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Abstract. This paper presents analysis and simulation of meta-reasoning 

processes based on an agent-based meta-level architecture for strategic 

reasoning in naval planning. The architecture was designed as a generic agent 

model and instantiated with decision knowledge acquired from naval domain 

experts and was specified as an executable agent-based model which has been 

used to perform a number of simulations. To evaluate the simulation results, 

relevant properties for the planning decision were identified and formalized. 

These properties have been validated for the simulation traces.  
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1   Introduction 

The management of naval organizations aims at the maximization of mission success 

by means of monitoring, planning, and strategic reasoning. In this domain, just as well 

as in all other domains that are characterized by their resource-boundedness, plan 

generation and action selection are supported by strategic reasoning; for example, it 

may help to determine to decide whether a go or no go should be given to a certain 

possible plan after an incident, whether this should be investigated further, or even 

whether attention should be shifted to a different plans altogether. An incident is an 

unexpected event, which results in an unmeant chain of events if left alone. Strategic 

reasoning in a planning context can occur both in plan generation strategies (cf. [21]) 

and plan selection strategies (cf. [10, 20]). 

     The above context gives rise to two important questions. Firstly, what possible 

(candidate) plans are there to be considered? And secondly, what criteria should one 

use in order to come to a set of possible candidate plans and what criteria should one 

use to select a certain plan from such sets for execution? In resource-bounded 



situations the plan generation process should be limited, i.e., the first generated plans 

should have a high probability to result in a mission success, and the criteria for 

selection should be as sound as possible. Furthermore, among the specific evaluation 

criteria for plans that are appropriate in the naval domain are aspects such as mission 

success, troop morale, and safety of the ships and troops. All these aspects are 

introduced and formalized in this paper. 

In the literature on meta-reasoning and meta-level architectures, one of the selling 

points mentioned often is that such a system is able to reflect on its own knowledge 

state and reasoning process, and therefore can introduce reasonable additional 

assumptions and make more efficient choices for the reasoning process; e.g., [3, 7, 9. 

13, 18, 19]. Real applications, based on these promises, developed in cooperation with 

domain experts, however, are rarely found in the literature. 

In this paper a generic agent-based meta-level architecture (cf. [13]) is presented 

for planning, extended with a strategic reasoning level. The architecture has been 

designed and formally specified using the component-based design method for agent 

systems DESIRE; cf. [4]. In cooperation with domain experts, it is shown how this 

formal specification has been applied in the naval domain. For this application expert 

knowledge is used to identify and formally specify executable dynamic properties for 

each of the components within the generic agent architecture. This has been done on a 

conceptual level. The executable properties have been specified in the executable 

temporal language LEADSTO (Language and Environment for Analysis of Dynamics 

by SimulaTiOn [1]) and were used for simulation within the LEADSTO software 

environment. Moreover, mainly based on the input of the domain experts, more global 

dynamic properties for larger parts of the reasoning process have been identified and 

formally specified in the expressive temporal language TTL (Temporal Trace 

Language [2]). The latter properties have been formally verified against the 

simulation traces automatically, using the TTL Checker software environment; thus 

validation of the executable model was obtained. 

     The agent architecture and its components are described in Section 2. Section 3 

presents the method used to formalize the architecture. Section 4 presents each of the 

individual components on a more detailed level and instantiates them with knowledge 

from the naval domain. Section 5 describes a case study and discusses simulation 

results. In Section 6 a number of properties of the model’s behavior are identified and 

formalized. The tool TTL Checker is used to automatically check the validity of these 

properties in the simulated traces. Section 7 is a discussion. 

2   An Agent-Based Meta-level Architecture for Naval Planning 

The agent-based architecture has been specified using the component-based design 
method for agent systems DESIRE [4]. For a comparison of DESIRE with other 
agent-based modeling techniques, such as GAIA, ADEPT, and MetateM, see [14, 16]. 
Note that this architecture concerns a multi-agent system, this paper however only 
describes the architecture of a single agent. The top-level of the system is shown in 
Figure 1 and consists of the ExternalWorld and the Agent. The ExternalWorld generates 
observations which are forwarded to the Agent, and executes the actions that have 
been determined by the Agent. The composition of the Agent is based on the generic 



agent model described in [6] of which two components are used: 
WorldInteractionManagement and OwnProcessControl, as shown in Figure 2. 
WorldInteractionManagement takes care of monitoring the observations that are received 
from the ExternalWorld. In case these observations are consistent with the current plan, 
the actions which are specified in the plan are executed by means of forwarding them 
to the top-level. Otherwise, evaluation information is generated and forwarded to the 
OwnProcessControl component. Once OwnProcessControl receives such an evaluation it  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
determines whether the current plan needs to be changed, and in case it does, 
forwards this new plan to WorldInteractionManagement. 

WorldInteractionManagement can be decomposed into two components, namely 
Monitoring and PlanExecution which take care of the tasks as previously presented (i.e. 
monitoring the observations and executing the plan). For the sake of brevity the 
Figure regarding these components has been omitted. 

