
A Finite Basis for Failure Semantics

Wan Fokkink1,2 and Sumit Nain3

1 Vrije Universiteit Amsterdam, Department of Theoretical Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands, wanf@cs.vu.nl

2 CWI, Department of Software Engineering, PO Box 94079, 1090 GB Amsterdam,
The Netherlands

3 BRICS, Department of Computer Science, Aalborg University, Fr. Bajersvej 7E,
9220 Aalborg Ø, Denmark, nain@cs.aau.dk

Abstract. We present a finite ω-complete axiomatization for the pro-
cess algebra BCCSP modulo failure semantics, in case of a finite alpha-
bet. This solves an open question by Groote [12].

1 Introduction

Labeled transition systems model processes by explicitly describing their states
and their transitions from state to state, together with the actions that produce
these transitions. Several notions of behavioral equivalence have been proposed,
with the aim to identify those states of labeled transition systems that afford
the same observations.

Van Glabbeek [10, 11] presented the linear time - branching time spectrum
of behavioral equivalences for finitely branching, concrete, sequential processes.
In this paper we focus on failure semantics [6, 7], which distinguishes a process
by its “failure pairs”, which consist of a finite (partial) trace together with a
set of actions that cannot be executed at the ultimate state of this trace. Other
semantics in the spectrum are based on (bi)simulation and on (decorated) traces.
Figure 1 depicts the linear time - branching time spectrum, where a directed edge
from one equivalence to another means that the source of the edge is finer than
the target.

Van Glabbeek [10, 11] studied the semantics in his spectrum in the setting
of the process algebra BCCSP, which contains only basic process algebraic op-
erators from CCS and CSP, but is sufficiently powerful to express all finite syn-
chronization trees. Van Glabbeek gave (sound and complete) axiomatizations for
semantics in the spectrum, meaning that two closed BCCSP terms (i.e., terms
that do not contain variables) can be equated if and only if they are equivalent.

An axiomatization E is ω-complete when an equation can be derived from E

if (and only if) all its closed instantiations can be derived from E. In theorem
proving applications, it is convenient if an axiomatization has this property,
because it means that proofs by (structural) induction can be avoided in favor
of purely equational reasoning; see [16]. In [14] it was argued that ω-completeness
is desirable for the partial evaluation of programs.

2

completed traces

traces

possible worlds

failure pairs

bisimulation

2-nested simulation

ready simulation

possible futures

ready pairsfailure tracessimulation

ready traces

Fig. 1. The linear time - branching time spectrum

Notable examples of ω-incomplete axiomatizations in the literature are the
λKβη-calculus (see [27]) and the equational theory of CCS [20]. Therefore laws
such as commutativity of parallelism, which are valid in the initial model but
which cannot be derived, are often added to the latter equational theory. For
such extended equational theories, ω-completeness results were presented in the
setting of CCS [22] and ACP [8]. Another negative result, for basic process
algebra with the binary Kleene star, was reported in [2]: semantics no coarser
than completed trace equivalence and no finer than ready simulation equivalence
have no finite (sound and complete) axiomatization, so by default no finite ω-
complete axiomatization.

A number of positive and negative results regarding finite ω-complete ax-
iomatizations for BCCSP occur in the literature. Moller [22] proved that the fi-
nite axiomatization for BCCSP modulo bisimulation equivalence is ω-complete.
Groote [12] presented a similar result for completed trace equivalence, for trace
equivalence (in case of an alphabet with more than one element), and for readi-
ness, failure and failure trace equivalence (in case of an infinite alphabet). Blom,
Fokkink and Nain [4] proved that in case of an infinite alphabet, BCCSP modulo
ready trace equivalence does not have a finite (sound and complete) axiomati-
zation. Aceto, Fokkink and Ingólfsdóttir [3] proved a similar negative result for

3

2-nested simulation equivalence, independent of the cardinality of the alphabet.1

Fokkink and Nain [9] showed that in case of a finite alphabet with more than one
element, BCCSP modulo any semantics no coarser than readiness equivalence
and no finer than possible worlds equivalence does not have a finite ω-complete
axiomatization.

