
Equational Reasoning on Ad Hoc Networks

Fatemeh Ghassemi1, Wan Fokkink2, and Ali Movaghar1

1 Sharif University of Technology, Tehran, Iran,
2 Vrije Universiteit, Amsterdam, The Netherlands

fghassemi@mehr.sharif.edu, wanf@cs.vu.nl, movaghar@sharif.edu

Abstract. We provide an equational theory for Restricted Broadcast Process
Theory to reason about ad hoc networks. We exploit an extended algebra called
Computed Network Theory to axiomatize restricted broadcast. It allows one to
define an ad hoc network with respect to the underlying topologies. We give a
sound and complete axiomatization for the recursion-free part of the term algebra
CNT, modulo what we call rooted branching computed network bisimilarity.

1 Introduction

In Mobile Ad hoc Networks (MANETs), nodes communicate directly with each other
using wireless transceivers (possibly along multihop paths) without the need for a fixed
infrastructure. The primitive means of communication in MANETs is local broadcast;
only nodes located in the range of a transmitter receive data. Thus nodes participate in
a broadcast according to the underlying topology of nodes. On the other hand, nodes
move arbitrarily, and the topology of the network changes dynamically. Local broadcast
and topology changes are the main modeling challenges in MANETs.

We introduced Restricted Broadcast Process Theory (RBPT) in [6], to specify and
verify ad hoc networks, taking into account mobility. RBPT specifies an ad hoc network
by composing nodes using a restricted (local) broadcast operator, and it specifies a node
by specifying a protocol deployed at a node using RBPT node notation. We modeled
topology changes implicitly in the semantics, and thus verified a network with respect
to different topology changes. An advantage of RBPT compared to similar algebras is
that the specification of an ad hoc network does not include any specification about
changes of underlying topologies. The behavior of an ad hoc network is equivalent to
all its behaviors with respect to the possible topologies.

In this paper we provide an equational system to reason about RBPT terms. To
provide equations for RBPT terms, we need to consider not only their observational
behaviors, but also the set of topologies for which such behaviors are observed. To this
aim, we first extend RBPT with new terms, called Computed Network Theory (CNT)
because the extended terms contain a specification of a set of topologies and their ob-
served behavior is computed with respect to those topologies. Network restrictions on
the underlying topology are expressed explicitly in the syntax. The operational seman-
tics of CNT is given by constrained labeled transition systems, in which the transitions
are subscripted by a set of network restrictions. Our axiomatization borrows from the
process algebra ACP [3] auxiliary (left merge and communication merge) operators to
axiomatize the interleaving behavior of parallel composition.

2

We consider an axiomatization of CNT modulo what we call rooted branching com-
puted network bisimilarity. We prove that the axiomatization is sound, and complete for
the recursion-free part of CNT. The application of our equational system is illustrated
with a small running example.

Related works. Related calculi to ours are CBS#, CWS, CMAN, CMN, and the ω-
calculus [11, 10, 8, 9, 12]. A complete comparison between ad hoc network algebras can
be found in [6]. They are compared in terms of their specification and modeling con-
cepts. In all related approaches, the only equations between networks were defined by
using structural congruence. None of these papers provides a complete axiomatization
for their algebra of ad hoc networks.

2 Restricted Broadcast Process Theory

Before going through the formal syntax definitions, we define some notations applied
in these definitions. Let V denote a countably infinite set of variables ranged over by
x, y, z, and D a finite set of data values ranged over by u. Let w range over V ∪ D.
We use ŵ to denote a finite sequence w1, . . . , wk for some k ∈ IN , |ŵ| its arity k,
and {ŵ/x̂} for simultaneous substitutions {w1/x1}, . . . , {wk/xk}. Let M denote a set
of message types communicated over a network and ranged over by m, while par :
M → IN defines the number of parameters encapsulated in a message m. For each
message type m, there is a finite set domainm : IP (Dpar(m)) that defines the set of
possible value assignments to the message parameters of m. Let Loc denote a finite set
of logical addresses, ranged over by ` which models the hardware addresses of nodes at
which protocols run. We will also use ` to denote a parameter of type Loc. Moreover,
A,B,C, · · · denote concrete addresses. An unknown address is presented by ?. The set
of addresses extended with the unknown address is denoted as Loc?, which by abuse of
notation is also ranged over by `.

Restricted Broadcast Process Theory (RBPT) [6] provides a two-level syntax to
define a set of processes deployed at a node, also called protocols, and a set of ad hoc
networks composed of singleton nodes:

P ::= 0 | α.P | P + P | [w1 = w2]P, P | A(ŵ) , A(x̂)
def
= P

N ::= 0 | [[P]]` | N ‖ N | (ν`)N

A protocol can be a deadlock, modeled by 0. α.P is a process that performs action α
and then behaves as process P . The action α can be a send action m(û)! or a receive
action m(x̂)?. The process P1 +P2 behaves non-deterministically as process P1 or P2.
The guarded command [w1 = w2]P1, P2 defines process behavior based on w1 = w2;
if it evaluates to true, the protocol behaves as P1, and otherwise as P2. We write A(ŵ)

to denote a process invocation defined via a definition A(x̂)
def
= P , with |x̂| = |ŵ|,

where x̂ consists of all names that appear free in P .

As a running example, P (x)
def
= req(x)!.P (x) denotes a process that broadcasts

a message req(x) (par(req) = 1 and domainreq = {0, 1}) recursively, and Q
def
=

req(x)?.rep(x)!.Q a process that receives the message req and replies by sending rep(x)

3

(par(rep) = 1 and domainrep = {0, 1}) recursively. An ad hoc network can be com-
posed of several nodes using the parallel composition operator, where each node is
provided with a unique address (` 6=?) and deploys a protocol, and nodes communicate
via restricted broadcast. For instance, the network process [[P (0)]]A ‖ [[Q]]B specifies
an ad hoc network composed of two nodes with logical addresses A and B deploying
processes P (0) and Q respectively. Some address of a network can be hidden from an
external observer using the restriction operator. For example, in (νA)[[P (0)]]A ‖ [[Q]]B
the activities of node A are hidden from the external observer, and only activities per-
formed by B can be observed.

In the following section the syntax of ad hoc networks is extended with new terms,
to obtain the class of what we call computed network terms. As the semantics of RBPT
is subsumed by the one of CNT, we postpone an exposition on the formal semantics of
RBPT until Section 4.

