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1 Introduction

Decision making under stressful circumstances is a challenging type of human

process. For example, in emergency evacuations of a group of persons, the quality

of such decision making processes may make a difference between surviving or not.

Decision making under stress involves a number of aspects that have to be dealt

with, such as high levels of emotions, adequate predictive capabilities, and social

impact from other group members.

Mental states of individuals making a decision in a social context are not static.

They often show high extents of dynamics due to social interaction. In Social

Neuroscience neural mechanisms have been discovered that indeed – often in

unconscious manners – account for mutual mirroring effects between mental states

of different persons; e.g., [25], [34], [36]. For example, an emotion expresses itself

in a smile which, when observed by another person, automatically triggers certain

preparation neurons (also called mirror neurons) for smiling within this other

person, and consequently generates the same emotion. Similarly, mirroring of

intentions and beliefs can be considered.

In this paper group decision making in stressful circumstances is addressed. In

these circumstances, emotions have an important interaction with the beliefs and

intentions involved in a decision making process. The aim was to design a human-

like computational model which is biological plausible by exploiting knowledge

from Social Neuroscience about the relevant underlying mechanisms. Such a model
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may be useful not only for purposes of prediction, but also to obtain more insight in

the dynamics of the social mechanisms and their emergent properties as described

in a noncomputational manner in Social Neuroscience.

Based on modelling principles from neuroscience (Sect. 2), the computational

model ASCRIBE (for Agent-based Social Contagion Regarding Intentions, Beliefs

and Emotions) is introduced that not only incorporates mechanisms for mirroring

emotions, intentions and beliefs between different persons (Sect. 3), but also

addresses how within a person beliefs and emotions affect each other, and how

they both affect the person’s intentions. To illustrate themodel, a number of example

simulations in the context of a fictional emergency case study have been performed

(Sect. 4). In the simulation scenario’s agents are equipped with personal assistant

devices with a tool for sharing emergency information over a short distance.

For agent-based modelling of collective phenomena individual agent behaviours

can be modelled either from an agent-internal perspective, in the form of relations

involving internal states of the agent, as in the ASCRIBE model, or from an agent-

external, behavioural perspective, in the form of input-output relations for the

agent, abstracting from internal states. Illustrated by a case study on collective

decision making, this paper addresses how the two types of agent models can be

related to each other by a behavioural abstraction mechanism described in Sect. 5.

These relationships imply that, for example, collective behaviour patterns shown in

multi-agent systems based on a behavioural agent model are shared for multi-agent

systems based on corresponding cognitive agent models.

As a case study the model was evaluated based on empirical data for crowd

behaviour. Behavioural patterns emerging in large crowds are often difficult to

regulate. Various examples have shown how things can easily get out of control

when many people come together during big events. Especially within crowds, the

consequences can be devastating when emotion spirals (e.g., for aggression or fear)

develop to high levels. In Sect. 6 a computational analysis is presented of the

incident that happened at the Dam square in Amsterdam on the 4th of May in

2010. It is shown how the model is able to simulate an outburst of panic and its

consequences. Finally, Sect. 7 concludes the paper.

2 Modelling Principles

This section briefly introduces the neurological/cognitive principles on which the

models described in this chapter are based, and discusses the dynamical systems

modelling approach used.

2.1 Generating Emotional Responses and Feelings

The question on the direction of causality between feeling and emotional response

has a long history. A classical view on emotions is that based on some sensory
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input, due to internal processing emotions are felt, and based on this they are

expressed in some emotional response (e.g., a body state such as a face expression):

stimulus ! sensory representation ! felt emotion ! preparation for bodily

changes ! expressed emotion

James [26] claimed a different direction of causality (see also Damasio [12],

pp. 114–116):

stimulus ! sensory representation ! preparation for bodily changes !
expressed emotion ! felt emotion

The perspective of James assumes that a body loop via the expressed emotion is

used to generate a felt emotion by sensing the own body state. Damasio made a

further step by introducing the possibility of an as-if body loop bypassing actually

expressed bodily changes (cf. Damasio [8], pp. 155–158; see also Damasio [10], pp.

79–80; Damasio [12]):

stimulus ! sensory representation ! preparation for bodily changes ! felt

emotion

An as-if body loop describes an internal simulation of the bodily processes,

without actually affecting the body, comparable to simulation in order to perform,

for example, prediction, mindreading or imagination; e.g., [3], [17], [10]. Damasio

[10] distinguishes an emotion (or emotional response) from a feeling (or felt

emotion). The emotion and feeling in principle mutually affect each other in a

bidirectional manner: an as-if body loop usually occurs in a cyclic form by

assuming that the emotion felt in turn affects the prepared bodily changes; see,

for example, in (Damasio [12], pp. 119–122):

emotion felt ! preparation for bodily changes

A brief up-to-date survey of Damasio’s ideas about emotion and feeling, and the

‘tightly bound cycle’ between them can be found in (Damasio [11], pp. 91–92) and

(Damasio [12], pp. 108–129); for example (here the internal ‘object’ refers to the

body state): ‘The object at the origin on the one hand, and the brain map of that

object on the other, can influence each other in a sort of reverberative process that is

not to be found, for example, in the perception of an external object.’ (Damasio

[11], pp. 91–92). This essentially shows a cyclic process that (for a constant

environment) can lead to equilibrium states for both emotional response (prepara-

tion) and feeling; see Fig. 1. Note that what is called stimulus s here can be taken as
the sensor state sensing s. Given the cyclic nature of this process, a dynamical

systems approach is a suitable modelling choice.

2.2 Mirroring

It has been found that certain preparation states for actions or for expressing body

states (at the neural level called mirror neurons) have multiple functions, not only

the function of preparing, but also the function of mirroring a similar state of

another person; e.g., [25], [36], [15], [27], [29].
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Activation of mirror neurons is important not by itself, but because it plays a

crucial role in an important mental function: mirroring mental processes of other

persons by internal simulation using as-if body loops. From a more general

viewpoint, as-if body loops as introduced above contribute:

(1) Sensory input directly affects preparation states, after which further internal

processing takes place

(2) The notion of internal simulation involving body representations

Here (1) breaks with the tradition that there is a standard order of processing

sensing – internal processing – preparation for action, and (2) allows for involving

changing body representations in internal processes without actually having to

change any body state. As mirror neurons make that some specific sensory input

(an observed person) directly links to related preparation states, just like (1) above,

it fits quite well in the perspective based on as-if body loops. In this way mirroring

is a process that fully integrates mirror neuron activation states in the ongoing

internal simulation processes based on as-if loops; see also (Damasio [12], pp.

102–104). This mirroring process is schematically shown in Fig. 2.

Here the preparation for body state b (e.g., some emotional response) can either

be triggered by sensing an external stimulus s associating to b, or by observing

somebody else performing b (upper part of Fig. 2). In both cases, as a first step the

sensory representation affects the preparation state, after which further internal

processing takes place based on the as-if body loop (lower part in Fig. 2) which in

turn affects both the related feeling and the preparation state. Note that, as this

mirroring process happens mostly in an unconscious manner, in a social context

mirroring imposes limitations on the freedom for individuals to have their own

personal emotions, beliefs, intentions, and actions.

2.3 Feelings and Valuing in the Emergence of Collective
Action

Usually in the individual process of action selection, before a prepared action

comes in focus to be executed, an internal simulation to predict the effects of the

action takes place: the action is simulated based on prediction links, and in

feeling
state for b

sensory 
representation 
of stimulus  s 

preparation    
state for  b 

as-if 
body  

loop

stimulus s

Fig. 1 Generating emotions and feelings based on an as-if body loop
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particular for the associated affective effects, based on as-if body loops that predict

the body state which is the basis of the related feeling. Based on these predicted

effects a valuation of the action takes place, which may involve or even be mainly

based on the associated affective state, as, for example, described in [2], [8–12],

[28], [30]. The idea here is that by an as-if body loop each option (prepared action)

induces a simulated effect including a feeling which is used to value the option. For

example, when a negative feeling and value is induced by a particular option, it

provides a negative assessment of that option, whereas a positive feeling and value

provides a positive assessment. The decision for executing a prepared action is

based on the most positive assessment for it.

This simulation process for prepared actions does not only take place for

preparations of self-generated actions, but also for intentions or actions from

other persons that are observed. In this way by the mirroring process not only a

form of action or intention recognition takes place in the form of activation of

corresponding own preparation states by mirror neurons, but in addition also the

(predicted) effects are simulated, including the affective effects. This provides an

emotionally grounded form of understanding of the observed intention or action,

including its valuing, which is shared with the observed agent; see also [12].

Given the important role of the feeling states associated to preparations of

actions, it may be unrealistic to expect that a common action can be strong when

the individual feelings and valuations about such an action have much variation

over a group. When only the preparations for options are tuned to each other while

in the meantime still the individual internal processes underlying the decision

making remain a strong drive in a different direction, the overall process may result

in no collectiveness at all. To achieve emergence of strong collective action, also a

shared feeling and valuation for this action has to develop: also mirroring of the

associated emotions has to play an important role. When this is achieved, the

collective action has a solid shared emotional grounding: the group members do

not only intend to perform that action collectively, but they also share a good

feeling about it. In this process social media can play an important facilitating role

in that (1) they dramatically strengthen the connections between large numbers of

feeling
state for b

sensory 
representation 
of stimulus s

preparation    
state for b

as-if 
body  

loop

sensory 
representation 
of observed b

Fig. 2 Mirroring process

based on mirror neuron

activation and internal

simulation
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individuals, and (2) they do not only support transfer of, for example, beliefs and

intentions as such, but also associated emotions reinforcing them. Thus emergence

of collectiveness of action is achieved by not only tuning the preparations or

intentions for options to each other, but by also tuning the individual internal

processes underlying the decision making for these options; see Fig. 3. This

double-effective form of contagion enables both the emergence of a collective

action and of a solid emotional grounding for this collective action.

