
Agent-Based Analysis and Simulation of Meta-Reasoning

Processes in Strategic Naval Planning

Mark Hoogendoorn
1
, Catholijn M. Jonker

3
,

Peter-Paul van Maanen1,2, and Jan Treur1

1 Vrije Universiteit Amsterdam, Dept. of Artificial Intelligence,

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{mhoogen, treur}@cs.vu.nl
2 TNO Human Factors, Dept. of Human in Command,

P.O. Box 23, 3769 ZG Soesterberg, The Netherlands

peter-paul.vanmaanen@tno.nl
3 Delft University of Technology, Dept. of Man-Machine Interaction,

Mekelweg 4, 2628 CD Delft, The Netherlands

C.M.Jonker@tudelft.nl

Abstract. This paper presents analysis and simulation of meta-reasoning

processes based on an agent-based meta-level architecture for strategic

reasoning in naval planning. The architecture was designed as a generic agent

model and instantiated with decision knowledge acquired from naval domain

experts and was specified as an executable agent-based model which has been

used to perform a number of simulations. To evaluate the simulation results,

relevant properties for the planning decision were identified and formalized.

These properties have been validated for the simulation traces.

Keywords: Meta-reasoning, simulation, planning, intelligent agent systems.

1 Introduction

The management of naval organizations aims at the maximization of mission success

by means of monitoring, planning, and strategic reasoning. In this domain, just as well

as in all other domains that are characterized by their resource-boundedness, plan

generation and action selection are supported by strategic reasoning; for example, it

may help to determine to decide whether a go or no go should be given to a certain

possible plan after an incident, whether this should be investigated further, or even

whether attention should be shifted to a different plans altogether. An incident is an

unexpected event, which results in an unmeant chain of events if left alone. Strategic

reasoning in a planning context can occur both in plan generation strategies (cf. [21])

and plan selection strategies (cf. [10, 20]).

 The above context gives rise to two important questions. Firstly, what possible

(candidate) plans are there to be considered? And secondly, what criteria should one

use in order to come to a set of possible candidate plans and what criteria should one

use to select a certain plan from such sets for execution? In resource-bounded

situations the plan generation process should be limited, i.e., the first generated plans

should have a high probability to result in a mission success, and the criteria for

selection should be as sound as possible. Furthermore, among the specific evaluation

criteria for plans that are appropriate in the naval domain are aspects such as mission

success, troop morale, and safety of the ships and troops. All these aspects are

introduced and formalized in this paper.

In the literature on meta-reasoning and meta-level architectures, one of the selling

points mentioned often is that such a system is able to reflect on its own knowledge

state and reasoning process, and therefore can introduce reasonable additional

assumptions and make more efficient choices for the reasoning process; e.g., [3, 7, 9.

13, 18, 19]. Real applications, based on these promises, developed in cooperation with

domain experts, however, are rarely found in the literature.

In this paper a generic agent-based meta-level architecture (cf. [13]) is presented

for planning, extended with a strategic reasoning level. The architecture has been

designed and formally specified using the component-based design method for agent

systems DESIRE; cf. [4]. In cooperation with domain experts, it is shown how this

formal specification has been applied in the naval domain. For this application expert

knowledge is used to identify and formally specify executable dynamic properties for

each of the components within the generic agent architecture. This has been done on a

conceptual level. The executable properties have been specified in the executable

temporal language LEADSTO (Language and Environment for Analysis of Dynamics

by SimulaTiOn [1]) and were used for simulation within the LEADSTO software

environment. Moreover, mainly based on the input of the domain experts, more global

dynamic properties for larger parts of the reasoning process have been identified and

formally specified in the expressive temporal language TTL (Temporal Trace

Language [2]). The latter properties have been formally verified against the

simulation traces automatically, using the TTL Checker software environment; thus

validation of the executable model was obtained.

 The agent architecture and its components are described in Section 2. Section 3

presents the method used to formalize the architecture. Section 4 presents each of the

individual components on a more detailed level and instantiates them with knowledge

from the naval domain. Section 5 describes a case study and discusses simulation

results. In Section 6 a number of properties of the model’s behavior are identified and

formalized. The tool TTL Checker is used to automatically check the validity of these

properties in the simulated traces. Section 7 is a discussion.

2 An Agent-Based Meta-level Architecture for Naval Planning

The agent-based architecture has been specified using the component-based design
method for agent systems DESIRE [4]. For a comparison of DESIRE with other
agent-based modeling techniques, such as GAIA, ADEPT, and MetateM, see [14, 16].
Note that this architecture concerns a multi-agent system, this paper however only
describes the architecture of a single agent. The top-level of the system is shown in
Figure 1 and consists of the ExternalWorld and the Agent. The ExternalWorld generates
observations which are forwarded to the Agent, and executes the actions that have
been determined by the Agent. The composition of the Agent is based on the generic

agent model described in [6] of which two components are used:
WorldInteractionManagement and OwnProcessControl, as shown in Figure 2.
WorldInteractionManagement takes care of monitoring the observations that are received
from the ExternalWorld. In case these observations are consistent with the current plan,
the actions which are specified in the plan are executed by means of forwarding them
to the top-level. Otherwise, evaluation information is generated and forwarded to the
OwnProcessControl component. Once OwnProcessControl receives such an evaluation it

determines whether the current plan needs to be changed, and in case it does,
forwards this new plan to WorldInteractionManagement.

WorldInteractionManagement can be decomposed into two components, namely
Monitoring and PlanExecution which take care of the tasks as previously presented (i.e.
monitoring the observations and executing the plan). For the sake of brevity the
Figure regarding these components has been omitted.

