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Abstract. To analyse the disorders of their patients, psychotherapists often have 
to get insight in adaptive dynamical systems. Analysis of dynamical systems 
usually is performed using mathematical techniques. Such an analysis is not 
precisely the type of reasoning performed in psychotherapy practice. In this 
paper it is shown how practical reasoning about dynamic properties of adaptive 
dynamical systems within psychotherapy can be described using a high-level 
logical language to describe dynamics. Using this language, an executable 
model has been developed of the dynamics of eating regulation disorders. 
Based on this model, a number of simulation traces have been generated, both 
for wellfunctioning situations and for different types of malfunctioning 
situations that correspond to the first phase of well-known disorders such as 
anorexia (nervosa), obesitas, and bulimia. Next, it is shown how such traces can 
be automatically analysed against a number of dynamic properties. 

1. Introduction 

Within the context of psychotherapy, often types of human behaviour and 
development are addressed that are highly complex, dynamic and adaptive. Recently 
it has been suggested that the Dynamical Systems Theory (DST), cf. (Port and Gelder, 
1995), could be an adequate tool for psychotherapists to describe and analyse such 
behaviours; e.g., (Kupper and Hoffmann, 1996; Levine, 1996; Tschacher, Scheier, 
and Grawe, 1998; Warren, Sprott, and Hawkins, 2002). However, application of the 
DST approach in the practice of psychotherapy is not at all straightforward, and much 
remains to be done. A therapist’s reasoning usually is performed in an informal, 
intuitive, partly conscious manner. Explanation of (at least parts of) this reasoning 
may take place in a qualitative, logical manner. In contrast, DST requires quantitative 
mathematical modelling, and analysis of dynamic properties is based on quantitative 
techniques from mathematics. This contrast between ‘qualitative, logical’  and 
‘quantitative, mathematical’  makes it very difficult, if not impossible to use the DST 
approach in this domain. As an alternative, this paper shows how hybrid modelling 



techniques (i.e., combining qualitative and quantitative modelling concepts) are better 
suited to adequately describe the manner in which reasoning about such an adaptive 
dynamical system in therapy practice takes place, or can take place in a systematic 
manner.  

Within the areas of Computer Science and Artificial Intelligence, recently 
alternative techniques have been developed to analyse the dynamics of phenomena 
using logical means. Examples are dynamic and temporal logic, and event and 
situation calculus; e.g., (Reiter, 2001). These logical techniques allow to consider and 
relate states of a process at different points in time. The form of these relations can 
cover qualitative aspects, but also quantitative aspects.  

The objective of this paper is two-fold. First, it introduces an alternative approach 
for the analysis and formalisation of adaptive dynamical systems. Second, it illustrates 
the usefulness of this approach in a particular domain of psychotherapy practice: the 
first phase of eating regulation disorders; e.g., (Beument et al., 1987; Garner and 
Garfinkel, 1985). For the second objective, a model will be developed that is inspired 
by (Delfos, 2002). In that paper, an adaptive dynamical model that describes normal 
functioning of eating regulation under varying metabolism levels is used as a basis for 
classification of eating regulation disorders, and of diagnosis and treatment within a 
therapy. Reasoning about the dynamics of this model (and disturbances of them) is 
performed in an intuitive, conceptual but informal manner. The current paper shows 
how the model by (Delfos, 2002) can be formalised in our modelling approach. 

In particular, in Section 2 the approach for modelling adaptive dynamical systems 
is briefly introduced. Section 3 summarises the main ideas of the model for eating 
regulation by Delfos (2002). In Section 4, this model is formalised in a high-level 
executable format. Based on the formalised model, Section 5 shows some example 
simulations, both for wellfunctioning situations and for different types of 
malfunctioning situations that correspond to the first phase of well-known disorders 
such as anorexia (nervosa), obesitas, and bulimia. In Section 6, as part of our analysis, 
a number of relevant dynamic properties of the dynamical system are identified and 
formalised at different levels of aggregation: both for the regulation as a whole and 
for separate parts of the adaptive system. In Section 7, it is shown how these dynamic 
properties logically relate to each other, i.e., which properties at the lower level of 
aggregation together imply given properties at the higher level. Such logical 
relationships are especially important for the diagnosis of a malfunctioning system. 
Moreover, in Section 8 it is shown how these dynamic properties can be automatically 
checked (using a software environment that has been developed) against a number of 
simulation traces. In Section 9, it is explained in detail how the modelling approach 
used in this paper relates to the Dynamical Systems Theory. Section 10 concludes the 
paper with a discussion. 