2.4 Modelling Perspective

To model the types of dynamic and cyclic processes as discussed here in a

neurologically inspired computational manner, a dynamical modelling perspective

is needed, such as the dynamical systems perspective advocated, for example in [1],

[35]. Modeling causal relations as discussed in neurological literature does not need

to take specific neurons into consideration but can use more abstract mental states,

relating, for example, to groups of neurons. In this way within the cognitive/

affective modelling area results from the large and more and more growing amount

of neurological literature can be exploited. This can be considered as lifting

neurological knowledge to a mental (cognitive/affective) level considering

temporal-causal relations between mental states. Nevertheless, the type of compu-

tational model that is designed can benefit by using some technical elements from

the neural modelling level. In particular the approach based on small continuous-

time recurrent neural networks is adopted; this approach is advocated by Beer

(1995), and was inspired, for example, by earlier work in [18], [23], [24], [16].

This approach takes states as having a certain activation level (a number in the

interval [0, 1]), and makes reciprocal loops and gradual adaptation possible. In [4] it

is claimed that they are an obvious choice for this type of work because (1) they are

the simplest nonlinear, continuous dynamical neural network model,(2) they are

universal dynamics approximators in the sense that, for any finite interval of time,

they can approximate the trajectories of any smooth dynamical system on a

A’s intention
statefor option O

A’s emotion state 
for option O

intention states of 
other group members

for option O

emotion states of 
other group members

for option O

A’s valuing
for option O

A’s mirroring 
of  intention
for option O

A’s mirroring 
of emotion
for option O

Fig. 3 Mirroring processes

for both emotions and

intentions and their internal

interaction
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compact subset of IRn arbitrarily well [16], and (3) they have a plausible neurobio-

logical interpretation. This type of computational model is formulated as follows.

For a state depending on multiple other states, to update its activation level, input

values for incoming activation levels have to be combined to some aggregated input

value. This update takes place according to the differential equation

dyi=dt ¼ γi½agginputi � yi�

where γi is the update speed of state i, agginputi is the aggregated input for i, and yi
is the activation value of i. The aggregation is created from the individual inputs ωj,i

yj for all states j connected to i, where ωj,i is the strength of the connection from j to
i. For this aggregation a combination function f(V1, . . . , Vk) is needed, applied to the
different incoming values Vj ¼ ωj,i yj. It will be assumed that such a combination

function satisfies:

(1) 0 � f(V1, . . . , Vk) � 1 whenever V1, . . . , Vk � 1

(2) f is monotonous: f(V1, . . . , Vk) � f(W1, . . . , Wk) whenever Vi � Wi for all i

A simple example of a combination function is the sum function:

f ðV1; . . . ;VkÞ ¼
X

i
Vi

For this function to satisfy (1), this puts strong constraints on the values V1, . . . ,
Vk: the sum of the inputs has to be at most 1, i.e.,

P
j2sðiÞ ωj;i � 1, where s(j) is the

set of states connected as a source to state i. This dependency between connections

is often not considered practical, nor biologically plausible. An often used combi-

nation function (e.g., in [4]) is based on a continuous logistic threshold function:

f ðV1; . . . ;VkÞ ¼ thðV1 þ . . .þ VkÞ

with

thðXÞ ¼ 1

1þ e�σðX�τÞ or thðXÞ ¼ 1

1þ e�σðX�τÞ �
1

1þ eστ

� �
ð1þ e�στÞ

Note that in the former variant thð0Þ ¼ 1
1þeστ and this is nonzero; this is

compensated in the latter variant. The former variant can be used as a suitable

approximation when στ is large enough, e.g. στ � 20. Given this, the type of

computational model considered here uses agginputi ¼ thðPj2sðiÞ ωj;i yjÞ and

provides a dynamical system of the form:

dyi=dt ¼ γi½thð
X

j2sðiÞ ωj;i yjÞ � yi�

Note that the type of model can be described in difference equation format as

follows:

Agent-Based Modelling of Social Emotional Decision Making in Emergency. . . 85



yiðtþ ΔtÞ ¼ yiðtÞ þ γi½thð
X

j2sðiÞ ωj;i yjÞ � yi�Δt

This difference equation can be directly used for simulation, or more dedicated

numerical approximation methods can be used.

3 ASCRIBE Model

In this section the computational model for group decision-making is introduced,

which is based on the neurological principles of somatic marking and mirroring

discussed in the previous section. More details on the model and its origins are

addressed in. An elaborate description of the interplay of the different states can be

found in [22]. In Sect. 3.1 the general model for the mirroring of mental states is

introduced. Section 3.2 provides more details on the interplay between the different

states of emotions, intentions and beliefs.

3.1 The General Model

The most important parameters and states within this general model will be

described in this section. An overview of these parameters and states can be

found in Table 1.

The model describes at an abstract level the mirroring of a mental state S (which

can be, for example, an emotion, belief or intention) between agents. An important

factor in determining the value of state S, is the contagion strength γSBA from agent

B to agent A in a group. This denotes how much the state S of A is influenced by the

state S of B. It is defined by

γSBA ¼ εSBαSBAδSA (1)

Here, εSB is the personal characteristic expressiveness of the sender B for S, δSA
the personal characteristic openness of the receiver A for S, and αSBA the interaction
characteristic channel strength for S from sender B to receiver A. In order to

determine the level qSA of state S in an agent A, first, the overall contagion strength
γSA from the group towards agent A is calculated:

γSA ¼
X

B 6¼A
γSBA (2)

This contagion strength is used to determine the weighed impact qSA* of all the

other agents upon state S of agent A:
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qSA
�ðtÞ ¼

X
B 6¼A

γSBA qSBðtÞ=γSA (3)

The dynamics of the different mechanisms involved are modelled by dynamical

relationships using the following general pattern:

YAðtþ ΔtÞ ¼ YAðtÞ þ γ < change expression > Δt

The change of Y is specified for a time interval between t and t + Δt; the γ
represents the speed of the adjustment processes. Applied to the variable qSA(t) for
YA(t) the following is taken:

< change expression >¼ f ðqSA�ðtÞ; qSAðtÞÞ � qSAðtÞ

where f(qSA*(t), qSA(t)) is a combination function. Thus the resulting update-rule for

the considered states is:

qSAðtþ ΔtÞ ¼ qSAðtÞ þ γSA f ðqSA�ðtÞ; qSAðtÞÞ � qSAðtÞ½ �Δt (4)

Two additional personal characteristics determine how much this external influ-

ence actually changes state S of agent A, namely the tendency ηSA to absorb or to

amplify the level of a state and the bias βSA towards increasing (upward) or reducing
(downward) impact for the value of the state. Based on this the combination

function f(qSA*(t), qSA(t)) used was taken as:

f ðqSA�ðtÞ; qSAðtÞÞ ¼ ηSA½βSAð1� ð1� qSA
�ðtÞÞð1� qSAðtÞÞÞ

þ ð1� βSAÞ qSA�ðtÞ qSAðtÞ� þ ð1� ηSAÞ qSA�ðtÞ

By Eq. 4 the new value for the state S at time t + Δt is calculated from the old

value at t, plus the change of the value based upon the transfer by mirroring. This

change is defined as the multiplication of the overall contagion strength γSA times

the difference of a combination function of qSA* and qSA with qSA. The combination

function used has a component for amplification (after ηSA(t)) and one for absorp-

tion. The amplification component depends on the tendency of the person towards

Table 1 Parameters and states

qSA Level for state S for person A

εSA Extent to which person A expresses state S

δSA Extent to which person A is open to state S

ηSA Tendency of person A to absorb or amplify state S

βSA Positive or negative bias of person A on state S

αSBA Channel strength for state S from sender B to receiver A

γSBA Contagion strength for S from sender B to receiver A
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more positive (part multiplied by βSA(t) or negative part of equation multiplied by

1 – βSA(t) side).

3.2 Dynamics Between Emotions, Beliefs and Intentions

When considering a computational model for group decision making, it is evident

that beliefs, intentions and emotions make up a large part of this process. However,

these aspects also influence each other. This section describes a computational

model for the interplay of emotions, beliefs and intentions in a group of persons in

the context of collective decision making. The model is extended by forming

specializations of the generic model from Sect. 3.1, so as to incorporate internal

interactions between the different types of states. Three different types of mental

states S (as used in Eq. 4) are considered: beliefs, emotions, and intentions,

indicated by belief(X), fear, emotion(O), intention(O) for information X and options

O. In addition, interactions between these different states are modeled at the

individual level; see also Table 2 for a brief explanation of all interactions in the

model. In the following subsections, the specific interactions as shown in Table 2

will be addressed.

3.2.1 The Effect of Emotions on Beliefs

To model the effect of emotions on information diffusion, the personal

characteristics δSA, ηSA and βSA for a belief state S ¼ belief(X) are not assumed

constant, but are instead modeled in a dynamic manner, depending on emotions.

Personal characteristics εbelief(X)A, δbelief(X)A, ηbelief(X)A, βbelief(X)A and interaction

characteristic αbelief(X)BA are parameters in the model as described in Sect. 3.1. One

additional category is introduced here, namely informational state characteristics

rXA denoting how relevant, and pXA denoting how positive information X is for

person A. An assumption made for the model is that the intensity of the fear state of

a person will affect his ability to receive information, by affecting the value of the

individual person characteristics; in particular, a high level of fear affects βbelief(X)A,
ηbelief(X)A and δbelief(X)A. First the effect of fear upon the openness for a belief belief
(X) (characterized by a relevance rXA of information X for A) is expressed:

δbelief ðXÞAðtþ ΔtÞ ¼ δbelief ðXÞAðt Þ þ μ � ð1=1þ e�σðqfear;A ðtÞ�τÞÞ �
½ð1� � ð1� rXAÞ � qfear;AðtÞ δbelief ðXÞAðtÞ� � Δt (5)

If qfear,A is lower than threshold τ (on the interval [0,1]), it will not contribute to

the value of δbelief(X)A. If qfear,A has a value above τ, the openness will depend on the
relevance of the information: when the relevance is high, openness will increase,

while if the relevance is low, openness will decrease. In all formulae, μ is an
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adaptation parameter. This proposed model corresponds to theories of emotions as

frames for selective processing, as described in [14], [32]. A distinction between

amplification values for different types of information is also made, depending on

the emotional state fear. The dynamics for the characteristic ηbelief(X)A(t) modeling

the amplification or absorption of belief(X) are described as follows:

ηbelief ðXÞAðtþ ΔtÞ ¼ ηbelief ðXÞAðt Þ þ μ � ð1=1þ e�σðqfear;A ðtÞ�τÞÞ�
½rXA � ð1� pXAÞ � ðqfear;AðtÞ ηbelief ðXÞAðtÞÞ� � Δt (6)

The emotion of fear only has an influence when it is above the threshold. In that

case the parameter only changes for relevant, non-positive information for which

the parameter starts to move towards the value for the emotion of fear (meaning this

type of information will be amplified). This property represents an interpretation of

[7] on how emotion can result in selective processing of emotion-relevant

information.