A basis of an equational theory is a set of axioms from which all equations
in the theory can be derived. The existence of a finite basis for an equational
theory is a classic topic of study in universal algebra (see, e.g., [19]), dating back
to Lyndon [17]. Murskĭı [24] proved that “almost all” finite algebras (namely all
quasi-primal ones) are finitely based, while in [23] he presented an example of a
three-element algebra that has no finite basis. Henkin [15] showed that the alge-
bra of naturals with addition and multiplication is finitely based, while Gurevic̆
[13] showed that after adding exponentiation the algebra is no longer finitely
based. McKenzie [18] settled Tarski’s Finite Basis Problem in the negative, by
showing that the general question whether a finite algebra is finitely based is
undecidable.

In this paper we present a finite ω-complete axiomatization for BCCSP mod-
ulo failure semantics. This provides a positive answer to an open question from
[12]. The axiomatization consists of the standard axioms A1-4 for bisimulation,
two standard axioms F1-2 for failure semantics, and a new axiom F3 that re-
quires a finite alphabet. The latter axiom was obtained by considering cover
equations, which aim to obtain a full coverage of the equational theory for (in
this case) failure semantics. The central idea is that it is sufficient to only con-
sider equations of the form at + u ≈ u and x + u ≈ u (where a denotes an
action, x a variable, and t, u BCCSP terms). We classified the sound equations
of this form, which we call cover equations. Now one can proceed in two ways.
Either one can determine an infinite family of cover equations that obstructs a
finite basis; this approach we took in [9] to prove the absence of a finite basis
for a range of process semantics. Or one can determine a finite basis among the
cover equations; this approach is followed in the current paper. We only present
A1-4 and F1-3 together with a proof that this axiomatization is ω-complete, as
the full classification of cover equations is quite involved and not needed for the
proof.

We also present a proof that A1-4 together with F1-2 are ω-complete in case
of an infinite alphabet. This proof is considerably simpler than the proof in [12],
and moreover it is a sub-proof of the proof that A1-4 together with F1-3 are
ω-complete in case of a finite alphabet. Last but not least, our axioms F1-2 are
simplifications with respect to the axioms for failure equivalence as presented in
[11, 12].

Groote [12] also asked whether in case of a finite alphabet, BCCSP modulo
failure trace semantics has a finite ω-complete axiomatization. This question
remains open.

1 In case of an infinite alphabet, occurrences of action names in axioms should be inter-
preted as variables, as else most of the axiomatizations mentioned in this paragraph
would be infinite.

4

2 Preliminaries

Syntax of BCCSP BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over a nonempty set A of actions,
called the alphabet (with typical elements a, b, c). Open terms t, u can moreover
contain variables from a countably infinite set V (with typical elements x, y, z).
A (closed) substitution maps variables in V to (closed) terms. For every term t

and substitution σ, the term σ(t) is obtained by replacing every occurrence of a
variable x in t by σ(x).

Transition rules Intuitively, closed terms represent finite process behaviors,
where 0 does not exhibit any behavior, p + q is the nondeterministic choice
between the behaviors of p and q, and ap executes action a to transform into
p. This intuition is captured, in the style of Plotkin [26], by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a
→ x

x
a
→ x′

x+ y
a
→ x′

y
a
→ y′

x+ y
a
→ y′

The depth of a term t, denoted by depth(t), is the maximal number of transitions
in sequence that t can exhibit. It is defined by: depth(0) = 0, depth(x) = 0,
depth(t+ u) = max{depth(t), depth(u)}, and depth(at) = depth(t) + 1.

For a closed term p, I(p) denotes the set of actions a for which there exists

a transition p
a
→ p′.

Definition 1. A pair (a1 · · · ak, B) with B ⊆ A and k ≥ 0 is a failure pair of

p0 if p0
a1→ p1 · · ·

ak→ pk with I(pk)∩B = ∅. Two closed terms p and q are failure
equivalent, denoted by p ∼F q, if they have exactly the same failure pairs.

Failure equivalence is a congruence for BCCSP(A), meaning that p1 ∼F q1 and
p2 ∼F q2 implies ap1 ∼F aq1 for a ∈ A and p1 + p2 ∼F q1 + q2. This follows from
the fact that the transition rules above are in the failure format from [5].