2. Modelling Approach 

The domain of reasoning about dynamical systems in psychotherapy requires an 
abstract modelling form yet showing the essential dynamic properties. As 
dynamic properties of such a dynamical system can be complex, a high-level 
language is needed to characterise them. To this end the Temporal Trace 



Language TTL is used as a tool; for previous applications of this language to the 
analysis of (cognitive) processes, see, e.g., (Jonker and Treur, 2002). Using this 
language, dynamic properties can be expressed in informal, semi-formal, or 
formal format. The language allows to explicitly refer to (real) time, and to 
developments of processes over time. Moreover, to perform simulations, models 
are desired that can be formalised and are computationally easy to handle. These 
executable models are based on the socalled LEADSTO format, which is defined 
as a sublanguage of TTL; for a previous application of this format for simulation 
of cognitive processes, see (Jonker, Treur, and Wijngaards, 2003). The Temporal 
Trace Language TTL is briefly defined as follows. 

A state ontology is a specification (in order-sorted logic) of a vocabulary to 
describe a state of a process. A state for ontology Ont is an assignment of truth-
values true or false to the set At(Ont) of ground atoms expressed in terms of Ont. 
The set of all possible states for state ontology Ont is denoted by STATES(Ont). 
The set of state properties STATPROP(Ont) for state ontology Ont is the set of all 
propositions over ground atoms from At(Ont). A fixed time frame T is assumed 
which is linearly ordered, for example the natural or real numbers. A  trace  T  
over a state ontology  Ont  and time frame T  is a mapping T : T → STATES(Ont), 
i.e., a sequence of states T t (t ∈ T) in  STATES(Ont). The set of all traces over  state 
ontology Ont is denoted by TRACES(Ont). The set of dynamic properties 
DYNPROP(Ont) is the set of temporal statements that can be formulated with 
respect to traces based on the state ontology Ont in the following manner.  

These states can be related to state properties via the formally defined 
satisfaction relation |==, comparable to the Holds-predicate in the Situation 
Calculus; cf. (Reiter, 2001): state(T, t) |== p denotes that state property p holds in 
trace T at time t. Based on these statements, dynamic properties can be 
formulated, using quantifiers over time and the usual first-order logical 
connectives ¬ (not), & (and), ∨ (or), � (implies), ∀ (for all), ∃ (there exists); to 
be more formal: formulae in a sorted first-order predicate logic with sorts T for 
time points, Traces for traces and F for state formulae. 

To model basic mechanisms of a process at a lower aggregation level, direct 
temporal dependencies between two state properties, the simpler LEADSTO 
format is used. This executable format can be used for simulation and is defined 
as follows. Let α and β be state properties. In LEADSTO specifications the 
notation α →→e, f, g, h β, means: 

 

if state property α holds for a certain time interval with duration g, 
then after some delay (between e and f 

 state property β will hold for a certain time interval h. 
 

For a more formal definition of the LEADSTO format, see (Bosse et al., 2005a). 

3. Eating Regulation 

To illustrate the applicability of the approach for modelling adaptive dynamical 
systems, the remainder of this paper will focus on a specific domain: eating regulation 
disorders. In (Delfos, 2002), the psychologist Martine Delfos describes an analysis 
and treatment of eating regulation disorders from the perspective of predisposition. 



The main assumption behind her theory is that physical predisposition is an important 
factor in the development of eating regulation disorders, rather than, for example, 
striving for beauty. Based on this theory, three types of aspects can be distinguished 
in the treatment of eating regulation disorders: biological aspects, psychological / 
behavioural aspects, and therapeutic aspects. 

Point of departure of the therapeutic intervention in (Delfos, 2002, Ch. 5) is the 
biological mechanism: the socalled adipostat, a kind of thermostat for weight or fat. 
The idea is that the eating regulation disorder is primarily caused by biological 
problems. For example, in the case of anorexia, the signal ‘stop eating’ might come 
too early with respect to the amount of energy deployed. After noticing such 
problems, the subject may add a psychological component by changing his or her 
behaviour: psychological/behavioural factors play a role mainly in response of the 
subject to this biological problem, or in response of the subject to the response of 
others (e.g., parents) to the problem. Within a therapy as described in (Delfos, 2002, 
Ch. 5), in the first place the biological problem is addressed. The biological problem 
is that in one way or the other, the adipostat does not function properly: it does not 
adapt the food intake stimulus to changing circumstances with respect to the need of 
energy (given by the metabolism and activities). Recently, neural mechanisms in the 
brain have been found for the adipostat (e.g., Cowley et al., 1999). In case of 
malfunctioning of the adipostat, these neural mechanisms have to be corrected. This 
can be done by therapy, which takes the form of training the brains. By this training, 
the improper functioning of the adaptation process in the adipostat is corrected. 
Training is done by learning to pay more explicit attention (of the client) to the 
balance between food and activity (per day), thus developing a more accurate 
monitoring of what the body takes in and what it needs. By checking weight every 
day, feedback is obtained on the (estimated) balance between intake and need. 