The bias of a person is also influenced by its emotion, but in addition depends on

the content of the information, which can be either positive or negative:

βbelief ðXÞAðtþΔtÞ¼βbelief ðXÞAðtÞþμ � ð1=ð1þeσðqfear; AðtÞ�τÞÞ � ð1�qbelief ðXÞAðtÞÞ �
½ðζA �pXAþð1�ζAÞ � ð1�pXAÞÞ�βbelief ðXÞAðtÞ� �Δt ð7Þ

Parameter τ is a number between 0 and 1 and represents a threshold for qfear:
when qfear > τ, then qfear,A has an influence on the bias βbelief(X)A(t). Parameter ζA is
a personality characteristic; if ζA ¼ 1, represents a person who is optimistic when

he/she experiences a lot of fear: positive information will be strengthened more and

Table 2 The different types of processes in the model

From S To S0 Type Description

Belief(X) Fear Internal Affective response on information; for example,

on threats and possibilities to escape

Emotion(O) Emotion(O) Interaction Emotion mirroring by nonverbal and verbal

interaction; for example, fear contagion

Fear Belief(X) Internal Affective biasing; for example, adapting openness,

amplification extent and orientation

Belief(X) Belief(X) Interaction Belief mirroring by nonverbal and verbal interaction;

for example, of information on threats and

options to escape

Belief(X) Intention(O) Internal Cognitive response on information; for example,

aiming for an exit that is believed to be reachable

Emotion(O) Intention(O) Internal Somatic marking of intention options; for example,

giving options that feel bad a low valuation

Intention(O) Intention(O) Interaction Intention mirroring by nonverbal and verbal

interaction; for example, of tendency to go

in a certain direction
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negative information will be weakened more. The opposite happens when ζA ¼ 0,

this represents a person who is more ‘pessimistic’ when experiencing fear: negative

information will be strengthened and positive information will be weakened. Both

personality characteristics seem to exist in people: a bias towards the negative side

of information in case of experiencing a high level of fear corresponds with the

narrowing hypothesis from Frederickson’s broaden-and-build theory in [14]. Others

have a bias towards more positive information and emotions. Leaders could use this

ability motivate their followers in times of crisis, as positive information and

emotions broaden people’s mindset [14], and focusing on positive information

and emotions can contribute positively to individual’s mental states (including

attention and cognitive capacity) and resources [14]. The dynamically changing

‘parameters’ δbelief(X)A(t), ηbelief(X)A(t), βbelief(X)A(t) are used in the equation describ-

ing the dynamics of the belief state belief(X):

qbelief ðXÞAðtþΔtÞ ¼ qbelief ðXÞAðtÞþ γbelief ðXÞAðtÞ��
f ðqbelief ðXÞA�ðtÞ;qbelief ðXÞAðtÞÞ�qbelief ðXÞAðtÞ

�
Δt (8)

Here the combination function f(qSA*(t), qSA(t)) used is taken in a dynamic

manner as:

f ðqbelief ðXÞA�ðtÞ;qbelief ðXÞAðtÞÞ ¼ ηbelief ðXÞAðtÞ ½βbelief ðXÞAðtÞ
ð1�ð1� qbelief ðXÞA�ðtÞÞð1� qbelief ðXÞAðtÞÞÞ
þ ð1� βbelief ðXÞAðtÞÞ qbelief ðXÞA�ðtÞ qbelief ðXÞAðtÞ�
þ ð1� ηbelief ðXÞAðtÞÞ qbelief ðXÞA�ðtÞ

Note that since it depends on δbelief(X)A(t), also γbelief(X)A(t) becomes dynamic.

3.2.2 The Effect of Beliefs on Emotions with Respect to the Dynamics of Fear

In this subsection it is addressed how emotions are being influenced by information.

This influence is modelled by altering the overall weighed impact of the contagion

of the emotional state for fear:

qfear; A
�ðtÞ ¼ νA � ðΣB 6¼AγfearBA � qfearB=γfearAÞ þ ð1� νAÞ �

ðΣX ωX; fear;A:ð1� pXAÞ � rXA � qbelief ðXÞAÞ (9)

Here the influence depends on the impact from the emotion fear by others (the

first factor, with weight vA) in combination with the influence of the belief present

within the person. In this case, information has an increasing effect on fear if it is
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relevant and non-positive. This qfear,A*(t) is used in the equation describing the

dynamics of fear:

qfearAðtþ ΔtÞ ¼ qfearAðtÞ þ γfearA f ðqfearA�ðtÞ; qfearAðtÞÞ � qfearAðtÞ
� �

Δt (10)

with

f ðqfearA�ðtÞ; qfearAðtÞÞ ¼ ηfearA½βfearAð1� ð1� qfearA
�ðtÞÞð1� qfearAðtÞÞÞ

þð1� βfearAÞ qSA�ðtÞ qSAðtÞ� þ ð1� ηfearAÞ qfearA�ðtÞ

3.2.3 The Effect of Beliefs and Emotions on Intentions

The abstract model for mirroring described above applies to emotion, belief and

intention states S for an option O or the situation in general, but does not describe

any interplay for intentions yet. Taking the Somatic Marker Hypothesis on decision

making as a point of departure, not only intentions of others, but also own emotions

affect the own intentions. To incorporate such an interaction, the basic model is

extended as follows: to update qintention(O)A for an intention state S relating to an

option O, both the intention states of others for O and the qemotion(O)A(t) values for
the emotion state S0 for O are taken into account. These intention and emotion states

S and S0 for option O are denoted by OI and OE, respectively:

Level of fear of person A: qfearA(t)
Level of emotion for option O of person A: qemotion(O)A(t)
Level of intention indication for option O of person A: qintention(O)A(t)
Level of belief supporting option O of person A: qbeliefsfor(O)A(t)

Here qbeliefsfor(O)A(t) denotes to aggregated support for optionO by beliefs of A; it
is defined as

qbeliefsforðOÞðtÞ ¼ ΣXωXOA qbelief ðXÞA=ΣXωXOA (11)

Here ωXOA indicates how supportive information X is concerning option O. The
combination of the own (positive) emotion level and the rest of the group’s

aggregated intention is made by a weighted average of the two:

qintentionðOÞA��ðtÞ ¼ ðωOIA1=ωOIEBAÞqintentionðOÞA�ðtÞ
þ ðωOEA2=ωOIEBAÞqemotionðOÞAðtÞ
þ ðωOBA2=ωOIEBAÞqbeliefsforðOÞAðtÞ (12)

γintentionðOÞA
� ¼ ωOIEBAγintentionðOÞA (13)
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ωOIA1,ωOBA2 and ωOEA2 are the weights for the contributions of the group

intention impact (by mirroring), the own emotion impact (by somatic marking),

and the own belief impact on the intention of A for O, respectively, and

ωOIEBA ¼ ωOIA1 þ ωOEA2 þ ωOBA2

The combination of the own belief level and the rest of the group’s aggregated

emotion for a certain option O is made by a weighted average of the two:

qemotionðOÞA��ðtÞ ¼ ðωOEA1=ωOEBAÞ qemotionðOÞA�ðtÞ
þ ðωOBA1=ωOEBAÞqbeliefsforðOÞAðtÞ (14)

γemotionðOÞA
� ¼ ωOEBA γemotionðOÞA (15)

ωOEA1 and ωOBA1 are the weights for the contributions of the group emotion

impact (by mirroring), the own belief impact on the emotion of A for O, respec-
tively, and ωOEBA ¼ ωOEA1 + ωOBA1. Then the overall model for the dynamics of

emotions and intentions for options becomes:

qemotionðOÞAðtþΔtÞ¼ qemotionðOÞAðtÞþ γintentionðOÞA
� � ½ηemotionðOÞAðβemotionðOÞA

ð1�ð1�qemotionðOÞA��ðtÞÞð1�qemotionðOÞAðtÞÞÞ
þð1�βemotionðOÞAÞ qemotionðOÞA��ðtÞ qemotionðOÞAðtÞÞ
þð1� ηemotionðOÞAÞ qemotionðOÞA��ðtÞ�qemotionðOÞAðtÞ� �Δt

(16)

qintentionðOÞAðtþΔtÞ¼ qintentionðOÞAðtÞþ γintentionðOÞA
��½ηintentionðOÞAðβintentionðOÞA

ð1�ð1�qintentionðOÞA��ðtÞÞð1�qintentionðOÞAðtÞÞÞ
þð1�βintentionðOÞAÞ qintentionðOÞA��ðtÞ qintentionðOÞAðtÞÞ
þð1�ηintentionðOÞAÞ qintentionðOÞA��ðtÞ�qintentionðOÞAðtÞ� �Δt

(17)

4 Simulation Studies

In this section, some example results of a small fictional case study will be

presented. The goal of the case study was to investigate if the computational

model can simulate the interplay of emotions, intentions and beliefs, as described

in neuroscientific, social and psychological literature. The computational model

was implemented in Matlab in the context of an evacuation scenario.
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The example scenario is expressed as follows: at the end of a working day in an

office, the fire alarm goes off and all the persons that are in the building need to

evacuate immediately. At the time of the alarm, three teams of each three people are

present on different floors, as can be seen in Fig. 4. Persons can communicate with

each other when they are on the same floor, or they can communicate to each other

through their personal device, which is equipped with a tool for sharing emergency

information over a short distance. Communication through such personal devices

can only occur in case the distance is three floors or less. The building has four

emergency exits, three at the ground floor and one at the 5th floor via a skyway to

another building. If an exit is accessible, the information is rated as ‘positive’

information in the model, if not accessible then the information is rated ‘not

positive’. In the formalization, this leads to the following information state

characteristics: pExitX ¼ 1 for accessible exits and pExitX ¼ 0 for blocked exists.