OwnProcessControl can also be decomposed, which is shown in Figure 3. Three
components are present within OwnProcessControl: StrategyDetermination, PlanGeneration,
and PlanSelection. The PlanGeneration component determines which plans are suitable,
given the evaluation information received in the form of beliefs from
WorldInteractionManagement, and the conditional rules given by StrategyDetermination.
The candidate plans are forwarded to PlanSelection where the most appropriate plan is

Agent

ExternalWorld

observation_results

actions_to_be_performed

Agent
1
in

Agent
2
in

Agent
1

out

Agent
2

out

OwnProcessControl

WorldInteractionManagement

observation_results_to_WIM

beliefs_to_OPC

actions_and_plan_to_WIM

actions_from_WIM

Fig. 2. Agent architecture

Fig. 1. Top-level architecture

selected. In case no plan can be selected in PlanSelection this information is forwarded
to the StrategyDetermination component. StrategyDetermination reasons on a meta-level
(the input is located on a higher level as well as the output as shown in Figure 3),
getting input by translating beliefs into reflected beliefs and by means of receiving the

status of the plan selection process from PlanSelection. The component has the
possibility to generate more conditional rules and pass them to PlanGeneration, or can
change the evaluation criteria in PlanSelection by forwarding these criteria.

The model has some similarities with the model presented in [11]. A major

difference is that an additional meta-level is present in the architecture presented here

for the StrategyDetermination component. The advantage of having such an additional

level is that the reasoning process will be more efficient, as the initial number of

options are limited but are required to be the most straightforward ones.

3 Formalization Method

In this section the method used for the formalization of the model presented in section

2 is explained in more detail. To formally specify dynamic properties that are

essential in naval strategic planning processes and therefore essential for the

components within the agent, an expressive language is needed. To this end the

Temporal Trace Language (TTL) is used as a tool; cf. [12]. In this section of the paper

both an informal and formal representation of the properties are given.

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state
for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all possible states for state
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont)

for state ontology Ont is the set of all propositions over ground atoms from At(Ont). A
fixed time frame T is assumed which is linearly ordered. A trace or trajectory γ over
a state ontology Ont and time frame T is a mapping γ : T → STATES(Ont), i.e., a
sequence of states γt (t ∈ T) in STATES(Ont). The set of all traces over state ontology
Ont is denoted by TRACES(Ont). Depending on the application, the time frame T may

OwnProcessControl
1
in

OwnProcessControl
2
in

OwnProcessControl
1

out

OwnProcessControl
2

out

StrategyDetermination

PlanGeneration PlanSelection

reflected_beliefs_to_SD

belief_info_to_PG

plans_to_be_considered_to_PG

possible_plans_to_PS

evaluation_info_to_SD

selected_plan_from_PS

evaluation_criteria_to_PS

Fig. 3. Components within OwnProcessControl

be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural
numbers or a finite initial segment of the natural numbers), or any other form, as long
as it has a linear ordering. The set of dynamic properties DYNPROP(∑) is the set of
temporal statements that can be formulated with respect to traces based on the state
ontology Ont in the following manner.

Given a trace γ over state ontology Ont, the input state of a component c within the

agent (e.g., PlanGeneration, or PlanSelection) at time point t is denoted by state(γ, t,

input(c)).

Analogously state(γ, t, output(c)) and state(γ, t, internal(c)) denote the output state, internal
state and external world state.

These states can be related to state properties via the formally defined satisfaction
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t,

output(c)) |= p denotes that state property p holds in trace γ at time t in the output state
of agent-component c. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted first-order predicate logic with sorts T for
time points, Traces for traces and F for state formulae, using quantifiers over time and
the usual first-order logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. In trace
descriptions, notations such as state(γ, t, output(c))|= p are shortened to output(c)|p.

To model direct temporal dependencies between two state properties, the simpler
leads to format is used. This is an executable format defined as follows. Let α and β
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

if state property α holds for a certain time interval with duration g, then after some delay (between e and

f) state property β will hold for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see

[12]. A specification of dynamic properties in leads to format has as advantages that it

is executable and that it can easily be depicted graphically.

4 Component Specification for Naval Planning

This Section introduces each of the components within the strategic planning process

in more detail. The components presented in this section are only those part of

OwnProcessControl within the agent as they are most relevant for the planning process.

A partial specification of executable properties in formal format is also presented for

each of these components. The properties introduced in this Section are generic for

naval (re)planning and can easily be instantiated with mission specific knowledge. All

of these properties are the result of interviews with officers of the Royal Netherlands

Navy.

4.1 Plan Generation

The rules for generation of a plan can be stated very generally as the knowledge about
plans. Conditions for those plans are stored in the StrategyDetermination component,
which is treated later. Basically, in this domain the component contains one rule:

if belief(S:SITUATION, pos)

 and conditionally_allowed(S:SITUATION, P:PLAN)

then candidate_plan(P:PLAN)

Stating that in case Monitoring evaluated the current situation as being situation S and

the PlanGeneration has received an input that situation S allows for plan P then it is a

candidate plan. This information is passed to the PlanSelection component.

4.2 Plan Selection

Plan selection is the next step in the process and for this domain there are three

important criteria that determine whether a plan is appropriate or not: (1) Mission

success; (2) safety, and (3) fleet morale criterion. In this scenario it is assumed that a

weighed sum can be calculated and used in order to make a decision between

candidate plans. The exact weight of each criterion is determined by the

StrategyDetermination component. The value for the criteria can be derived from

observations in the world and for example a weighed sum can be taken over time. To

obtain the observations, for each candidate plan the consequence events of the plan

are determined and formed into an observation. Thereafter the consequences of these

observations for the criteria can be determined. In the examples shown below the

bridge between changes of the criteria after an observation and the overall value of

the criteria are not shown in a formal form for the sake of brevity.