In the next sections, part of this theory will be formalised, using the approach 
based on TTL and LEADSTO. The focus will be on the biological aspects. Thus, the 
physical mechanisms that lead to deviations in eating behaviour are modelled. Having 
such a model in mainly qualitative terms will allow the psychotherapist to reason 
about dynamic processes in an intuitive way, which is nevertheless more systematic 
than the informal type of reasoning that is used traditionally. 

4. Local properties 

Local properties are dynamic properties of the basic mechanisms in the dynamical 
model. Based on these properties, the global properties of the system emerge; they 
together entail these global properties. Local properties are specified in the executable 
LEADSTO format; for simplicity, below the parameters e, f, g, and h have been left 
out (their values are discussed in Section 5). 

This section presents an adaptive dynamical model that describes the biological 
aspects of eating regulation under varying metabolism levels in terms of local 
dynamic properties. As mentioned in the previous section, this model is inspired by 
(Delfos, 2002). An overall picture of the model can be found in Figure 1. As the 
picture shows, in eating regulation three types of processes are distinguished (sensory 
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processes, adaptation and action generation) that together influence the state of the 
body. The arrows denote the fact that the output of one process serves as input for 
another process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Overview of the executable model 
 
The local properties that describe the dynamics of the model are given below. The 

first two (action generation, see Figure 1) properties characterise when a stimulus to 
eat is generated, based on an internal eat norm N that is maintained. 

 

LP1 (eat-stimulus)  
The first local property LP1 expresses that an eat norm N and an intermediate amount 
eaten E less than this norm together lead to an eat stimulus. Formalisation:  
intermediate_amount_eaten(E)  and  eat_norm(N)  and  E < N →→  stimulus(eat) 
 
Note that is it assumed that the initial value of the eat norm N is biologically 
determined. 
 

LP2 (not-eat-stimulus) 
Local property LP2 expresses that an eat norm N and an intermediate amount eaten E 
higher than this norm together lead to a non-eat stimulus. Formalisation:  
intermediate_amount_eaten(E) and  eat_norm(N) and  E ≥ N →→  stimulus(do_not_eat) 
 
The properties LP3, LP4, LP5 and LP6 characterise the effect of eating (on body 
state); it is assumed that the outcomes on amount eaten are taken by sensory 
processes. 
 

LP3  (increase of amount eaten) 
Local property LP3 expresses how an eat stimulus increases an intermediate amount 
eaten by additional energy d (the energy value of what is eaten). Formalisation:  
intermediate_amount_eaten(E)   and  stimulus(eat) →→  intermediate_amount_eaten(E+d) 
 
LP4 (stabilizing amount eaten) 
Local property LP4 expresses how a non-eat stimulus keeps the intermediate amount 
eaten the same. Formalisation:  
intermediate_amount_eaten(E)  and  stimulus(do_not_eat) →→  intermediate_amount_eaten(E) 



 

LP5 (day amount eaten) 
Local property LP5 expresses that the day amount eaten is the intermediate amount 
eaten at the end of the day. Formalisation:  
intermediate_amount_eaten(E)  and time(24) →→  day_amount_eaten(E) 
 
Here time counts the hours from 1 to 24 during the day. 
 
LP6 (weight through balance of amount eaten and energy used) 
Local property LP6 expresses a simple mechanism of how weight is affected by the 
day balance of amount eaten and energy used. Here γ is a fraction that specifies how 
energy leads to weight kilograms. Formalisation:  
day_amount_eaten(E1)  and  day_used_energy(E2)  and  weight(W) →→ weight(W + γ * (E1 – E2)) 
 
The last local property characterises adaptation: how the eat norm N is adapted to the 
day used energy. 
 
LP7 (adaptation of amount to be eaten) 
Local property LP7 expresses a simple (logistic) mechanism for the adaptation of the 
eat norm based on the day amount of energy used. Here α is the adaptation speed, β is 
the fraction of E that is the limit of the adaptation; normally β = 1. Formalisation:  
day_used_energy(E)  and  eat_norm(N)  and  time(24) →→  eat_norm(N + α * N * (1 - N/βE)) 
 
Note that different types of eating regulation disorders can be modelled by varying the 
values for the parameters α and β. By choosing a high value for α, the adaptation of 
the eat norm to the energy use is made very sensitive, as is the case with bulimia. If a 
lower value for α is chosen, the adaptation proceeds more gradually. The value of β 
determines the precision of the adaptation. If β is exactly 1, then the eat norm is 
adapted perfectly to the amount of energy used. If β < 1, the new eat norm does not 
become high enough (as with anorexia), and if β > 1, the eat norm becomes too high 
(as with obesitas). See the next section for details. 