The relevance of this information for survival is always 1, i.e. rExitX ¼ 1.

4.1 An Example Scenario

In the example scenario, the three persons located at the top floor know that exit 4 is

available (i.e. they have a belief of 1 in information pExit4 ¼ 1), whereas the three
persons on the middle floor do not have any strong beliefs about any of the

emergency exits. The three at the first floor know the situation of the exits 1 and

2 at the first floor, thus they have beliefs of strength 1 concerning those exists. In

this case, the first exit is blocked and the second is accessible, therefore pExit1 ¼ 0
and pExit2 ¼ 1. They do not know anything about exit 3, therefore a belief of

strength 0 is present concerning exit 3. Besides these values, all other values are

0
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6

exit 4

exit 2

exit 1

exit 3

Team 3:
3 persons
on the 6th

floor 

Team 1:
3 persons
on the 1st
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Team 2:
3 persons
on the 4th

floor 

flo
or

Fig. 4 The location of three

teams in a building of six

floors with four exits
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set to 0.5 with respect to the beliefs to indicate that they know the exits are there but

do not know specifically whether the exit is accessible or not. Moreover, the

intentions of all agents are initially set to 0 (i.e. they start with not specific intention
to leave the building via any of the exits) and the emotions to 0, 1, 0, and 1 for exit 1,
2, 3, and 4 respectively (since exit 1 and exit 3 represent negative information, the

emotion for that option is not positive). Finally, for the emotion of fear the agents at

the first floor have no fear, at the middle floor they have maximum fear, and at the

top floor medium fear is present. Furthermore, the initial belief about the situation

itself is 0.5. Furthermore, each agent has the same initial set of parameters.

Figure 5 shows the change of the values of the beliefs, intentions, and emotions.

The top four rows represent the values related to the four exits. Here, the values for

all agents during the simulation runs are shown. The y-axis of the graphs represents

all nine persons, who have values for certain variables, stated on the z-axis. The

values develop over time, which is represented by the x-axis. At the bottom row of

the figure, diagrams with the amount of fear and the judgment of the entire situation

are shown. It can be seen that fear spreads quickly, resulting in a very negative

judgment of the situation by all agents. For exit 1 the belief about the exit being an

option for evacuation eventually stabilizes at a relatively low value due to the fact

that no human has a good feeling for that option (although in the beginning the

emotions are slightly pulled upwards as well as the intention, due to the very strong

belief of the three agents at the first floor). For exits 2 and 4 a very strong belief

Fig. 5 Simulation results for an example scenario
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occurs rapidly for all agents as well as a very strong intention and the positive

emotions also remain high. Finally, for exit 3 the agents at the first floor get a

slightly stronger belief, intention, and emotion due to the fact that the other agents

have a belief with value 0.5 about the exit. Eventually however, the values return to

a rather low value again due to the fact that the others have lowered their value

again. Without the ability to communicate with each other using personal devices,

the beliefs, intentions, and emotions would not have been influenced by those on the

other floors.

4.2 More Systematic Variations

The context of this case study was used to explore whether under a variety of

parameter settings patterns emerge as expected.

4.2.1 The Effect of Information on Fear

A first prediction about the interplay of emotions, intentions and beliefs, according to

the computational model is that from formula (8), it is expected that if a person

experiences a situation as dangerous, then this person’s fear level should increase.

Simulations where the persons believed that the situation is dangerous were compared

with simulations where they believed that that situation was not dangerous. The result

of these simulations were that if persons believe that the situation is not dangerous

(pbelief(s)A ¼ 1), then qfearA(t) goes to 0, meaning that the persons will experience

no fear. If the persons believe that the situation is dangerous (pbelief(s)A ¼ 0),
then qfearA(t) increases to 1, meaning that the persons will increase their experience

of fear, when they consider the situation as dangerous. This result corresponds with

our expectation.

4.2.2 The Effect of Emotion on Beliefs

According to formulas (5), (6), and (7) the level of fear that a person is

experiencing, can have an effect on the way a person processes information.

More precisely: it is expected that when qfearA(t) is above threshold τ, then the

emotion fear should have an effect on the way persons process information.

Multiple simulations were run to test this. In the simulations, the threshold τ was

set to 0.5 and the initial value of qfearA(t) is below or above threshold τ, for example,

0.1 or 0.7. Whenever qfearA(t) is above the threshold τ (either from the start, or at a

later time point), δbelief(X)A(t), ηbelief(X)A(t) and βbelief(X)A(t) start to change indeed.

Here results will be briefly presented where ζ was 1.
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The openness δbelief(X)A(t) becomes 1 or stays 1, this is according to the model,

because when ζ ¼ 1 and rbelief(s)A ¼ 1 (the information is relevant for survival),

δbelief(X)A(t) should increase.

The bias factor βbelief(X)A(t) increases for the situation, exit 1 and 3 (which are not
accessible), but decreases for exit 2 and 4 (which are accessible). This is what was

expected, because the higher pbelief(s)A is (meaning the more ‘positive’ information

is), the lower βbelief(X)A(t) should become (meaning information will be spread

weaker by this person), the lower pbelief(s)A is, the higher βbelief(X)A(t) should become

(meaning strengthening the spread of negative information).

The amplification extent ηbelief(X)A(t) increases differently for the situation,

where exit 1 and 3 are not accessible. For this situation it goes towards 1 and

it increases more, the further the agents are away from the exit. This is according

to expectation, because ηbelief(X)A(t) should only increase if pbelief(s)A ¼ low and

rbelief(s)A ¼ high, in these instances, pbelief(s)A ¼ 0 and rbelief(s)A ¼ 1. For exit

2 and 4, pbelief(s)A ¼ 1 and rbelief(s)A ¼ 1. In that case ηbelief(X)A(t) should not

increase, and that is what is happening correctly in this evacuation scenario.

4.2.3 The Effects of a Combination of Beliefs and Emotions

In the simulations it was found that the combination of emotions and beliefs

decreases the level of qemotion(X)A(t) more than they do separately. This effect was

expected from formula (1) for qemotion(X)A(t)**. For example, here one can see that

in this situation the combination of emotions and beliefs makes qemotion(X)A(t)
increase more, than when beliefs are not combined with emotions.

5 Model Abstraction

To obtain an agent-based social level model for group decision making, the general

internal agent-based model for contagion described in Sect. 3.1 for any decision

option O has been applied to both the emotion states S for O and intention or choice

tendency states S0 forO. In addition, an interplay between the two types of states has
been modelled. To incorporate such an interaction, the general model from Sect. 3.1

was extended as follows: to update qSA(t) for an intention state S relating to an

option O, both the intention states of others for O and the qS0A(t) values for the

emotion state S0 for O are taken into account. Note that in this model a fixed set of

options was assumed that all are considered. The emotion and choice tendency

states S and S0 for option O are denoted by b(O) and c(O), respectively. Then the

expressed level of emotion for option O of person A is eb(O)A(t), and of choice

tendency or intention for O is ec(O)A(t). The combination of the own (positive)

emotion level and the rest of the group’s aggregated choice tendency for option O is

made by a weighted average of the two:
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sgðcðOÞÞA�ðtÞ ¼ ðωcðOÞA=ωOAÞ sgðcðOÞÞAðtÞ þ ðωbðOÞA=ωOAÞebðOÞAðtÞ=εSA
γcðOÞA� ¼ ωOAγcðOÞA

where ωc(O)A and ωb(O)A are the weights for the contributions of the group choice

tendency impact and the own emotion impact on the choice tendency of A for O,
respectively, and ωOA ¼ ωc(O)A + ωb(O)A.

Then the behavioural agent-based model for interacting emotion and intention

(choice tendency) contagion expressed in numerical format becomes:

sgðbðOÞÞAðtÞ ¼ ΣB 6¼AαbðOÞBA � ebðOÞBðtÞ=ðΣB 6¼AεbðOÞB � αbðOÞBAÞ

ebðOÞAðtþ ΔtÞ ¼ ebðOÞAðtÞ þ εbðOÞAγbðOÞAcðsgðbððOÞÞAðtÞ;
ebðOÞAðtÞ=ebðOÞAÞΔt

with as an example

cðX; YÞ ¼ ηbðOÞA � ½βbðOÞA � ð1� ð1� XÞ � ð1� YÞÞ þ ð1� βbðOÞAÞ � XY�
þ ð1� ηbðOÞAÞ � X � Y

sgðcðOÞÞAðtÞ ¼ ΣB6¼AαcðOÞBA � ecðOÞBðtÞ=ðΣB6¼AεcðOÞB � αcðOÞBAÞ

ecðOÞAðtþ ΔtÞ ¼ ecðOÞAðtÞ þ εcðOÞAωOAγcðOÞAdððωcðOÞA=ωOAÞsgðcðOÞÞAðtÞ
þ ðωbðOÞA=ωOAÞebðOÞAðtÞ=εbðOÞA; ecðOÞAðtÞ=εcðOÞAÞΔt

with as an example

dðX; YÞ ¼ ηcðOÞA � ½βcðOÞA � ð1� ð1� XÞ � ð1� YÞÞ þ ð1� βcðOÞAÞ � XY�
þ ð1� ηcðOÞAÞ � X � Y

For the behavioural abstraction, the internal agent model (IAM) is expressed in a

hybrid logical/numerical format in a straightforward manner (a graphical represen-

tation of the model, based on the principles from Sect. 2 is provided in Fig. 6):

IP1 From sensor states (SS) to sensory representations (SRS)

SSðA; S; VÞ² SRSðA; S; υSAVÞ

where S has instances c, g(c(O)) and g(b(O)) for options O.