OwnProcessControl can also be decomposed, which is shown in Figure 3. Three 
components are present within OwnProcessControl: StrategyDetermination, PlanGeneration, 
and PlanSelection. The PlanGeneration component determines which plans are suitable, 
given the evaluation information received in the form of beliefs from 
WorldInteractionManagement, and the conditional rules given by StrategyDetermination. 
The candidate plans are forwarded to PlanSelection where the most appropriate plan is 

Agent

ExternalWorld

observation_results

actions_to_be_performed

Agent
1
in

Agent
2
in

Agent
1

out

Agent
2

out

OwnProcessControl

WorldInteractionManagement

observation_results_to_WIM

beliefs_to_OPC

actions_and_plan_to_WIM

actions_from_WIM

Fig. 2. Agent architecture 

Fig. 1. Top-level architecture 



selected. In case no plan can be selected in PlanSelection this information is forwarded 
to the StrategyDetermination component. StrategyDetermination reasons on a meta-level 
(the input is located on a higher level as well as the output as shown in Figure 3), 
getting input by translating beliefs into reflected beliefs and by means of receiving the 

status of the plan selection process from PlanSelection. The component has the 
possibility to generate more conditional rules and pass them to PlanGeneration, or can 
change the evaluation criteria in PlanSelection by forwarding these criteria. 

The model has some similarities with the model presented in [11]. A major 

difference is that an additional meta-level is present in the architecture presented here 

for the StrategyDetermination component. The advantage of having such an additional 

level is that the reasoning process will be more efficient, as the initial number of 

options are limited but are required to be the most straightforward ones. 

3   Formalization Method 

In this section the method used for the formalization of the model presented in section 

2 is explained in more detail. To formally specify dynamic properties that are 

essential in naval strategic planning processes and therefore essential for the 

components within the agent, an expressive language is needed. To this end the 

Temporal Trace Language (TTL) is used as a tool; cf. [12]. In this section of the paper 

both an informal and formal representation of the properties are given. 

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state 
for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of 
ground atoms expressed in terms of Ont. The set of all possible states for state 
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont) 

for state ontology Ont is the set of all propositions over ground atoms from At(Ont). A 
fixed time frame T is assumed which is linearly ordered. A  trace or trajectory γ over 
a state ontology  Ont  and time frame T  is a mapping γ : T → STATES(Ont), i.e., a 
sequence of states γt (t ∈ T) in  STATES(Ont). The set of all traces over state ontology 
Ont is denoted by TRACES(Ont).  Depending on the application, the time frame T may 
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be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural 
numbers or a finite initial segment of the natural numbers), or any other form, as long 
as it has a linear ordering. The set of dynamic properties DYNPROP(∑) is the set of 
temporal statements that can be formulated with respect to traces based on the state 
ontology Ont in the following manner.  

Given a trace γ over state ontology Ont, the input state of a component c within the 

agent (e.g., PlanGeneration, or PlanSelection) at time point t is denoted by state(γ, t, 

input(c)). 

Analogously state(γ, t, output(c)) and state(γ, t, internal(c)) denote the output state, internal 
state and external world state.  

These states can be related to state properties via the formally defined satisfaction 
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t, 

output(c)) |= p denotes that state property p holds in trace γ at time t in the output state 
of agent-component c. Based on these statements, dynamic properties can be 
formulated in a formal manner in a sorted first-order predicate logic with sorts T for 
time points, Traces for traces and F for state formulae, using quantifiers over time and 
the usual first-order logical connectives such as ¬, ∧, ∨, ⇒, ∀, ∃. In trace 
descriptions, notations such as state(γ, t, output(c))|= p are shortened to output(c)|p. 

To model direct temporal dependencies between two state properties, the simpler 
leads to format is used. This is an executable format defined as follows. Let α and β 
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or 
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to 
language α →→e, f, g, h β, means: 
 

if  state property α holds for a certain time interval with duration g, then after some delay (between e and 

f) state property β will hold for a certain time interval of  length h. 
 

For a precise definition of the leads to format in terms of the language TTL, see 

[12]. A specification of dynamic properties in leads to format has as advantages that it 

is executable and that it can easily be depicted graphically. 

4   Component Specification for Naval Planning 

This Section introduces each of the components within the strategic planning process 

in more detail. The components presented in this section are only those part of 

OwnProcessControl within the agent as they are most relevant for the planning process. 

A partial specification of executable properties in formal format is also presented for 

each of these components. The properties introduced in this Section are generic for 

naval (re)planning and can easily be instantiated with mission specific knowledge. All 

of these properties are the result of interviews with officers of the Royal Netherlands 

Navy. 

4.1   Plan Generation 

The rules for generation of a plan can be stated very generally as the knowledge about 
plans. Conditions for those plans are stored in the StrategyDetermination component, 
which is treated later. Basically, in this domain the component contains one rule: 



 
 
 

if        belief(S:SITUATION, pos) 

 and   conditionally_allowed(S:SITUATION, P:PLAN) 

then   candidate_plan(P:PLAN) 

 
 

Stating that in case Monitoring evaluated the current situation as being situation S and 

the PlanGeneration has received an input that situation S allows for plan P then it is a 

candidate plan. This information is passed to the PlanSelection component. 

4.2   Plan Selection 

Plan selection is the next step in the process and for this domain there are three 

important criteria that determine whether a plan is appropriate or not: (1) Mission 

success; (2) safety, and (3) fleet morale criterion. In this scenario it is assumed that a 

weighed sum can be calculated and used in order to make a decision between 

candidate plans. The exact weight of each criterion is determined by the 

StrategyDetermination component. The value for the criteria can be derived from 

observations in the world and for example a weighed sum can be taken over time. To 

obtain the observations, for each candidate plan the consequence events of the plan 

are determined and formed into an observation. Thereafter the consequences of these 

observations for the criteria can be determined. In the examples shown below the 

bridge between changes of the criteria after an observation and the overall value of 

the criteria are not shown in a formal form for the sake of brevity. 