5. Simulation Examples 

A special software environment has been created to enable the simulation of 
executable models (Bosse et al., 2005a). Based on an input consisting of dynamic 
properties in LEADSTO format, the software environment generates simulation 
traces. Examples of such traces can be seen in Figure 2, 4, 5 and 6. Here, time is on 
the horizontal axis, the state properties are on the vertical axis. A dark box on top of 
the line indicates that the property is true during that time period, and a lighter box 
below the line indicates that the property is false. These traces are based on all local 
properties presented above. 

Certain parameters are the same in all three simulations. In the properties LP1 to 
LP5, the values (0,0,1,1) have been chosen for the timing parameters e, f, g, and h. In 
the properties LP6 and LP7, these values are (0,0,1,25); moreover, γ = 0.2 in LP6. The 
initial weight is always 60, the initial eat-norm is always 6, and the amount of energy 



used on each day remains 8. Thus, we are dealing with situations where initially the 
eat-norm is too low with respect to the energy used, and should be adapted 
accordingly. All simulations involve a period of 110 hours (i.e., slightly more than 
four days). In Figure 2, an example of a normal situation is shown (i.e., no eating 
regulation disorders are present). To simulate this, in the Norm Adaptation Property 
(LP7), α = 0.75 and β = 1; As can be seen in the figure, it takes some time before the 
eat-norm is correctly adapted to the amount of energy used, but in the end they are 
practically equal. As a consequence, the subject first undereats a little bit (6 units), 
causing a loss of 0.4 kilogram. However, within the next 24 hours she starts eating 
more (8 units). Subsequently, the eating pattern stabilizes, and so does the weight (at 
59.6 kg).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Simulation of a normal pattern 

The simulation of anorexia is based upon the assumption that anorexia in many 
cases has a biological background (Vink et al., 2001). This means that the signal ‘stop 
eating’, in this simulation represented by the stimulus(do-not-eat) predicate, comes too 
early with respect to the amount of energy deployed. Delfos (2002) proposes that as a 
result of this condition, there exists an unconscious phase of slight underfeeding 
resulting in not gaining weight proportional to the growth and the risk of hampering 
growth.  

 



 

Fig. 3. Height velocity pattern for anorexia 

This first phase of anorexia, which can cover several years especially prepuberty, 
consists of a discrepancy between food eaten and energy deployed at an unconscious 
level; the person is not consciously trying to lose weight. 

In Figure 3 the anorexia process is depicted in height velocity (cm/year). The girl 
entered the conscious phase of her eating disorder (anorexia) when she was nearly 13 
years old. It was then that she began dieting. Within a year she was in a very bad 
medical condition. The height velocity however shows that the growth was stopped 
much earlier by a delay of puberty from age 10 on. After entering therapy when 14 
years old, the height velocity recovered with the process of gaining weight. 

Figure 4 shows a simulation of the eating pattern of a person within the first 
(unconscious) phase of anorexia. To simulate this, in the Norm Adaptation Property 
(LP7),  α = 0.75 and β = 0.95. These settings result in an eat norm that converges a 
little bit to the amount of energy used, but this adaptation is not enough. The picture 
clearly demonstrates the consequences: the subject continuously eats an amount of 
food that is too low, compared to what she needs. For example, in the first 24 hours 
she eats only 6 units, whilst the amount of energy she used on that day was 8 units. 
Therefore, her weight drops from 60 to 59.6 to 59.4 kilogram, and this decreasing 
trend continues. 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

Fig. 4. Simulation of the pattern of a person with anorexia 

Figure 5 shows a simulation of the dynamics of obesitas. In this case the 
parameters α = 0.75 and β = 1.2 were chosen. This figure provides exactly the 
opposite pattern as Figure 4. In the case of obesitas, the simulated subject 
continuously eats too much and gains weight. Here, the amount of energy used again 
remains stable at 8 units, but the amount of food eaten increases from 6 to 10 units. 
As a consequence, the weight increases to 60.2 kg. 

 

 

Fig. 5. Simulation of the pattern of a person with obesitas 

As for bulimia there exists two kinds of situations. First the prephase of bulimia, in 
which the eating disorder exists at an unconscious level, and second the bulimia that 



evolves from consciously slight underfeeding or anorectic underfeeding that results in 
compensating urges of excessive eating.  