Axiomatization An (equational) axiomatization E for BCCSP(A) is a collection
of equations t ≈ u. We write E ` t ≈ u if this equation can be derived from
the equations in E using the standard rules of equational logic, and E ` F

if E ` t ≈ u for all t ≈ u ∈ F . An axiomatization E is sound modulo an
equivalence ∼ on closed terms if (E ` p ≈ q)⇒ p ∼ q, and it is complete modulo
∼ if p ∼ q ⇒ (E ` p ≈ q), for all closed terms p and q. An axiomatization E

is ω-complete if for each equation t ≈ u with E ` σ(t) ≈ σ(u) for all closed
substitutions σ, we have E ` t ≈ u.

The core axioms A1-4 below from [20] are sound and complete for BCCSP(A)
modulo bisimulation equivalence [25], which is the finest semantics in the linear

5

time - branching time spectrum (see Figure 1).

A1 x+ y ≈ y + x

A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x

A4 x+ 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-4.
We use summation

∑k

i=1 ti or
∑

i∈{1,...,k} ti, with k ≥ 0, to denote t1+· · ·+tk,

where the empty sum denotes 0. Each process term is of the form
∑k

i=1 aiti +
∑`

j=1 xj . The aiti and xj are called the summands of this process term.
As binding convention, alternative composition and summation bind weaker

than prefixing.

3 A Finite Basis for Failure Semantics

3.1 Cover Equations

The central idea is that for bisimulation semantics, and thus for all process
semantics in the linear time - branching time spectrum, axiom A3 is sound. So
if an equation t ≈ u is sound, then u + t ≈ t and t + u ≈ u are sound too; and
from the last two equations one can derive t ≈ u, using axiom A1. Hence, by A2
and A4, it is sufficient to only consider sound equations of the form at+ u ≈ u

and x+u ≈ u. We call these the cover equations. We present three lemmas that
limit the form that cover equations can have.

Lemma 1. If t ≈ u is sound modulo ∼F, then t and u have the same variable
summands.

Proof. Let x ∈ V be a summand of t. We define σ(x) = adepth(u)+10 for some
a ∈ A, and σ(y) = 0 for y 6= x. Then (adepth(u)+1, A) is a failure pair of σ(t), so
it must be a failure pair of σ(u). This implies that x is a summand of u. 2

Remark 1. Lemma 1 fails for trace equivalence. Namely, let A = {a}. Then
x+ax ≈ ax is sound modulo trace equivalence. Lemma 1 does hold for completed
trace equivalence.

Lemma 2. If at+u+bv ≈ u+bv with a 6= b is sound modulo ∼F, then at+u ≈ u

is sound modulo ∼F.

Proof. Since at+u+ bv ≈ u+ bv is sound modulo ∼F and a 6= b, for each closed
substitution σ:

– I(σ(at+ u)) = I(σ(u)), and
– each failure pair (ab1 · · · bk, B) of aσ(t) is a failure pair of σ(u).

So at+ u ≈ u is sound modulo ∼F. 2

6

Lemma 3. If t + x ≈ u + x is sound modulo ∼F, and x is not a summand of
t+ u, then t ≈ u is sound modulo ∼F.

Proof. Suppose that t ≈ u is not sound modulo ∼F; we prove that then t+ x ≈
u+ x is not sound modulo ∼F.

σ(t) 6∼F σ(u) for some closed substitution σ. Without loss of generality we
can assume that some failure pair (b1 · · · bk, B0) of σ(t) is not a failure pair of
σ(u). The (fixed) set B0 will play a crucial role in the construction below. We
distinguish two cases.

1. k = 0.
Then I(σ(t)) 6= I(σ(u)). Let σ′(x) = 0 and σ′(y) = σ(y) for y 6= x. Since x
is not a summand of t+u, I(σ′(t+x)) = I(σ(t)) and I(σ′(u+x)) = I(σ(u)).
Then I(σ′(t+ x)) 6= I(σ′(u+ x)), and so σ′(t+ x) 6∼F σ′(u+ x).

2. k > 0.
We define a substitution σ′ such that σ′(y) = σ(y) for y 6= x, and σ′(x) has
the same failure pairs (c1 · · · c`, B0) as σ(x) for ` < k, while it does not have
failure pairs (c1 · · · ck, B0). We obtain σ′(x) from σ(x) by replacing subterms
ap at depth k − 1 by 0 if a 6∈ B0, or by aa0 if a ∈ B0. That is,

σ′(x) = chopk−1(σ(x))

where
chopm(0) = 0

chopm(p+ q) = chopm(p) + chopm(q)

chop0(ap) =

{

0 if a 6∈ B0

aa0 if a ∈ B0

chopm+1(ap) = a chopm(p)

We prove the two desired properties concerning the failure pairs of chopm(p),
for m ≥ 0 and closed terms p. Let c1, . . . , cm+1 range over A.

