model is a mathematical function of these readings, 
better techniques (such as neural networks) exist. Finally, because ILP systems search a larger space 
of possible solutions than other techniques, ILP systems require more computing power than most 
other techniques. Although ILP systems can handle large datasets [5], to our knowledge there 
doesn’t exist a fast incremental ILP algorithm useful in time-critical applications.  

So ILP systems have their limitations. But a broad range of electronic commerce applications deals 
with mainly symbolic data in an environment where useful background knowledge is common. ILP 
can not only build user preference models in such a setting, but is also able to provide this model in 
a representation that can easily be mapped on natural language, and in this way help the user 
understand and trust the system. Since electronic commerce applications are fairly new phenomena, 
these applications tend to change over time. ILP is a very flexible learning method which makes it 
easy to adapt the learning system to new situations. All these features makes ILP well suited to 
learn user preference models in electronic commerce applications. 

8.  Discussion 

In this section, some of the recently developed and operational models of virtual market places and 
Web commerce based applications are briefly mentioned. 

• Kasbah 

Kasbah (cf. [9], [10]) is a web-based multi-agent system using agents interacting with each 
other within the virtual market domain. The agents act on behalf of their users [9]. Price 
Negotiation is one of the interesting features applied within Kasbah [10].  

• Market Space 

Market Space is an open agent-based market infrastructure. It is based on a decentralized 
infrastructure model in which both the humans and the machines can read information about the 
products and services, and everyone is able to announce interests to one another [13]. The aim 
in designing Market Space is to design a market place where searching, negotiation and deal 
settlement, e.g. interaction with users is done using agents. The AMP (Agent Marketplace 
Project) is a collaboration project between Uppsala University and Swedish telecom, Telia. 
Market Space has been developed mainly in Prolog. For the communication with the Web, the 
standard protocol (HTTP) has been used. 
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A difference with our approach is that these approaches have been implemented without using a 
principled design method, and do not use components as building blocks that are (formally) 
specified at a conceptual level. This is also a difference with the work described in [35]. The 
mediating agent architecture introduced here was designed and implemented in a principled manner, 
using the compositional development method for multi-agent systems DESIRE [6]. Due to its 
compositional structure it supports reuse; a flexible, easily adaptable architecture results. 

Required properties or functionalities of agents can be formalised, and the relation between required 
properties and underlying assumptions can be established in a formal manner. An example of a 
result of such a formal analysis is the relation between basic functionalities (required properties) 
and available knowledge (assumptions) discussed in Section 5 (see Figure 2). In this paper the 
result of formal analysis was used in the agent model; the formal analysis itself was done by us as 
designers. To support this, a compositional verification method for multi-agent systems has been 
developed and successfully applied to verify the behaviour of a multi-agent system for one-to-many 
negotiation (see [7]), and to give a formal analysis of pro-activeness and reactiveness (see [20]). 
One of the more ambitious aims of our future research is to explore possibilities to include these 
formal analyses themselves in an agent model, and not only the results obtained by them. 

On the basis of the above discussion of techniques to construct preference modelling, the following 
claims can be made. A proper approach for preference modelling in a multi-agent setting should:  

1) Allow agents to induce preferences of the involved participants automatically by observing their 
behaviour. 

2) Be capable of handling the changes in the interests of participants that take place over the time 
by adjusting their preference models accordingly.  

3) Be robust with respect to the partiality of information about preferences. 

4) Allow for re-use of a preference model in different domains and for different purposes. 

Note that none of the approaches mentioned in Section 6 can handle the second aspect real time, 
i.e., without computing the whole preference model over again. Likewise, the ILP method 
introduced in Section 7 cannot handle this problem real time. The design in this study is such that 
the mediating agent applies the ILP method when enough new observations have been made. 
Furthermore, the approaches that are mentioned in Section 6 neither support the fourth facility. This 
facility may be realised by defining compositional preference models, i.e., various primitive 
preference models that can be composed to each other to form the preference model of a user. Each 
primitive preference model can then be reused in various configurations and thus for different 
applications. We will address this in more details in future studies.  
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