In Figure 6, a simulation of the eating pattern of a person in a prephase for bulimia 
is shown. To simulate this, in the Norm Adaptation Property (LP7), α = 2.25 and β = 
1.2. Especially the value of α is very important here, because it makes that the 
adaptation of the eat norm to the energy use is too sensitive. Thus, a norm that is too 
low will be increased, but this increment will be too big, so that the new norm is too 
high. This behavior can be seen in Figure 6, where the eat-norm keeps fluctuating 
somewhere between 6 and 12. This results in a very irregular eating pattern. 
Accordingly, the subject's weight fluctuates between 59 and 62. The risk of 
developing bulimia fully in the form as known in psychotherapy is present, and will 
become manifest as soon as the subject starts to attempt to correct these fluctuations 
by conscious decisions. This further interference of more conscious cognitive aspects 
within the adaptive processes will be addressed in future research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Simulation of the pattern of a person with bulimia 

6. Analysis of Dynamic Properties of the System 

Complex dynamic processes can be described at different aggregation levels, varying 
from the local level of (generating) basic mechanisms to the level of (emerging) 



global dynamic properties of a process as a whole. To analyse how such global 
dynamic properties relate to local properties it is useful to distinguish intermediate 
properties. Moreover, some other (environmental) properties may be needed that 
relate the considered process to other processes that are not modelled and considered 
as external environment. In this section, the different types of non-local dynamic 
properties of the system are identified. For the relationships between the properties 
see also Figure 7. 

6.1 Environmental Properties 

For the adaptive dynamical system, the amount of used energy is an exogenous 
variable, i.e., this comes from the environment. To be able to do analysis, it is 
convenient to consider certain simplifying assumptions on the environment. For 
example, to study limit behaviour, a suitable assumption is that from a certain point of 
time no changes occur in the used energy (EP2), or to study how the system behaves 
under one change, a suitable assumption is that only one change occurs in the 
environment (EP1). The latter type of environment may be used, for example, to 
study transitions occurring in subjects of around 35 years old, when the metabolism 
becomes slower, and hence the day amount of used energy will become lower. For 
each of the properties, first an informal description is given, and next the formal 
description that has been used for the automated checking software; see Section 8. 
 

EP1(t1, t2, E1, E2) (Transition from one used energy E1 to other used energy E2) 
Property EP1 expresses that first the day amount of used energy is constant at value 
E1, and next it is constant at (another) value E2. Formalisation: 
∀t < t1    state(T, t) |== day_used_energy(E1)  
&  ∀t ≥ t2    state(T, t) |== day_used_energy(E2) 
 

EP2(t, E)   (Constant amount of  used energy  E from time t) 
Property EP2 expresses that from a certain time point t the day amount of used energy 
is constant E. Formalisation: 
∀t' ≥ t     state(T, t') |== day_used_energy(E) 

6.2 Global Properties 

Global properties (GP) are dynamic properties of the process as a whole.  
 

GP1(W, m)  (Stable weight W with margin m) 
Property GP1 expresses that fluctuations in weight are limited to a relative m-interval 
(for example, 2%) of weight W. Formalisation: 
∀t    [ state(T, t) |== weight(W1)   �     -m ≤ (W1 - W)/W ≤ m  ] 
 

GP2(t1, t2, E1, E2, W, m)  (Conditional constant weight W with margin m) 
Property GP2 states that GP1 holds in environments in which only one change occurs 
in the day amount of used energy. Formalisation: 
EP1(t1, t2, E1, E2)  � GP1(W, m) 



 

GP3(t, E, d, e)    (Adaptation of day amount eaten) 
Property GP3 expresses that if the day amount of used energy is constant E after a 
time point t, then the day amount of food eaten will be in a relative d-interval of E. 
Formalisation: 
∀t    EP2(t, E)  �  ∃t'  t ≤ t' ≤ t + e  & state(T, t') |== time(24) &    
    ∀E1  [state(T, t') |== day_amount_eaten(E1) �  -d ≤ (E1 - E)/E ≤ d ] 
 
Note that Global Property GP1 describes a situation of a person with a normal eating 
pattern. By slightly modifying this property, also the different types of malfunctioning 
situations can be described. This results in the properties GP1A, GP1O and GP1B for 
anorexia, obesitas and bulimia, respectively. 
 

GP1a(W, m)  (Decrement of weight W with margin m) 
Property GP1a expresses that there is a point in time at which weight W has decreased 
with the relative m-interval (for example, 2%) of weight W and stays that low. 
Formalisation: 
∃t  ∀t1≥t  [ state(T, t1) |== weight(W1)   �     (W1 - W)/W ≤ -m  ] 
 

GP1o(W, m)  (Increment of weight W with margin m) 
Property GP1o expresses that there is a point in time at which weight W has increased 
with the relative m-interval (for example, 2%) of weight W and stays that high. 
Formalisation: 
∃t  ∀t1≥t  [ state(T, t1) |== weight(W1)   �     (W1 - W)/W ≥ m  ] 
 

GP1b(W, m)  (Periodical Increment of weight W with margin m) 
Property GP1b expresses that for each point in time there is a later point in time at 
which weight W will increase with the relative m-interval (for example, 2%) of 
weight W. Formalisation: 
∀t  ∃t1≥t  [ state(T, t1) |== weight(W1)   �     (W1 - W)/W ≥ m  ] 

6.3 Intermediate Properties 

Intermediate properties are dynamic properties, normally fulfilled by parts of the 
dynamical system such that together they entail the global properties. 
 