I For ` ≤ m, p and chopm(p) have the same failure pairs (c1 · · · c`, B0).
We use induction on `. Base case: Since the summands of chop0(p) are
aa0 with a ∈ I(p)∩B0, I(p)∩B0 = ∅ if and only if I(chop0(p))∩B0 = ∅.
Inductive case: Let ` + 1 ≤ m. By induction, for closed terms q, q and
chopm−1(q) have the same failure pairs (c2 · · · c`+1, B0). Since m > 0,

the transitions of chopm(p) are chopm(p)
c1→ chopm−1(p

′) for p
c1→ p′.

Hence p and chopm(p) have the same failure pairs (c1 · · · c`+1, B0).
II chopm(p) does not have failure pairs (c1 · · · cm+1, B0).

We use induction on m. Base case: Since the summands of chop0(p) are
aa0 with a ∈ I(p) ∩ B0, chop0(p) does not have a failure pair (c1, B0).
Inductive case: By induction, for closed terms q, chopm(q) does not have
failure pairs (c2 · · · cm+2, B0). Since the transitions of chopm+1(p) are

chopm+1(p)
c1→ chopm(p′) for p

c1→ p′, it follows that chopm+1(p) does
not have failure pairs (c1 · · · cm+2, B0).

We proceed to relate the failure pairs of σ(t0) and σ′(t0), for terms t0.

7

III For ` < k, σ(t0) and σ′(t0) have the same failure pairs (c1 · · · c`, B0).
We apply induction on `. Base case: Clearly, σ(x) ∩ B0 = ∅ if and only
if σ′(x) ∩ B0 = ∅, and moreover σ(y) = σ′(y) for y 6= x. This implies
that I(σ(t0)) ∩B0 = ∅ if and only if I(σ′(t0)) ∩B0 = ∅. Inductive case:
Let ` + 1 < k. We prove for each summand of t0 that applying σ or
σ′ gives rise to the same failure pairs (c1 · · · c`+1, B0). By property I,
σ(x) and σ′(x) have the same failure pairs (c1 · · · c`+1, B0). Moreover,
σ(y) = σ′(y) for y 6= x. Furthermore, by induction, for each summand
c1t1 of t0, σ(t1) and σ′(t1) have the same failure pairs (c2 · · · c`+1, B0);
so σ(c1t1) and σ′(c1t1) have the same failure pairs (c1 · · · c`+1, B0).

IV If t0 does not have the summand x, then σ(t0) and σ′(t0) have the same
failure pairs (c1 · · · ck, B0).
We prove for each summand of t0 that applying σ or σ′ gives rise to the
same failure pairs (c1 · · · ck, B0). σ(y) = σ′(y) for y 6= x. Furthermore,
by property III, for each summand c1t1 of t0, σ(t1) and σ′(t1) have the
same failure pairs (c2 · · · ck, B0); so σ(c1t1) and σ′(c1t1) have the same
failure pairs (c1 · · · ck, B0).

Recall that (b1 · · · bk, B0) is a failure pair of σ(t) and not of σ(u). Since x

is not a summand of t + u, by property IV, (b1 · · · bk, B0) is a failure pair
of σ′(t) and not of σ′(u). Since k > 0, (b1 · · · bk, B0) is a failure pair of
σ′(t + x). By property II, σ′(x) = chopk−1(σ(x)) does not have the failure
pair (b1 · · · bk, B0), so (b1 · · · bk, B0) is not a failure pair of σ′(u+ x). Hence
σ′(t+ x) 6∼F σ′(u+ x).

We conclude that t+ x ≈ u+ x is not sound modulo ∼F. 2

Remark 2. The condition in Lemma 3 that x is not a summand of t + u is
essential. For instance, x+ x ≈ 0+ x is sound modulo ∼F, but x ≈ 0 is not.

Remark 3. There exist equivalences in between bisimulation and partial traces
that are a congruence for BCCSP(A), but for which Lemma 2 and/or Lemma 3
fail. So these lemmas have to be proved for each equivalence in the linear time
- branching time spectrum individually.