3 Computed Network Theory

As mentioned before, to give the axioms of the equational theory RBPT, we use an ex-
tension of RBPT, called Computed Network Theory (CNT). This process theory exploits
network restrictions, which define a set of topologies; the behavior of process terms is
computed with regard to such network restrictions.

We assume a binary relation > on Loc ×Loc?, which imposes connection relations
between addresses. A relation A > ? denotes that a node with logical address A should
be in the range of there unknown address, while A > B denotes a node with address
A is connected to a node with address B. The relation > need not be symmetric and
transitive. By default each node is connected to itself: ` > `. A network restriction is
a set of relations ` > `′. The network restriction C[B/A] is obtained from the net-
work restriction C by substituting B for A, and C[B/g] is obtained from the network
restriction C by simultaneous substitution of B for ` ∈ g where g ⊆ Loc.

A topology is a function γ : Loc → IPLoc, where γ(`) denotes the set of nodes
connected to `. This function models unidirectional connectivity between nodes. Each
network restriction C is representative of the set of topologies that satisfy the relations
in C. In particular, the empty network restriction {} denotes all possible topologies.

CNT extends RBPT with new terms called computed networks, having the structure
as Cη.N , to denote a network whose behavior, with respect to the set of topologies
defined by network restriction C, is performing the action η and then behaving as N .
The parallel composition and restriction are defined over computed networks the same
as RBPT terms. Besides CNT extends RBPT with new operators; choice (+), left execu-
tion () and sync (|):

N ::= 0 | [[P]]` | Cη.N | N +N | N ‖ N | N N | N |N | (ν`)N

where η can be m(û)!{`} or m(û)?, and C is a network restriction. The operator + de-
fines a non-deterministic choice between CNT terms, and parallel composition defines
computed networks communicating via restricted broadcast. The restriction operator
(ν`) hides a node with address ` from an external observer as before. In left execution

4

, the left operand must perform the initial action. In the sync operator |, both operands
perform a synchronized initial action.

Bound addresses can be α-converted, meaning that (ν`)N equals (ν`′)N [`′/`] if
N does not contain `′ as a free address. We define functions fl(N) and bl(N) to denote
sets of free and bound addresses in a computed network term N , respectively. Parame-
ters of receive actions like Cm(x̂)?.N are bound names inN while parameters of send
actions like Cm(x̂)!{`}.N are free names in N . A computed network term is called
closed if its set of free names is empty.

4 Operational semantics of CNT

The operational semantics of CNT is given at two levels (similar to the syntax), in terms
of the operational semantics of protocols and of computed network processes.

Given a protocol, the operational rules of Table 1 induce a labeled transition system,
in which the transitions are of the form P α−→ P ′ with α ∈ {m(û)?,m(û)!}. They
are standard operational rules for basic process algebras. (For explanations about the
protocol operational rules, the reader is referred to [6].)

Table 1. Semantics of protocols

m(x̂)?.P
m(bu)?−−−→ P{û/x̂}

: Pre1

m(û)!.P
m(bu)!−−−→ P

: Pre2

P{û/x̂} α−→ P ′

A(û) α−→ P ′
: Inv , A(x)

def
= P

P1
α−→ P ′1

P1 + P2
α−→ P ′1

: Choice

P1
α−→ P ′1

[u = u]P1, P2
α−→ P ′1

: Then
P2

α−→ P ′2
[u1 = u2]P1, P2

α−→ P ′2
: Else, u1 6= u2

Generally the behavior of a computed network is defined in terms of a set of topolo-
gies; a transition, in which a set of nodes participate in a communication, is possible for
all topologies in which the receiving nodes are connected to the sending node. Therefore
in the operational semantics it is defined for each state which transitions are possible
for which sets of topologies (out of all possible topologies). Network restrictions are
used to define the set of underlying topologies for each transition.

Given a computed network, the operational rules in Table 2 induce a constrained
labeled transition system of transitions N η−→C N ′, where C is a network restriction
defining a set of topologies under which this transition is possible, and η can be a
send or receive. The operational rules of computed networks are shown in Table 2. The
symmetric counterparts of rules Choice ′, Bro, Sync2 and Par have been omitted. In
this table hide(C, `) denotes {`1 > `2|`1 > `2 ∈ C[?/`] ∧ `1 6=?}. Moreover, η[`′/`]
denotes η with all occurrences of ` replaced by `′.

Inter1 denotes that a single node can perform the send actions of a protocol at
this node under any valid topology, and its network address is appended to this action.
Inter2 denotes a single node performing a receive action, under the restriction that the

5

Table 2. Semantics of CNT terms

P
m(bu)!−−−→ P ′

[[P]]`
m(bu)!{`}−−−−−→{} [[P ′]]`

: Inter1

P
m(bu)?−−−→ P ′

[[P]]`
m(bu)?−−−→{`>?} [[P ′]]`

: Inter2

Cη.N η−→C N
: Pre ′

N1
η−→C N ′1

N1 +N2
η−→C N ′1

: Choice ′

N η−→C N ′
N η−→C′ N ′

: Exe, C ⊆ C ′ N1
m(bu)?−−−→C1

N ′1 N2
m(bu)?−−−→C2

N ′2
N1 ‖ N2

m(bu)?−−−→C1∪C2
N ′1 ‖ N ′2

: Recv

N1
m(bu)!{`}−−−−−→C1

N ′1 N2
m(bu)?−−−→C2

N ′2
N1 ‖ N2

m(bu)!{`}−−−−−→C1∪C2[`/?] N ′1 ‖ N ′2
: Bro

N1
η−→C N ′1

N1 ‖ N2
η−→C N ′1 ‖ N2

: Par

N1
m(bu)?−−−→C1

N ′1 N2
m(bu)?−−−→C2

N ′2
N1 | N2

m(bu)?−−−→C1∪C2
N ′1 ‖ N ′2

: Sync1

N1
η−→C N ′1

N1 N2
η−→C N ′1 ‖ N2

: LExe

N1
m(bu)!{`}−−−−−→C1

N ′1 N2
m(bu)?−−−→C2

N ′2
N1 | N2

m(bu)!{`}−−−−−→C1∪C2[`/?] N ′1 ‖ N ′2
: Sync2

N η−→C N ′

(ν`)N η[?/`]−−−→hide(C,`) (ν`)N ′
: Rest

node must be connected to some sender (denoted by ?) is added to the network re-
striction. Pre ′ indicates execution of a prefix action. Choice ′ defines that a computed
network can behave non-deterministically. Exe indicates that if a transition is possible
for C, then it is also possible for any more restrictive C ′. Recv allows to group together
nodes that are ready to receive the same message. Bro indicates the actual synchroniza-
tion in local broadcast among a transmitter and receivers. This transition is valid for
all topologies in which the transmitter is connected (not essentially bidirectly) to the
receivers, which is captured by C1∪C2[`/?]. The communication results in a transition
labeled with m(û)!{`}, so the message m(û)! remains visible to be received by other
computed networks.