Mission Success. An important criterion is of course the mission success. Within this

criterion the objective of the mission plays a central role. In case a certain decision

needs to be made, the influence this decision has for the mission success needs to be

determined. The criterion involves taking into account several factors. First of all, the

probability that the deadline is reachable. Besides that, the probability that the mission

succeeds with a specific fleet configuration. The value of the mission success

probability is a real number between 0 and 1. A naval domain expert has labeled

certain events with an impact value on mission success. This can entail a positive

effect or a negative effect. The mission starts with an initial value for success, taking

into consideration the assignment and the enemy. In case the situation changes this

can lead to a change of the success value. An example of an observation with a

negative influence is shown below.

if current_success_value(S:REAL)

 and belief(ship_left_behind, pos)

then new_succes_value(S:REAL * 0.8)

Safety. Safety is an important criterion as well. When a ship loses propulsion the

probability of survival decreases dramatically if left alone. Basically, the probability

of survival depends on three factors: (1) the speed with which the task group is

sailing; (2) the configuration of own ships, which includes the amount and type of

ships, and their relative positions; (3) the threat caused by the enemy, the kind of

ships the enemy has, the probability of them attacking the task group, etc.

The safety value influences the evaluation value of possible plans. The duration of
a certain safety value determines its weight in the average risk value, so a weighed
sum based on time duration is taken. The value during a certain period in time is again
derived by means of an initial safety value and events in the external world causing
the safety value to increase or decrease. An example rule:

if current_safety_value(S:REAL)

 and belief(speed_change_from_to(full, slow), pos)

then new_safety_value(0.5 * S:REAL)

Fleet morale. The morale of the men on board of the ships is also important as

criterion. Morale is important in the considerations as troops with a good morale are

much more likely to win compared to those who do not have a good morale. Troop

morale is represented by a real number with a value between 0 and 1 and is

determined by events in the world observed by the men. Basically, the men start with

a certain morale value and observations of events in the world can cause the level to

go up or down, similar to the mission success criterion. One of the negative

experiences for morale is the observation of being left behind without protection or

seeing others solely left behind:

if current_morale_value(M:REAL)

 and belief(ship_left_behind, pos)

then new_morale_value(M:REAL * 0.2)

An observation increasing the morale is that of sinking an enemy ship:

if current_morale_value(M:REAL)

and belief(enemy_ship_eliminated, pos)

and min(1, M:REAL * 1.6, MIN:REAL)

then new_morale_value(MIN:REAL)

4.3 Strategy Determination

The StrategyDetermination component within the model has two functions: First of all, it
determines the conditional plans that are to be used given the current state. Secondly,
it provides a strategy for the selection of these plans.

In general, naval plans are generated according to a preferred plan library or in
exceptional cases outside of this preferred plan library. The StrategyDetermination
component within the model determines which plans are to be used and thereafter
forwards these plans to the PlanGeneration component. The StrategyDetermination
component determines one of three modes of operation on which conditional rules are
to be used in this situation:
1. Limited action demand. This mode is used as an initial setting and is a subset of

the preferred plan library. It includes the more common actions within the
preferred plan library;

2. Full preferred plan library. Generate all conditional rules that are allowed
according to the preferred plan library. This mode is taken when the limited action
mode did not provide a satisfactory solution;

3. Exceptional action demand. This strategy is used in exceptional cases, and only
in case the two other modes did not result in an appropriate candidate plan.

Note that the plans within the first mode of operation occur much more frequently
than the ones in the second mode, a similar relation holds between the second and the
third mode of operation. As a result of this frequency difference, having such a
strategy determination component improves the efficiency of the reasoning process.
Next to determining which plans should be evaluated, the StrategyDetermination
component also determines how these plans should be evaluated. In Section 4.3 it was
stated that the plan selection depends on mission success, safety, and fleet morale. All
three factors determine the overall evaluation of a plan to a certain degree. Plans can
be evaluated by means of an evaluation formula, which is described by a weighted
sum. Differences in weights determine differences in plan evaluation strategy. The
plan evaluation formula is as follows (in short):

evaluation_value(P:PLAN) =

α * mission_success_value(P:PLAN) + β * safety_value(P:PLAN) + γ * fleet_morale_value(P:PLAN)

where all values and degrees are in the interval [0,1], and α + β + γ = 1. The degrees
depend on the type of mission and the current state of the process. For instance, if a
mission is supposed to be executed safely at all cost or the situation shows that
already many ships have been lost, the degree β should be relatively high.

In case of equally important criteria the following rule holds:

if problem_type(mission_success_important)

 and problem_type(safety_important)

 and problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.33 * R1:REAL + 0.33 * R2:REAL + 0.33 *R3:REAL)

In case two criteria are most important the following rule holds:

if problem_type(mission_success_important)

 and problem_type(safety_important)

 and not problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.45 * R1:REAL + 0.45 * R2:REAL + 0.1 *R3:REAL)

This holds for each of the problem type combinations where two criteria are
important: A weight of 0.45 in case the criterion is important for the problem type and
0.1 otherwise. Finally, only one criterion can be important:

if problem_type(mission_success_important)

 and not problem_type(safety_important)

 and not problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.6 * R1:REAL + 0.2 * R2:REAL + 0.2 *R3:REAL)

The plan generation modes and plan selection degrees presented above can be

specified by formal rules which have been omitted for the sake of brevity.

5 Case-studies

This Section presents several case studies which have been formalized using the

agent-based model presented in Section 2 and 4. These case studies are again based

upon interviews with expert navy officers of the Royal Netherlands Navy. The

formalization of this process follows the methodology presented in Section 3. Three

case studies are presented: total steam failure, submarine threat, and frigate loss.

5.1 Total Steam Failure

The first scenario used as a case study is called total steam failure. First, the scenario

is described, after which the simulation results are presented.