3.2 ω-Complete Axiomatizations for Failure Semantics

We present two axioms for failure semantics.2

F1 a(x+ y) + ax+ a(y + z) ≈ ax+ a(y + z)
F2 a(x+ by) + a(x+ by + bz) ≈ a(x+ by + bz)

It is not hard to see that F1 and F2 are sound for BCCSP(A) modulo ∼F.

Theorem 1. [10] A1-4+F1-2 is complete for BCCSP(A) modulo ∼F.

2 Van Glabbeek [11] and Groote [12] presented a somewhat more complicated version
of F2. In [11] it takes the form a(bx+ u) + a(by + v) ≈ a(bx+ by + u) + a(by + v).

8

Theorem 2. [12] If |A| =∞, then A1-4+F1-2 is ω-complete.

In case of a finite alphabet, A1-4+F1-2 is not ω-complete. Let A = {a1, . . . , an}
for some n > 0. Then the following axiom is sound for BCCSP(A) modulo ∼F.

F3n a(x+
∑n

i=1 aizi) + a(x+ y +
∑n

i=1 aizi) ≈ a(x+ y +
∑n

i=1 aizi)

F3n cannot be derived from A1-4+F1-2. This follows from the fact that A1-
4+F1-2 are sound for BCCSP(A) modulo ∼F in case of an infinite alphabet,
while F3n is not.

Theorem 3. If A = {a1, . . . , an}, then A1-4+F1-2+F3n is ω-complete.

The main aim of this paper is to present a proof of Theorem 3. Furthermore, al-
though Theorems 1 and 2 have already been proved in earlier papers, we provide
new proofs here. First of all, since axiom F2 is presented in a simpler form here
than in [11, 12], strictly speaking Theorems 1 and 2 have not been proved in [10,
12], but are immediate corollaries from results in those papers and the fact that
the earlier axiom a(bx+u)+a(by+v) ≈ a(bx+by+u)+a(by+v) can be derived
from A1-4+F1-2. More important, Theorems 1 and 2 follow immediately from
our proof of Theorem 3. So we obtain the new proofs for free, and moreover
they are considerably simpler than the old proofs. In particular, the new proofs
are fully equational, and more direct than the old proofs, which involve term
rewriting and normal forms.

By abuse of notation, we let a finite set X ⊂ V denote the term
∑

x∈X x.
From now on, X,Y (possibly subscripted) denote finite subsets of V .

Proof. We derive all equations t ≈ u that are sound modulo ∼F, by induction
on max{depth(t), depth(u)}. Clearly u+ t ≈ t and t+ u ≈ u are sound too; and
from the last two equations one can derive t ≈ u. So it suffices to derive all sound
equations of the form at+ u ≈ u and x+ u ≈ u. In view of Lemma 1, soundness
of x + u ≈ u implies that x is a summand of u, so that x + u ≈ u follows
from A3. So it suffices to derive all sound equations of the form at + u ≈ u. In
view of Lemmas 2 and 3, we can take u to be of the form

∑

j∈J auj . (Note that
the equations to-be-proved, which are thus obtained from the original equation
t ≈ u, involve terms with a depth ≤ max{depth(t), depth(u)}; so the induction
order is respected.)

Hence, to prove Theorems 1, 2 and 3, it suffices to prove that each equation
at +

∑

j∈J auj ≈
∑

j∈J auj that is sound modulo ∼F can be derived from A1-
4+F1-2 in case of an infinite alphabet, and from A1-4+F1-2+F3n in case of a
finite alphabet with n elements. Consider such a sound equation modulo ∼F:

a(X +
∑

i∈I

biti) +
∑

j∈J

a(Yj +
∑

k∈Kj

ckuk) ≈
∑

j∈J

a(Yj +
∑

k∈Kj

ckuk) (1)

As said before, we apply induction on the depth of the terms in the equation. In
the base case of the induction, I = ∅ and Kj = ∅ for j ∈ J .

9

The main idea of the proof will be to restrict the syntactic form that the
summands in equation (1) can have, by exploiting the fact that it is sound
modulo ∼F. Thus the application of a suitable closed substitution can provide
information on syntactic relations between the summands.

