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Abstract. This paper introduces a neurologically inspired computational model for the 

dynamics and diffusion of agent states within groups. The model combines an individual 

model based on Damasio’s Somatic Marker Hypothesis with mutual effects of group 

members on each other via mirroring of individual states such as emotions, beliefs and 

intentions. The obtained model shows how this combination of assumed neural mechanisms 

can form an adequate basis for the emergence of common group beliefs and intentions, while, 

in addition there is a positive feeling with these common states amongst the group members. 

A particular issue addressed is how certain types of states may affect other types of states, for 

example, emotions have an effect on beliefs and intentions, and beliefs may effect emotions. 

1   Introduction 

To express the impossibility of a task, sometimes the expression ‘like managing a herd of cats’ is 

used, for example, in relation to managing a group of researchers. This is meant to indicate that no 

single direction or decision will come out of such a group, no matter how hard it is tried. As an 

alternative, sometimes a reference is made to ‘riding a garden-cart with frogs’. It seems that such a 

lack of coherence-directed tendency in a group is considered as something exceptional, a kind of 

surprising, and in a way unfair. However, as each group member is an autonomous agent with his 

or her own neurological structures, patterns and states, carrying for example, their own emotions, 

desires, preferences, and intentions, it would be more reasonable to expect that the surprise 

concerns the opposite side: how is it possible that so often, groups – even those of researchers – 

develop coherent directions and decisions, and, moreover, why do the group members in some 

miraculous manner even seem to feel good with these? 

Models of social diffusion focus on the process of change within groups. Examples of social 

diffusion models found in the area of social sciences are: the diffusion of innovations (see e.g. 

[35]), social movements such as political interests and parties (see e.g. [22]), and crowd behavior, 

as for instance seen in emergency evacuation (see e.g. [28]). Diffusion models have also been 

developed in the domain of multi-agent systems in order to study and simulate the behavior of 

groups of agents. Hereby, models for the spread of information as well as models for the spread of 

emotions in agent groups have been expressed (see e.g. [36] and [4], [5], [16], respectively). 

In this paper, inspired by the notion of mirroring from the neurological literature (e.g., [14], 

[23], [24], [31], [32], [33], [30]), first a generic agent-based model is presented for contagion of 
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individual states S such as emotions, beliefs or intentions. The model is a generalization of work 

on emotion contagion as reported in [4] and [5]. It handles contagion of any individual state S, and 

takes into account personal characteristics for openness and expressivity for state S, for positive or 

negative biases for S, and for the extent of amplification for S. Moreover parameters are used for 

the interaction channels between pairs of agents. The generic model has been used for two more 

complex models each involving multiple types of internal state S, and involving specific forms of 

interaction between different types of states. These more complex models are also presented in the 

paper. 

 One of these two more complex models is a neurologically inspired computational modelling 

approach for the emergence of group decisions. It incorporates the ideas of somatic marking as a 

basis for individual decision making, see [2], [10], [12], [13] and mirroring of both emotions and 

intentions as a basis for mutual influences between group members, see [14], [23], [24], [31], [32], 

[33], [30]. The model shows how for many cases indeed, the combination of these two neural 

mechanisms, via the interaction between emotions and intentions, is sufficient to obtain the 

emergence of common group decisions on the one hand, and, on the other hand, to achieve that the 

group members have a positive feeling about these decisions. 

 The other more complex model presented formalizes and simulates the spread of different 

types of emotions and beliefs in a group. In the literature, results have been reported that indicate 

that the emotional state of a person influences the information processing ability (see e.g. [3], 

[26]). Hence, the emotions that are spread in a group and experienced by the individuals can 

influence how beliefs are spread. So, two interactions are considered: the influence of emotions 

upon spreading of beliefs, and the occurrence of emotions based on the beliefs.  In order to 

exemplify the approach, extensive simulation runs have been performed in a evacuation domain 

with scenarios that include varying characteristics of the agents. The model is based on 

Frederickson’s broaden-and-build theory [17], which states that positive emotions broaden 

people’s mind-sets: the scopes of attention, cognition, action and the array of percepts, thoughts, 

and actions presently in mind are widened. The complementary narrowing hypothesis predicts the 

reverse pattern: negative emotions shrink people’s thought-action repertoires. Support for the 

broaden and narrowing hypotheses can be found in [18].  

 The model presented here captures these dynamics between information and emotion. To 

illustrate, a message containing information about the location and spread of a fire can be expected 

to elicit fear. Feelings of fear will reinforce the focus of a person towards information relevant to 

the threat. Furthermore, numerous research studies have shown that information is able to affect 

emotions. For example, in many psychological experiments fear is elicited by imagery or text to 

study the process of fear itself or the internal or external signs of fear in humans, see [29]. Another 

area in psychological research studies fear appeal (persuasive messages that arouse fear) in which 

it is investigated if fear appeals can motivate behavior change across a variety of behaviors. See 

for example [37]. In [7] it is argued that the media can influence the perception of fear, via the type 

of information they spread. Moreover, studies of nonverbal behavior have showed results that 

emotions can be spread through nonverbal behavior [19]. One can conclude form these many 

viewpoints and disciplines that emotions, such as fear, can be spread through (non)verbal and 

textual communications and imagery.  

 The paper is organised as follows. In Section 2 a brief introduction of the neurological ideas 

underlying the approach is presented: mirroring and somatic marking. Next, in Section 3 the 

generic agent-based model is described in detail. Section 4 presents the more complex model for 

decision making in groups based on an interaction betweeen eomotions and intentions. In Section 

5 a number of simulation results are shown and Section 6 addresses verification of the model 

against formally specified properties describing expected emerging patterns. In Section 7 the more 
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complex model for the interplay between emotion and belief is introduced formally. Section 8 

discusses extensive simulation results for this model. In  Section 9 a mathematical analysis of the 

models is discussed. The paper is concluded with a discussion in Section 10. 

2   Some Underlying Neurological Principles  

 

For social interaction, recent neurological findings on the mirroring function of certain neurons 

have turned out to play an important role (e.g., [14], [23], [24], [31], [32], [33], [34], [30]). Mirror 

neurons are neurons which, in the context of the neural circuits in which they are embedded, show 

both a function to prepare for certain actions or bodily changes and a function to mirror states of 

other persons. They are active not only when a person intends to perform a specific action or body 

change, but also when the person observes somebody else intending or performing this action or 

body change. This includes expressing emotions in body states, such as facial expressions. For 

example, there is strong evidence that (already from an age of just 1 hour) sensing somebody 

else’s face expression leads (within about 300 milliseconds) to preparing for and showing the 

same face expression ([21], p. 129-130). The idea is that these neurons and the neural circuits in 

which they are embedded play an important role in social functioning and in (empathic) 

understanding of others; (e.g., [14], [23], [34], [30]). The discovery of mirror neurons is often 

considered a crucial step for the further development of the discipline of social cognition, 

comparable to the role the discovery of DNA has played for biology, as it provides a biological 

basis for many social phenomena; cf. [23]. Indeed, when states of other persons are mirrored by 

some of the person’s own states that at the same time are connected via neural circuits to states 

that are crucial for the own feelings and actions, then this provides an effective basic mechanism 

for how in a social context persons fundamentally affect each other’s actions and feelings. 

Given the general principles described above, the mirroring function can take place for 

different types of individual states. In the first place, via body and face expressions, mirroring of 

emotional states takes place. This type of mirroring occurs in both more complex models 

presented below in Section 4 and Section 7. A second way in which a mirroring function can 

occur is by mirroring of intentions or action tendencies of individuals for the respective decision 

options. This may work when by verbal and/or nonverbal behaviour, individuals show in how far 

they tend to choose for a certain option. For example, in ([20], p.70) action tendencies are 

described as ‘states of readiness to execute a given kind of action, [which] is defined by its end result aimed 

at or achieved’. This form of mirroring takes place in the model presented in Section 4. A third type 

of state for which mirroring can take place is for beliefs. Here verbal communication also may 

occur, but within a group the nonverbal responses may play an even more important role. This 

type of mirroring takes place in the model presented in Section 7. 