5.1.1 Scenario Description
The scenario used as an example is the first phase within a total steam failure
scenario. A fleet consisting of 6 frigates (denoted by F1 – F6) and 6 helicopters
(denoted by H1 – H6) are protecting a specific area called Zulu Zulu (denoted by ZZ).
For optimal protection of valuable assets that need to be transported to a certain
location, and need to arrive before a certain deadline, the ships carrying these assets

Fig. 4. Scenario for meta-reasoning

are located in ZZ. These ships should always maintain their position in ZZ to
guarantee optimal protection. The formation at time T0 is shown in Figure 4. On that
same time-point the following incident occurs: An amphibious transport ship, that is
part of ZZ, loses its propulsion and cannot start the engines within a few minutes.
When a mission is assigned to a commander of the task group (CTG), he receives a
preferred plan library from the higher echelon. This library gives an exhaustive list of
situations and plans that are allowed to be executed within that situation. Therefore
the CTG has to make a decision: What to do with the ship and the rest of the fleet.
In the situation occurring in the example scenario the preferred plan library consists of
four plans:

1. Continue sailing. Leave the ship behind. The safety of the main fleet will

therefore be at a maximum level, however the risk for the ship is high. The morale
of all the men within the fleet will drop.

2. Stop the entire fleet. Stopping the fleet ensures that the ship is not left behind and
lost, however the risks for the other ships increase rapidly as an attack is more
likely to be successful when not moving.

3. Return home without the ship. Rescue the majority of the men from the ship,
return home, but leave a minimal crew on the ship that will still be able to fix the
ship. The ship will remain in danger until it is repaired and the mission is surely
not going to succeed. The morale of the men will drop to a minimal level. This
option is purely hypothetical according to the experts.

4. Form a screen around the ship. This option means that part of the screen of the
main fleet is allocated to form a screen around the ship. Therefore the ship is
protected and the risks for the rest of the fleet stay acceptable.

Option 4 involves a lot more organizational change compared to the other options and

is therefore considered after the first three options. The CTG decides to form a screen

around the ship

5.1.2 Simulation Results
The most interesting results of the simulation using the architecture and properties

described in Section 2 and 4, and instantiated with the case-study specific knowledge

from Section 5.1 are shown in Figure 5. The trace, a temporal description of chains of

events, describes the decision making process of the agent which plays the role of

Commander Task Group (CTG). The atoms on the left side denote the information

between and within the components of the agent. To keep the Figure clear only the

atoms of the components on the lowest level of the agent architecture are shown. The

right side of the figure shows when these atoms are true. In case of a black box the

atom is true during that period, in the other cases the atom is false (closed world

assumption). The atoms used are according to the model presented in Section 2. For

example, internal(PlanGeneration) denotes that the atom is internal within the

PlanGeneration component. More specifically, the trace shows that at time-point 1 the

Monitoring component receives an input that the ship has no propulsion

 input(Monitoring)|observation_result(no_propulsion(ship), pos)

The current plan is to continue without the ship, as the fleet continues to sail without
any further instructions:

output(PlanSelection)|current_plan(continue_without_ship)

As the StrategyDetermination component always outputs the options currently available
for all sorts of situations (in this case only a problem with the propulsion of a ship) it

internal(StrategyDetermination)|operation_mode(limited_action_demand)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet))

input(Monitoring)|observation_result(no_propulsion(ship), pos)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship)

output(Monitoring)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

output(Monitoring)|belief(no_propulsion(ship), pos)

output(PlanSelection)|current_plan(continue_without_ship)

input(PlanGeneration)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

input(PlanSelection)|belief(no_propulsion(ship), pos)

input(PlanExecution)|belief(no_propulsion(ship), pos)

input(StrategyDetermination)|true(belief(no_propulsion(ship), pos))

output(PlanGeneration)|candidate_plan(stop_fleet)

output(PlanGeneration)|candidate_plan(continue_without_ship)

output(PlanGeneration)|candidate_plan(return_home_without_ship)

input(PlanSelection)|candidate_plan(stop_fleet)

input(PlanSelection)|candidate_plan(continue_without_ship)

input(PlanSelection)|candidate_plan(return_home_without_ship)

internal(PlanSelection)|plan_evaluation(stop_fleet, 0.3)

internal(PlanSelection)|plan_evaluated(stop_fleet)

internal(PlanSelection)|plan_evaluation(continue_without_ship, 0.2)

internal(PlanSelection)|plan_evaluated(continue_without_ship)

internal(PlanSelection)|plan_evaluation(return_home_without_ship, 0.1)

internal(PlanSelection)|plan_evaluated(return_home_without_ship)

internal(PlanSelection)|best_plan(stop_fleet, 0.3)

output(PlanSelection)|selection_info(selection_failed)

input(StrategyDetermination)|true(selection_info(selection_failed))

internal(StrategyDetermination)|operation_mode(full_plan_library)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship))

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship)

output(PlanGeneration)|candidate_plan(form_screen_around_ship)

input(PlanSelection)|candidate_plan(form_screen_around_ship)

internal(PlanSelection)|plan_evaluation(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_evaluated(form_screen_around_ship)

internal(PlanSelection)|best_plan(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(form_screen_around_ship)

time 0 5 10 15 20

Fig. 5. Trace of the total steam failure simulation

continuously outputs the conditionally allowed information in the limited action
mode, for example:

output(StrategyDetermination)|to_be_assumed(

conditionally_allowed(has_problem(no_propulsion, ship),continue_without_ship))

The information becomes an input through downward reflection, a translation from a
meta-level to a lower meta-level:

input(PlanGeneration)|conditionally_allowed(

has_problem(no_propulsion, ship), continue_without_ship)

The Monitoring component forwards the information about the observation to the
components on the same level as beliefs. The StrategyDetermination component also
receives this information but instead of a belief it arrives as a reflected belief through
upward reflection which is a translation of information at a meta-level to a higher
meta-level:

 input(StrategyDetermination)| true(belief(no_propulsion(ship), pos))