We consider a possible transition of the running example introduced in Section 2.
This transition, given below, results from applications of Inter 1, Inter2 and Bro:

[[P (0)]]A ‖ [[Q]]B
req(0)!{A}−−−−−−−→{B>A} [[P (0)]]A ‖ [[rep(0)!.Q]]B

In this transition, node A broadcasts a message req(0) and node B receives it, so that
the parameter x is substituted by 0. This transition is possible for topologies in which
B is connected to A, i.e. the accompanying network restriction is {B > A}.

As the sync operator defines synchronization between two computed networks, its
behavior is defined by Sync1 and Sync2 indicating synchronization on a receive action
(sent by the context) or a communication. LExe defines that in a term composed by
the left execution, the left computed network performs the initial action, and then the
resulting term proceeds as in parallel composition. Par defines locality for a computed

6

network; an event in a computed network may result from this same event in a sub-
network.

Another possible transition of [[P (0)]]A ‖ [[Q]]B , resulting from an application of
Inter1 and Par , is:

[[P (0)]]A ‖ [[Q]]B
req(0)!{A}−−−−−−−→{} [[P (0)]]A ‖ [[Q]]B

In this transition, node A sends but B does not participate in communication. This
transition is possible for all possible topologies (so B may be connected to A, but it has
lost the message), denoted by {}.

Rest makes sure that restrictions over invisible addresses are removed and the ad-
dress of a sender with hidden address is concealed from the external observer by con-
verting its address to ?. By using network restrictions, we can easily define the set of
topologies over visible nodes under which such a transition is possible (by removing
restrictions imposed on hidden nodes).

In the running example, if we hide node A, then the possible transitions when A
broadcasts (resulting from Inter 1,2, Rest , Bro or Par) are:

(νA)[[P (0)]]A‖ [[Q]]B
req(0)!{?}−−−−−−→{B>?} (νA)[[P (0)]]A ‖ [[rep(0)!.Q]]B

(νA)[[P (0)]]A ‖ [[Q]]B
req(0)!{?}−−−−−−→{} (νA)[[P (0)]]A ‖ [[Q]]B.

Here the observer cannot see who has performed the send action.

5 Computed Network Bisimulation

We define the notion of computed network bisimilarity between nodes in a constrained
labeled transition system, based on the notion of branching bisimilarity [13]. Our ob-
server is distributed over locations of nodes with visible addresses equipped with a
sensor to sense signals (and decrypt the signals in wireless communications). If the
strength of a signal at a node is of a predefined threshold, it concludes that the node
has performed a send action. If it cannot conclude the sender of the message, it will
consider it as a send action with an unknown sender. To define our observational equiv-
alence relation, we introduce the following notations:

– ⇒ denotes the reflexive and transitive closure of receive actions which preserve
topologies:
• N ⇒ N ;

• if N m(bu)?−−−→{} N ′ and N ′ ⇒ N ′′, then N ⇒ N ′′.
– η−→C denotes that either η−→C , or η is of the form m(û)!{?} and η[`/?]−−−→C[`/?].

Definition 1. A binary relationR on computed network terms is a branching computed
network simulation, if N1RN2 implies whenever N1

η−→C N ′1:

– η is of the form m(û)?, and N ′1RN2;

– or there are N ′2 and N ′′2 such that N2 ⇒ N ′′2 η−→C N ′2, where N1RN ′′2 and
N ′1RN ′2.

7

R is a branching computed network bisimulation if R and R−1 are branching com-
puted network simulations. Computed networks N1 and N2 are branching computed
network bisimilar, written N1 'b N2, if N1RN2 for some branching computed net-
work bisimulation relationR.

Computed network bisimilarity is not a congruence with respect to the choice oper-
ator. To obtain a congruence, we need to add a root condition.

Definition 2. Two computed networksN1 and N2 are rooted branching computed net-
work bisimilar, written N1 'rb N2,

– if N1
η−→C N ′1, then there is an N ′2 such that N2

η−→C N ′2, and N ′1 'b N ′2;

– if N2
η−→C N ′2, then there is an N ′1 such that N1

η−→C N ′1, and N ′1 'b N ′2.

We proved that branching computed network bisimilarity and rooted branching
computed network bisimilarity are equivalence relations over computed networks. More-
over, the latter constitutes a congruence with respect to CNT. See Appendix A and B.

6 CNT Axiomatization

Our axiomatization for CNT terms is given in Table 3. P1−8 axiomatize protocols de-
ployed at a node. In P4, summation

∑
is used to denote a choice over a finite set, in

this case domainm; summation over an empty set denotes 0. Dead explains that hid-
ing an address in a deadlock computed network has no affect. Con expresses that when
a same behavior happens under two different sets of topologies, and if one set is in-
cluded in another set, then from the point view of an external observer, the behavior
occurs for the superset of topologies. Obs expresses when a send from a hidden ac-
tion has no effect and can be equated to any send from a visible action. Cho1−4 define
idempotency, commutativity, associativity and unit element for the choice operator. The
parallel composition of two computed network is defined in an interleaving semantics
the same as in the process algebra ACP [3] by the axiom Br; in a network composed of
two computed networks N1 and N2, each network may perform a local action, or they
may have communication via local broadcast. LEx 1−3 define axioms for left execution;
in left execution, the left operand performs an action (LEx 1), choice operator can be
distributed over left execution (LEx 2), and when the left operand cannot do any action,
then left execution results into a deadlock (LEx 3). S1 and S2 define commutativity
and distributivity of choice over the sync operator, respectively. S3 defines that when
an argument in a sync composition is a deadlock, then the result of sync composition
is a deadlock. Sync1−5 define synchronization between two computed network terms.
Generally speaking, two terms can be synchronized if they send/receive the same mes-
sage with the same parameter values. T1 and T2 express when a receive action can be
removed. Res1 defines scope extrusion of the restriction operator. Res2,4 define that the
order and number of repeats of the restriction operator have no effect on the behavior
of computed network terms. Res3 defines distribution of restriction over the choice op-
erator. Res5−7 express the effect of the restriction operator: network restrictions over
hidden addresses are removed. In Res5, restriction has no effect on send actions from