Cognitive states of a person, such as sensory or other representations often induce emotions felt 

within this person, as described by neurologist Damasio, [11], [12]; for example: 

 
 

‘Even when we somewhat misuse the notion of feeling – as in “I feel I am right about this” or “I feel I cannot 

agree with you” – we are referring, at least vaguely, to the feeling that accompanies the idea of believing a certain 

fact or endorsing a certain view. This is because believing and endorsing cause a certain emotion to happen.’ 

([12], p. 93) 

 

Damasio’s Somatic Marker Hypothesis; cf. [2], [10], [12], [13], is a theory on decision making 

which provides a central role to emotions felt. Within a given context, each represented decision 

option induces (via an emotional response) a feeling which is used to mark the option. For 
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example, a strongly negative somatic marker linked to a particular option occurs as a strongly 

negative feeling for that option. Similarly, a positive somatic marker occurs as a positive feeling 

for that option. Damasio describes the use of somatic markers in the following way:  

 
 

‘the somatic marker (..) forces attention on the negative outcome to which a given action may lead, and functions as an 

automated alarm signal which says: beware of danger ahead if you choose the option which leads to this outcome. The 

signal may lead you to reject, immediately, the negative course of action and thus make you choose among other 

alternatives. (…)  When a positive somatic marker is juxtaposed instead, it becomes a beacon of incentive.’ ([10], pp. 

173-174) 
 

 

Usually the Somatic Marker Hypothesis is applied to provide endorsements or valuations for 

options for a person’s actions, thus shaping a decision process. Somatic markers may be innate, 

but may also by adaptive, related to experiences: 

 
 

‘Somatic markers are thus acquired through experience, under the control of an internal preference system and under 

the influence of an external set of circumstances which include not only entities and events with which the organism 

must interact, but also social conventions and ethical rules. ([10], p. 179) 

 

 In the computational model introduced in Section 4 somatic marking plays an important role in 

the spread of intentions in a group. In this model both emotion and intention mirroring effects are 

incorporated. Mirroring of emotions indicates how emotions felt in different individuals about a 

certain considered decision option mutually affect each other, and, assuming a context of somatic 

marking, in this way affect how by individuals decision options are valuated in relation to how 

they feel about them. 

In the model introduced in Section 7 mirroring of emotions and beliefs is addressed. Here 

another type of interaction between mirroring of two different types of states is addressed. In one 

direction, for example, emotions may affect the openness and biases of a person. In the other 

direction the beliefs affect emotions. 

 

3  A Generic Agent-Based Model for Social Diffusion of Individual States  

This section introduces the basic agent-based social diffusion model used as a point of departure 

for this research. This model is a generalization of two existing agent-based emotion contagion 

models: the absorption model and amplification model (cf. [4], [5]). The model formalizes 

different aspects and types of social diffusion of mental states, such as absorption, amplification, 

expressiveness and openness for cognitive and affective (e.g., information and emotion) states, 

which are inspired by theories on contagion mechanisms. For instance, in [1] Barsade describes an 

informal model of emotion contagion in which the valence (positive or negative) of the emotion 

and the energy level with which the emotion is expressed characterize the diffusion. 

The basic building block of the model is the definition of the contagion strength between 

individuals within a group. This contagion strength between agents B and A for any particular state 

S is defined as follows: 

γSBA = εSB ⋅ αSBA ⋅ δSA.   (1) 

Here εSB is the personal characteristic expressiveness of the sender (agent B) for S, δSA the personal 

characteristic openness of the receiver (agent A) for S, and αSBA the interaction characteristic 

channel strength for S from sender B to receiver A.  
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To calculate the level qSA of an agent A for a specific state S the following calculations are 

performed. First, the overall contagion strength γSA from the group towards agent A is calculated: 

γSA = ∑B≠A γSBA   (2) 

This value is used to determine the weighed impact qSA* of all the other agents upon state S of 

agent A:  

qSA* = ∑B≠A γSBA ⋅ qSB / γSA   (3) 

How much this external influence actually changes state S of the agent A is determined by two 

additional personal characteristics of the agent, namely the tendency ηSA to absorb or to amplify 

the level of a state and the bias βSA towards positive or negative impact for the value of the state. 

The model to update the value of qSA(t) over time is then expressed as a combination of the 

absorption and amplification models. The result is a more general model of contagion for any state 

S: 

qSA(t + ∆t) = qSA(t) + γSA ·[ηSA· [βSA· (1 - (1-qSA*(t)) · (1 - qSA(t))) + 

                     (1 - βSA) · qSA*(t) · qSA(t) ] +(1 - ηSA) · qSA*(t) - qSA(t) ] ∆t (4) 

The new value of the state is calculated from the old value, plus the change of the value based 

upon the contagion. This change is defined as the multiplication of the contagion strength times a 

factor for the amplification of information plus a factor for the absorption of information. The 

absorption factor (after 1 - ηSA(t)) ) simply takes the difference between the incoming contagion 

and the current level. The amplification factor (part of the equation multiplied by ηSA(t)) depends 

on the tendency of the agent towards more positive (part of equation multiplied by βSA(t)) or 

negative (part of equation multiplied by (1-βSA(t))) information. Table 1 summarizes the most 

important parameters and states within the model. 

 

Table 1 Parameters and states 

 

 

 

4   Modelling the Dynamics of Intentions and Emotions in Groups 

In this section, based on the neurological principles of somatic marking and mirroring discussed in 

the previous section, the computational model for group decision making is introduced. To design 

such a model a choice has to be made for the grain-size: for example, it has to be decided in which 

level of detail the internal neurological processes of individuals are described. Such a choice 

qSA level for state S for agent A 

εSA extent to which agent A expresses state S 

δSA extent to which agent A is open to state S 

ηSA tendency of agent A to absorb or amplify state S 

βSA positive or negative bias of agent A on state S 

αSBA channel strenght for state S from sender B to receiver A 

γSBA contagion strength for S from sender B to receiver A 
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depends on the aim of the model. In this case the aim was more to be able to simulate emerging 

patterns in groups of individuals, than to obtain a more detailed account of the intermediate 

neurological patterns and states involved. Therefore the choice was made to abstract to a certain 

extent from the latter types of intermediate processes. For example, the process of mirroring is 

described in an abstract manner by a direct causal relation from the emotional state shown by an 

individual to the emotional state shown by another individual, and the process of somatic marking 

is described by a direct causal relation for any individual from the emotional state for a certain 

option to the intention for this option (see Fig. 1). The model can easily be refined into a model 

that also incorporates more detailed intermediate internal processes, for example, based on 

recursive as-if body loops involving preparation and sensory neuron activations and the states of 

feeling the emotion, for example, as shown in [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Abstract causal relations induced by mirroring and somatic marking by person A 

 

The abstract model for mirroring described above applies to both emotion and intention states 

S or an option O, but does not describe any interplay between them yet. Taking the Somatic 

Marker Hypothesis on decision making as a point of departure, not only intentions of others, but 

also one’s own emotions affect one’s own intentions. To incorporate such an interaction, the basic 

model is extended as follows: to update qSA(t)  for an intention state S relating to an option O, both 

the intention states of others for O and the qS'A(t)  values for the emotion state S' for O are taken 

into account. These intention and emotion states S and S' for option O are denoted by OI and OE, 

respectively: 
 

Level of emotion for option O of person A:  qOEA(t) 

Level of intention indication for O of person A:  qOIA(t) 
 

The combination of the own (positive) emotion level and the rest of the group’s aggregated 

intention is made by a weighted average of the two: 
 

qOIA**(t)   = (ωOIA/ωOA) qOIA*(t)   + (ωOEA/ωOA) qOEA(t)  
γOIA* = ω γOIA 

(1) 
 

where ωOIA and ωOEA  are the weights for the contributions of the group intention impact (by 

mirroring) and the own emotion impact (by somatic marking) on the intention of A for O, 

A’s emotion state 

for option O 

A’s intention state  

for option O 

emotion states of  

other group members 

for option O 

 

intention states of  
other group members 

for option O 

 