Besides deriving the beliefs on the observations the Monitoring component also
evaluates the situation and passes this as evaluation info to the PlanGenerator.

 input(PlanGenerator)|evaluation(has_problem(no_propulsion, ship), pos)

This information acts as a basis for the PlanGenerator to generate candidate plans,
which are sent to the PlanSelection, for example.

input(PlanSelection)|candidate_plan(continue_without_ship)

Internally the PlanSelection component determines the evaluation value of the different
plans, compares them and derives the best plan out of the candidate plans:

internal(PlanSelection)|best_plan(stop_fleet, 0.3)

This value is below the threshold evaluation value and therefore the PlanSelection
component informs the StrategyDetermination component that no plan has been
selected:

output(PlanSelection)|selection_info(selection_failed)

Thereafter the StrategyDetermination component switches to the full preferred plan
library and informs PlanGeneration of the new options. PlanGeneration again generates
all possible plans and forwards them to PlanSelection. PlanSelection now finds a plan
that is evaluated above the threshold and makes that the new current plan.

output(PlanSelection)|current_plan(form_screen_around_ship)

This plan is forwarded to the PlanExecution and Monitoring components (not shown in

the trace) and is executed and monitored.

5.2 Submarine Threat

The second scenario is called submarine threat, and deals with a hostile submarine

being detected within the fleet. First, a description of the scenario is given and

thereafter simulation results are presented.

5.2.1 Scenario Description
The initial fleet formation and mission for this scenario is identical to the one

explained in Section 5.1.1. Another event however occurs that needs to be dealt with.

Frigate F1 suddenly detects sonar contact with a high probability that it concerns a

hostile submarine. The position of this submarine is such that the assets in Zulu Zulu

are within torpedo range of the submarine. The plan library for the CTG in this

particular situation is as follows:

1. Eliminate and turn. This option consists of two actions: First of all, F1 will fire

a torpedo in the direction of the detected submarine. Thereafter, several frigates

are sent to eliminate the submarine whereas the remainder of the fleet turns away

from the submarine, positioning several frigates between the submarine and Zulu

Zulu. This option results in risk for the frigates chasing the submarine whereas

the remainder of the fleet remains relatively safe. Morale of the men will go up,

and mission success is not so much endangered.

2. Full attack. This plan entails a full attack on the submarine with all available

resources. Disadvantage is however that Zulu Zulu is no longer protected, and

another enemy ship could possibly attack Zulu Zulu. The risk for mission success

is therefore high, and morale of the men on board of the ships part of Zulu Zulu

will drop, since they are being left behind without protection.

3. Full throttle. Accelerate to maximum speed, in order to try and outrun the

submarine, zig zag to avoid the submarine getting a lock on one of the ships

within Zulu Zulu. Morale of the troops will go down since they know there is a

submarine somewhere trying to attack, and mission success will be much lower

as well since the submarine might have the ability to successfully fire torpedos at

Zulu Zulu. Safety is also low.

Option 3 is considered only after the first two have been considered as trying to

escape from a submarine is highly dangerous and therefore seriously threatens

mission success. Preferred plan is therefore to try and eliminate the submarine. The

CTG decides to choose the eliminate and turn plan.

5.2.2 Simulation Results

internal(StrategyDetermination)|operation_mode(limited_action_demand)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(submarine_detected, ship), eliminate_and_turn))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(submarine_detected, ship), full_attack))

input(Monitoring)|observation_result(detected(submarine), pos)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_detected, ship), eliminate_and_turn)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_detected, ship), full_attack)

output(Monitoring)|evaluation_is_current(has_problem(submarine_detected, ship), pos)

output(Monitoring)|belief(detected(submarine), pos)

output(PlanSelection)|current_plan(continue)

input(StrategyDetermination)|true(belief(detected(submarine), pos))

input(PlanSelection)|belief(detected(submarine), pos)

input(PlanExecution)|belief(detected(submarine), pos)

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_detected, ship), pos)

output(PlanGeneration)|candidate_plan(eliminate_and_turn)

output(PlanGeneration)|candidate_plan(full_attack)

input(PlanSelection)|candidate_plan(eliminate_and_turn)

input(PlanSelection)|candidate_plan(full_attack)

internal(PlanSelection)|plan_evaluation(eliminate_and_turn, 0.8)

internal(PlanSelection)|plan_evaluated(eliminate_and_turn)

internal(PlanSelection)|plan_evaluation(full_attack, 0.4)

internal(PlanSelection)|plan_evaluated(full_attack)

internal(PlanSelection)|best_plan(eliminate_and_turn, 0.8)

internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(eliminate_and_turn)

time 0 5 10 15 20

Figure 6 shows the results of a simulation of the submarine threat scenario. Initially,

again the operation mode is set to limited action demand, which results in two plans

being outputted by the StrategyDetermination component:

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(

submarine_detected), ship), eliminated_and_turn)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(

submarine_detected), ship), full_attack)

Suddenly, an event occurs which is precisely the event for which these conditional

plans are meant, namely that a submarine has been detected by a ship:

output(Monitoring)|belief(detected(submarine), pos)

As a result the current plan selected to handle the situation is again to continue with

the current plan, which is to continue sailing. The PlanGeneration component generates

the currently available plans for handling the event, which it has received from the

StrategyDetermination component:

output(PlanGeneration)|cadidate_plan(eliminated_and_turn)

output(PlanGeneration)|cadidate_plan(full_attack)

This output is received by the PlanSelection component, which starts to evaluate the
two available plans. After evaluation, the plan to eliminate and turn is found to be best

Fig. 6. Trace of the submarine threat simulation

and is evaluated above the threshold value. As a result, it is selected as the new
current plan:

output(PlanSelection)|current_plan(elminate_and_turn)

As can be seen in the simulation, only two out of three available plans have been
evaluated before selecting a new plan. Since the plans being evaluated first are the
ones typically best suitable in the situation, this saves a lot of precious evaluation
most of the time.