IP2 Preparing for an emotion expressed in a body state (preparation state PS)
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SRSðA; c; V1Þ & SRS A; g bðOÞð Þ; V2ð Þ
& SRS A; bðOÞ; V3ð Þ & PS A; bðOÞ; Vð Þ
² PS

�
A; bðOÞ; Vþ λbðOÞAgðω1OAV1;ω2OAV2;ω3OAV3; VÞΔt�

IP3 Preparing for an option choice (preparation state PS)

SRSðA; c; V1Þ & SRSðA; gðcðOÞÞ; V2ÞÞ
& PSðA; bðOÞ; V3Þ & PS A; cðOÞ; Vð Þ
² PS A; cðOÞ; Vþ λcðOÞAhðω4OAV1;ω5OAV2;ω6OAV3; VÞΔt� �

IP4 From preparation to effector state (ES)

PSðA; S; VÞ²ESðA; S; ζSAVÞ

where S has instances b(O) and c(O) for options O.

IP5 From preparation to sensory representation of body state (SRS)

PSðS; VÞ² SRSðS;ω0OAVÞ

where S has instances b(O) for options O.

ITP Sensing aggregated group members’ bodily responses and intentions

^B 6¼A ESðB; S; VBÞ² SS A; gðSÞ;ΣB 6¼AαSBAVB=ΣB 6¼AαSBAζSB
� �

where S has instances b(O), c(O) for options O.

Also, the behavioural agent model BAM is translated in a hybrid logical/

numerical format, using atoms has_value(x, V) with x a variable name and V

PS(A, c(O))

PS(A, b(O))

ES(A, c(O))

ES(A, b(O))

SRS(A,g(c(O)))

SRS(A, c)

SRS(A, g(b(O)))

SRS(A, b(O))

SS(A,g(c(O)))

SS(A, c)

SS(A,g(b(O)))

υg(c(O))A

υcA

υg(b(O))A

ω0OA

ω1OA

ω2OA

ω3OA

ω4OA

ω6OA

ω5OA

ζb(O)A

ζc(O)A

λb(O)A

λc(O)A

αb(O)AB

αc(O)AB

αb(O)BA

αc(O)BA

Fig. 6 Overview of the internal agent model IAM
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a value. Here s(g(b((O)), A), s(g(c((O)), A), e(b(O), A) and e(c(O), A) for

options O are names of the specific variables involved :

BP1 Generating a body state

has value s gðbðOÞð Þ;Að Þ; V1Þ & has value e bðOÞ;Að Þ; Vð Þ
² has valueðeðbðOÞ;A; Vþ εbðOÞAγbðOÞAcðV1;V=εbðOÞAÞΔtÞ

BP2 Generating an option choice intention

has value s g cðOÞð Þ;Að Þ; V1ð Þ & has value e bðOÞ;Að Þ; V2ð Þ
& has value e cðOÞ;Að Þ; Vð Þ² has value eðcðOÞ;Að Þ; V

þ εcðOÞAωOAγcðOÞAdððωc Oð ÞA=ωOAÞV1

þ ðωb Oð ÞA=ωOAÞV2=εbðOÞA;V=εcðOÞAÞΔtÞ

BTP Sensing aggregated group members’ bodily responses and intentions

^B 6¼A has value eðS;BÞ; VBð Þ²has value s gðSÞ;Að Þ;ΣB 6¼AαSBAVB=ΣB 6¼AαSBAεSB
� �

In the following it is described how the behavioural agent model BAM is related

to the internal agent model IAM, via the abstracted (from IAM) behavioural agent

model ABAM. First, from the model IAM by a systematic transformation, an

abstracted behavioural agent model ABAM is obtained. Then, the two behavioural

agent models ABAM and BAM will be related. In [38] an automated abstraction

transformation is described from a non-cyclic, stratified internal agent model to a

behavioural agent model. As in the current situation the internal agent model is not

assumed to be noncyclic, this existing transformation cannot be applied. The two

main steps in this transformation are: elimination of sensory representation atoms,

and elimination of preparation atoms.

1. Elimination of sensory representation atoms

It is assumed that sensory representation atoms may be affected by sensor atoms,

or by preparation atoms. These two cases are addressed as follows

(a) Replacing sensory representation atoms by sensor atoms

• Based on a property SS A; S; Vð Þ² SRSðA; S; υVÞ (such as IP1),

replace atoms SRS(A, S, V) in an antecedent (for example, in IP2 and

IP3) by SS(A, S, V/υ).

(b) Replacing sensory representation atoms by preparation atoms

• Based on a property PSðA; S; VÞ² SRSðA; S;ωVÞ (such as IP5),

replace atoms SRS(A, S, V) in an antecedent (for example, in IP2) by

PSðA; bðOÞ; V=ωÞ.
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Note that this transformation step is similar to the principle exploited in [38]. It

may introduce new occurrences of preparation atoms; therefore it should preceed

the step to eliminate preparation atoms. In the case study this transformation step

provides the following transformed properties (replacing IP1, IP2, IP3, and IP5; see

also Fig. 7):

IP2* Preparing for a body state

SSðA; c; V1=υcAÞ & SS A; g bðOÞð Þ; V2=υg bðOÞð ÞA
� �

& PSðA; bðOÞ;V3=ω0OAÞ & PS A; bðOÞ; Vð Þ
² PS A; bðOÞ;Vþ λbðOÞAgðω1OAV1;ω2OAV2;ω3OAV3; VÞΔt� �

IP3* Preparing for an option choice

SSðA; c; V1=υcAÞ & SS A; g cðOÞÞ; V2=υg c Oð Þð ÞA
� �� �

& PSðA; bðOÞ; V3Þ & PS A; cðOÞ; Vð Þ² PSðA; cðOÞ;
Vþ λcðOÞAhðω4OAV1;ω5OAV2;ω6OAV3; VÞΔtÞ

2. Elimination of preparation atoms

Preparation atoms in principle occur both in antecedents and consequents. This

makes it impossible to apply the principle exploited in [38]. However, it is

exploited that preparation states often have a direct relationship to effector

states:

• Based on a property PSðA; S; VÞ² ESðA; S; ζVÞ (such as in IP4), replace

each atom PS(A, S, V) in an antecedent or consequent by ESðA; S; ζVÞ.

ABP1 ABP2

IP4IP2IP1IP5 IP3

IP4IP2* IP3*

π*

BP1 BP2Fig. 7 Logical relations from

network specification via

internal agent model and

abstracted behavioural model

to behavioural agent model:

IAMj� ABAM ¼ πðBAMÞ
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In the case study this transformation step provides the following transformed

properties (replacing IP2*, IP3*, and IP4; see also Fig. 7):

IP2* Preparing for a body state

SSðA; c; V1=υcAÞ & SS A; g bðOÞð Þ; V2=υg b Oð Þð ÞA
� �

& ESðA; bðOÞ; ζb Oð ÞAV3=ω0OAÞ & ESðA; bðOÞ; ζb Oð ÞAVÞ
²ES A; bðOÞ; ζbðOÞAVþ ζbðOÞAλbðOÞAgðω1OAV1;ω2OAV2;ω3OAV3; VÞΔt

� 	

IP3* Preparing for an option choice

SSðA; c; V1=υcAÞ & SSðA; g cðOÞð Þ; V2=υg c Oð Þð ÞAÞÞ
& ESðA;bðOÞ;ζbðOÞAV3Þ & ESðA; cðOÞ;ζc Oð ÞAVÞ²ESðA; cðOÞ;
ζcðOÞAVþ ζcðOÞAλc Oð ÞAhðω4OAV1;ω5OAV2;ω6OAV3;VÞΔtÞ

By renaming V1=υcAto V1; V2=υgðbðOÞA to V2;ζbðOÞA V3=ω0OA to V3;ζbðOÞAV to

V ðin IP2�Þ;resp:V2=υgðcðOÞÞAto V2;ζbðOÞAV3to V3; andζcðOÞAV to V ðin IP3�Þ , the

following is obtained:

IP2** Preparing for a body state

SSðA; c; V1Þ & SS A; g bðOÞð Þ; V2ð Þ & ES A; bðOÞ; V3ð Þ& ES A; bðOÞ; Vð Þ
²ESðA; bðOÞ;Vþ ζbðOÞAλbðOÞAgðω1OAυcAV1;ω2OAυg bðOÞð ÞAV2;

ω3OAω0OAV3=ζbðOÞA; V=ζbðOÞAÞΔtÞ

IP3** Preparing for an option choice

SSðA; c; V1Þ & SS A; g cðOÞð Þ; V2ð Þ & ES A; bðOÞ; V3ð Þ & ES A; cðOÞ; Vð Þ
² ESðA; cðOÞ; Vþ ζcðOÞAλcðOÞAhðω4OAυcAV1;ω5OAυg cðOÞð ÞAV2;

ω6OAV3=ζbðOÞA; V=ζcðOÞAÞΔtÞ

Based on these properties derived from the internal model IAM the specification

of the abstracted behavioural model ABAM can be defined; see also Fig. 7, lower

part.
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5.1 Hybrid Specification of the Abstracted Behavioural Agent
Model ABAM

Note that in IP2** V2 and V have the same value, so a slight further simplification

can be made by replacing V3 by V. After renaming of the variables according to

ABP1

V1 ! W0

V2 ! W1

V3 ! W

V ! W

ABP2

V1 ! W0

V2 ! W1

V3 ! W2

V ! W

the following abstracted behavioural model ABAM for agent A is obtained:

ABP1 Generating a body state

SSðA; c; W0Þ & SS A; g bðOÞð Þ; W1ð Þ & ES A; bðOÞ; Wð Þ
² ESðA; bðOÞ; Wþ ζb Oð ÞAλb Oð ÞAgðω1OAυcAW0;ω2OAυgðbðOÞÞAW1;

ω3OAω0OAW=ζbðOÞA; W=ζbðOÞAÞΔtÞ

ABP2 Generating an option choice intention

SSðA; c; W0Þ & SS A; g cðOÞð Þ; W1ð Þ & ES A; bðOÞ; W2ð Þ & ES A; cðOÞ; Wð Þ
² ESðA; cðOÞ; Wþ ζcðOÞAλcðOÞAhðω4OAυcAW0;ω5OAυg cðOÞð ÞAW1;

ω6OAW2=ζbðOÞA; W=ζcðOÞAÞΔtÞ

ITP Sensing aggregated group members’ bodily responses and intentions

^B 6¼A ESðB; S; VBÞ² SSðA; gðSÞ;ΣB 6¼AαSBAVB=ΣB 6¼AαSBAζSBÞ

where S has instances b(O), c(O) for options O.