A’s somatic 

marking 

for option O 

A’s mirroring 

of emotion 

for option O 

A’s mirroring 

of intention 

for option O 
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respectively, and ωOA = ωOIA + ωOEA. Then the model for the intention and emotion contagion 

based on mirroring and somatic marking becomes: 
 

qOEA(t + ∆t) = qOEA(t) + γOEA[ηOEA(βOEA (1 - (1-qOEA*(t))(1-qOEA(t))) +  

       (1-βOEA) qOEA*(t)  qOEA(t)) + (1 - ηOEA) qOEA*(t)  - qOEA(t)  ] ⋅ ∆t  

(2) 

qOIA(t + ∆t) = qOIA(t) + γOIA* [ηOIA (βOIA (1 - (1-qOIA**(t))(1-qOIA(t))) +  

      (1-βOIA) qOIA**(t)  qOIA(t)) + (1 - ηOIA) qOIA**(t)  - qOIA (t)] ⋅ ∆t  
(3) 

5   Simulation Results: Interaction Between Intentions and Emotions 

The model has been studied in several scenarios in order to examine whether the proposed 

approach indeed exhibits the patterns that can be expected from literature. The investigated 

domain consists of a group of four agents who have to make a choice between four different 

options: A, B, C or D. The model has been implemented in Matlab by constructing three different 

scenarios which are characterized by different relationships (i.e., channel strength) between the 

agents. The scenarios used, involve two more specific types of agents: leaders and followers. Some 

agents have strong leadership abilities while others play a more timid role within the group. The 

general characteristics of leaders and followers as they were used in the experiments, which can be 

manifested differently within all agents, can be found in Table 2. The complete settings for the 

three scenarios can be found in Appendix A. 

 
Table 2. Parameters and state variables for leaders and followers 

 

 Leader A Follower B 

emotion level qOEA high for particular O -  

intention level qOIA high for particular O -  

expressivity εSA  high εSB  low 

channel strength αSAB high αSAB high 

αSBA low αSBA low 

 

 

Fig. 2. Scenarios for the presented simulation experiments 

The different scenarios are depicted in Fig. 2. Scenario 1 consists of a group of agents in which 

agent1 has strong leadership abilities and high channel strengths with all other agents. His initial 

levels of emotion and intention for option A, are very high. Scenario 2 depicts a situation where 

there are two agents with leadership abilities in the group, agent1 and agent4. Agent1 has strong 

channel strength to agent2, while agent4 has a strong connection to agent3. Agent1 has an initial 

state of high (positive) emotion and intention for option A, while agent4 has strong emotion and 

scenario 1 scenario 2 scenario 3 
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intention states for option D. Agent2 and agent3 have show no strong intentions and emotions for 

any of the options in their initial emotion and intention states. In Scenario 3 there are no evident 

leaders. Instead, all agents have moderate channel strengths with each other. A majority of the 

agents (agent3 and agent4) prefers option C, i.e., initially they have high intention and emotions 

states for option C. For both scenarios two variants have been created, one with similar agent 

characteristics within the group (besides the difference between leader and follower 

characteristics), and the second with a greater variety of agent personalities. In this section, only 

the main results using the greater variety in agent characteristics are shown for the sake of brevity. 

For the formal verification (Section 6) both have been used. 

 

 

The results of scenario 1 clearly show how one influential leader can influence the emotions 

and intention in a group. This is shown in the left graph of Fig. 3, here the z-axis shows the value 

for the respective states, and the x-and y-axes represent time and the various agents. The emotion 

and intention of the leader (in this case agent1) spread through the network of agents, while the 

emotions and intentions of other agents hardly spread. Consequently, the emotions and intentions 

for option A, which is the preferred option of the leader, develop to be high in all agents. As can be 

seen in the figure, there are small differences between the developments of emotions and 

intentions of the agents. This is because they have different personality characteristics, which are 

reflected in the settings for the scenario (see Appendix A). Depending on their openness, agents 

are more or less influenced by the states of others. Those agents with low openness (such as 

agent4) are hardly influenced by intentions and emotions of others.  

In scenario 2 (as shown in the right graph of Fig. 3), the leader has somewhat positive emotions 

about option C as well, which explains the small but increasing spread of emotions (and after a 

while also intentions) concerning option C through the social network. Even though agent3 and 

agent2 both have a moderate intention for option B, their only strong channel strength is with each 

other, causing only some contagion between the two of them. Their intention does not spread 

because of a low expressive nature and low amplification rate of both agents. The patterns found in 

Fig. 3. Simulation results for scenario 1 (left) and scenario 2 (right) 
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the simulation of scenario 2 are similar to the ones of scenario 1, with the addition that both 

leaders highly dominate the spread of the emotions and intentions. The figure shows that the 

emotions and intentions of agent2 turn out to depend highly on the emotions and intentions of 

agent1, whereas the emotions and intentions of agent3 highly depend on those of agent4. As can 

be seen in the figure, any preferences for option D and C by agent2 and agent3 quickly grow 

silent. 

Scenario 3 shows how a group converges to the same high emotions and intentions for an 

option when there is no authority. In general, the graphs show that when there is no clear 

leadership, the majority determines the option with highest emotion and intentions in all agents. 

Option C, initially preferred by agent4 and agent3, eventually is the preferred option for all. 

However, the emotions and intentions for option A also spread and increase, though to a lesser 

extent. This is due to the fact that agent1 has strong feelings and intentions for option A and a high 

amplification level for these states. Furthermore, he has a significant channel strength with agent3, 

explaining why agent3 has the most increasing emotions and intentions for option A. However, the 

majority has the most important vote in this scenario.  

Furthermore, some general statements can be made about the behaviour of the model. In case a 

leader has high emotions but low intentions for a particular option, both the intentions and 

emotions of all followers will increase for that option. On the other hand, if a leader has high 

intentions for a particular option, but not high emotions for that option, this intention will not 

spread to other agents.  

Fig. 4. Simulation results for scenario 3 
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6   Verification of Properties Specifying Emerging Patterns  

This section addresses the analysis of the group decision making model by specification and 

verification of properties expressing dynamic patterns that emerge. The purpose of this type of 

verification is to check whether the model behaves as it should, by automatically verifying such 

properties against the simulation traces for the various scenarios. In this way the modeller can 

easily detect inappropriate behaviours and locate sources of errors in the model. A typical example 

of a property that may be checked, is whether no unexpected situations occur, such as a variable 

running out of its bounds (e.g., qA(t) > 1, for some time point  t and agent A), or whether 

eventually an equilibrium value is reached, but also more detailed expected properties of the model 

such as compliance to the theories found in literature.  

A number of dynamic properties have been identified, formalized in the Temporal Trace 

Language (TTL), cf. [6] and automatically checked. The TTL software environment includes a 

dedicated editor supporting specification of dynamic properties to obtain a formally represented 

temporal predicate logical language TTL formula. In addition, an automated checker is included 

that takes such a formula and a set of traces as input, and verifies automatically whether the 

formula holds for the traces. The language TTL is built on atoms referring to states of the world, 

time points and traces, i.e. trajectories of states over time. In addition, dynamic properties are 

temporal predicate logic statements that can be formulated with respect to traces based on a state 

ontology.  

Below, a number of the dynamic properties that were identified for the group decision making 

model are introduced, both in semi-formal and in informal notation (where state(γ, t) |= p denotes 

that p holds in trace γ at time t). The first property counts the number of subgroups that are present. 

Here, a subgroup is defined as a group of agents having the same highest intention. Each agent has 

4 intention values (namely one for each of the four options that exist), therefore the number of 

subgroups that can emerge are always: 1, 2, 3 or 4 subgroups. 
 

P1 –number of subgroups 
The number of subgroups in a trace γ is the number of options for which there exists at least one agent that 

has an intention for this option as its highest valued intention.  
 

P1_number_of_subgroups(γγγγ:TRACE) ≡≡≡≡  sum(I:INTENTION, case(highest_intention(γ, I), 1, 0) 

where 
highest_intention(γγγγ:TRACE, I:INTENTION) ≡≡≡≡ 

∃A:AGENT     [∀R1:REAL      state(γ, te) |= has_value(A, I, R1)  

               ⇒ ∀I2:INTENTION≠I, ∀R2:REAL   [state(γ, te) |= has_value(A, I2, R2) ⇒ R2 < R1]]  
 

In this property, the expression case(p, 1, 0) in TTL functions such that if property p holds it is 

evaluated to the second argument (1 in this example), and to the third argument (0 in this example) 

if the property does not hold. The sum operator simply adds these over the number of elements in 

the sort over which the sum is calculated (the intentions in this case). Furthermore, when tb or te 

are used in the property, they denote the begin or end time of the simulation, whereby in te an 

equilibrium is often reached. Property P1 can be used to count the number of subgroups that 

emerge. A subgroup is defined as a group of agents that each have the same intention as their 

intention with highest value. This property was checked on multiple traces that each belong to one 

of the three scenario’s discussed in the simulation results section. For the traces for both variants 

of scenario 1: , a single subgroup was found, for scenario 2:  two subgroups were found, and for 

scenario 3, a single subgroup was found, which is precisely according to the expectations. 