5.3 Frigate Loss

Final scenario which has been investigated is that of a frigate being hit by a submarine

torpedo.

5.3.1 Scenario Description
Again, the initial fleet configuration and mission are identical to the description

presented in Section 5.1.1. Again, a submarine is detected, for which the CTG decides

to send in H3 to eliminate the submarine. The submarine however fires a torpedo

which strikes F3 causing it to sink. There are now several options how to continue:

1. Eliminate and save. Eliminate the submarine first by reinforcing the current

attack units. Thereafter, save the drowning crew of frigate F3. This option

maximizes the morale of the troops as they see their colleagues being saved,

mission success is however slightly endangered as picking up the drowning crew

will result in frigates lying still, which makes them more vulnerable for enemy

attacks.

2. Save crew. Immediately use all resources to save the crew on board of the

sunken ship. In this scenario this is devastating for mission success as the

submarine can easily attack the ships within Zulu Zulu. Furthermore, the

submarine could even attack the resources that are being used to save the crew of

the sunken ship. The safety for the crew of the sunken ship is relatively high

whereas the safety for the other ships is low.

3. Surrender. Hoist the white flag and surrender to avoid further casualties. Morale

will be very low, mission success probability is down to zero, and safety is highly

unknown as the crew and assets are now in the hands of the enemy.

Again, options 1 and 2 are first considered before the last option is taken into

consideration since surrender is the last option a fleet commander wants to think of.

5.3.2 Simulation Results

internal(StrategyDetermination)|operation_mode(limited_action_demand)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), eliminate_and_save)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), save_crew)

input(PlanSelection)|has_value(alpha, 0.45)

input(PlanSelection)|has_value(beta, 0.45)

input(PlanSelection)|has_value(gamma, 0.1)

output(PlanSelection)|current_plan(continue)

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_attack_hit, ship), pos)

output(PlanGeneration)|candidate_plan(eliminate_and_save)

output(PlanGeneration)|candidate_plan(save_crew)

input(PlanSelection)|candidate_plan(eliminate_and_save)

input(PlanSelection)|candidate_plan(save_crew)

internal(PlanSelection)|plan_evaluation(eliminate_and_save, 0.26)

internal(PlanSelection)|plan_evaluation(save_crew, 0.14)

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

output(PlanSelection)|selection_info(selection_failed)

internal(StrategyDetermination)|operation_mode(full_plan_library)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), surrender)

output(PlanGeneration)|candidate_plan(surrender)

input(PlanSelection)|candidate_plan(surrender)

internal(PlanSelection)|plan_evaluation(surrender, 0.1175)

internal(StrategyDetermination)|value_change(alpha)

internal(StrategyDetermination)|value_change(beta)

internal(StrategyDetermination)|value_change(gamma)

input(PlanSelection)|has_value(alpha, 0.2)

input(PlanSelection)|has_value(beta, 0.2)

input(PlanSelection)|has_value(gamma, 0.6)

internal(PlanSelection)|plan_evaluation(eliminate_and_save, 0.56)

internal(PlanSelection)|plan_evaluation(surrender, 0.08)

internal(PlanSelection)|plan_evaluation(save_crew, 0.34)

internal(PlanSelection)|best_plan(eliminate_and_save, 0.56)

internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(eliminate_and_save)

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 7 shows the simulation results of the Frigate loss scenario. In this particular

trace, the α, β, and γ value passed to the PlanSelection component by

StrategyDetermination are shown as well. Again, initially the operation mode is set to

limited action demand and the accompanying conditional rules for this scenario are

passed as well, namely the following:

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship),

eleminate_and_save)
input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship),

save_crew)

The initial α, β, and γ values passed are respectively 0.45, 0.45, and 0.1:

input(PlanSelection)|has_value(alpha, 0.45)
input(PlanSelection)|has_value(beta, 0.45)
input(PlanSelection)|has_value(gamma, 0.1)

Denoting that in this case mission success and safety are considered to be more

important aspects for plan evaluation than morale. Suddenly the problem of a frigate

being hit by an enemy submarine is observed, which is forwarded to the

PlanGeneration component:

Fig. 7. Trace of the frigate loss scenario

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_attack_hit), ship), pos)

Based on the detected problem, the two plans that are currently conditionally allowed

are generated, and forwarded to PlanSelection:

input(PlanSelection)|candidate_plan(eliminate_and_save)
input(PlanSelection)|candidate_plan(save)

Based on the previously mentioned α, β, and γ values, the component evaluates the

candidate plans, and concludes that eliminate and save is the best plan, with an

evaluation value of 0.26:

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

Since the threshold for plan selection is set to a higher value, namely 0.35, the

component outputs that selection has failed for this set. As a result the

StrategyDetermination component switches to full plan library mode:

internal(StrategyDetermination)|operation_mode(full_plan_library)

The plans that have been added to the library and which are appropriate for the

current situation are again forwarded to PlanSelection which evaluates the new

additional plan (surrender) to the even lower value of 0.1175:

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

Again, selection has failed, however there are no additional plans available in the

exceptional action demand mode. Therefore, the StrategyDetermination component

decides to adapt the weights of the parameters, and gives more weight to moral (γ):

input(PlanSelection)|has_value(alpha, 0.2)
input(PlanSelection)|has_value(beta, 0.2)
input(PlanSelection)|has_value(gamma, 0.6)

As a result, the best plan is now eliminate and save which now evaluates above the

threshold. Finally, the plan is set to be the current plan.