8

Table 3. Axiomatization of CNT terms

[[0]]` = 0 P1 [[m(bu)!.P]]` = {}m(bu)!{`}.[[P]]` P2

[[m(bu)?.P]]` = {` >?}m(u)?.[[P]]` P3 [[m(by)?.P]]` =
P
bu∈domainm

[[m(bu)?.P [bu/by]]]` P4

[[P1 + P2]]` = [[P1]]` + [[P2]]` P5 [[A(bu)]]` = [[P [bu/bx]]]`, A(bx)
def
= P P6

[[[u = u]P1, P2]]` = [[P1]]` P7 [[[u1 = u2]P1, P2]]` = [[P2]]` (u1 6= u2) P8

0 = (ν`)0 Dead
C1η.N + C2η.N = C1η.N (C1 ⊆ C2) Con
Cm(bu)!{?}.N + C[`/?]m(bu)!{`}.N = C[`/?]m(bu)!{`}.N Obs

N +N = N Cho1 N1 + (N2 +N3) = (N1 +N2) +N3 Cho3

N1 +N2 = N2 +N1 Cho2 N + 0 = N Cho4

N1 ‖ N2 = N1 N2 +N2 N1 +N1 | N2 Br
Cη.N1 N2 = Cη.(N1 ‖ N2) LEx 1

(N1 +N2) N = N1 N +N2 N LEx 2

0 N = 0 LEx 3

N1 | N2 = N2 | N1 S1

(N1 +N2) | N = N1 | N +N2 | N S2

0 | N = 0 S3

C1m(bu)!{`}.N1 | C2m(bu)?.N2 = C1 ∪ C2[`/?]m(bu)!{`}.(N1 ‖ N2) Sync1

C1m(bu1)!{`}.N1 | C2n(bu2)?.N2 = 0 (m 6= n ∨ bu1 6= bu2) Sync2

C1m(bu)?.N1 | C2m(bu)?.N2 = C1 ∪ C2m(bu)?.(N1 ‖ N2) Sync3

C1m(bu1)?.N1 | C2n(bu2)?.N2 = 0 (m 6= n ∨ bu1 6= bu2) Sync4

C1m(bu1)!.N1{`1} | C2n(bu2)!{`2}.N2 = 0 Sync5

Cη.(C ′m(bu)?.N +N) = Cη.N T1

Cη.({}m(bu)?.(N1 +N2) +N2) = Cη.(N1 +N2) T2

(ν`)N1 ‖ N2 = (ν`)(N1 ‖ N2) (` 6∈ fl(N2)) Res1 (ν`1)(ν`2)N = (ν`2)(ν`1)N Res2

(ν`)(N1 +N2) = (ν`)N1 + (ν`)N2 Res3 (ν`)N = N (` 6∈ fl(N)) Res4

(ν`)Cm(bu)!{`′}.N = hide(C, `)m(bu)!{`′}.(ν`)N (` 6= `′) Res5

(ν`)Cm(bu)!{`}.N = hide(C, `)m(bu)!{?}.(ν`)N Res6

(ν`)Cm(bu)?.N = hide(C, `)m(bu)?.(ν`)N Res7

9

visible addresses, except for removing restrictions over hidden addresses. In Res6, the
address of a hidden sender is converted to ?.

Theorem 1 CNT is a sound axiomatization of the term algebra IP (CNT)/ 'rb, i.e.
for all closed computed network terms N1 and N2, if N1 = N2 then N1 'rb N2.

Theorem 2 CNT is a complete axiomatization for the recursion-free part of the term
algebra IP (CNT)/ 'rb, i.e. for all closed, recursion-free computed network terms N1

and N2, N1 'rb N2 implies N1 = N2.

We prove this theorem in [7] using a restricted graph model which is isomorphic to the
term algebra IP (CNT)/ 'rb, following the approach of [4, 13, 1]. The basic idea in the
completeness proof is to establish a graph rewriting system on restricted graphs, which
is confluent and strongly normalizing (up to restricted graph isomorphism), and for
which every rewrite step preserves rooted branching graph bisimilarity. Then we prove
that a rewrite step can be mapped to a proof step in CNT. By finding an identity relation
between functions relating graphs and CNT terms, completeness can be concluded. The
identity relation can be easily proved for basic terms; a basic term only consists of prefix
and choice operators. Axioms in Table 3 allow us to bring all recursion-free closed CNT
terms in basic terms.

We apply the axioms in Table 3 to the running example.

[[P (0)]]A = {}req(0)!{A}.[[P (0)]]A

[[Q]]B =
P
i=0,1{B >?}req(i)?.[[rep(i)!.Q]]B

[[P (0)]]A ‖ [[Q]]B = [[P (0)]]A [[Q]]B + [[Q]]B [[P (0)]]A + [[P (0)]]A | [[Q]]B

= {}req(0)!{A}.[[P (0)]]A [[Q]]B +
P
i=0,1{B >?}req(i)?.[[rep(i)!.Q]]B [[P (0)]]A

+ {}req(0)!{A}.[[P (0)]]A |
P
i=0,1{B >?}req(i)?.[[rep(i)!.Q]]B

= {}req(0)!{A}.[[P (0)]]A ‖ [[Q]]B +
P
i=0,1{B >?}req(i)?.[[P (0)]]A ‖ [[rep(i)!.Q]]B

+ {B > A}req(0)!{A}.[[P (0)]]A ‖ [[rep(0)!.Q]]B

indicating that the behavior can be: A can broadcast a message but B does not partici-
pate, or B can receive a message sent by its context, or A can broadcast a message and
B receives it for a set of topologies in which B is connected to A.