IP1(t, E, d, e)   (Eat norm is adapting to used energy) 
Intermediate property IP1 expresses that, if the day amount of used energy is constant 
after time point t, than, after some time the eat norm will be in a relative d-interval of 
E. Formalisation: 
∀t    EP2(t, E)  �   ∃t'  t ≤ t' ≤ t + e  &  state(T, t') |== time(24) &  

         [state(T, t') |== eat_norm(N) �   -d ≤ (N - E)/E ≤ d ] 
 
IP2 (Eat stimuli) 
Intermediate property IP2 expresses how the eat norm N and the amount of food eaten 
together determine whether or not an eat stimulus occurs. It is just the conjunction of 
LP1 and LP2. Formalisation:  
LP1 & LP2 



 

IP3 (Day eating accumulation) 
Intermediate property IP3 expresses how the day amount of eaten food is generated 
by following the eat stimuli during the day. Formalisation:  
LP3 & LP4 & LP5.  

7. Diagnostics Based on Interlevel Relationships 

The dynamic properties as identified in the section above describe the process at 
different levels of aggregation. The global properties describe the highest aggregation 
level: of the process as a whole.  The local properties presented earlier describe the 
process at the lowest level of aggregation: the specific basic mechanisms. These 
properties are logically related in the sense that if a trace satisfies all local properties, 
then it also satisfies the global properties. To analyse these logical relationships 
between properties at different aggregation levels more systematically, properties at 
an intermediate aggregation level have been defined: the intermediate properties. 
Thus a set of properties at different aggregation levels was obtained that forms a 
connected set of properties with the following interlevel relationships: 
 

EP1(t1, t2, E1, E2)  & GP2(W, m) �   GP1(W, m) 
GP3(d, e) & LP6    �   GP2(W, m) 
IP1(d, e) & IP2 & IP3    �   GP3(d, e) 
LP7     �   IP1(d) 
LP1 & LP2      �   IP2  
LP3 & LP4 & LP5    �   IP3 

 
The interlevel relationships are depicted by an AND-tree in Figure 7. Here a 

property at a parent node is implied by the conjunction of the properties at its children 
nodes. 

  
LP5 LP4 LP3 LP7 LP1 LP2 

IP3 IP2 IP1 

GP3 LP6 

GP2 EP1 

GP1 



Fig. 7. Interlevel relations between the dynamic properties 

The interlevel relations as depicted in Figure 7 provide a formalisation of a basis 
for a form of diagnostic reasoning that is sometimes applied in therapy practice. This 
reasoning runs as follows. Suppose the top level property GP1 fails (e.g., non-stable 
weight). Then due to the logical interlevel relations, one level lower in the tree either 
EP1 fails (e.g., strongly fluctuating metabolism) or GP2 fails. Suppose GP2 fails. 
Then one level lower either LP6 fails (e.g., insufficient food uptake by digestion) or 
GP3 fails. Suppose GP3 fails. Then either IP2 fails (e.g., no effect of eat norm on 
eating) or IP3 fails (e.g., eating no adequate food in the sense of energy-content) or 
IP1 fails. Suppose IP1 fails. Then LP7 fails (e.g., no adequate adaptation mechanism 
of eat norm to energy use). Subsequently the type of failure of LP7 can be identified 
depending on whether weight is systematically too low or decreasing (first phase 
anorexia), too high or increasing (first phase obesitas), or fluctuating (first phase 
bulimia). This can be found by checking property GP1a, GP1o, or GP1b, respectively 
(see Section 6.2).  

The above example shows the benefits of establishing interlevel relationships 
between properties at different aggregation levels of an adaptive dynamic process: 
they contribute to a formal theory that describes which local mechanisms of the 
process under analysis yield which global behaviour. The idea is that, if the local 
properties of a certain process have been formalised in enough detail, then for any 
global property interlevel relationships can be found that relate it to the local 
properties. However, finding such interlevel relationships may be a difficult task, due 
to high complexity of the process. Therefore, this process is currently performed by 
hand, in a way that is similar to proof methods in mathematics. Nevertheless, work is 
in progress to provide automated support for the identification of interlevel 
relationships. Moreover, for part of this process (the verification of a property against 
a given trace), software is already available. This software is described in more detail 
in the next section. 