6 Validation by Verification

After the formalized traces have been obtained, (either by formalization of an
empirical trace or by means of simulation, such as done in the previous section), it can
be validated whether these traces comply to certain desired properties from a more
global perspective. Below it is shown which of such properties were identified, in
cooperation with domain experts, how they were formally specified. Moreover,
verification of these properties against the traces is shown. The properties are
independent from the specific scenario and should hold for every scenario for which
the agent-based meta-level architecture presented in Section 2 and 4 is applied. The
properties are formalized using Temporal Trace Language as described in Section 3.
The first two properties express that the system indeed functions as a meta-level

architecture (as intended), based on upward and downward reflections between the
different levels.

P1: Upward reflection. This property states that information generated at the level of
the Monitoring and PlanSelection components should always be reflected upwards to the
level of the StrategyDetermination component. In semi-formal notation:

At any point in time t,

if Monitoring outputs a belief about the world at time t

then at a later point in time t2 StrategyDetermination receives this information through upward reflection

At any point in time t,

if PlanSelection outputs selection info at time t

then at a later point in time t2 StrategyDetermination receives this information though upward reflection.

In formal form the property is as follows:

∀t [[∀O:OBS, S:SIGN [state(γ, t, output(Monitoring)) |= belief(O, S)

⇒ ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(belief(O,S))]]

& [∀SI:SEL_INFO [state(γ, t, output(PlanSelection)) |= selection_info(SI)

⇒ ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(selection_info(SI))]]]

This property has been automatically checked and shown to be satisfied within the

traces. This may sound not too surprising, as the system was designed for this, but this

check confirms that what was intended in the design, indeed shows itself in the

implementation.

P2: Downward reflection. Property P2 verifies that all information generated by the
StrategyDetermination component for a lower meta-level is made available at that level
through downward reflection. In formal form:

∀t, S:SITUATION, P:PLAN [state(γ, t, output(StrategyDetermination))
|= to_be_assumed(conditionally_allowed(S, P))

⇒ ∃t2 ≥ t state(γ, t2, input(PlanGeneration)) |= conditionally_allowed(S, P)]

This property is also satisfied for the given traces.

P3: Extreme measures. This property states that measures that are not part of the
preferred plan library (extreme measures) are only taken in case some other options
failed. In formal form:

∀t, t2 > t, S:SITUATION, P1:PLAN, P2:PLAN

[[state(γ, t, output(Monitoring)) |= evaluation(exception(S), pos) & state(γ, t, output(PlanSelection)) |=

current_plan(P1) & state(γ, t2, output(PlanSelection)) |= current_plan(P2) & P1 ≠ P2

& ¬state(γ, t2, internal(StrategyDetermination)) |= to_be_assumed(preferred_plan(S, P2)]

⇒ ∃t’ [t’ ≥ t & t’ ≤ t2 & state(γ, t’, output(PlanSelection)) |= selection_info(selection_failed)]]

The property is satisfied for the given traces.

P4: Plans are changed only if an exception was encountered. Property P4 formally
describes that a plan is only changed in case there has been an exception that triggered
this change. Formal:

∀t, t2 ≥ t, P:PLAN [[state(γ, t, output(PlanSelection)) |= current_plan(P) &

¬state(γ, t2, output(PlanSelection)) |= current_plan(P)]

⇒ ∃t’, S:SITUATION [t’ ≥ t & t’ ≤ t2 &

state(γ, t’, output(Monitoring)) |= evaluation(exception(S), pos)]]

This property is again satisfied for the given traces.

7 Discussion

This paper presents the analysis and simulation of meta-reasoning processes based on
an agent-based architecture for strategic planning (cf. [19]) for naval domains. The
architecture was designed as a meta-level architecture (cf. [13]) with three levels. The
interaction between the levels in this paper is modeled by reflection principles (e.g.,
[3]). The dynamics of the architecture is based on a multi-level trace approach as an
extension of what is described in [9]; see also [5]. The architecture has been
instantiated with strategic planning knowledge from the naval domain. As a further
contribution, besides mission success, aspects such as safety and fleet morale have
been formalized, and incorporated within the strategic knowledge. Without this, it
would have been difficult to take such aspects into account in the decision making.
Moreover, as discussed in Section 4.3, as plans within the first mode of operation
(limited action demand) occur much more frequently than the ones in the second
mode (full preferred plan library), a similar relation holds between the second and the
third mode of operation (exceptional action demand). As a result of this frequency
difference, having such a strategic reasoning level taking this into account, improves
the efficiency of the reasoning process

The resulting executable model has been used to perform a number of simulation
experiments for different naval scenarios. To evaluate the simulation results and
thereby validate the model, in cooperation with domain experts, desired properties for
the decision process have been identified, formalized, and verified against the
simulation traces.

A meta-level architecture for strategic reasoning in another area, namely that of
design processes is described in [7]. This architecture has been used as a source of
inspiration for the current architecture for strategic planning. In other architectures,
such as in PRS [8], meta-level knowledge is also part of the system, however this
knowledge is not explicitly part of the architecture (it is part of the Knowledge Areas)
as is the case in the architecture presented in this paper.

Agent models of military decision making have been investigated before. In [17]
for example an agent-based model is presented that mimics the decision process of an
experienced military decision maker. Potential decisions are evaluated by checking if
they are good for the current goals. A case study of decisions to be made at an
amphibian landing mission is used. The outcome of the evaluations of the decisions
that can be made in the case-study are compared to the decisions made by real
military commanders. The approach presented is different from the approach taken in
this paper, as a more formal approach is taken here to evaluate the model created.
Also the focus in this paper is more on the model of the decision maker itself and not
on the correctness of the decisions, which is the case in [17]. The main advantage of
the approach taken is that the system is specified and can be simulated on a
conceptual level contrary to other approaches. Furthermore for knowledge-intensive
domains, such as the naval domain, there is the issue of scalability. As this heavily
depends on the available domain knowledge, only by further exploration for different
domains and variants it can be found out how scalable such a system is. It is possible
for instance to add or change the described criteria for other domains, but also to
apply particular more generic planning algorithms. Finally, this paper addressed
resource-bounded situations. In [15] an overview is presented of models for human
behavior that can be used for simulations. Similar to research done in other agent-
based systems using DESIRE [4], future research in simulation and the validation of

relevant properties for the resulting simulation traces is expected to give more insight
in the implementation of future complex resource-bounded agent-based planning
support systems used by commanders on naval platforms.