 

Mission Success. An important criterion is of course the mission success. Within this 

criterion the objective of the mission plays a central role. In case a certain decision 

needs to be made, the influence this decision has for the mission success needs to be 

determined. The criterion involves taking into account several factors. First of all, the 

probability that the deadline is reachable. Besides that, the probability that the mission 

succeeds with a specific fleet configuration. The value of the mission success 

probability is a real number between 0 and 1. A naval domain expert has labeled 

certain events with an impact value on mission success. This can entail a positive 

effect or a negative effect. The mission starts with an initial value for success, taking 

into consideration the assignment and the enemy. In case the situation changes this 

can lead to a change of the success value. An example of an observation with a 

negative influence is shown below. 
 

if       current_success_value(S:REAL) 

 and  belief(ship_left_behind, pos) 

then  new_succes_value(S:REAL * 0.8) 

 
Safety. Safety is an important criterion as well. When a ship loses propulsion the 

probability of survival decreases dramatically if left alone. Basically, the probability 

of survival depends on three factors: (1) the speed with which the task group is 

sailing; (2) the configuration of own ships, which includes the amount and type of 



ships, and their relative positions; (3) the threat caused by the enemy, the kind of 

ships the enemy has, the probability of them attacking the task group, etc.  

The safety value influences the evaluation value of possible plans. The duration of 
a certain safety value determines its weight in the average risk value, so a weighed 
sum based on time duration is taken. The value during a certain period in time is again 
derived by means of an initial safety value and events in the external world causing 
the safety value to increase or decrease. An example rule: 
 

if        current_safety_value(S:REAL) 

 and   belief(speed_change_from_to(full, slow), pos) 

then   new_safety_value(0.5 * S:REAL) 

 
Fleet morale. The morale of the men on board of the ships is also important as 

criterion. Morale is important in the considerations as troops with a good morale are 

much more likely to win compared to those who do not have a good morale. Troop 

morale is represented by a real number with a value between 0 and 1 and is 

determined by events in the world observed by the men. Basically, the men start with 

a certain morale value and observations of events in the world can cause the level to 

go up or down, similar to the mission success criterion. One of the negative 

experiences for morale is the observation of being left behind without protection or 

seeing others solely left behind: 
 

if       current_morale_value(M:REAL) 

 and  belief(ship_left_behind, pos) 

then  new_morale_value(M:REAL * 0.2) 

 

An observation increasing the morale is that of sinking an enemy ship: 
 

if        current_morale_value(M:REAL) 

and   belief(enemy_ship_eliminated, pos) 

and   min(1, M:REAL * 1.6, MIN:REAL) 

then  new_morale_value(MIN:REAL) 

4.3   Strategy Determination 

The StrategyDetermination component within the model has two functions: First of all, it 
determines the conditional plans that are to be used given the current state. Secondly, 
it provides a strategy for the selection of these plans. 

In general, naval plans are generated according to a preferred plan library or in 
exceptional cases outside of this preferred plan library. The StrategyDetermination 
component within the model determines which plans are to be used and thereafter 
forwards these plans to the PlanGeneration component. The StrategyDetermination 
component determines one of three modes of operation on which conditional rules are 
to be used in this situation: 
1. Limited action demand. This mode is used as an initial setting and is a subset of 

the preferred plan library. It includes the more common actions within the 
preferred plan library; 



2. Full preferred plan library. Generate all conditional rules that are allowed 
according to the preferred plan library. This mode is taken when the limited action 
mode did not provide a satisfactory solution; 

3. Exceptional action demand. This strategy is used in exceptional cases, and only 
in case the two other modes did not result in an appropriate candidate plan. 

Note that the plans within the first mode of operation occur much more frequently 
than the ones in the second mode, a similar relation holds between the second and the 
third mode of operation. As a result of this frequency difference, having such a 
strategy determination component improves the efficiency of the reasoning process. 
Next to determining which plans should be evaluated, the StrategyDetermination 
component also determines how these plans should be evaluated. In Section 4.3 it was 
stated that the plan selection depends on mission success, safety, and fleet morale. All 
three factors determine the overall evaluation of a plan to a certain degree. Plans can 
be evaluated by means of an evaluation formula, which is described by a weighted 
sum. Differences in weights determine differences in plan evaluation strategy. The 
plan evaluation formula is as follows (in short): 
 

evaluation_value(P:PLAN) = 

α * mission_success_value(P:PLAN) + β * safety_value(P:PLAN) + γ * fleet_morale_value(P:PLAN) 

 

where all values and degrees are in the interval [0,1], and α + β + γ = 1. The degrees 
depend on the type of mission and the current state of the process. For instance, if a 
mission is supposed to be executed safely at all cost or the situation shows that 
already many ships have been lost, the degree β should be relatively high. 