8. Verification 

Two software environments have been developed to support the research reported 
here. First a simulation environment has been used to generate simulation traces, as 
shown in Section 5. In addition, a software environment has been developed that 
enables to check dynamic properties specified in TTL against simulation traces 
(Bosse et al., 2005b). This software environment takes a dynamic property and one or 
more (empirical or simulated) traces as input, and checks whether the dynamic 
property holds for the traces. Traces are represented by sets of Prolog facts of the 
form 
 

holds(state(m1, t(2)), a, true). 
 
where m1 is the trace name, t(2) time point 2, and a is a state formula in the ontology 
of the component's input. It is indicated that state formula a is true in the component’s 
input state at time point t2. The program for temporal formula checking basically uses 



Prolog rules for the predicate sat that reduce the satisfaction of the temporal formula 
finally to the satisfaction of atomic state formulae at certain time points, which can be 
read from the trace representation. Examples of such reduction rules are: 
 

sat(and(F,G)) :- sat(F), sat(G). 
sat(not(and(F,G))) :- sat(or(not(F), not(G))). 
sat(or(F,G)) :- sat(F). 
sat(or(F,G)) :- sat(G). 
sat(not(or(F,G))) :- sat(and(not(F), not(G))). 

 
Using automatic checks of this kind, many of the properties presented in this paper 
have been checked against traces such as shown in Section 5. The results of these 
checks are as depicted in Table 1. 

Table 1. Results of checking properties against traces 

 

 trace 1 trace 2 trace 3 trace 4 trace 5 
EP1 + + + + + 
EP2 + + + + + 
GP1 + - - - - 
GP2 + - - - - 
GP3 + - - + - 
IP1 + - - + + 
IP2 + + + + + 
IP3 + + + + - 
LP1 + + + + + 
LP2 + + + + + 
LP3 + + + + - 
LP4 + + + + + 
LP5 + + + + + 
LP6 + + + - + 
LP7 + - - + + 

 
For the properties mentioned in Table 1, the parameters used were as follows: W = 

60, E = 8, m = 0.02, d = 0.1 and e = 24. Here the first three traces are those depicted 
in Figure 2, 4 and 6 respectively (normal, anorexia and bulimia). In traces 2 and 3 the 
adaptation mechanism is malfunctioning (LP7 is the cause of the problems). Trace 4 
shows a pattern in which the eating regulation in principle functions well but there is 
insufficient food uptake by digestion (LP6 is the cause of the problems), whereas 
trace 5 shows a pattern in which the response on the eat stimulus is eating food 
without energetic value (LP3 is the cause of the problems). Notice that indeed for all 
these traces the interlevel relations of Figure 7 hold. 



9. Relation with Dynamical Systems Theory 

As mentioned earlier, traditionally, analysis of dynamical systems is often performed 
using mathematical techniques such as the Dynamical Systems Theory (DST), put 
forward, e.g., in (Port and Gelder, 1995). The question may arise whether or not such 
modelling techniques can be expressed in the Temporal Trace Language TTL. In this 
section it is shown how modelling techniques used in the Dynamical Systems 
approach, such as difference and differential equations, can be represented in TTL. 
First the discrete case is considered. An example of an application is the study of the 
use of logistic and other difference equations to model growth (and in particular 
growth spurts) of various cognitive phenomena, e.g., the growth of a child’s lexicon 
between 10 and 17 months; cf. (Geert, 1991; 1995). The logistic difference equation 
used is: 

 

L(n+1) = L(n) (1 + r - r L(n)/K) 
 

Here r is the growth rate and K the carrying capacity. This equation can be expressed 
in our temporal trace language on the basis of a discrete time frame (e.g., the natural 
numbers) in a straightforward manner: 

 

∀t   
 state(T , t) |== has_value(L, v)       �      
 state(T , t+1) |== has_value(L, v (1 + r - rv/K)) 

 

The traces T  satisfying the above dynamic property are the solutions of the difference 
equation. Another illustration is the dynamical model for decision-making presented 
in (Busemeyer and Townsend, 1993; Townsend and Busemeyer, 1995). The core of 
their decision model for the dynamics of the preference P for an action is based on the 
differential equation 

 

dP(t)/dt = -s P(t)  + c V(t) 
 

where s and c are constants and V is a given evaluation function. One straightforward 
option is to use a discrete time frame and model a discretised version of this 
differential equation along the lines discussed above. However, it is also possible to 
use the dense time frame of the real numbers, and to express the differential equation 
directly. To this end, the following relation is introduced, expressing that x = dy/dt: 

 

is_diff_of(T, x, y)  :  

  ∀t,w  ∀ε>0 ∃δ>0 ∀t',v,v' 
    0 < dist(t',t) < δ  &  state(γ , t) |== has_value(x, w)      

&  state(γ , t) |== has_value(y, v)  
&  state(γ , t') |== has_value(y, v')  
�     dist((v'-v)/(t'-t),w) < ε 

 

where dist(u,v) is defined as the absolute value of the difference, i.e. u-v if this is � 0, 
and v-u otherwise. Using this, the differential equation can be expressed by: 

 

is_diff_of(γ , - s P  + c V, P) 
 

The traces T for which this statement is true are (or include) solutions for the 
differential equation. Models consisting of combinations of difference or differential 
equations can be expressed in a similar manner. This shows how modelling constructs 



often used in DST can be expressed in TTL. Thus, TTL on the one hand subsumes 
modelling languages based on differential equations, but on the other hand enables the 
modeller to express more qualitative, logical concepts as well. 