Acknowledgments. CAMS-Force Vision, a software development company

associated with the Royal Netherlands Navy, funded this research and provided

domain knowledge. The authors especially want to thank Jaap de Boer (CAMS-Force

Vision) for his expert knowledge.

References

1. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J., LEADSTO: a Language and

Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T., Kluegl, F.,

Lamersdorf, W., Klusch, M., and Huhns, M.N. (eds.), Proceedings of the Third German

Conference on Multi-Agent System Technologies, MATES'05. Lecture Notes in AI, vol.

3550. Springer Verlag, 2005, pp. 165-178.

2. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J., Specification

and Verification of Dynamics in Cognitive Agent Models. In: Nishida, T., Klusch, M.,

Sycara, K., Yokoo, M., Liu, J., Wah, B., Cheung, W., and Cheung, Y.-M. (eds.),

Proceedings of the Sixth International Conference on Intelligent Agent Technology,

IAT'06. IEEE Computer Society Press, 2006, pp. 247-254.

3. Bowen, K. and Kowalski, R., Amalgamating language and meta-language in logic

programming. In: K. Clark, S. Tarnlund (eds.), Logic programming. Academic Press,

1982.

4. Brazier, F.M.T., Jonker, C.M., and Treur, J., Principles of Component-Based Design of

Intelligent Agents. Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

5. Brazier, F.M.T., Jonker, C.M., and Treur, J., Dynamics and Control in Component-Based

Agent Models. International Journal of Intelligent Systems, vol. 17, 2002, pp. 1007-1048.

6. Brazier, F.M.T., Jonker, C.M., and Treur, J., Compositional Design and Reuse of a

Generic Agent Model. Applied Artificial Intelligence Journal, vol. 14, 2000, pp. 491-538.

7. Brazier, F.M.T., Langen, P.H.G. van, and Treur, J., Strategic Knowledge in Design: a

Compositional Approach. Knowledge-based Systems, vol. 11, 1998 (Special Issue on

Strategic Knowledge and Concept Formation, K. Hori, ed.), pp. 405-416.

8. Georgeff, M. P., and Ingrand, F. F., Decision-making in an embedded reasoning system.

In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence

(IJCAI-89), pages 972-978, Detroit, MI, 1989.

9. Hoek, W. van der, Meyer, J.-J.Ch., and Treur, J., Formal Semantics of Meta-Level

Architectures: Temporal Epistemic Reflection. International Journal of Intelligent

Systems, vol. 18, 2003, pp. 1293-1318.

10. Hoek, W. van der, Ruan, J., and Wooldridge, M., Strategy Logics and the Game

Description Language. In: J. van Benthem, S. Ju and F. Veltman (eds), A meeting of the

Minds, Texts in Computer Science, College Publications Vol. 8, pp. 259--274, 2007.

11. Jonker, C.M., and Treur, J., A Compositional Process Control Model and its Application

to Biochemical Processes. Applied Artificial Intelligence Journal, vol. 16, 2002, pp. 51-71.

12. Jonker, C.M., and Treur, J. Compositional verification of multi-agent systems: a formal

analysis of pro-activeness and reactiveness. International. Journal of Cooperative

Information Systems, vol. 11, 2002, pp. 51-92.

13. Maes, P, Nardi, D. (eds), Meta-level architectures and reflection, Elsevier Science

Publishers, 1988.

14. Mulder, M, Treur, J., and Fisher, M., Agent Modelling in MetateM and DESIRE. In: M.P.

Singh, A.S. Rao, M.J. Wooldridge (eds.), Intelligent Agents IV, Proc. Fourth International

Workshop on Agent Theories, Architectures and Languages, ATAL'97. Lecture Notes in

AI, vol. 1365, Springer Verlag, 1998, pp. 193-207.

15. Pew, R.W. and Mavor, A.S.. Modeling Human and Organizational Behavior, National

Academy Press, Washington, D.C. 1999.

16. Shehory, O., and Sturm, A., Evaluation of modeling techniques for agent-based systems,

In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal,

Canada, May 2001, pp. 624-631.

17. Sokolowski, J., Enhanced Military Decision Modeling Using a MultiAgent System

Approach, In Proceedings of the Twelfth Conference on Behavior Representation in

Modeling and Simulation, Scottsdale, AZ., May 12-15, 2003, pp. 179-186.

18. Standaert, D., Tanter, E., Cutsem, T. van, Design of a Multi-Level Reflective Architecture

for Ambient Actors. In: Proceedings of ECOOP Workshop on Object Technology for

Ambient Intelligence and Pervasive Computing (OT4AmI 2006), July 2006, Nantes,

France.

19. Treur, J., Formal Semantics of Meta-Level Architectures: Dynamic Control of Reasoning.

International Journal of Intelligent Systems, vol. 17, 2002, pp. 545-568.

20. Wellman, M. P., Reeves, D. M., Lochner, K. M., Cheng, S.-F., and Suri, R., Approximate

strategic reasoning through hierarchical reduction of large symmetric games. In: Twentieth

National Conference on Artificial Intelligence, pp. 502–508, 2005.

21. Wilkins, D.E., Domain-independent planning representation and plan generation. Artificial

Intelligence 22 (1984), pp. 269-301.