Note that as all steps made are logical derivations, it holds IAM |─ ABAM. In

particular the following logical implications are valid (shown hierarchically in

Fig. 7):
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IP1 & IP5 & IP2 ) IP2� IP4 & IP2� ) ABP1

IP1 & IP3 ) IP3� IP4 & IP3� ) ABP2

The transformation as described is based on the following of assumptions:

• Sensory representation states are affected (only) by sensor states and/or prepa-

ration states

• Preparation atoms have a direct relationship with effector atoms; there are no

other ways to generate effector states than via preparation states

• The time delays for the interaction from the effector state of one agent to the

sensor state of the same or another agent are small so that they can be neglected

compared to the internal time delays

• The internal time delays from sensor state to sensory representation state and

from preparation state to effector state within an agent are small so that they can

be neglected compared to the internal time delays from sensory representation to

preparation states

Now the model BAM is related to the behavioural agent model ABAM. First the

notion of interpretation mapping induced by an ontology mapping is briefly

introduced (e.g., [21], pp. 201–263; [40]). By a basic ontology mapping π atomic

state properties (e.g., a2 and b2) in one ontology can be related to state properties

(e.g., a1 and b1) in another ðe:g:;πða2Þ ¼ a1 and πðb2Þ ¼ b1Þ: Using

compositionality a basic ontology mapping used above can be extended to an

interpretation mapping for temporal expressions. As an example, when πða2Þ ¼ a1;
πðb2Þ ¼ b1, then this induces a mapping π* from dynamic propertya2²b2 to a1²b1
as follows: π*ða2²b2Þ ¼ π*ða2Þ²π*ðb2Þ ¼ πða2Þ²πðb2Þ ¼ a1²b1. In a similar

manner by compositionality a mapping for more complex temporal predicate logical

relationships A and B can be defined, using

π*ðA&BÞ ¼ π*ðAÞ&π*ðBÞ π*ðA _ BÞ ¼ π*ðAÞ _ π*ðBÞ
π*ðA ) BÞ ¼ π*ðAÞ ) π*ðBÞ π*ð:AÞ ¼ :π*ðAÞ
π*ð8T AÞ ¼ 8Tπ*ðAÞ π*ð9T AÞ ¼ 9T π*ðAÞ

o obtain a mapping the given behavioural model BAM onto the abstracted

ABAM, first, consider the basic ontology mapping π defined by:

πðhas valueðeðS;AÞ; VÞÞ ¼ ES A; S; Vð Þ ðinstances for S are

bðOÞ; cðOÞ for options OÞ
πðhas valueðsðS;AÞ; VÞÞ ¼ SS A; S; Vð Þ ðinstances for S are

gðbððOÞÞ; gðcððOÞÞ for options OÞ

Next by compositionality the interpretation mapping π* is defined for the

specification of the behavioural model BAM as follows:
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Mapping BP1 Generating a body state

π*ðBP1Þ ¼ π*ðhas valueðsðgðbðOÞÞ;AÞ; V1Þ & has valueðeðbðOÞ;AÞ; VÞ
²has valueðeðbðOÞ;AÞ; Vþ εbðOÞAγbðOÞAcðV1;V=εbðOÞAÞΔtÞÞ

¼ πðhas valueðsðgðbðOÞÞ;AÞ; V1ÞÞ & πðhas valueðeðbðOÞ;AÞ; VÞÞ
²πðhas valueðeðbðOÞ;AÞ; Vþ εbðOÞAγbðOÞAcðV1;V=εbðOÞAÞΔtÞÞ

¼ SSðA; gðbðOÞÞ; V1Þ & ESðA; bðOÞ;VÞ
²ESðA; bðOÞ;Vþ εbðOÞAγbðOÞAcðV1;V=εbðOÞAÞΔtÞ

Mapping BP2 Generating an option choice intention

π*ðBP2Þ¼ π*ðhas valueðsðgðcðOÞÞ;AÞ; V1Þ & has valueðeðbðOÞ;AÞ; V2Þ
& has valueðeðcðOÞ;AÞ; VÞ² has valueðeðcðOÞ;AÞ; V
þ εcðOÞAωOAγcðOÞA dððωcðOÞA=ωOAÞV1

þðωbðOÞA=ωOAÞV2=εbðOÞA;V=εcðOÞAÞΔtÞÞ
¼ πðhas valueðsðgðcðOÞÞ;AÞ; V1ÞÞ & πðhas valueðeðbðOÞ;AÞ; V2ÞÞ

& πðhas valueðeðcðOÞ;AÞ; VÞÞ²πðhas valueðeðcðOÞ;AÞ; V
þ εcðOÞAωOAγcðOÞA dððωcðOÞA=ωOAÞV1þðωbðOÞA=ωOAÞ
V2=εbðOÞA;V=εcðOÞAÞΔtÞÞ

¼ SSðA;gðcðOÞÞ; V1Þ & ESðA;bðOÞ;V2Þ & ESðA;cðOÞ;VÞ
²ESðA;cðOÞ;Vþ εcðOÞAωOAγcðOÞA dððωcðOÞA=ωOAÞV1

þðωbðOÞA=ωOAÞV2=εbðOÞA;V=εcðOÞAÞΔtÞ

Mapping BTP Sensing aggregated group members’ bodily responses and

intentions

π*ðBTPÞ ¼ π*ð^B 6¼A has valueðeðS;BÞ; VBÞ
²has valueðsðgðSÞ;AÞ;ΣB 6¼A αSBAVB=ΣB 6¼A αSBAεSBÞÞ

¼ ^B 6¼A πðhas valueðeðS;BÞ; VBÞÞ²πðhas valueðsðgðSÞ;AÞ;
ΣB 6¼A αSBAVB=ΣB 6¼A αSBAεSBÞÞ

¼ ^B 6¼A ESðB; S; VBÞÞ²SSðA; gðSÞ;ΣB 6¼A αSBAVB=ΣB 6¼A αSBAεSBÞ

So to explore under which conditions the mapped behavioural model BAM is

the abstracted model ABAM, it can be found out when the following identities

(after unifying the variables Vi, V and Wi, W for values) hold.
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π*ðBP1Þ ¼ ABP1 π*ðBP2Þ ¼ ABP2 π*ðBTPÞ ¼ ITP

However, the modelling scope of ABAM is wider than the one of BAM. In

particular, in ABAM an as-if body loop is incorporated that has been left out of

consideration for BAM. Moreover, in the behavioural model BAM the options O

are taken from a fixed set, given at forhand and automatically considered, whereas

in ABAM they are generated on the basis of the context c. Therefore, the modelling

scope of ABAM is first tuned to the one of BAM, to get a comparable modelling

scope for both models IAM and ABAM. The latter condition is achieved by taking

the activation level W0 of the sensor state for the context c and the strengths of the

connections between the sensor state for context c and preparations relating to

option O can be set at 1 (so υcA ¼ ω1OA ¼ ω4OA ¼ 1); thus the first argument of g

and h becomes 1. The former condition is achieved by leaving out of ABAM the

dependency on the sensed body state, i.e., by making the third argument of g zero

(so ω0OA ¼ 0).

Given these extra assumptions and the mapped specifications found above, when

the antecedents where unified according to Vi $ Wi , V $ W the identities are

equivalent to the following identities in V, Vi

εb Oð ÞA γb Oð ÞA cðV1;V=εb Oð ÞAÞ ¼ ζb Oð ÞAλb Oð ÞA gð1;ω2OAυg b Oð Þð ÞA V1; 0; V=ζb Oð ÞAÞ

εc Oð ÞA ωOA γc Oð ÞA dððωc Oð ÞA=ωOAÞV1 þ ðωb Oð ÞA=ωOAÞV2=εb Oð ÞA;V=εc Oð ÞAÞ
¼ ζc Oð ÞA λc Oð ÞA hð1;ω5OAυg c Oð Þð ÞAV1;ω6OAυb Oð ÞAV2=ζb Oð ÞA; V=ζc Oð ÞAÞ

ΣB 6¼A αSBAVB=ΣB 6¼A αSBAεSB¼ ΣB 6¼A αSBAVB=ΣB 6¼A αSBAζSB

The last identity is equivalent to εSB¼ ζSB for all S and B withαSBA > 0 for some

A. Moreover, it can be assumed that εSB ¼ ζSB for all S and B. There may be

multiple ways in which this can be satisfied for all values of V1, U2, U. At least one

possibility is the following. Assume for all agents A

λbðOÞA ¼ γbðOÞA υb Oð ÞA ¼ 1

λc Oð ÞA ¼ ωOAγcðOÞA υgðSÞA ¼ 1

for S is b(O) or c(O). Then the identities simplify to

cðV1;UÞ ¼ gð1;ω2OAV1; 0; VÞ

dððωcðOÞA=ωOAÞ V1 þ ðωbðOÞA=ωOAÞ V2; VÞ ¼ hð1;ω5OAV1;ω6OAV2; VÞ
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Furthermore, taking ω2OA ¼ 1;ω5OA ¼ ωcðOÞA=ωOA;ω6OA ¼ ωbðOÞA=ωOA , the

following identities result (replacing ω5OAV1 by V1 and ω6OAV2 by V2)

cðV1;VÞ ¼ gð1; V1; 0; VÞ dðV1 þ V2;VÞ ¼ hð1; V1; V2; VÞ

There are many possibilities to fulfill these identities. For any given functions

cðX;YÞ; dðX;YÞ in the model BAM the functions g, h in the model IAM defined by

gðW; X; Y; ZÞ ¼ cðW� 1þ Xþ Y;ZÞ
hðW; X; Y; ZÞ ¼ dðW� 1þ Xþ Y;ZÞ

fulfill the identities g(1, X, 0, Z) ¼ c(X, Z) and h(1, X, Y, Z) ¼ d(X + Y, Z). It

turns out that for given functions c(X, Y), d(X, Y) in the model BAM functions g, h

in the model IAM exist so that the interpretation mapping π maps the behavioural

model BAM onto the model ABAM, which is a behavioural abstraction of the

internal agent model IAM (see also Fig. 7): π*ðBP1Þ ¼ ABP1, π*ðBP2Þ ¼ ABP2,

π*ðBTPÞ ¼ ITP. As an example direction, when for c(X, Y) a threshold function th

is used, for example, defined as c(X, Y) ¼ th(σ, τ, X + Y) � Y with thðσ; t; VÞ
¼ 1= 1þ e�σðV�τÞ� �

, then for τ0 ¼ τ +1 the function g(W, X, Y, Z) ¼ th(σ, τ0,
W + X + Y + Z) � Z fulfils g(1, X, 0, Z) ¼ c(X, Z). Another example of a

function g(V, W, X, Y) that fulfills the identity when c(X, Z) ¼ 1 � (1 � X)

(1 � Z) � Z is g(W, X, Y, Z) ¼ W [1 � (1 � W)(1 � X)(1 � Z)] � Z. As the

properties specifying ABAM were derived from the properties specifying IAM, it

holds IAM |─ ABAM, and as a compositional interpretation mapping π preserves

derivation relations, the following relationships holds for any temporal pattern

expressed as a hybrid logical/numerical property A in the ontology of BAM:

BAM j� A ) π ðBAMÞ j� πðAÞ ) ABAM j� πðAÞ ) IAM j� πðAÞ

Such a property A may specify certain (common) patterns in behaviour; the

above relationships show that the internal agent model IAM shares the common

behavioural patterns of the behavioural model BAM. An example of such a

property A expresses a pattern that under certain conditions after some point in

time there is one option O for which both b(O) and c(O) have the highest value for

each of the agents (joint decision).

The precision of the abstracted model ABAM is evaluated by calculating the

root mean squared error:

err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðfi � yiÞ2
N

s
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where N is the number of time points, fi is the value of an output of an abstracted

model at time point ti, and yi is the value of the corresponding output of the model

IAM.

The root mean squared errors for the model outputs ES(b(O)) and ES(c(O)) are

0.017 and 0.026 correspondingly.

6 Model Analysis: A Real World Case Study

The computational model introduced in Sect. 3 has been tested by applying it to a

real world case study. A description of this case study is provided in Sect. 6.1. Next,

Sect. 6.2 describes how the model was extended and instantiated for the case study.

Section 6.3 explains how the parameters of the model were tuned to reproduce the

real world scenario, and Sect. 6.4 presents the results. More details of this case

study can be found in.

6.1 Case Study: The May 4 Incident

The case study addressed is the May 4 incident in Amsterdam (The Netherlands).

The incident took place in the evening of May 4th 2010, when approximately

20.000 people gathered on Dam Square in Amsterdam for the National Remem-

brance of the dead. What follows is a short description of the events.

At 20:00 h everyone in the Netherlands, including the crowd on Dam Square,

was silent for 2 min to remember the dead. Fences and officials compartmented the

20,000 people on Dam Square. At 20:01 a man in the crowd on Dam Square

disturbed the silence by screaming loudly. People standing directly near him

could see that this man looked a bit ‘crazy’ or ‘lost’, and they did not move.

Those not within a few meters of the screaming source, started to panic and ran

away from the man that screamed. The panic spread through the people that were

running away who infected each other with their emotions and intentions to flee.

This panic was fuelled by a loud ‘BANG’ that was heard about 3 s after the man

started screaming. Queen Beatrix and other royal members present were escorted to

a safe location nearby. In total, 64 persons got injured: they got broken bones and

scrapes by being pushed, or got run over by the crowd. The police exported the

screaming man and got control over the situation within 2 min. After 2½ min, the

master of ceremony announced to the crowd that a person had become ill and had

received care. He asked everybody to take his or her initial place again, and to

continue the ceremony. After this, the ceremony continued.1

1A short movie with images from the live broadcast on Dutch National Television, can be found

at: http://www.youtube.com/watch?v¼0cEQp8OQj2Y. This shows how, within two minutes, the

crowd starts to panic and move.
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The live broadcast of the National Remembrance on Dutch National Television

has been acquired in HD-quality.2 In this video, one can see the crowd on Dam

Square flee from the perspective shown in Fig. 8. The video includes the cuts and

editing that were done during the live broadcast, because the un-edited video

material of all cameras that were filming that day was not saved.

From the total broadcast, a shorter 3-min movie was made, starting the moment

when the crowd was silent and the person started to scream loudly. In this 3-min

movie there are two time slots that were further processed (11–17 s and 20–27 s),

because (i) they showed the clear camera angle like the one that can be seen in

Fig. 8, and (ii) the direction and speed of the movements of people could be clearly

analysed. They were analysed as follows. The movie was cut into still images, to

detect the location of people by hand. Ten still images per second were chosen in

order to be able to detect the movements of running people frame by frame. By

keeping track of the coordinates of mouse-clicks on the locations of people in the

crowd while they were moving, their trace of movement could be detected.

A total of 130 frames were analysed by hand. Not all people could be analysed,

both because of the quantity, and the impossibility to trace every ‘dot’ (person) over

multiple still images. Persons in different positions of the crowd with simultaneous

movements to the people around them were chosen, such that these target subjects

were able to represent multiple people around them. In total 35 persons were traced.

The next step was to correct for the angle the camera makes with the floor by

recalculating the coordinates into coordinates that would fit into a bird’s-eye view

on the Dam Square, perpendicular to the floor. People’s distance in meters from

Fig. 8 Still image of the people on Dam Square starting to flee. The circle on the right bottom
indicates the location of the yelling person

2 Permission granted for educational and research purposes by The Netherlands Institute for Sound

and Vision.
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corners of the buildings were translated to the position in pixels on a 600 � 800

map of the area, using offsets and scaling. Specifically, the following formulae are

used to translate movements in pixels to movements in meters:

xmeter ¼ xpixel= 22

ymeter ¼ ypixel= 8

This was then transformed to the map using the following formulae:

xmap ¼ ðxmeter� 5:15Þ þ 136

ymap ¼ ðymeter� 5:15Þ � 167

The bird’s eye view perspective used in the computational model can be seen in

Fig. 9. The resulting figure was represented in the simulation in Matlab. Locations

of certain obstacles, like buildings and fences, were also transformed into the

bird’s-eye view.

6.2 Instantiating the Model for the Case Study

To tailor the ASCRIBE model towards the case study, a number of steps were

taken.

First of all, the relevant states for the agents have been distinguished. In this case,

the emotion, belief and intention states relate to the options for each agent. A total

Fig. 9 600 x 800 pixel image

of Dam Square
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of nine options are available including ‘remain standing’, and moving in any wind

direction (N, NE, E, SE, S, SW, W, NW). Besides these, there is an additional belief

about the current situation. This expresses how positive a person judges the current

situation (0 a negative judgment, and 1 a positive judgment). Finally, the emotions

for each option and the emotion fear are represented.
In the case study, the channel strengths between the various agents are dependent

on the physical location of the agents. If other agents are close, the channel strength

is high, whereas it is low or 0 in case agents are far apart. Therefore, a threshold

function was used expressing within which reach agents still influence each other in

a significant manner:

αSBAðtÞ ¼ 1� 1=1þ e�σðdistanceBA ðtÞ�τdistanceÞ
� 	

Here σ and τdistance are global parameters and distanceBA is the Euclidean

distance between the positions xAðtÞ; yAðtÞð Þ and xBðtÞ; yBðtÞð Þ of A and B at t.
The movement of the agents directly depends upon their intentions. Recall that

the strength of the intention is determined by the intentions of others (see Sect. 3),

and the agent’s own personality characteristics and mental states, such as beliefs

and emotions (see Sect. 4). The highest feasible intention is selected (in cases where

certain movements are obstructed, the next highest intention is selected). For each

of the selected options O, the movement xmovement(O) on the x-axis and ymovement(O)
on the y-axis is specified; e.g., the option for going south means �1 step on the

y-axis and none on the x-axis: xmovement(O) ¼ 0 and ymovement(O) ¼ �1. The actual

point to which the agent will move is then calculated by taking the previous point

and adding the movement of the agent during a certain period to that. The move-

ment of the agent depends upon the strength of the intention for the selected option

and the maximum speed with which the agent can move. If the intention is maximal

(i.e., 1) the agent will move with the maximum speed. In case the intention is

minimal (i.e., 0) the agent will not move. The dependency between mental states

and speed of movement has been described, e.g., in [19]. The model that establishes

this relationship is expressed as follows:

xAðtþ ΔtÞ ¼ xAðtÞ þ max speedA � qintentionðOÞAðtÞ � xmovementðOÞ � Δt

yAðtþ ΔtÞ ¼ yAðtÞ þ max speedA � qintentionðOÞAðtÞ � ymovementðOÞ � Δt

Here the maximum speeds max_speedA are agent-specific parameters.

6.3 Parameter Tuning

As explained above, the ASCRIBE model contains a large number of parameters;

these parameters address various aspects of the agents involved, including their
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personality characteristics (e.g., expressiveness, openness, and tendency to absorb

or amplify mental states), physical properties (e.g., minimum and maximum speed,

and limit of their sight), and characteristics of their mutual interactions (e.g.,

channel strength between sender and receiver). The accuracy of the model (i.e.,

its ability to reproduce the real world data as closely as possible) heavily depends on

the settings of these parameters. Therefore, parameter estimation techniques [39]

have been applied to learn the optimal values for the parameters involved.

In order to determine what is ‘optimal’, first an error measure needs to be

defined. The main goal is to reproduce the movements of the people involved in

the scenario; thus it was decided to take the average (Euclidean) distance (over all

agents and time points) between the actual and simulated location:

ε ¼
X

agents a

X
timepoints t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða; t; simÞ � xða; t; dataÞð Þ2 þ yða; t; simÞ � yða; t; dataÞð Þ2

q
#agents � #timepoints

Here, x(a, t, sim) is the x-coordinate of agent a at time point t in the simulation,

and x(a, t, data) the same in the real data (similarly the y-coordinates). Both are in

meters.