The second property counts the number of agents in each of the subgroups, using a similar 

construct. 
 



11 

 

P2– subgroup size 
The number of agents in a subgroup for intention I is the number of agents that have this intention as their 

highest intention. 
P2_subgroup_size(γγγγ:TRACE, I:INTENTION) ≡≡≡≡  sum(A:AGENT, case(highest_intention_for(γ, I, A), 1, 0)) 

where 
highest_intention_for(γγγγ:TRACE, I:INTENTION, A:AGENT) ≡≡≡≡ 

∀R1:REAL    [state(γ, te) |= has_level(A, I, R1) 

         ⇒ ∀I2:OPTION≠I, ∀R2:REAL [state(γ, te) |= has_level(A, I2, R2) ⇒ R2 < R1]]  
 

In the traces for scenario1 the size of the single subgroup that occurred was 4 agents. For scenario 

2 two subgroups of 2 agents were found. Finally, in scenario 3 only a single subgroup combining 4 

agents has been found. These findings are correct; they indeed correspond to the simulation 

results. 

The final property, P3, expresses that an agent is a leader in case its intention values have 

changed the least over the whole simulation trace, as seen from his initial intention values and 

compared to the other agents (thereby assuming that these agents moved towards the intention of 

the leader that managed to convince them of this intention). 
 

P3–leader 
An agent is considered a leader in a trace if the number of intentions for which it has the lowest change is at 

least as high as all other agents. 
 

P3_leader (γγγγ:TRACE, A:AGENT) ≡≡≡≡ 

∀A2:AGENT ≠A    

sum(I:INTENTION, case(leader_for_intention(γ, A, I),1,0)) ≥ 

sum(I:INTENTION, case(leader_for_intention(γ, A2, I),1,0)) 

where 
leader_for_intention(M:TRACE, A:AGENT, I:INTENTION) ≡≡≡≡ 

∀R1, R2: REAL    [ [state(γ, tb) |= has_value(A,I, R1) &  state(γ, te) |= has_value(A, I, R2) ] 

     ⇒    ∀R3, R4: REAL, ∀A2:AGENT ≠A 

            [state(γ, tb) |= has_value (A2, I, R4) & state(γ, te) |= has_value (A2, I, R3) 

               ⇒ |R2-R1|< |R3-R4| ]] 
 

Using this definition, only agent 1 qualifies as a leader in scenario 1. For scenario 2 only agent 4 is 

a leader. Finally, in scenario 3 both agent 1 and agent 3 are found to be leaders as they both have 

equal intentions for which they change the least. 

 

7   Modelling the Dynamics of Beliefs and Emotions in Groups  

The agent-based social diffusion model introduced in Section 2 can be applied to both emotion and 

beliefs, but does not describe any interplay between diffusion of different states. For example, not 

only emotions of others, but also beliefs may affect emotions. On the other hand, strong emotions 

may affect personal characteristics for belief diffusion such as openness and expressivity. To 

incorporate such interactions, the basic model is extended as follows: 

1. To update qSA for one state S, also the qS'B values for some other state S' may be taken into 
account. 

2. Some of the personal characteristics for a state S may be determined dynamically 
depending on values qS'B for a certain other state S'. 

The Effect of Emotion upon Belief 

To model the effect of emotions on belief diffusion, below the personal characteristics δSA, ηSA and 

βSA for a belief state S are not assumed constant, but are instead modeled in a dynamic manner, 

depending on emotions. As can be seen in the adopted model, multiple factors that influence 
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diffusion of a state S have been distinguished. One can divide these into three different categories: 

state qSA, personal characteristics εSA, δSA, ηSA, βSA and interaction characteristic αBA. One 

additional category is introduced here, namely belief state characteristics rSA  denoting how 

relevant, and pSA denoting how positive a belief state S is for agent A. Examples of settings for an 

evacuation scenario can be found in Table 3. 

The intensity of the emotional state of a person will affect his ability to receive information, 

thereby possibly affecting individual agent characteristics. In this case the focus is on one type of 

emotion, namely fear. A high level of fear contributes to the levels of βSA, ηSA and δSA. However, if 

fear is low, the value of the parameters should be dominated by their initial values that represent 

the personal characteristics of the agent instead. First the effect of fear upon the openness for a 

belief state S (characterized by a relevance rSA and a positiveness pSA for A) is expressed: 

δSA(t+∆t) = δSA(t) + µ·(1/1+e
-σ(q

fear,A
(t) - τ)

)·[(1–(1–rSA) qfear,A(t)) -δSA(t)]·∆t (8) 

 

Table 3 Types Of Information 

 

 

 

 

If qfear,A is lower than threshold τ (on the interval [0,1]), it will not contribute to the value of δSA. If 

qfear,A has a value above τ, the openness will depend on the relevance of the information: when the 

relevance is high, openness will increase, while if the relevance is low, openness will decrease. In 

all formulae, µ is an adaptation parameter. This proposed model corresponds to theories of 

emotions as frames for selective processing, as described in [17], [27]. A distinction between 

amplification values for different types of information is also made, depending on the emotional 

state fear. The dynamics for the characteristic ηSA(t) that model the amplification or absorption of 

belief state S are described as follows: 

ηSA(t+∆t) = ηSA(t ) + µ ·(1/1+e
-σ(q

fear,A
(t) - τ)

)·[rSA·(1–pSA) · (qfear,A(t) - ηSA(t))]·∆t       (9) 

The emotion of fear only has an influence when it is above the threshold. In that case the 

parameter only changes for relevant, non-positive information for which the parameter starts to 

move towards the value for the emotion of fear (meaning this type of belief will be amplified). 

This property represents an interpretation of [8] on how emotion can result in selective processing 

of emotion-relevant information.  

The bias of an agent is also influenced by its emotion, but in addition depends on the content of the 

information, which can be either positive or negative: 

βSA(t+∆t) = βSA(t) +  µ·(1/1+e
σ( q

fear,A
(t) 

 
- τ)

)·(1–qfear,A(t)
 
) · ((1–pSA)-βSA(t))·∆t   (10) 

  positivity of information (p) [0-1] 

  0 1 

relevance for 

survival (r) 

[0-1] 

0 “The toilets are 

out of order” 

“Local authorities 

have been informed” 

1 “All rear exits are 

obstructed” 

“The front emergency 

exit is clear” 
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Again, the bias is not influenced by fear if its value is low. In case fear is high, pSA has a high 

impact on the bias: a low positiveness inhibits the bias, while a high positiveness increases the 

bias. The agent thus has a bias towards negative belief in case it has a high level of fear, which 

corresponds with the narrowing hypothesis from Frederickson’s broaden-and-build theory in [17]. 

The Effect of Belief upon Emotion 

After modeling the influence of emotion upon the belief contagion in the previous section, the 

opposite direction is investigated in this section: emotions being influenced by belief. This 

influence is modeled by altering the overall weighed impact of the contagion of the emotional state 

for fear. This is expressed as follows: 

qSfear,A* = ν · (∑B≠A γSfearBA ⋅ qSfearB / γSfearA) + (1- ν)·(∑Sinfo ωSinfo,A .(1 – pSinfoA)·rSinfoA·qSinfo,A )   (11) 

Table 4  Six scenarios for diffusion 

Initial settings emotion →→→→ info emotion ↔↔↔↔ info 

high fear levels scenario 1 scenario 4 

low fear levels scenario 2 scenario 5 

mixed fear levels scenario 3 scenario 6 

 

Here the influence depends on the impact from the emotion fear by others (the first factor, with 

weight v) in combination with the influence of the belief present within the agent. In this case, 

belief has an increasing effect on fear if it is relevant and non positive. 