In case of equally important criteria the following rule holds: 
 

if        problem_type(mission_success_important) 

 and   problem_type(safety_important) 

 and   problem_type(fleet_morale_important) 

 and   candidate_plan(P:PLAN) 

 and   mission_success_value(P:PLAN, R1:REAL) 

 and   safety_value(P:PLAN, R2:REAL) 

 and    fleet_morale_value(P:PLAN, R3:REAL) 

then   evaluation_value(no_propulsion(ship), 0.33 * R1:REAL + 0.33 * R2:REAL + 0.33 *R3:REAL) 

 

In case two criteria are most important the following rule holds: 
 

if        problem_type(mission_success_important) 

 and   problem_type(safety_important) 

 and   not problem_type(fleet_morale_important) 

 and   candidate_plan(P:PLAN) 

 and   mission_success_value(P:PLAN, R1:REAL) 

 and   safety_value(P:PLAN, R2:REAL) 

 and    fleet_morale_value(P:PLAN, R3:REAL) 

then   evaluation_value(no_propulsion(ship), 0.45 * R1:REAL + 0.45 * R2:REAL + 0.1 *R3:REAL) 

 

This holds for each of the problem type combinations where two criteria are 
important: A weight of 0.45 in case the criterion is important for the problem type and 
0.1 otherwise. Finally, only one criterion can be important: 
 



if         problem_type(mission_success_important) 

 and    not problem_type(safety_important) 

 and   not problem_type(fleet_morale_important) 

 and   candidate_plan(P:PLAN) 

 and   mission_success_value(P:PLAN, R1:REAL) 

 and   safety_value(P:PLAN, R2:REAL) 

 and    fleet_morale_value(P:PLAN, R3:REAL) 

then   evaluation_value(no_propulsion(ship), 0.6 * R1:REAL + 0.2 * R2:REAL + 0.2 *R3:REAL) 

 

The plan generation modes and plan selection degrees presented above can be 

specified by formal rules which have been omitted for the sake of brevity. 

5   Case-studies 

This Section presents several case studies which have been formalized using the 

agent-based model presented in Section 2 and 4. These case studies are again based 

upon interviews with expert navy officers of the Royal Netherlands Navy. The 

formalization of this process follows the methodology presented in Section 3. Three 

case studies are presented: total steam failure, submarine threat, and frigate loss. 

5.1  Total Steam Failure 

The first scenario used as a case study is called total steam failure. First, the scenario 

is described, after which the simulation results are presented. 

5.1.1 Scenario Description 
The scenario used as an example is the first phase within a total steam failure 
scenario. A fleet consisting of 6 frigates (denoted by F1 – F6) and 6 helicopters 
(denoted by H1 – H6) are protecting a specific area called Zulu Zulu (denoted by ZZ). 
For optimal protection of valuable assets that need to be transported to a certain 
location, and need to arrive before a certain deadline, the ships carrying these assets 

Fig. 4. Scenario for meta-reasoning 



are located in ZZ. These ships should always maintain their position in ZZ to 
guarantee optimal protection. The formation at time T0 is shown in Figure 4. On that 
same time-point the following incident occurs: An amphibious transport ship, that is 
part of ZZ, loses its propulsion and cannot start the engines within a few minutes. 
When a mission is assigned to a commander of the task group (CTG), he receives a 
preferred plan library from the higher echelon. This library gives an exhaustive list of 
situations and plans that are allowed to be executed within that situation. Therefore 
the CTG has to make a decision: What to do with the ship and the rest  of  the  fleet.  
In the situation occurring in the example scenario the preferred plan library consists of 
four plans: 
 
1. Continue sailing. Leave the ship behind. The safety of the main fleet will 

therefore be at a maximum level, however the risk for the ship is high. The morale 
of all the men within the fleet will drop. 

2. Stop the entire fleet. Stopping the fleet ensures that the ship is not left behind and 
lost, however the risks for the other ships increase rapidly as an attack is more 
likely to be successful when not moving. 

3. Return home without the ship. Rescue the majority of the men from the ship, 
return home, but leave a minimal crew on the ship that will still be able to fix the 
ship. The ship will remain in danger until it is repaired and the mission is surely 
not going to succeed. The morale of the men will drop to a minimal level. This 
option is purely hypothetical according to the experts. 

4. Form a screen around the ship. This option means that part of the screen of the 
main fleet is allocated to form a screen around the ship. Therefore the ship is 
protected and the risks for the rest of the fleet stay acceptable. 

 
Option 4 involves a lot more organizational change compared to the other options and 

is therefore considered after the first three options. The CTG decides to form a screen 

around the ship 

5.1.2   Simulation Results 
The most interesting results of the simulation using the architecture and properties 

described in Section 2 and 4, and instantiated with the case-study specific knowledge 

from Section 5.1 are shown in Figure 5. The trace, a temporal description of chains of 

events, describes the decision making process of the agent which plays the role of 

Commander Task Group (CTG). The atoms on the left side denote the information 

between and within the components of the agent. To keep the Figure clear only the 

atoms of the components on the lowest level of the agent architecture are shown. The 



right side of the figure shows when these atoms are true. In case of a black box the 

atom is true during that period, in the other cases the atom is false (closed world 

assumption). The atoms used are according to the model presented in Section 2. For 

example, internal(PlanGeneration) denotes that the atom is internal within the 

PlanGeneration component. More specifically, the trace shows that at time-point 1 the 

Monitoring component receives an input that the ship has no propulsion 

 
    input(Monitoring)|observation_result(no_propulsion(ship), pos) 
 
The current plan is to continue without the ship, as the fleet continues to sail without 
any further instructions: 
 

output(PlanSelection)|current_plan(continue_without_ship) 