10

Now let C be a hidden node with a behavior like A:

[[P (0)]]A ‖ [[Q]]B ‖ (νC)[[P (0)]]C = (νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)

= (νC)({}req(0)!{A}.[[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C
+ {}req(0)!{C}.[[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C
+
P
i=0,1{B >?}req(i)?.[[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ [[P (0)]]C

+ {B > A}req(0)!{A}.[[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C
+ {B > C}req(0)!{C}.[[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

= {}req(0)!{A}.(νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)

+ {}req(0)!{?}.(νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)

+
P
i=0,1{B >?}req(i)?.(νC)([[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ [[P (0)]]C)

+ {B > A}req(0)!{A}.(νC)([[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

+ {B >?}req(0)!{?}.(νC)([[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

= {}req(0)!{A}.(νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)

+
P
i=0,1{B >?}req(i)?.(νC)([[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ [[P (0)]]C)

+ {B > A}req(0)!{A}.(νC)([[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

We can derive [[P (0)]]A ‖ [[Q]]B = [[P (0)]]A ‖ [[Q]]B ‖ (νC)[[P (0)]]C , as the following
equality holds:

[[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ (νC)[[P (0)]]C = [[P (0)]]A ‖ [[rep(i)!.Q]]B.

Now consider a protocol called R(x), which can send the request x or receive a
request. When it receives a request y, it either replies by sending the request y, or
ignores it and waits until it receives that request again. The definition of this protocol is

R(x)
def
= req(x)!.R(x) + req(x)!.S(x) + req(y)?.Z(x, y)

S(x)
def
= req(x)!.S(x) + rep(x)!.R(x)

Z(x, y)
def
= req(y)?.Z(x, y) + rep(y)!.R(x) + req(x)!.Z(x, y)

The behavior of a network consisting of a hidden nodeB, with protocolR(0) deployed,
is:

[[Z(0, i)]]B = {B >?}req(i)?.[[Z(0, i)]]B + {}rep(i)!{B}.[[R(0)]]B + {}req(0)!{B}.[[Z(0, i)]]B

(νB)[[R(0)]]B = (νB)({}req(0)!{B}.[[R(0)]]B + {}req(0)!{B}.[[S(0)]]B
+
P
i=0,1{B >?}req(i)?.[[Z(0, i)]]B)

= {}req(0)!{?}.(νB)[[R(0)]]B + {}req(0)!{?}.[[S(0)]]B
+
P
i=0,1{}req(i)?.(νB)[[Z(0, i)]]B

We can derive (νA,B)[[P (0)]]A ‖ [[Q]]B = (νB)[[R(0)]]B , as the following equalities
hold:

(νA,B)([[P (0)]]A ‖ [[rep(0)!.Q]]B) = (νA,B)([[S(0)]]B)

{}req(i)?.(νA,B)([[P (0)]]A ‖ [[rep(i)!.Q]]B) = {}req(i)?.(νB)[[Z(0, i)]]B.

11

For instance, {}req(i)?.(νA,B)([[P (0)]]A ‖ [[rep(i)!.Q]]B) = {}req(i)?.(νB)[[Z(0, i)]]B
holds as:

{}req(i)?.(νB)[[Z(0, i)]]B =

{}req(i)?.({}req(i)?.(νB)[[Z(0, i)]]B + {}rep(i)!{B}.(νB)[[R(0)]]B
+{}req(0)!{?}.(νB)[[Z(0, i)]]B) =

{}req(i)?.((νB)[[Z(0, i)]]B + {}rep(i)!{?}.(νB)[[R(0)]]B
+{}req(0)!{?}.(νB)[[Z(0, i)]]B)

{}req(i)?.(νA,B)([[P (0)]]A ‖ [[rep(i)!.Q]]B)

= {}req(i)?.({}rep(i)!{?}.(νA,B)([[P (0)]]A ‖ [[Q]]B)

+{}req(0)!{?}.(νA,B)([[P (0)]]A ‖ [[rep(i)!.Q]]B))

Thus the distributed protocol deployed at nodes A and B is equal to the protocol
deployed at node B alone. In other words, two hidden networks are equal if their com-
munication capabilities are equal (proving when two recursive specifications are equal
is out of scope of this paper).

7 Conclusion

We have extended Restricted Broadcast Process Theory with new operators to obtain
Computed Network Theory, in which the behaviors are computed with respect to a set
of topologies defined by a network restriction. Next we provided a sound and com-
plete axiomatization of the recursion-free part of the term algebra of computed network
theory, modulo the new notion of rooted branching computed network bisimilarity.

To deal with recursion, we are going to extend the axiomatization with the Recur-
sive Definition Principle, the Recursive Specification Principle, and the Cluster Fair
Abstraction Rule (see e.g. [5]). Applying our equational system to real-world case stud-
ies will be our next step.

References

1. J. C. M. Baeten, J. A. Bergstra, and M. A. Reniers. Discrete time process algebra with silent
step. In Proof, language, and interaction: essays in honour of Robin Milner, pages 535–569.
MIT Press, 2000.

2. Twan Basten. Branching bisimilarity is an equivalence indeed! Inf. Process. Lett., 58(3):141–
147, 1996.

3. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Control, 60(1-3):109–137, 1984.

4. J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction. Theo-
retical Computer Science, 37:21–77, 1985.

5. W.J. Fokkink. Introduction to Process Algebra. Springer, 2000.
6. F. Ghassemi, W.J. Fokkink, and A. Movaghar. Restricted broadcast process theory. In

A. Cerone and S. Gruner, editors, Proc. 6th Conference on Software Engineering and Formal
Methods (SEFM’08), pages 345–354. IEEE, 2008.

12

7. F. Ghassemi, W.J. Fokkink, and A. Movaghar. Equational reasoning on ad hoc net-
works. Technical report, Sharif University of Technology, http://mehr.sharif.edu/ fghas-
semi/Technical%20Report.pdf, 2009.

8. J.C. Godskesen. A calculus for mobile ad hoc networks. In A.L. Murphy and J. Vitek,
editors, Proc. 9th International Conference on Coordination Models and Languages (CO-
ORDINATION’07), volume 4467 of Lecture Notes in Computer Science, pages 132–150.
Springer, 2007.

9. M. Merro. An observational theory for mobile ad hoc networks. In Proc. 23rd Conference
on the Mathematical Foundations of Programming Semantics (MFPS XXIII), volume 173 of
Electronic Notes in Theoretical Computer Science, pages 275–293. Elsevier, 2007.