8  Simulation Results: Interaction Between Beliefs and Emotions 

In order to see whether the approach indeed exhibits the patterns that can be expected from 

literature, a case study has been conducted in the domain of emergency evacuation. The states as 

shown in Table II have been used in combination with the emotion of fear. Furthermore, the value 

of the channel strength αSBA has been made dependent upon the distance: 

αSBA = 1-(1/(1+e
-4σ(d

AB -τ)
)   (12) 

This formula expresses that a belief is only perceived in case the distance between agent A and B 

(dAB) is below the distance threshold (τ). 

The full model has been implemented in Matlab, and six different scenarios have been created (see 

Table 5). The complete settings for the three scenarios can be found in Appendix B. 

In the scenarios, the emotional levels have been varied. The influence of belief upon emotion 

has been left out of to allow the sole analysis of the influence of emotions upon belief contagion. 

In each scenario, 4 agents have been used. The most important results are discussed below. Note 

that for all scenarios the value for the maximum distance (τdistance) has been set to 4, which 

represents that one can not hear or see a (non)verbal communication properly anymore when it is 

farther than the distance of 4. The threshold value for fear (τfear) is set to 0.5. 
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Scenario 1. First the general scenario and the interpretation of the values of the parameters is 

briefly described. In scenario 1, all agents initially are unaware of any danger and thus have low 

fear (qfear = 0.1). Each agent has access to one out of four types of information (the four types can 

be made out of the four combinations of high/low relevance versus high/low positiveness of 

information). That is, agent 1 is located near the front exit and observes it is clear. Agent 2 just 

read on his phone that local authorities have been informed that there is smoke emerging from the 

building. Agent 3 just received word that all rear exits are blocked and agent 4 noticed that the 

toilets are out of order.  

Table 5 Parameter Settings For Scenario 1 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter qfear qHH qLH qHL qLL 

A1 (init q) 0.1 1 0.1 0.1 0.1 

A2 (init q) 0.1 0.1 1 0.1 0.1 

A3 (init q) 0.1 0.1 0.1 1 0.1 

A4 (init q) 0.1 0.1 0.1 0.1 1 

A1 (δ) 0.5 0.5 0.5 0.5 0.5 

A2 (δ) 0.5 0.5 0.5 0.5 0.5 

A3 (δ) 0.5 0.5 0.5 0.5 0.5 

A4 (δ) 0.5 0.5 0.5 0.5 0.5 

A1 (η) 0.5 0.3 0.3 0.3 0.3 

A2 (η) 0.5 0.8 0.8 0.8 0.8 

A3 (η) 0.5 0.1 0.1 0.1 0.1 

A4 (η) 0.5 0.2 0.2 0.2 0.2 

A1 (β) 0.5 0.1 0.1 0.1 0.1 

A2 (β) 0.5 0.5 0.5 0.5 0.5 

A3 (β) 0.5 0.9 0.9 0.9 0.9 

A4 (β) 0.5 0.3 0.3 0.3 0.3 

Fig. 5  Simulation results of scenario 1 
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In order to clearly demonstrate the functioning of the model, all agents in this scenario have the 

same openness for all information and fear states (0.5) and they have the same amplification rate 

for fear (0.5). However, they differ in their amplification rate for information they receive. Agent 

1, agent 3 and agent 4 all have relatively low amplification rates for all belief states, while agent 2 

is more expressive and has a strong amplification for all belief states. In this scenario, agent 1 and 

agent 3 have a low bias for all types of belief and are not easily primed by it. Agent 2 has an 

average bias for all belief states and agent 3 is easily primed by any kind of belief. Details on the 

translation of this information into parameter settings can be found in Table 5. Fig. 5 shows the 

simulation  results for scenario 1. The rows in the figure represent the various states: the first row 

shows values for the state fear (qfear), row 2 represents the state of highly relevant, positive 

information (qHH), row 3 of low relevant, positive information (qLH), row 4 of highly relevant, 

negative information (qHL) and row 5 shows values for the state of low relevant, negative 

information (qLL). The columns represent the values for the state itself, and those for the openness, 

amplification, and bias for that state. Analysis of the simulation results leads to the following 

conclusions. First, the perceived fear remains constant for all agents, since this scenario does not 

capture the influence of belief on emotion. The same holds for the individual values for openness, 

amplification and bias due to the fact that fear is so low that it does not influence the contagion of 

the belief. Second, all types of information are quickly relayed to the other agents but after some 

time there is a slow decay of all types of belief. 

 

Scenario 2. The only difference between scenario 1 and 2 is the initial level of fear, which is low 

for all agents in scenario 1, but high for all agents in scenario 2. In the simulation of scenario 2, 

which can be found in Fig. 6, different patterns emerge. Although the fear is still a constant factor, 

the high state of fear of all agents affects their values of openness, amplification and bias for 

particular belief states. For example, all values increase of the parameters for highly relevant, 

negative information. While the levels for positive information decrease or stay constant over time, 

Fig. 6.   Simulation results of scenario 2 
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the levels for negative information show a significant increase due to these changes of the 

parameters.  

Scenario 3. In scenario 3 the agents all have different personalities and different levels of fear and 

belief, represented by different personal settings for all parameters. Simulation results show that 

due to the personal settings, some agents develop higher fear levels over time than others. See Fig. 

7. 
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Fig. 7.  Simulation results of scenario 3 

 

 

Scenario 4, 5, and 6. Simulations 4, 5 and 6 also take the influence of belief upon the level of fear 

into account. In these scenarios, the value for the weights of the influence of the belief state upon 

fear is set to 0.1, 0.7, 0.1, and 0.1 for qHH, qLH, qHL and qLL respectively. Furthermore, the value for 

ν has been set to 0.5. The initial settings of scenario 4, 5 and 6 are the same as scenario 1, 2 and 3, 

respectively. Since in the presented model the belief directly affects the emotion (and not the 

openness, amplification and bias), only the q-values will be discussed. They are displayed in Fig. 

8. For the scenario with low fear (scenario 4) the qfear increases slightly for all agents due to 

availability of belief. However, just as the belief levels decay, the qfear levels decrease again after 

some time. More interesting are the results from scenario 5 and 6. The results of the simulation of 

scenario 5 show that (i) negative information - in particular relevant negative information - spreads 

quickly through the network of agents, and (ii) the spread of qfear first decreases and then spreads 

again causing an increase of this level for each of the agents. Note that the increase of qHL and, in a 
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somewhat lesser extent, qLL cause the higher levels of qfear. Looking at the simulation results of 

scenario 6 two main observations can be made. First, the qfear of agent1, agent 3 and agent 4 does 

not increase as much as it did in scenario 5, due to the fact that they have lower values for negative 

information states than agent 2. Second, qfear is reduced as the agents obtain more positive 

information and soon after increases when the obtained information has a less positive content. 
 

9   Mathematical Analysis of Equilibria and Monotonicity 

In this section for the presented models a mathematical analysis will be discussed of equilibria, 

and monotonicity. 

 

9.1  Mathematical analysis for the first model 
 

During simulations it turns out that eventually equilibria are reached: all variables approximate 

values for which no change occurs anymore. Such equilibrium values can also be determined by 

mathematical analysis of the differential equations for the model: 
dqOEA(t)/dt = γOEA[ηOEA(βOEA (1 - (1-qOEA*(t))(1-qOEA(t))) +  

       (1-βOEA) qOEA*(t)  qOEA(t)) + (1 - ηOEA) qOEA*(t)  - qOEA(t)  ] ⋅ ∆t 
(4) 

dqOIA(t)/dt = γOIA* [ηOIA (βOIA (1 - (1-qOIA**(t))(1-qOIA(t))) +  

      (1-βOIA) qOIA**(t)  qOIA(t)) + (1 - ηOIA) qOIA**(t)  - qOIA (t)] ⋅ ∆t 
(5) 

 

Putting dqOEA(t)/dt = 0  and dqOIA(t)/dt  = 0 and assuming γOEA and γOIA*  nonzero, provides the 

following equilibrium equations for each agent A. 
 