 
As the StrategyDetermination component always outputs the options currently available 
for all sorts of situations (in this case only a problem with the propulsion of a ship) it 

internal(StrategyDetermination)|operation_mode(limited_action_demand)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet))

input(Monitoring)|observation_result(no_propulsion(ship), pos)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship)

output(Monitoring)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

output(Monitoring)|belief(no_propulsion(ship), pos)

output(PlanSelection)|current_plan(continue_without_ship)

input(PlanGeneration)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

input(PlanSelection)|belief(no_propulsion(ship), pos)

input(PlanExecution)|belief(no_propulsion(ship), pos)

input(StrategyDetermination)|true(belief(no_propulsion(ship), pos))

output(PlanGeneration)|candidate_plan(stop_fleet)

output(PlanGeneration)|candidate_plan(continue_without_ship)

output(PlanGeneration)|candidate_plan(return_home_without_ship)

input(PlanSelection)|candidate_plan(stop_fleet)

input(PlanSelection)|candidate_plan(continue_without_ship)

input(PlanSelection)|candidate_plan(return_home_without_ship)

internal(PlanSelection)|plan_evaluation(stop_fleet, 0.3)

internal(PlanSelection)|plan_evaluated(stop_fleet)

internal(PlanSelection)|plan_evaluation(continue_without_ship, 0.2)

internal(PlanSelection)|plan_evaluated(continue_without_ship)

internal(PlanSelection)|plan_evaluation(return_home_without_ship, 0.1)

internal(PlanSelection)|plan_evaluated(return_home_without_ship)

internal(PlanSelection)|best_plan(stop_fleet, 0.3)

output(PlanSelection)|selection_info(selection_failed)

input(StrategyDetermination)|true(selection_info(selection_failed))

internal(StrategyDetermination)|operation_mode(full_plan_library)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship))

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship)

output(PlanGeneration)|candidate_plan(form_screen_around_ship)

input(PlanSelection)|candidate_plan(form_screen_around_ship)

internal(PlanSelection)|plan_evaluation(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_evaluated(form_screen_around_ship)

internal(PlanSelection)|best_plan(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(form_screen_around_ship)

time 0 5 10 15 20

Fig. 5. Trace of the total steam failure simulation 



continuously outputs the conditionally allowed information in the limited action 
mode, for example: 
 

output(StrategyDetermination)|to_be_assumed( 

conditionally_allowed(has_problem(no_propulsion, ship),continue_without_ship)) 

 
The information becomes an input through downward reflection, a translation from a 
meta-level to a lower meta-level: 
 

input(PlanGeneration)|conditionally_allowed( 

has_problem(no_propulsion, ship), continue_without_ship) 

 
The Monitoring component forwards the information about the observation to the 
components on the same level as beliefs. The StrategyDetermination component also 
receives this information but instead of a belief it arrives as a reflected belief through 
upward reflection which is a translation of information at a meta-level to a higher 
meta-level:  
 
   input(StrategyDetermination)| true(belief(no_propulsion(ship), pos)) 

 

Besides deriving the beliefs on the observations the Monitoring component also 
evaluates the situation and passes this as evaluation info to the PlanGenerator. 
 
   input(PlanGenerator)|evaluation(has_problem(no_propulsion, ship), pos) 

 

This information acts as a basis for the PlanGenerator to generate candidate plans, 
which are sent to the PlanSelection, for example. 

 

input(PlanSelection)|candidate_plan(continue_without_ship) 

 

Internally the PlanSelection component determines the evaluation value of the different 
plans, compares them and derives the best plan out of the candidate plans: 

 

internal(PlanSelection)|best_plan(stop_fleet, 0.3) 

 
This value is below the threshold evaluation value and therefore the PlanSelection 
component informs the StrategyDetermination component that no plan has been 
selected: 

 

output(PlanSelection)|selection_info(selection_failed) 

 
Thereafter the StrategyDetermination component switches to the full preferred plan 
library and informs PlanGeneration of the new options. PlanGeneration again generates 
all possible plans and forwards them to PlanSelection. PlanSelection now finds a plan 
that is evaluated above the threshold and makes that the new current plan. 

 

output(PlanSelection)|current_plan(form_screen_around_ship) 

 



This plan is forwarded to the PlanExecution and Monitoring components (not shown in 

the trace) and is executed and monitored. 

5.2  Submarine Threat 

The second scenario is called submarine threat, and deals with a hostile submarine 

being detected within the fleet. First, a description of the scenario is given and 

thereafter simulation results are presented. 

5.2.1 Scenario Description 
The initial fleet formation and mission for this scenario is identical to the one 

explained in Section 5.1.1. Another event however occurs that needs to be dealt with. 

Frigate F1 suddenly detects sonar contact with a high probability that it concerns a 

hostile submarine. The position of this submarine is such that the assets in Zulu Zulu 

are within torpedo range of the submarine. The plan library for the CTG in this 

particular situation is as follows: 

 

1. Eliminate and turn. This option consists of two actions: First of all, F1 will fire 

a torpedo in the direction of the detected submarine. Thereafter, several frigates 

are sent to eliminate the submarine whereas the remainder of the fleet turns away 

from the submarine, positioning several frigates between the submarine and Zulu 

Zulu. This option results in risk for the frigates chasing the submarine whereas 

the remainder of the fleet remains relatively safe. Morale of the men will go up, 

and mission success is not so much endangered. 

2. Full attack. This plan entails a full attack on the submarine with all available 

resources. Disadvantage is however that Zulu Zulu is no longer protected, and 

another enemy ship could possibly attack Zulu Zulu. The risk for mission success 

is therefore high, and morale of the men on board of the ships part of Zulu Zulu 

will drop, since they are being left behind without protection. 

3. Full throttle. Accelerate to maximum speed, in order to try and outrun the 

submarine, zig zag to avoid the submarine getting a lock on one of the ships 

within Zulu Zulu. Morale of the troops will go down since they know there is a 

submarine somewhere trying to attack, and mission success will be much lower 

as well since the submarine might have the ability to successfully fire torpedos at 

Zulu Zulu. Safety is also low. 