Suppose, towards a contradiction, that X 6⊆ ∪j∈JYj . Let x ∈ X\(∪j∈JYj).
Let σ be a closed substitution with σ(x) = a`0 where ` is greater than the depth
of the terms in (1), and σ(y) = 0 for all y 6= x. Then clearly (a`+1, A) is a failure
pair of σ(a(X +

∑

i∈I biti)), but not of σ(
∑

j∈J a(Yj +
∑

k∈Kj
ckuk)) for j ∈ J ,

contradicting the soundness of (1). Hence X ⊆ ∪j∈JYj .
Suppose, towards a contradiction, that {bi | i ∈ I} 6⊆ ∪j∈J{ck | k ∈ Kj}.

Let b ∈ {bi | i ∈ I}\ ∪j∈J {ck | k ∈ Kj}. Let σ be the closed substitution with
σ(y) = 0 for all y ∈ V . Then clearly (ab, ∅) is a failure pair of σ(a(X+

∑

i∈I biti)),
but not of σ(a(Yj +

∑

k∈Kj
ckuk)) for j ∈ J , contradicting the soundness of (1).

Hence {bi | i ∈ I} ⊆ ∪j∈J{ck | k ∈ Kj}.
Since (1) is sound, clearly

X +
∑

i∈I

biti +
∑

j∈J

(Yj +
∑

k∈Kj

ckuk) ≈
∑

j∈J

(Yj +
∑

k∈Kj

ckuk) (2)

is also sound modulo ∼F. Let Lj = {k ∈ Kj | ck ∈ {bi | i ∈ I}}. By Lemmas 2
and 3, (2) implies that

∑

i∈I

biti +
∑

j∈J

∑

k∈Lj

ckuk ≈
∑

j∈J

∑

k∈Lj

ckuk (3)

is sound modulo ∼F. Hence, by induction on depth (or, in the base case, because
I = ∅ and Lj = ∅ for j ∈ J), it can be derived from A1-4, F1-2 and, in case of a
finite alphabet with n elements, F3n.

We consider two cases.

1. {bi | i ∈ I} 6= A.
Suppose, towards a contradiction, that for all j ∈ J , either Yj 6⊆ X or
{ck | k ∈ Kj} 6⊆ {bi | i ∈ I}. Let c ∈ A\{bi | i ∈ I}. Let σ be the closed
substitution with σ(x) = 0 for x ∈ X and σ(y) = c for y 6∈ X. Then
clearly (a,A\{bi | i ∈ I}) is a failure pair of σ(a(X +

∑

i∈I biti)), but not of
σ(a(Yj +

∑

k∈Kj
ckuk)) for j ∈ J , contradicting the soundness of (1). Hence

there is a j0 ∈ J such that Yj0 ⊆ X and {ck | k ∈ Kj0} ⊆ {bi | i ∈ I}.
We start with the term

∑

j∈J a(Yj +
∑

k∈Kj
ckuk). Since Yj0 ⊆ X ⊆ ∪j∈JYj

and Kj0 = Lj0 , we can use F1 to convert the summand a(Yj0+
∑

k∈Kj0
ckuk)

into a(X+
∑

j∈J

∑

k∈Lj
ckuk). By (3) we convert this into a(X+

∑

i∈I biti+
∑

j∈J

∑

k∈Lj
ckuk). Finally, since ck ∈ {bi | i ∈ I} for k ∈ Lj and j ∈ J , we

can use F2 to convert this into a(X +
∑

i∈I biti). Thus we have derived (1).
2. {bi | i ∈ I} = A. Note that in this case A is finite.

We start with the term
∑

j∈J a(Yj +
∑

k∈Kj
ckuk). Using F1 we can create

the summand a(
∑

j∈J Yj+
∑

j∈J

∑

k∈Kj
ckuk). Note that Kj = Lj for j ∈ J ,

because {bi | i ∈ I} = A. So we can use (3) to convert this summand into

10

a(
∑

j∈J Yj +
∑

i∈I biti +
∑

j∈J

∑

k∈Kj
ckuk). Finally, since X ⊆ ∪j∈JYj and

{bi | i ∈ I} = A, we can use F3|A| to convert this into a(X +
∑

i∈I biti).
Thus we have derived (1).

We note that in case of an infinite alphabet, the axioms F3n were not used in
the derivation of (1). 2

References

1. L. Aceto, W.J. Fokkink, R.J. van Glabbeek, and A. Ingólfsdóttir. Axiomatizing
prefix iteration with silent steps. Information Computation, 127(1):26–40, 1996.