Fig. 8.  The q-values for scenario 4 (leftmost column), 5 (center column),  

and 6 (rightmost column) 
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  ηOEA(βOEA (1-(1-qOEA*)(1-qOEA)) + (1-βOEA) qOEA* qOEA) + (1 - ηOEA) qOEA* - qOEA  = 0  (6) 

  ηOIA (βOIA (1-(1-qOIA**)(1-qOIA)) +  (1-βOIA) qOIA** qOIA) + (1 - ηOIA) qOIA** - qOIA  = 0 (7) 
 

For given values of the parameters ηOEA, βOEA, ηOIA, and βOIA , these equations may be solved 

analytically or by standard numerical approximation procedures. Moreover, by considering when 

dqOEA(t)/dt > 0   or dqOEA(t)/dt < 0  one can find out when qOEA(t) is strictly increasing and when 

strictly decreasing, and similarly for qOIA(t). For example, for equation (2), one of the cases 

considered is the following. 
 

Case ηηηηOIA = 1 and ββββOIA = 1 

For this case, equation (2) reduces to (1-(1-qOIA**)(1-qOIA))  - qOIA = 0. This can easily be rewritten via 

(1- qOIA ) -(1-qOIA**)(1-qOIA)  = 0  into qOIA**(1-qOIA)  = 0. From this, it can be concluded that 

equilibrium values satisfy qOIA**= 0  or qOIA = 1, and qOIA is never strictly decreasing, and is strictly 

increasing when qOIA** > 0  and  qOIA < 1.  Now the condition qOIA** = 0  is equivalent to 
 

 (ωOIA/ωOA) qOIA*  + (ωOEA/ωOA) qOEA = 0  ⇔  qOIA*  = 0  if  ωOIA  > 0 and qOEA = 0  if  ωOEA  > 0 
 

where qOIA*  = 0  is equivalent to ∑B≠A γOIBA ⋅ qOIB / γOIA = 0  ⇔   qOIB = 0  for all  B≠A  with γOIBA > 0. 

Assuming both ωOIA and ωOEA nonzero, this results in the following: 
 

equilibrium:           qOIA = 1  or  qOIA < 1 and qOEA = 0 and  qOIB = 0  for all  B≠A  with γOIBA > 0 

strictly increasing:   qOIA < 1   and   qOEA > 0 or qOIB > 0  for some  B≠A  with γOIBA > 0 
 

Table 6.  Equilibria cases for an agent A with both ωOEA  > 0, ωOIA  > 0, and γOEBA > 0 for all B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ηηηηOIA = 1 

ββββOIA = 1 

ηηηηOIA = 1         

ββββOIA = 0.5 

ηηηηOIA = 1 

ββββOIA = 0 

  qOIA = 1   qOIA < 1     

qOEA = 0     
qOIB = 0   for 

all B ≠ A 

qOIA** = qOIA   qOIA = 0  

 

qOIA > 0    

qOEA = 1   
qOIB = 1   for 

all B ≠ A 

ηηηηOEA = 1  

ββββOEA = 1 

qOEA = 1       qOEA = 1    

qOIA = 1    

 

none 

qOEA = 1 

qOIA** = qOIA      

qOEA = 1   

qOIA = 0  

qOEA = 1  

qOIA > 0     

qOIB = 1   for 

all B ≠ A 

qOEA < 1       

qOEB = 0   for 
all B ≠ A  

qOEA < 1       

qOIA = 1   

qOEB = 0   for 

all B ≠ A 

  

qOEC = 0  for 

all C  
qOIA < 1         

qOIB = 0   for 

all B ≠ A 

qOEA < 1       

qOIA** = qOIA   

qOEB = 0   for 

all B ≠ A 

  

qOEA < 1       

qOIA = 0  

qOEB = 0   for 

all B ≠ A  

 

none 

ηηηηOEA = 1  

ββββOEA = 0.5 

qOEA* = qOEA qOEA* = qOEA 

qOIA = 1   

qOEC = 0  for 
all C  

qOIA < 1         

qOIB = 0   for 

all B ≠ A 

qOEA* = qOEA  

qOIA** = qOIA   

qOEA* = qOEA 

qOIA = 0  

 

qOEC = 1  for 
all C  

qOIA > 0     

qOIB = 1   for 

all B ≠ A 

ηηηηOEA = 1  

ββββOEA = 0 

qOEA = 0   qOEA = 0 

qOIA = 1    

qOEA = 0 

qOIA < 1  

qOIB = 0   for 
all B ≠ A 

qOEA = 0 

qOIA** = qOIA   

qOEA = 0  

qOIA = 0 

 

none 

qOEA > 0       

qOEB = 1   for 

all B ≠ A  

qOEA > 0       

qOIA = 1   

qOEB = 1   for 

all B ≠ A 

 

 

none 

qOEA > 0       

qOIA** = qOIA   

qOEB = 1   for 

all B ≠ A  

qOEA > 0       

qOIA = 0  

qOEB = 1   for 

all B ≠ A  

qOIA > 0    

qOEC = 1  for 

all C  

qOIB = 1   for 

all B ≠ A 
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For a number of cases such results have been found, as summarised in Table 6. This table 

considers any agent A in the group. Suppose A is the agent in the group with highest qOEA, i.e., qOEB 

≤ qOEA for all B≠ A.  This implies that  qOEA*  = ∑B≠A γOEBA ⋅ qOEB / γOEA  ≤  ∑B≠A γOEBA ⋅ qOEA / γOEA  =  qOEA  

∑B≠A γOEBA / γOEA =  qOEA. So in this case always qOEA*  ≤  qOEA . Note that when qOEB < qOEA for some B≠ 

A with γOEBA > 0,  then qOEA* = ∑B≠A γOEBA ⋅ qOEB / γOEA  <  ∑B≠A γOEBA ⋅ qOEA / γOEA  =  qOEA  ∑B≠A γOEBA ⋅ / γOEA 

=  qOEA. Therefore qOEA* = qOEA  implies qOEB  = qOEA for all B ≠ A with γOEBA > 0.  Similarly, when A 

has the lowest qOEA  of the group, then always qOEA*  ≥  qOEA and again qOEA* = qOEA  implies qOEB = 

qOEA for all B ≠ A with γOEBA > 0. This implies, for example, for ηOEA = 1 and βOEA = 0.5, assuming nonzero 

γOEBA , that always for each option the members’ emotion levels for option O will converge  to one 

value in the group (everybody will feel the same about option O). 

 

9.2  Mathematical analysis for the second model 

 

In this section it is analyzed which are equilibria values that occur. In particular it is focused on the 

characteristics in the model and the fear state. 

Analysis of δδδδ Sinfo A(t), βSinfo A (t) and ηηηηSinfo A(t) 

The openness δSinfo,A is described in differential equation format by 

d δSinfo,A(t)/ dt  =  µδSinfo,A
 (1/1+e

-σ(q
fear,A

(t) - τ)
)· [(1 – (1 – rSinfo A)  qfear,A(t)) - δ Sinfo A(t)]       

It is assumed that µ δSinfo,A
 >0.  First of all, it follows that when qfear,A  < τ, then always  dδSinfo,A(t)/ 

dt  =  0, so for these cases any value for δSinfo,A is an equilibrium. Next, assuming qfear,A  ≥ τ , it 

holds: 

 

δ Sinfo,A is in equilibrium   iff    [(1 – (1 – rSinfo A)  qfear,A) - δ Sinfo A(t)] = 0      

δ Sinfo,A is strictly  increasing  iff    [(1 – (1 – rSinfo A)  qfear,A) - δ Sinfo A(t)] > 0      

δ Sinfo,A is strictly  decreasing  iff    [(1 – (1 – rSinfo A)  qfear,A) - δ Sinfo A(t)] < 0     

 

From this the following equilibrium values can be determined (see also Table 7, upper part): 

qfear,A < τ    and any value for δ Sinfo,A  or 

qfear,A ≥ τ    and  δ Sinfo,A  =  1 – (1 – rSinfo A)  qfear,A   

For example, qfear,A = 1  ⇒ δ Sinfo A(t) = rSinfo A and rSinfo A = 1 and  qfear,A ≥ τ  ⇒ δ Sinfo A = 1. The 

following monotonicity conditions hold for qfear,A (t) ≥ τ 

δ Sinfo A(t)  is strictly  increasing  iff   δSinfo A(t)  <  1 – (1 – r Sinfo A)  qfear,A(t)     

δSinfo A(t)  is strictly  decreasing  iff   δSinfo A(t)  >  1 – (1 – r Sinfo A)  qfear,A(t)     