 

Option 3 is considered only after the first two have been considered as trying to 

escape from a submarine is highly dangerous and therefore seriously threatens 

mission success. Preferred plan is therefore to try and eliminate the submarine. The 

CTG decides to choose the eliminate and turn plan. 

 

 

 



5.2.2   Simulation Results 
 

 
internal(StrategyDetermination)|operation_mode(limited_action_demand)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(submarine_detected, ship), eliminate_and_turn))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(submarine_detected, ship), full_attack))

input(Monitoring)|observation_result(detected(submarine), pos)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_detected, ship), eliminate_and_turn)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_detected, ship), full_attack)

output(Monitoring)|evaluation_is_current(has_problem(submarine_detected, ship), pos)

output(Monitoring)|belief(detected(submarine), pos)

output(PlanSelection)|current_plan(continue)

input(StrategyDetermination)|true(belief(detected(submarine), pos))

input(PlanSelection)|belief(detected(submarine), pos)

input(PlanExecution)|belief(detected(submarine), pos)

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_detected, ship), pos)

output(PlanGeneration)|candidate_plan(eliminate_and_turn)

output(PlanGeneration)|candidate_plan(full_attack)

input(PlanSelection)|candidate_plan(eliminate_and_turn)

input(PlanSelection)|candidate_plan(full_attack)

internal(PlanSelection)|plan_evaluation(eliminate_and_turn, 0.8)

internal(PlanSelection)|plan_evaluated(eliminate_and_turn)

internal(PlanSelection)|plan_evaluation(full_attack, 0.4)

internal(PlanSelection)|plan_evaluated(full_attack)

internal(PlanSelection)|best_plan(eliminate_and_turn, 0.8)

internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(eliminate_and_turn)

time 0 5 10 15 20 

 

Figure 6 shows the results of  a simulation of the submarine threat scenario. Initially, 

again the operation mode is set to limited action demand, which results in two plans 

being outputted by the StrategyDetermination component: 

 

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem( 

submarine_detected), ship), eliminated_and_turn) 

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem( 

submarine_detected), ship), full_attack) 

 

Suddenly, an event occurs which is precisely the event for which these conditional 

plans are meant, namely that a submarine has been detected by a ship: 

 

output(Monitoring)|belief(detected(submarine), pos) 

 

As a result the current plan selected to handle the situation is again to continue with 

the current plan, which is to continue sailing. The PlanGeneration component generates 

the currently available plans for handling the event, which it has received from the 

StrategyDetermination component: 

 

output(PlanGeneration)|cadidate_plan(eliminated_and_turn) 

output(PlanGeneration)|cadidate_plan(full_attack) 

 

This output is received by the PlanSelection component, which starts to evaluate the 
two available plans. After evaluation, the plan to eliminate and turn is found to be best 

Fig. 6. Trace of the submarine threat simulation 



and is evaluated above the threshold value. As a result, it is selected as the new 
current plan: 

 

output(PlanSelection)|current_plan(elminate_and_turn) 

 

As can be seen in the simulation, only two out of three available plans have been 
evaluated before selecting a new plan. Since the plans being evaluated first are the 
ones typically best suitable in the situation, this saves a lot of precious evaluation 
most of the time. 

5.3  Frigate Loss 

Final scenario which has been investigated is that of a frigate being hit by a submarine 

torpedo. 

5.3.1 Scenario Description 
Again, the initial fleet configuration and mission are identical to the description 

presented in Section 5.1.1. Again, a submarine is detected, for which the CTG decides 

to send in H3 to eliminate the submarine. The submarine however fires a torpedo 

which strikes F3 causing it to sink. There are now several options how to continue: 

 

1. Eliminate and save. Eliminate the submarine first by reinforcing the current 

attack units. Thereafter, save the drowning crew of frigate F3. This option 

maximizes the morale of the troops as they see their colleagues being saved, 

mission success is however slightly endangered as picking up the drowning crew 

will result in frigates lying still, which makes them more vulnerable for enemy 

attacks.  

2. Save crew. Immediately use all resources to save the crew on board of the 

sunken ship. In this scenario this is devastating for mission success as the 

submarine can easily attack the ships within Zulu Zulu. Furthermore, the 

submarine could even attack the resources that are being used to save the crew of 

the sunken ship. The safety for the crew of the sunken ship is relatively high 

whereas the safety for the other ships is low. 

3. Surrender. Hoist the white flag and surrender to avoid further casualties. Morale 

will be very low, mission success probability is down to zero, and safety is highly 

unknown as the crew and assets are now in the hands of the enemy. 

 

Again, options 1 and 2 are first considered before the last option is taken into 

consideration since surrender is the last option a fleet commander wants to think of. 