10. N. Mezzetti and D. Sangiorgi. Towards a calculus for wireless systems. In Proc. 22nd Annual
Conference on Mathematical Foundations of Programming Semantics (MFPS XXII), volume
158 of Electronic Notes in Theoretical Computer Science, pages 331–353. Elsevier, 2006.

11. S. Nanz and C. Hankin. A framework for security analysis of mobile wireless networks.
Theoretical Computer Science, 367(1):203–227, 2006.

12. Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus for mobile ad hoc
networks. In Proc. 10th International Conference on Coordination Models and Languages
(COORDINATION’08), volume 5052 of Lecture Notes in Computer Science, pages 296–314.
Springer, 2008.

13. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation se-
mantics. Journal of the ACM, 43(3):555–600, 1996.

A Branching Computed Network Bisimilarity is an Equivalence

To prove that branching computed network bisimilarity is an equivalence, we exploit
semi-branching computed network bisimilarity, following [2]. In the next definition,

N (η)−→C N ′ denotes either N η−→C N ′, or η = m(û)? and N = N ′.

Definition 3. A binary relation R on computed network terms is a semi-branching
computed network simulation, if N1RN2 implies whenever N1

η−→C N ′1:

– there areN ′2 andN ′′2 such thatN2 ⇒ N ′′2
(η)−→C N ′2, whereN1RN ′′2 andN ′1RN ′2.

R is a semi-branching computed network bisimulation ifR andR−1 are semi-branching
computed network simulations. Computed networks N1 and N2 are semi-branching
computed network bisimilar if N1RN2, for some semi-branching computed network
bisimulation relationR.

Lemma 1 Let N1 and N2 be computed network terms, and R a semi-branching com-
puted network bisimulation such that N1RN2.

– If N1 ⇒ N ′1 then ∃N ′2 · N2 ⇒ N ′2 ∧N ′1RN ′2
– If N2 ⇒ N ′2 then ∃N ′1 · N1 ⇒ N ′1 ∧N ′1RN ′2

Proof. We only give the proof of the first property. The proof is by induction on the
number of⇒ steps from N1 to N ′1:

– Base: Assume that the number of steps equals zero. ThenN1 andN ′1 must be equal.
Since N1RN2 and N2 ⇒ N2, the property is satisfied.

13

– Induction step: Assume N1 ⇒ N ′1 in n steps, for some n ≥ 1. Then there is

an N ′′1 such that N1 ⇒ N ′′1 in n − 1 ⇒ steps, and N ′′1
m(bu)?−−−→{} N ′1. By the

induction hypothesis, there exists anN ′′2 such thatN2 ⇒ N ′′2 andN ′′1 RN ′′2 . Since

N ′′1
m(bu)?−−−→{} N ′1 andR is a semi-branching computed network bisimulation, there

are two cases to consider:
• there is anN ′2 such thatN ′′2 ⇒ N ′2,N ′′1 RN ′2, andN ′1RN ′2. SoN2 ⇒ N ′2 such

that N ′1RN ′2.

• or there are N ′′′2 and N ′2 such that N ′′2 ⇒ N ′′′2
m(bu)?−−−→{} N ′2, where N ′′1 RN ′′′2

andN ′1RN ′2. By definition,N ′′′2
m(bu)?−−−→{} N ′2 yieldsN ′′′2 ⇒ N ′2. Consequently

N2 ⇒ N ′2 such that N ′1RN ′2. ¤

Proposition 2 The relation composition of two semi-branching computed network bisim-
ulations is again a semi-branching computed network bisimulation.

Proof. LetR1 andR2 be semi-branching computed network bisimulations withN1R1N2

and N2R2N3. Let N1
η−→C N ′1. It must be shown that

∃N ′3,N ′′3 : N3 ⇒ N ′′3
(η)−→ N ′3 ∧N1R1 ◦ R2N ′′3 ∧N ′1R1 ◦ R2N ′3

Since N1R1N2, there exist N ′2, N ′′2 such that N2 ⇒ N ′′2
(η)−→C N ′2, N1R1N ′′2 and

N ′1R1N ′2. SinceN2R2N3 andN2 ⇒ N ′′2 , Lemma 1 yields that there is aN ′′3 such that
N3 ⇒ N ′′3 and N ′′2 R2N ′′3 . Two cases can be distinguished:

– η ∈ {m(û)?} and N ′′2 = N ′2. It follows immediately that N3 ⇒ N ′′3
(η)−→C N ′′3 ,

N1R1 ◦ R2N ′′3 and N ′1R1 ◦ R2N ′′3 .

– Assume N ′′2 η−→C N ′2. Since N ′′2 R2N ′′3 and R2 is a semi-branching computed

network bisimulation, there are N ′′′3 and N ′3 such that N ′′3 ⇒ N ′′′3
(η)−→C N ′3,

N ′′2 R2N ′′′3 and N ′2R2N ′3. Since N3 ⇒ N ′′3 , we have N3 ⇒ N ′′′3
(η)−→C N ′3. Fur-

thermore, N1R1N ′′2 R2N ′′′3 and N ′1R1N ′2R2N ′3. ¤

Corollary 3 Semi-branching computed network bisimilarity is an equivalence relation.

Proposition 4 Each largest semi-branching computed network bisimulation is a branch-
ing computed network bisimulation.

Proof. Suppose R is the largest semi-branching computed network bisimulation for
some given constrained labeled transition systems. Let N1RN2, N2 ⇒ N ′2, N1RN ′2
and N ′1RN ′2. We show that R′ = R ∪ {(N ′1,N2)} is a semi-branching computed
network bisimulation.

1. IfN ′1 η−→C N ′′1 , then it follows from (N ′1,N ′2) ∈ R that there areN ′′′2 andN ′′2 such

that N ′2 ⇒ N ′′′2
(η)−→C N ′′2 with (N ′1,N ′′′2), (N ′′1 ,N ′′2) ∈ R. And N2 ⇒ N ′2 yields

N2 ⇒ N ′′′2
(η)−→C N ′′2 .