2. L. Aceto, W.J. Fokkink, and A. Ingólfsdóttir. A menagerie of non-finitely based
process semantics over BPA∗: From ready simulation to completed traces. Mathe-
matical Structures in Computer Science, 8(3):193–230, 1998.

3. L. Aceto, W.J. Fokkink, and A. Ingólfsdóttir. 2-nested simulation is not finitely
equationally axiomatizable. In Proceedings 18th Symposium on Theoretical Aspects
of Computer Science (STACS’01), Dresden, LNCS 2010, pp. 39–50. Springer, 2001.

4. S.C.C. Blom, W.J. Fokkink, and S. Nain. On the axiomatizability of ready traces,
ready simulation and failure traces. In Proceedings 30th Colloquium on Automata,
Languages and Programming (ICALP’03), Eindhoven, LNCS. Springer, 2003. To
appear.

5. B. Bloom, W.J. Fokkink, and R.J. van Glabbeek. Precongruence formats for dec-
orated trace semantics. ACM Transactions on Computational Logic, 5(1):26–78,
2004.

6. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560–599, 1984.

7. R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1/2):83–133, 1984.

8. W.J. Fokkink and S.P. Luttik. An ω-complete equational specification of interleav-
ing. In Proceedings 27th Colloquium on Automata, Languages and Programming
(ICALP’00), Geneva, LNCS 1853, pp. 729–743. Springer, 2000.

9. W.J. Fokkink and S. Nain. On finite alphabets and infinite bases: from ready
pairs to possible worlds. In Proceedings 7th Conference on Foundations of Software
Science and Computation Structures (FOSSACS’04), Barcelona, LNCS 2987, pp.
182-194. Springer, 2004.

10. R.J. van Glabbeek. The linear time – branching time spectrum. In Proceedings 1st
Conference on Concurrency Theory (CONCUR’90), Amsterdam, LNCS 458, pp.
278–297. Springer 1990

11. R.J. van Glabbeek. The linear time – branching time spectrum I. The semantics of
concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, eds,
Handbook of Process Algebra, pp. 3–99. Elsevier, 2001.

12. J.F. Groote. A new strategy for proving ω-completeness with applications in
process algebra. In Proceedings 1st Conference on Concurrency Theory (CON-
CUR’90), Amsterdam, LNCS 458, pp. 314–331. Springer, 1990.

13. R. Gurevic̆. Equational theory of positive natural numbers with exponentiation is
not finitely axiomatizable. Annals of Pure and Applied Logic, 49:1–30, 1990.

14. J. Heering. Partial evaluation and ω-completeness of algebraic specifications. The-
oretical Computer Science, 43:149–167, 1986.

11

15. L. Henkin. The logic of equality. American Mathematical Monthly, 84(8):597–612,
1977.

16. A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive equalities, rel-
ative completeness, and ω-completeness. Information and Computation, 84(1):47–
70, 1990.

17. R.C. Lyndon. Identities in two-valued calculi. Transactions of the American Math-
ematical Society, 71:457–465, 1951.

18. R.N. McKenzie. Tarski’s finite basis problem is undecidable. International Journal
of Algebra and Computation, 6(1):49–104, 1996.

19. R.N. McKenzie, G. McNulty, and W. Taylor. Algebras, Varieties, Lattices.
Wadsworth & Brooks/Cole, 1987.

20. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
21. R. Milner. A complete axiomatisation for observational congruence of finite-state

behaviours. Information and Computation, 81(2):227–247, 1989.
22. F. Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1989.
23. V.L. Murskĭı. The existence in the three-valued logic of a closed class with a finite

basis having no finite complete system of identities. Doklady Akademii Nauk SSSR,
163:815–818, 1965. In Russian.

24. V.L. Murskĭı. The existence of a finite basis of identities, and other properties of
“almost all” finite algebras. Problemy Kibernetiki, 30:43–56, 1975. In Russian.

25. D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings 5th
GI (Gesellschaft für Informatik) Conference, Karlsruhe, LNCS 104, pp. 167–183.
Springer, 1981.

26. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-
19, Aarhus University, 1981.

27. G.D. Plotkin. The λ-calculus is ω-incomplete. Journal of Symbolic Logic, 39:313–
317, 1974.