 

 

 

 

 



5.3.2 Simulation Results 
 

internal(StrategyDetermination)|operation_mode(limited_action_demand)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), eliminate_and_save)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), save_crew)

input(PlanSelection)|has_value(alpha, 0.45)

input(PlanSelection)|has_value(beta, 0.45)

input(PlanSelection)|has_value(gamma, 0.1)

output(PlanSelection)|current_plan(continue)

input(PlanGeneration)|evaluation_is_current(has_problem(submarine_attack_hit, ship), pos)

output(PlanGeneration)|candidate_plan(eliminate_and_save)

output(PlanGeneration)|candidate_plan(save_crew)

input(PlanSelection)|candidate_plan(eliminate_and_save)

input(PlanSelection)|candidate_plan(save_crew)

internal(PlanSelection)|plan_evaluation(eliminate_and_save, 0.26)

internal(PlanSelection)|plan_evaluation(save_crew, 0.14)

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26)

output(PlanSelection)|selection_info(selection_failed)

internal(StrategyDetermination)|operation_mode(full_plan_library)

input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship), surrender)

output(PlanGeneration)|candidate_plan(surrender)

input(PlanSelection)|candidate_plan(surrender)

internal(PlanSelection)|plan_evaluation(surrender, 0.1175)

internal(StrategyDetermination)|value_change(alpha)

internal(StrategyDetermination)|value_change(beta)

internal(StrategyDetermination)|value_change(gamma)

input(PlanSelection)|has_value(alpha, 0.2)

input(PlanSelection)|has_value(beta, 0.2)

input(PlanSelection)|has_value(gamma, 0.6)

internal(PlanSelection)|plan_evaluation(eliminate_and_save, 0.56)

internal(PlanSelection)|plan_evaluation(surrender, 0.08)

internal(PlanSelection)|plan_evaluation(save_crew, 0.34)

internal(PlanSelection)|best_plan(eliminate_and_save, 0.56)

internal(PlanSelection)|plan_change

output(PlanSelection)|current_plan(eliminate_and_save)

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 

 

Figure 7 shows the simulation results of the Frigate loss scenario. In this particular 

trace, the α, β, and γ value passed to the PlanSelection component by 

StrategyDetermination are shown as well. Again, initially the operation mode is set to 

limited action demand and the accompanying conditional rules for this scenario are 

passed as well, namely the following: 
 
input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship),  

eleminate_and_save) 
input(PlanGeneration)|conditionally_allowed(has_problem(submarine_attack_hit, ship),  

save_crew) 
 

The initial α, β, and γ values passed are respectively 0.45, 0.45, and 0.1: 
 
input(PlanSelection)|has_value(alpha, 0.45) 
input(PlanSelection)|has_value(beta, 0.45) 
input(PlanSelection)|has_value(gamma, 0.1) 
 

Denoting that in this case mission success and safety are considered to be more 

important aspects for plan evaluation than morale. Suddenly the problem of a frigate 

being hit by an enemy submarine is observed, which is forwarded to the 

PlanGeneration component: 
 

Fig. 7. Trace of the frigate loss scenario 



input(PlanGeneration)|evaluation_is_current(has_problem(submarine_attack_hit), ship), pos) 
 

Based on the detected problem, the two plans that are currently conditionally allowed 

are generated, and forwarded to PlanSelection: 
 

input(PlanSelection)|candidate_plan(eliminate_and_save) 
input(PlanSelection)|candidate_plan(save) 

  

Based on the previously mentioned α, β, and γ values, the component evaluates the 

candidate plans, and concludes that eliminate and save is the best plan, with an 

evaluation value of 0.26: 
 

internal(PlanSelection)|best_plan(eliminate_and_save, 0.26) 
 

Since the threshold for plan selection is set to a higher value, namely 0.35, the 

component outputs that selection has failed for this set. As a result the 

StrategyDetermination component switches to full plan library mode: 
 
internal(StrategyDetermination)|operation_mode(full_plan_library) 
 

The plans that have been added to the library and which are appropriate for the 

current situation are again forwarded to PlanSelection which evaluates the new 

additional plan (surrender) to the even lower value of 0.1175: 
 
internal(PlanSelection)|best_plan(eliminate_and_save, 0.26) 
 

Again, selection has failed, however there are no additional plans available in the 

exceptional action demand mode. Therefore, the StrategyDetermination component 

decides to adapt the weights of the parameters, and gives more weight to moral (γ): 
 
input(PlanSelection)|has_value(alpha, 0.2) 
input(PlanSelection)|has_value(beta, 0.2) 
input(PlanSelection)|has_value(gamma, 0.6) 
 

As a result, the best plan is now eliminate and save which now evaluates above the 

threshold. Finally, the plan is set to be the current plan. 

6   Validation by Verification 

After the formalized traces have been obtained, (either by formalization of an 
empirical trace or by means of simulation, such as done in the previous section), it can 
be validated whether these traces comply to certain desired properties from a more 
global perspective. Below it is shown which of such properties were identified, in 
cooperation with domain experts, how they were formally specified. Moreover, 
verification of these properties against the traces is shown. The properties are 
independent from the specific scenario and should hold for every scenario for which 
the agent-based meta-level architecture presented in Section 2 and 4 is applied. The 
properties are formalized using Temporal Trace Language as described in Section 3. 
The first two properties express that the system indeed functions as a meta-level 



architecture (as intended), based on upward and downward reflections between the 
different levels. 

P1: Upward reflection. This property states that information generated at the level of 
the Monitoring and PlanSelection components should always be reflected upwards to the 
level of the StrategyDetermination component. In semi-formal notation: 
 
At any point in time t, 

if       Monitoring outputs a belief about the world at time t 

then  at a later point in time t2 StrategyDetermination receives this information through upward reflection 

At any point in time t, 

if PlanSelection outputs selection info at time t 

then  at a later point in time t2 StrategyDetermination receives this information though upward reflection. 