14

2. IfN2
η−→C N ′′2 , then it follows from (N1,N2) ∈ R that there areN ′′′1 andN ′′1 such

that N1 ⇒ N ′′′1
(η)−→C N ′′1 with (N ′′′1 ,N2), (N ′′1 ,N ′′2) ∈ R. Since (N1,N ′2) ∈

R and N1 ⇒ N ′′′1 , by Lemma 1, there is an N2
′′′ such that N ′2 ⇒ N2

′′′ and

(N ′′′1 ,N2
′′′) ∈ R. Since N ′′′1

(η)−→C N ′′1 , there are N ∗∗2 and N ∗2 such that N2
′′′ ⇒

N ∗∗2
(η)−→C N ∗2 with (N ′′′1 ,N ∗∗2), (N ′′1 ,N ∗2) ∈ R. Since N ′2 ⇒ N2

′′′ and N2
′′′ ⇒

N ∗∗2 , we haveN ′2 ⇒ N ∗∗2 . By assumption, (N ′1,N ′2) ∈ R, so by Lemma 1 there is

anN ∗∗1 such thatN ′1 ⇒ N ∗∗1 and (N ∗∗1 ,N ∗∗2) ∈ R. SinceN ∗∗2
(η)−→C N ∗2 , there are

N ∗∗∗1 and N ∗1 such that N ∗∗1 ⇒ N ∗∗∗1
(η)−→C N ∗1 with (N ∗∗∗1 ,N ∗∗2), (N ∗1 ,N ∗2) ∈

R. And N ′1 ⇒ N ∗∗1 yields N ′1 ⇒ N ∗∗∗1
(η)−→C N ∗1 .

(N ∗∗∗1 ,N ∗∗2) ∈ R ∧ (N ∗∗2 ,N ′′′1) ∈ R−1 ∧ (N ′′′1 ,N2) ∈ R
⇒ (N ∗∗∗1 ,N2) ∈ R ◦ R−1 ◦ R

(N ∗1 ,N ∗2) ∈ R ∧ (N ∗2 ,N ′′1) ∈ R−1 ∧ (N ′′1 ,N ′′2) ∈ R
⇒ (N ∗1 ,N ′′2) ∈ R ◦ R−1 ◦ R

By Proposition 2R◦R−1◦R is a semi-branching computed network bisimulation.
Since R is the largest semi-branching computed network bisimulation, and clearly

R ⊆ R◦R−1◦R, we haveR = R◦R−1◦R. Concluding,N ′1 ⇒ N ∗∗∗1
(η)−→C N ∗1

with (N ∗∗∗1 ,N2), (N ∗1 ,N ′′2) ∈ R.

SoR′ is a semi-branching computed network bisimulation. SinceR is the largest semi-
branching computed network bisimulation,R′ = R.

We will now prove that R is a branching computed network bisimulation. Let
N1RN2, and N1

η−→C N ′1. We only consider the case when η is of the form m(û)?,
because for other cases, the transfer condition of Definition 1 and Definition 3 are the

same. So there are N ′′2 and N ′2 such that N2 ⇒ N ′′2
(m(bu)?)−−−−→C N ′2 with N1RN ′′2 and

N ′1RN ′2. Two cases can be distinguished:

1. N ′′2 = N ′2: Since N1RN2, N1RN ′2, and N ′1RN ′2, we proved above that N ′1RN2.
This agrees with the first case of Definition 1.

2. N ′′2 6= N ′2: This agrees with the second case of Definition 1.

ConsequentlyR is a branching computed network bisimulation. ¤
Since any branching computed network bisimulation is a semi-branching computed

network bisimulation, this yields the following corollary.

Corollary 5 Two computed network terms are related by a branching computed net-
work bisimulation if and only if they are related by a semi-branching computed network
bisimulation.

Corollary 6 Branching computed network bisimilarity is an equivalence relation.

Corollary 7 Rooted branching computed network bisimilarity is an equivalence rela-
tion.

15

B Rooted Branching Computed Network Bisimilarity is a
Congruence

Theorem 8 Rooted branching computed network bisimilarity is a congruence with re-
spect to the protocol and computed network operators.

Proof. We need to prove that:

– [[P1]]` 'rb [[P2]]` implies [[α.P1]]` 'rb [[α.P2]]`
– [[P1]]` 'rb [[P2]]` and [[P ′1]]` 'rb [[P ′2]]` implies [[P1 + P ′1]]` 'rb [[P2 + P ′2]]`
– [[P1]]` 'rb [[P2]]` and [[P ′1]]` 'rb [[P ′2]]` implies [[[u1 = u2]P1, P

′
1]]` 'rb [[[u1 =

u2]P2, P
′
2]]`

– N1 'rb N2 implies Cη.N1 'rb Cη.N2

– N1 'rb N2 and N ′1 'rb N ′2 implies N1 +N ′1 'rb N2 +N ′2
– N1 'rb N2 implies (ν`)N1 'rb (ν`)N2

– N1 'rb N2 and N ′1 'rb N ′2 implies N1 ‖ N ′1 'rb N2 ‖ N ′2
– N1 'rb N2 and N ′1 'rb N ′2 implies N1 N ′1 'rb N2 N ′2
– N1 'rb N2 and N ′1 'rb N ′2 implies N1 | N ′1 'rb N2 | N ′2

Clearly, ifN1 'rb N2 thenN1 'b N2. Consequently the first five cases are straightfor-
ward. We prove the sixth case. To this aim we prove that if N1 'b N2 then (ν`)N1 'b
(ν`)N2. Let N1 'b N2 be witnessed by the branching computed network bisimulation
relation R. We define R′ = {((ν`)N ′1, (ν`)N ′2)|(N ′1,N ′2) ∈ R}. We prove that R′ is

a branching computed network bisimulation relation. Suppose (ν`)N ′1 η′−→C′ (ν`)N ′′1
resulted from the application of Rest on N ′1 η−→C N ′′1 . Since (N ′1,N ′2) ∈ R, there are
two cases; in the first case η is a receive action and (N ′′1 ,N ′2) ∈ R, consequently
((ν`)N ′′1 , (ν`)N ′2) ∈ R′. In second case there are N ′′′2 and N ′′2 such that N ′2 ⇒
N ′′′2

η−→C N ′′2 with (N ′1,N ′′′2), (N ′′1 ,N ′′2) ∈ R. By application of Par , (ν`)N ′2 ⇒
(ν`)N ′′′2 with ((ν`)N ′1, (ν`)N ′′′2) ∈ R′. There are two cases to consider:

– η = η: Consequently (ν`)N ′′′2
η′−→C′ (ν`)N ′′2 .