10. Discussion 

To analyse the disorders of their patients, psychotherapists often have to get insight in 
adaptive dynamical systems. Analysis of dynamical systems usually is performed 
using mathematical techniques such as the Dynamical Systems Theory (Port and 
Gelder, 1995). Many convincing examples have illustrated the usefulness of DST; 
however, they often only address lower-level cognitive processes such as sensory or 
motor processing. Areas for which a quantitative approach based on DST offers less 
are the dynamics of higher-level processes with mainly a qualitative character, such as 
reasoning, complex task performance, and certain capabilities of language processing. 
The type of reasoning performed in psychotherapy practice often combines such 
qualitative aspects with more quantitative aspects. To support this type of reasoning, 
in this paper a novel approach was presented to analyse adaptive dynamical systems 
within psychotherapy. The approach is based on the specification of (local and global) 
dynamic properties in a high-level (logical) language that combines qualitative and 
quantitative concepts. Using this language, an executable model has been developed 
of the dynamics of eating regulation disorders.  

The model was inspired by the theory of (Delfos, 2002), where it is assumed that 
the cause of the eating disorder is primarily in the biological mechanism (the 
adipostat). Following this theory, our model gives a good basis for therapeutical 
reasoning. The biological problem is that the adipostat does not function properly. 
According to our model, this function comprises the pattern that generates the eat 
stimuli based on an eat norm (LP1 and LP2 in the simulation model) and the adaptive 
pattern that adapts the eat norm to the circumstances (LP7 in the simulation model). 
In case of malfunctioning of the adipostat, the improper functioning of the adaptation 
process can be corrected by training. In terms of the simulation model, the problem is 
that in property LP7, if β < 1, the eat norm does not become high enough (as with 
anorexia), and if β > 1, the eat norm becomes too high (as with obesitas). This 
parameter is to be accommodated, which can be done by training (of the client) to 
learn to pay more attention to the balance between food and activity (per day), thus 
developing a more accurate monitoring of what the body takes in and what it needs. 
By checking weight every day, feedback can be obtained. Thus, the adipostat is 
accommodated to a better functioning adaptation process. 

To analyse the model, a number of simulation traces have been generated, both for 
wellfunctioning situations and for different types of malfunctioning situations that 
correspond to the first phase of well-known disorders such as anorexia (nervosa), 
obesitas, and bulimia. Moreover, it was shown how such traces can be automatically 
analysed against global dynamic properties, and how the establishment of interlevel 
relations between dynamic properties can be useful for diagnostic reasoning. 

The high-level model has proven its value by predicting and explaining many of 
the patterns observed in psychotherapy practice. As one example, the development of 



obesitas after the age of 35 year can be explained as a lack of adaptive properties of 
the system with respect to decreased metabolism level. A more detailed model based 
on a set of differential equations for more detailed physiological processes is hard to 
obtain due to the lack of detailed knowledge (and parameter values) at the 
physiological level. Furthermore, even if such a model could be constructed, it 
probably would be so complex that it is hard to handle for simulation and analysis. 
Moreover, such mathematical techniques are not compatible with the type of 
reasoning within psychotherapy practice.  

In comparison to classical temporal languages such as LTL and CTL (see, e.g., 
(Benthem, 1983; Goldblatt, 1992)) and Temporal Logic (Barringer et al., 1996), our 
analysis approach has possibilities to incorporate (real or integer) numbers in state 
properties, and in the timing parameters e, f, g, h. Furthermore, TTL has more 
expressive power than these languages. For example, explicit reference can be made 
to (real) time, and variables can be used. Moreover, reference can be made to different 
developments of processes over time; thus statements such as ‘exercise improves 
skill’, which require comparison of different histories, can be formalised. 

In comparison to rule-based (simulation) approaches such as described by Holland 
(1995) and Rosenbloom, Laird and Newell (1993), our LEADSTO format is more 
declarative in a temporal sense: in a built-in manner the simulation processes are 
explicitly related to (and have their semantics in) the (real) time dimension, and that 
relationship to time does not depend on the computational processes in an implicit 
manner, as in rule processing is usual. Furthermore, in our approach a format is 
available to express more complex, non-executable dynamic properties in our 
language TTL, and analysis methods for these dynamic properties at different 
aggregation levels are available as described above. 

Further work is underway to show in more detail how, for cases of a 
malfunctioning system, the types of therapy described in (Delfos, 2002) can lead to a 
modified dynamical system in which eating regulation is functioning well. 
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