Next, the relevant parameters were tuned to reduce this error. To this end, the

approach described in detail in Sects. 3 and 4 of [5] was used. This approach makes

use of the notion of sensitivity of variables for certain parameter changes. Roughly

spoken, for a given set of parameter settings, the idea is to make small changes in

one of the parameters involved, and to observe how such a change influences the

change of the variable of interest (in this case the error). Here, ‘observing’ means

running the simulation twice, i.e., once with the original parameter settings, and

once with the same settings were one parameter has slightly changed. Formally, the

sensitivity SX,P of changes ΔX in a variable X to changes ΔP in a parameter P is

defined as follows (note that this sensitivity is in fact the partial derivative ∂X/∂P):
SX,P ¼ ΔX/ΔP. Based on this notion of sensitivity, the adaptation process as a

whole, is an iterative process, which roughly consists of: (1) calculating

sensitivities for all parameters under consideration, and (2) using these sensitivities

to calculate new values for all parameters. This second step is done by changing

each parameter with a certain amount ΔP, which is determined as follows: ΔP ¼
�λ * ΔX/SX,P. Here, ΔX is the deviation found between actual and simulated value

of variable X, and λ is a speed factor. Note that, since in the current case X
represents the error, the ‘actual value’ of X is of course 0, so ΔX simply equals ε
in the simulation.
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6.4 Results

This section presents the results of specialising and tuning the ASCRIBE model

with 35 agents, to the real world data of the May 4 incident. The results are

presented for the first part of the data (i.e., seconds 11–17 of the 3-min movie).

To assess the performance of the ASCRIBE model, it was compared to three other

models. First, one baseline model was developed in which the agents do not move at

all. Second, the model was compared to an implementation of the model by Helbing

and colleagues [20], which is currently one of the most influential models in the

area of crowd simulation. Third, a variant of ASCRIBE was developed in which all

agents also make individual decisions, but do not influence each other (i.e., no

contagion takes place). This was done to assess whether the idea and implementa-

tion of contagion of mental states is useful at all. This resulted in three different

models (in addition to our own ASCRIBE model with contagion of mental states),

to which we refer below as baseline, Helbing, and without contagion, respectively.
To enable a fair comparison, parameter tuning was applied for all models (except

for the baseline model, since it did not contain any parameters to tune) in order to

find optimal settings; see for details.

Figure 10 shows for each of the four variants how the average error (over all

agents) increases during the simulation. Note that the error is expressed in meters.

At the first time point, the error is 0 (all agents start at their actual position), but over
time the error increases very quickly in the baseline case, so that the error at the last

time step of the simulation becomes quite large (2.35 m). For this model, the

average error per time step is 0.87 m. The average error found for the tuned

model without contagion is much lower (0.66, i.e., an improvement of 24 %), and

is even lower for the tuned model with contagion (0.54, i.e., an improvement of

38 %). This finding provides evidence for the conclusion that incorporating the

contagion makes the model more accurate, even when it is based on default settings

for the parameters. Note that in the current scenario, the agents’ movements involve

relatively small steps, compared to the size of the grid; the total distance that the

agents travel during the 7 s of analysis is only 2.35 m. Therefore, the relative errors

found (i.e., the percentages of improvement mentioned above) are more insightful

that the absolute errors. In case the total distance travelled would have been larger,

the absolute difference in performance between the four models would be expected

to have been bigger as well.

As for the Helbing model, the average error of this model per time step was

found to be 0.59 (i.e., an improvement of 32 % w.r.t. the baseline model). As can be

observed from Fig. 10, this model performs better than the model without conta-

gion, but worse than the model with contagion (at least, in this particular scenario).

One of the main reasons for this is that the model with contagion seems to be better

able to deal with the fact that some agents only start moving half way the scenario.

This phenomenon, which is also well visible in the video of the event, is caused by

the fact that the crowd is separated by fences (see also Fig. 8), and especially the

people that are located on the left hand side of the area wait a couple of seconds
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before they start moving, whereas other people start moving right after the scream.

In the model with contagion, this phenomenon can be reproduced quite accurately

by means of the contagion mechanism: the agents at the left hand side of the area

initially have a low level of fear (since they are not directly affected by the

screaming man), but only when they observe other agents panicking and trying to

escape, they are influenced by them and attempt to get away as well. Since the

Helbing model does not include an explicit mechanism for contagion of mental

states, it has more difficulties in reproducing this particular effect (because in this

model, the speed by which the agents move is more stable – although not

completely constant – over time). Therefore, for the Helbing model, the parameter

tuning resulted in an optimal situation where some agents on the left hand side

hardly move at all. This is reflected by the fact that the error for this model

(compared to the model with contagion) only increases in the last eight time steps.

When comparing the Helbing model with the model without emotion, one can

observe that, although the errors of both models at time point 45 are comparable,

the Helbing model performs slightly better when taking the overall average error

over all time points. This can in part be explained by the fact that the Helbing model

has more freedom when it comes to selecting the direction in which the agents

move. In our model (both with and without contagion), selection of actions has been

implemented in such a way that the agents can only pick one out of eight wind

Fig. 10 Screenshot of the

simulation. Units displayed

on the axes are in pixels,

where 5.15 pixels equals 1 m
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directions (see Sect. 6.2), whereas the Helbing model uses a continuous scale for

this. We speculate that the performance of our model (both with and without

contagion) may be further improved by changing this discrete mechanism for action

selection into a continuous mechanism.

After the tuning process was finished, the optimal settings found for all

parameters were used as input for the four simulation models, to generate simula-

tion traces which closely resemble the real world scenario. Using visualisation

software (written in Matlab), these simulation traces have been visualised in the

form of a 2D animation.3 A screenshot of the animation of the ASCRIBE model

with contagion is shown in Fig. 10.

Here, the lines represent fences that were used to control the crowd, the large

circle represents the monument on the square (see Fig. 8 for the actual situation),

and the big dots represent corners of other buildings. The plus sign on the right

indicates the location of the screaming man. The small dots represent the actual

locations of the 35 people in the crowd that were tracked, and the stars represent the

locations of the corresponding agents in the simulation. Even at the end of the

simulation (see Fig. 10), the distances between the real and simulated positions are

fairly small for this model.

7 Conclusions and Discussion

In this paper a computational model for collective decision making based on neural

mechanisms revealed by recent developments in Social Neuroscience is proposed;

e.g., [5], [6], [9], [12], [14], [34].

These mechanisms explain how mutual adaptation of individual mental states

can be realised by social interaction. They not only enable intentions to converge to

an emerging common decision, but at the same time enable to achieve shared

underlying individual beliefs and emotions. Therefore a situation can be achieved

in which a common decision is made that for each individual is considered in

agreement with the own beliefs and feelings. More specifically, this model for

collective design making involves on the one hand individual beliefs, emotions and

intentions, and on the other hand interaction with others involving mirroring of such

mental states; e.g., [20], [32], [33]. The model involves seven types of interactions:

three types of mirroring interactions between different persons, and within each

person four types of interactions between the individual mental states.

The ASCRIBE model has been adapted to construct a model for behaviour in a

crowd when a panic spiral occurs. Experiments have been performed in which the

model was compared to three other models, namely (1) a baseline model where the

3 See http://www.few.vu.nl/~tbosse/may4/. This URL contains two animations: one in which only

the result of the model with contagion is shown, and one in which the results of all four models are

shown together.
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agents do not move at all, (2) a model by Helbing and colleagues [20], and (3) a

variant of the model where parameters related to contagion were set in such a way

that there was no contagion at all; in this case the movement of individuals is only

determined by their individual state. In the full ASCRIBE model, mutual

influencing took place because emotions, beliefs and intentions were spreading to

persons nearby. When comparing the simulations of the four models with the most

optimal settings for certain parameters, the variant with contagion had the lowest

average error rate per time step. Thus, it is shown that the contagion of mental states

is an essential element to model the behaviour of crowds in panic situations.

The paper addressed also how internal agent models and behavioural agent

models for collective decision making can be related to each other. The

relationships presented were expressed for specifications of the agent models in a

hybrid logical/numerical format. It was shown how the internal agent model IAM

can be systematically transformed into an abstracted behavioural model ABAM,

where the internal states were abstracted away, and such that IAM |─ ABAM.

Moreover, it was shown that under certain conditions the obtained agent model

ABAM can be related to the behavioural agent model BAM by an interpretation

mapping π, i.e., such that π(BAM) ¼ ABAM. In this way hybrid logical/numerical

relations where obtained between the different agent models according to:

IAM j� ABAM and ABAM ¼ πðBAMÞ

These relationships imply that, for example, collective behaviour patterns shown

in multi-agent systems based on the behavioural agent model BAM are shared (in

the form of patterns corresponding via π) for multi-agent systems based on the

models ABAM and IAM.

Previous works have presented several models for crowd behaviour. As men-

tioned above, an influential paper has been written by Helbing and colleagues [20],

in which a mathematical model for crowd behaviour in a panic situation is

presented, based on physics theories and socio-psychological literature. This

model is based on the principle of particle systems, in which forces and collision

preventions between particles are important. This approach is often used for

simulating crowd behaviour in virtual environments [37], [41]. In [6] the model

of [20] is extended by adding individual characteristics to agents, such as the need

for help and family membership. In both models, there are no individual emotion,

belief and intention states that play a role. In contrast, in [31] an agent has an

‘emotional status’, which determines whether agents walk together (i.e. it

influences group formation). The emotional status of an agent can change when

to agents meet. An even further elaborated role of emotional and psychological

aspects in a crowd behaviour model can be found in [33]. In this model, several

psychological aspects influence the decision making of individual agents, for

example, motivation, stress, coping, personality and culture. In none of the models

presented above, there is contagion of emotional or other mental states between

people. Also, in contrast to the analysis results presented in this paper, no evaluation

with real qualitative data has been performed in these previous studies.
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