– η 6= η: in this case η is of the form m(û)!{?}, η′ = η and C ′ = hide(C, `). If
η = η[`/?] then η[?/`] = η and C ′ = hide(C[`/?], `) hold, otherwise η[?/`] = η

and C ′[`′/?] = hide(C[`′/?], `) hold where `′ 6= `. Consequently (ν`)N ′′′2
η′−→C′

(ν`)N ′′2 .

With the above argumentation, there areN ′′′2 andN ′′2 such that (ν`)N ′2 ⇒ (ν`)N ′′′2
η′−→C′

(ν`)N ′′2 with ((ν`)N ′1, (ν`)N ′′′2), ((ν`)N ′′1 , (ν`)N ′′2) ∈ R′.
Likewise we can prove that N1 'rb N2 implies (ν`)N1 'rb (ν`)N2. To this aim

we examine the root condition in Definition 2. Suppose (ν`)N1
η′−→C′ (ν`)N ′1, with the

same argumentation as above, (ν`)N2
η′−→C′ (ν`)N ′2. Since N ′1 'b N ′2, we proved that

(ν`)N ′1 'b (ν`)N ′2. Concluding (ν`)N1 'rb (ν`)N2.
From the three remaining cases, we focus on the most challenging case, which is

the sync operator |; the others are proved in a similar fashion. First we prove that if
N1 'b N2, then N1 ‖ N 'b N2 ‖ N . Let N1 'b N2 be witnessed by the branch-
ing computed network bisimulation relation R. We define R′ = {(N ′1 ‖ N ′,N ′2 ‖

16

N ′)|(N ′1,N ′2) ∈ R, N ′ any computed network term}. We prove that R′ is a branch-
ing computed network bisimulation relation. Suppose N1 ‖ N η−→C∗ N ∗. There are
several cases to consider:

– Suppose η is a send action m(û)! performed by an address `. First let it be per-

formed by N ′1, and N participated in the communication. That is, N ′1
m(bu)!{`}−−−−−→C1

N ′′1 andN m(bu)?−−−→C N ′ give rise to the transitionN ′1 ‖ N
m(bu)!{`}−−−−−→C1∪C[`/?] N ′′1 ‖

N ′. As (N ′1,N ′2) ∈ R and N ′1
m(bu)!{`}−−−−−→C1

N ′′1 , there are N ′′2 and N ′′′2 such that

N ′2 ⇒ N ′′′2
m(bu)!{`′}−−−−−−→C1[`′/`] N ′′2 , where (` =?∨` = `′) and (N ′1,N ′′′2), (N ′′1 ,N ′′2) ∈

R. Hence N ′2 ‖ N ⇒ N ′′′2 ‖ N m(bu)!{`′}−−−−−−→C1∪C[`′/?] N ′′2 ‖ N ′ with (N ′1 ‖
N ,N ′′′2 ‖ N), (N ′′1 ‖ N ′,N ′′2 ‖ N ′) ∈ R′.
Now suppose that the send action was performed by N , and N ′1 participated in

the communication. That is, N ′1
m(bu)?−−−→C1

N ′′1 and N m(bu)!{`}−−−−−→C N ′ give rise to

the transition N ′1 ‖ N
m(bu)!{`}−−−−−→C1[`/?]∪C N ′′1 ‖ N ′. Since (N ′1,N ′2) ∈ R and

N ′1
m(bu)?−−−→C1

N ′′1 , two cases can be considered: either (N ′′1 ,N ′2) ∈ R, or there are

N ′′′2 and N ′′2 such that N ′2 ⇒ N ′′′2
m(bu)?−−−→C1

N ′′2 with (N ′1,N ′′′2), (N ′′1 ,N ′′2) ∈ R.

In the first case, N ′2 ‖ N
m(bu)!{`}−−−−−→C1∪C[`/?] N ′2 ‖ N ′, and (N ′′1 ‖ N ′,N ′2 ‖ N ′) ∈

R. In the second case, N ′2 ‖ N ⇒ N ′′′2 ‖ N
m(bu)!{`}−−−−−→C1∪C[`/?] N ′′2 ‖ N ′, and

(N ′1 ‖ N ,N ′′′2 ‖ N), (N ′′1 ‖ N ′,N ′′2 ‖ N ′) ∈ R′.
The cases where N or N1 does not participate in the communication are straight-
forward.

– The case where η is a receive action m(û)? is also straightforward; it originates
from N1, N , or both.

Likewise we can prove that N1 'rb N2 implies N ‖ N1 'rb N ‖ N2.

Now let N1 'rb N2. To prove N1|N 'rb N2|N , we examine the root condition

from Definition 2. Suppose N1|N m(bu)!{`}−−−−−→C∗ N ∗. There are two cases to consider:

– This send action was performed byN1 at node `, andN participated in the commu-

nication. That is,N1
m(bu)!{`}−−−−−→C1

N ′1 andN m(bu)?−−−→C N ′, so thatN1|N m(bu)!{`}−−−−−→C1∪C[`/?]

N ′1 ‖ N ′. SinceN1 'rb N2, there is anN ′2 such thatN2
m(bu)!{`′}−−−−−−→C1[`′/`] N ′2 with

(` =? ∨ ` = `′) and N ′1 'b N ′2. Then N2|N m(bu)!{`′}−−−−−−→C1∪C[`′/?] N ′2 ‖ N ′. Since
N ′1 'b N ′2, we proved that N ′1 ‖ N ′ 'b N ′2 ‖ N ′.

– The send action was performedN at node `, andN1 participated in the communica-

tion. That is,N1
m(bu)?−−−→C1

N ′1 andN m(bu)!{`}−−−−−→C N , so thatN1|N m(bu)!{`}−−−−−→C1∪C[`/?]

N1 ‖ N ′. Since N1 'rb N2, there is an N ′2 such that N2
m(bu)?−−−→C1

N ′2 with

N ′1 'b N ′2. Then N2|N m(bu)!{`}−−−−−→C1∪C[`/?] N ′2 ‖ N ′. Since N ′1 'b N ′2, we have
N ′1 ‖ N ′ 'b N ′2 ‖ N ′.

Finally, the case whereN1|N m(bu)?−−−→C∗ N ∗ can be easily dealt with. This receive action
was performed by both N1 and N .

Concluding, N1|N 'rb N2|N . Likewise it can be argued that N|N1 'rb N|N2.¤