These conditions show that δ Sinfo A(t)  is attracted by the value 1 – (1 – r Sinfo A)  qfear,A(t), so when 

qfear,A(t)  is stable, this value is a stable equilibrium for δ Sinfo A(t). Similarly the equilibrium values 

of the characteristics βSinfo,A and ηSinfo,A can be determined as shown in Table V. Moreover, as 

above it can be shown that βSinfoA is attracted by the value 1–pSinfoA, and ηSinfo A(t) is attracted by the 

value qfear,A(t), so they both are stable. 
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Analysis of  qSfear,A(t) 

The fear state is described by 

     dqSfearA(t)/ dt = γA · [ηSfearA·(βSfearA·(1 - (1-qSfearA*)·(1-qSfearA)) + (1 - βSfearA) · qSfearA* · qSfearA) +   

(1 - ηSfearA) · qSfearA* - qSfearA ] 

Then the equilibrium equations become: 

ηSfearA · (βSfearA· (1 - (1-qSfearA*) · (1-qSfearA)) + (1 - βSfearA) · qSfearA* · qSfearA) + (1 - ηSfearA) · qSfearA*  =  

qSfearA 

In general the equation is too complex to be solved symbolically, but for some cases it can be 

solved; see Table 7 (lower part). 

Special case ηηηηSfearA = 1 and βSfearA = 1  

This case concerns an amplifying agent for fear with an increasing orientation. For this case the 

analysis shows that there is a strong tendency for qSfearA to reach value 1. It will only not reach 1 if 

there are extreme circumstances that there is full absence of negative group impact: none of the 

other group members transfer any bad information or fear (see Table 7). 

Special case ηηηηSfearA = 1 and βSfearA = 0  

This case concerns an amplifying agent for fear with a decreasing orientation. For this case the 

analysis shows that there is a strong tendency for qSfearA to reach value 0. It will only not reach 0 if 

there are extreme circumstances in the sense that there is full presence of negative group impact: 

all other group members do transfer bad information and fear. See Table V.  

Special case ηηηηSfearA = 0  

This case concerns an absorbing agent for fear. For this case the analysis shows that there is a 

strong tendency for qSfearA to reach some value between 0 and  1. It will only reach 0 or 1 if there 

are extreme circumstances that not any of the other group members does transfer any bad 

information or fear, or if all of them transfer both in a maximal sense. The value reached between 

0 and 1 is some form of average of the values of the other group members. 

Table 7  Equilibrium values. UPPER: values for qfear,A.  LOWER: values for δ Sinfo A, βSinfo A, ηSinfo

 qfear,A  = 0 0 < qSfearA  < 1 qfear,A  = 1 

ηηηηSfearA=1  βSfearA=1 any value < 1 for  qSfearA    iff  there is full absence of negative group impact qfear,A  = 1 

ηηηηSfearA=1  βSfearA=0 qfear,A = 0   any value > 0 for  qSfearA   iff  there is full presence of negative group impact 

ηηηηSfearA = 0 qfear,A = 0, and there is full absence of 

negative group impact 

qSfearA*  =  qSfearA qfear,A = 1, and there is full presence 

of negative group impact 

 qfear,A  = 1 ττττ  ≤≤≤≤  qSfearA  < 1 qSfearA  < ττττ 

δδδδ Sinfo A δ Sinfo,A  =  rSinfo A   δ Sinfo,A  =  1 – (1 – rSinfo A)  qfear,A   any value for    δ Sinfo,A  

βSinfo A any value for  βSinfo A βSinfo A  = 1–pSinfo A any value for    βSinfo A  

ηηηηSinfo A rSinfo A > 0  and  pSinfo A < 1   and   ηSinfo A =  qfear,A any value for    ηSinfo A  



Equilibria for qSfearA 

The equilibrium equation: qSfearA*  =  qSfearA. For the cases qSfearA* = qSfearA = 0 and qSfearA*  =  qSfearA 

= 1  the terms of the double summation for qSfearA*   can be handled as above, thus providing the 

conditions as depicted in Table 7. 

10   Discussion 

In this paper, an agent-based modelling approach has been presented, to model contagion of 

different types of individual agent states, which may have mutual interaction. First, a generic 

model for contagion of a single type of state was described. This generic  model has been inspired 

by the neurological concept of mirroring (see e.g. [24], [30]). Previous emotion contagion models 

have been used as well as a source of inspiration (cf. [4], [5], [15], [16]). Emotion contagion, has 

been shown to occur in many cases varying from emotions in small groups to panicking crowds 

(cf. [1]). The generic model introduced unifies the models for emotion contagion and generalises 

to contagion of any type of individual state. The agent-based approach used differs from the 

approach of the computational models from social science such as in ([35], [22], [28]), which 

model the complex spread of innovations as diffusion that is asymmetric in time, irreversible, and 

nondeterministic. Next, two more specialised and more complex models were presented involving 

contagion of multiple types of states for which mutual interaction takes place. 

As a first more complex model, a model was presented for the emergence of collective decision 

making in groups. In this model contagion of emotions and intentions and their interaction play a 

main role. The model has been based not only on the neurological concept of mirroring (see e.g. 

[24], [30]) but also on the Somatic Marker Hypothesis of Damasio (cf. [2], [10], [12], [13]). This 

provides an interaction between the two types of states, in the form of influences of emotions upon 

intentions. Several scenarios have been simulated by the model to investigate the emerging 

patterns, and also to look at leadership of agents within groups. The results of these simulation 

experiments show patterns as desired and expected. In order to be able to make this claim more 

solid, a formal verification of the simulation traces have been performed, showing that the model 

indeed behaves properly. By a mathematical analysis, equilibria of the model have been 

determined. 

As a second more complex model, a model has been presented which incorporates the effect of 

emotions upon the spreading of belief as well as the effect of belief upon emotions. This work has 

been inspired by a number of theories and observations as found in literature (cf. [1], [7], [8], [17], 

[27], [37]). The model has been evaluated by a case study in the domain of emergency 

evacuations, and was shown to exhibit the patterns that could be expected based upon the 

literature. Also for this model by a mathematical analysis equilibria have been determined.  
For future work, an interesting element will be to scale up the simulations and investigate the 

behaviour of agents in larger scale simulations. Furthermore, modelling a more detailed 

neurological model is also part of future work, thereby defining an abstraction relation mapping 

between this detailed level model and the current model. As part of further work it can also be 

considered to model how mood can affect (systematic) information processing, for example in 

case of a depression. In [9] such mechanisms are discussed. Other ideas for future work consist of 

extending the current model for multiple emotions affecting each other and beliefs as well and vice 

versa. Moreover, models addressing contagion of more than two different types of states and their 

interaction will be addressed. 
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Appendix A   Settings for the Scenarios in Section 5 

Scenario 

1 

  agent

1 

agent

2 

agent

3 

agent 

4 

 
 

 

q 

(initial 

state) 

 

emotion 

optionA 0.9 0.1 0.5 0.2 

optionB 0.1 0.1 0.5 0.2 

optionC 0.3 0.1 0.5 0.2 

optionD 0.1 0.1 0.5 0.2 

 

intention 

optionA 0.9 0.7 0.5 0.1 

optionB 0.1 0.7 0.5 0.1 

optionC 0.1 0.1 0.5 0.1 

optionD 0.1 0.1 0.5 0.9 

 

 

 

δδδδ 

(open-

ness) 

 

emotion 
 

 

optionA 0.1 0.9 0.9 0.2 

optionB 0.1 0.9 0.9 0.2 

optionC 0.1 0.9 0.9 0.2 

optionD 0.1 0.9 0.9 0.2 

 

intention 

optionA 0.1 0.9 0.9 0.2 

optionB 0.1 0.9 0.9 0.2 

optionC 0.1 0.9 0.9 0.2 

optionD 0.1 0.9 0.9 0.2 

 
 

 

ηηηη 

(amplify

/ 

absorb) 

 

emotion 

optionA 0.9 0.1 0.2 0.9 

optionB 0.1 0.1 0.2 0.9 

optionC 0.9 0.1 0.2 0.9 

optionD 0.1 0.1 0.2 0.9 

 

intention 

optionA 0.9 0.1 0.2 0.9 

optionB 0.1 0.1 0.2 0.9 

optionC 0.9 0.1 0.2 0.9 

optionD 0.1 0.1 0.2 0.9 

 