 
In formal form the property is as follows: 

 
∀t  [ [ ∀O:OBS, S:SIGN [state(γ, t, output(Monitoring)) |= belief(O, S) 

⇒  ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(belief(O,S))] ] 

& [ ∀SI:SEL_INFO [state(γ, t, output(PlanSelection)) |= selection_info(SI)  

⇒  ∃t2 ≥ t  state(γ, t2, input(StrategyDetermination)) |= true(selection_info(SI))] ] ] 
 

This property has been automatically checked and shown to be satisfied within the 

traces. This may sound not too surprising, as the system was designed for this, but this 

check confirms that what was intended in the design, indeed shows itself in the 

implementation. 

P2: Downward reflection. Property P2 verifies that all information generated by the 
StrategyDetermination component for a lower meta-level is made available at that level 
through downward reflection. In formal form: 
 

∀t, S:SITUATION, P:PLAN [state(γ, t, output(StrategyDetermination)) 
|=  to_be_assumed(conditionally_allowed(S, P)) 

⇒ ∃t2 ≥ t  state(γ, t2, input(PlanGeneration)) |= conditionally_allowed(S, P)] 
 

This property is also satisfied for the given traces. 

 

P3: Extreme measures. This property states that measures that are not part of the 
preferred plan library (extreme measures) are only taken in case some other options 
failed. In formal form: 
 

∀t, t2 > t, S:SITUATION, P1:PLAN, P2:PLAN 

[ [state(γ, t, output(Monitoring)) |= evaluation(exception(S), pos) &    state(γ, t, output(PlanSelection)) |= 

current_plan(P1) & state(γ, t2, output(PlanSelection)) |= current_plan(P2) & P1 ≠ P2 

& ¬state(γ, t2, internal(StrategyDetermination)) |= to_be_assumed(preferred_plan(S, P2)] 

⇒ ∃t’ [t’ ≥ t & t’ ≤ t2  & state(γ, t’, output(PlanSelection)) |= selection_info(selection_failed)] ] 
 

The property is satisfied for the given traces. 

P4: Plans are changed only if an exception was encountered. Property P4 formally 
describes that a plan is only changed in case there has been an exception that triggered 
this change. Formal: 
 

∀t, t2 ≥ t,  P:PLAN [ [state(γ, t, output(PlanSelection)) |= current_plan(P) & 

¬state(γ, t2, output(PlanSelection)) |= current_plan(P)]  

⇒ ∃t’, S:SITUATION [t’ ≥ t & t’ ≤ t2 & 

state(γ, t’, output(Monitoring)) |= evaluation(exception(S), pos)] ] 
 

This property is again satisfied for the given traces. 



7   Discussion 

This paper presents the analysis and simulation of meta-reasoning processes based on 
an agent-based architecture for strategic planning (cf. [19]) for naval domains. The 
architecture was designed as a meta-level architecture (cf. [13]) with three levels. The 
interaction between the levels in this paper is modeled by reflection principles (e.g., 
[3]). The dynamics of the architecture is based on a multi-level trace approach as an 
extension of what is described in [9]; see also [5]. The architecture has been 
instantiated with strategic planning knowledge from the naval domain. As a further 
contribution, besides mission success, aspects such as safety and fleet morale have 
been formalized, and incorporated within the strategic knowledge. Without this, it 
would have been difficult to take such aspects into account in the decision making. 
Moreover, as discussed in Section 4.3, as plans within the first mode of operation 
(limited action demand) occur much more frequently than the ones in the second 
mode (full preferred plan library), a similar relation holds between the second and the 
third mode of operation (exceptional action demand). As a result of this frequency 
difference, having such a strategic reasoning level taking this into account, improves 
the efficiency of the reasoning process 

The resulting executable model has been used to perform a number of simulation 
experiments for different naval scenarios. To evaluate the simulation results and 
thereby validate the model, in cooperation with domain experts, desired properties for 
the decision process have been identified, formalized, and verified against the 
simulation traces.  

A meta-level architecture for strategic reasoning in another area, namely that of 
design processes is described in [7]. This architecture has been used as a source of 
inspiration for the current architecture for strategic planning. In other architectures, 
such as in PRS [8], meta-level knowledge is also part of the system, however this 
knowledge is not explicitly part of the architecture (it is part of the Knowledge Areas) 
as is the case in the architecture presented in this paper.  

Agent models of military decision making have been investigated before. In [17] 
for example an agent-based model is presented that mimics the decision process of an 
experienced military decision maker. Potential decisions are evaluated by checking if 
they are good for the current goals. A case study of decisions to be made at an 
amphibian landing mission is used. The outcome of the evaluations of the decisions 
that can be made in the case-study are compared to the decisions made by real 
military commanders. The approach presented is different from the approach taken in 
this paper, as a more formal approach is taken here to evaluate the model created. 
Also the focus in this paper is more on the model of the decision maker itself and not 
on the correctness of the decisions, which is the case in [17]. The main advantage of 
the approach taken is that the system is specified and can be simulated on a 
conceptual level contrary to other approaches. Furthermore for knowledge-intensive 
domains, such as the naval domain, there is the issue of scalability. As this heavily 
depends on the available domain knowledge, only by further exploration for different 
domains and variants it can be found out how scalable such a system is. It is possible 
for instance to add or change the described criteria for other domains, but also to 
apply particular more generic planning algorithms. Finally, this paper addressed 
resource-bounded situations. In [15] an overview is presented of models for human 
behavior that can be used for simulations. Similar to research done in other agent-
based systems using DESIRE [4], future research in simulation and the validation of 



relevant properties for the resulting simulation traces is expected to give more insight 
in the implementation of future complex resource-bounded agent-based planning 
support systems used by commanders on naval platforms.  
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