 
 

ββββ 

(bias) 

 

emotion 

optionA 0.9 0.1 0.5 0.6 

optionB 0.1 0.1 0.5 0.6 

optionC 0.9 0.1 0.5 0.6 

optionD 0.1 0.1 0.5 0.6 

 

intention 

optionA 0.9 0.8 0.5 0.6 

optionB 0.1 0.8 0.5 0.6 

optionC 0.9 0.1 0.5 0.6 

optionD 0.1 0.1 0.5 0.6 

εεεε 

(express 

iveness) 

 1 0.4 0.1 1 

 

αααα 

(connec 

tion) 

 agent1 - 0.1 0.1 0.1 

agent2 1 - 0.9 0.1 

agent3 1 0.9 - 0.1 

agent4 1 0.1 0.1 - 

Scenario 

2 

  agent

1 

agent

2 

agent

3 

agent

4 

 
 

 

q 

(initial 

state) 

 

emotion 

optionA 0.9 0.3 0.2 0.1 

optionB 0.1 0.3 0.1 0.1 

optionC 0.1 0.2 0.3 0.1 

optionD 0.1 0.4 0.2 0.8 

 

intention 

optionA 0.9 0.3 0.3 0.1 

optionB 0.1 0.3 0.3 0.1 

optionC 0.1 0.2 0.4 0.1 

optionD 0.1 0.4 0.1 0.7 

 

 

 

δδδδ 

(openness

) 

 

emotion 
 

 

optionA 0.1 0.8 0.9 0.3 

optionB 0.1 0.8 0.9 0.3 

optionC 0.1 0.8 0.9 0.3 

optionD 0.1 0.8 0.9 0.3 

 

intention 

optionA 0.1 0.8 0.3 0.3 

optionB 0.1 0.8 0.3 0.3 

optionC 0.1 0.8 0.3 0.3 

optionD 0.1 0.8 0.3 0.3 

 
 

 

ηηηη 

(amplify/ 

absorb) 

 

emotion 

optionA 0.9 0.5 0.2 0.7 

optionB 0.9 0.5 0.2 0.7 

optionC 0.9 0.5 0.2 0.7 

optionD 0.9 0.5 0.2 0.7 

 

intention 

optionA 0.9 0.5 0.2 0.7 

optionB 0.9 0.5 0.2 0.7 

optionC 0.9 0.5 0.2 0.7 

optionD 0.9 0.5 0.2 0.7 

 

 
 

ββββ 

(bias) 

 

emotion 

optionA 0.9 0.3 0.6 0.7 

optionB 0.9 0.3 0.5 0.7 

optionC 0.9 0.3 0.4 0.7 

optionD 0.9 0.3 0.5 0.8 

 

intention 

optionA 0.9 0.3 0.6 0.7 

optionB 0.9 0.3 0.5 0.7 

optionC 0.9 0.3 0.4 0.7 

optionD 0.9 0.3 0.5 0.8 

εεεε 

(expressi

veness) 

  1 0.1 0.1 0.8 

 

αααα 

(connec 

tion) 

 agent1 - 0.1 0.1 0.1 

agent2 1 - 0.1 0.1 

agent3 0.1 0.1 - 0.8 

agent4 0.1 0.1 0.1 - 
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Scenario 3   agent

1 

agent

2 

agent

3 

agent

4 

 

 

 

q 

(initial 

state) 

 

emotion 

optionA 0.9 0.2 0.1 0.3 

optionB 0.1 0.9 0.1 0.3 

optionC 0.5 0.2 0.7 0.7 

optionD 0.2 0.2 0.1 0.1 

 

intention 

optionA 0.9 0.2 0.1 0.1 

optionB 0.1 0.9 0.1 0.1 

optionC 0.5 0.2 0.9 0.9 

optionD 0.2 0.2 0.1 0.1 

 

 

 

δδδδ 

(openness) 

 

emotion 

 

 

optionA 0.5 0.1 0.9 0.3 

optionB 0.5 0.1 0.9 0.3 

optionC 0.5 0.1 0.9 0.7 

optionD 0.5 0.1 0.9 0.3 

 

intention 

optionA 0.5 0.1 0.9 0.3 

optionB 0.5 0.1 0.9 0.3 

optionC 0.5 0.1 0.9 0.7 

optionD 0.5 0.1 0.9 0.3 

 

 

 

ηηηη 

(amplify/ 

absorb) 

 

emotion 

optionA 0.9 0.5 0.2 0.8 

optionB 0.2 0.5 0.2 0.8 

optionC 0.2 0.5 0.2 0.8 

optionD 0.2 0.5 0.2 0.8 

 

intention 

optionA 0.9 0.5 0.1 0.8 

optionB 0.2 0.5 0.1 0.8 

optionC 0.2 0.5 0.1 0.8 

optionD 0.2 0.5 0.1 0.8 

 
 

 

ββββ 

(bias) 

 

emotion 

optionA 0.5 0.5 0.9 0.2 

optionB 0.5 0.5 0.9 0.2 

optionC 0.5 0.5 0.9 0.9 

optionD 0.5 0.5 0.9 0.2 

 

intention 

optionA 0.5 0.5 0.9 0.2 

optionB 0.5 0.5 0.9 0.2 

optionC 0.5 0.5 0.9 0.9 

optionD 0.5 0.5 0.9 0.2 

εεεε 

(express 

iveness) 

  0.9 0.7 0.1 0.5 

 

αααα 

(connec 

tion) 

 agent1 - 0.3 0.5 0.7 

agent2 0.1 - 0.5 0.5 

agent3 0.8 0.8 - 0.2 

agent4 0.6 0.5 0.2 - 
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Appendix B   Settings for the Scenarios in Section 8 

 
Scenario 

1 and 2 

 Fear 
sc1 / sc2 

Information 
high r, high p 

Information 
low r, high p 

Information 
high r, low p 

Information low 
r, low p 

q 

(initial 

state) 

Agent1 0.1 / 0.8 1 0.1 0.1 0.1 

Agent2 0.1 / 0.8 0.1 1 0.1 0.1 

Agent3 0.1 / 0.8 0.1 0.1 1 0.1 

Agent4 0.1 / 0.8 0.1 0.1 0.1 1 

δδδδ 

(open 

ness) 

Agent1 0.5 0.5 0.5 0.5 0.5 

Agent2 0.5 0.5 0.5 0.5 0.5 

Agent3 0.5 0.5 0.5 0.5 0.5 

Agent4 0.5 0.5 0.5 0.5 0.5 

ηηηη 

(amplify/

absorb) 

Agent1 0.5 0.3 0.3 0.3 0.3 

Agent2 0.5 0.8 0.8 0.8 0.8 

Agent3 0.5 0.1 0.1 0.1 0.1 

Agent4 0.5 0.2 0.2 0.2 0.2 

ββββ 

(bias) 

Agent1 0.5 0.1 0.1 0.1 0.1 

Agent2 0.5 0.5 0.5 0.5 0.5 

Agent3 0.5 0.9 0.9 0.9 0.9 

Agent4 0.5 0.3 0.3 0.3 0.3 

Scenario 

3 

      

q 

(initial 

state) 

Agent1      

Agent2 0.3 0.1 0.8 0.1 0.1 

Agent3 0.9 0.1 0.1 1 1 

Agent4 0.1 1 0.1 0.1 0.1 

δδδδ 

(open 

ness) 

Agent1 0.2 1 1 0.1 0.1 

Agent2 0.1 0.1 0.1 1 1 

Agent3 0.7 0.5 0.5 0.5 0.5 

Agent4 0.6 0.1 0.1 0.1 0.1 

ηηηη 

(amplify/

absorb) 

Agent1 0.5 0.9 0.9 0.9 0.9 

Agent2 1 0.9 0.9 0.9 0.1 

Agent3 0.2 0.1 0.1 0.1 0.1 

Agent4 0.1 1 0.2 1 0.2 

ββββ 

(bias) 

Agent1 0.1 0.9 0.9 0.1 0.1 

Agent2 0.9 0.1 0.1 0.9 0.9 

Agent3 0.5 0.5 0.5 0.5 0.5 

Agent4 0.5 0.1 0.1 0.1 0.1 

 

 


