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Abstract. This paper presents a method for the decomposition of HML
formulae. It can be used to decide whether a process algebra term sat-
isfies a HML formula, by checking whether subterms satisfy certain for-
mulae, obtained by decomposing the original formula. The method uses
the structural operational semantics of the process algebra. The main
contribution of this paper is that an earlier decomposition method from
Larsen [14] for the De Simone format is extended to the more general
ntyft/ntyxt format without lookahead.

1 Introduction

In the past two decades, compositional methods have been developed for check-
ing the validity of assertions in modal logics, used to describe the behaviour of
processes. This means that the truth of an assertion for a composition of pro-
cesses can be deduced from the truth of certain assertions for the components of
the composition. Most research papers in this area focus on a particular process
algebra.

Barringer, Kuiper & Pnueli [3] present (a preliminary version of) a
compositional proof system for concurrent programs, which is based on a rich
temporal logic, including operators from process logic [10] and LTL [20]. For
modelling concurrent programs they define a language including assignment,
conditional and while statements. Interaction between parallel components is
done via shared variables.

In Stirling [22] modal proof systems are developed for subsets of CCS [16]
(with and without silent actions) including only sequential and alternative com-
position, to decide the validity of formulae from Hennessy-Milner Logic (HML)
[11]. In Stirling [23, 24] the results from [22] are extended, creating proof sys-
tems for subsets of CCS and SCCS [18] including asynchronous and synchronous



parallelism and infinite behaviour, using ideas from [3]. In Stirling [25] the pro-
posals in [23, 24] are generalised to be able to cope with the restriction operator.

In Winskel [26] a method is given to decompose formulae with respect
to each operation in SCCS. The language of assertions is HML with infinite
conjunction and disjunction. This decomposition provides the foundations of
Winskel’s proof system for SCCS with modal assertions. In [27], [2] and [1]
processes are described by specification languages inspired by CCS and CSP
[6]. The articles describe compositional methods for deciding whether processes
satisfy assertions from a modal µ-calculus [13].

Larsen [14] developed a more general compositional method for deciding
whether a process satisfies a certain property. Unlike the aforementioned meth-
ods, this method is not oriented towards a particular process algebra, but it is
based on structural operational semantics [19], which provides process algebras
and specification languages with an interpretation. A transition system specifi-
cation, consisting of an algebraic signature and a set of transition rules of the
form premises

conclusion , generates a transition relation between the closed terms over the
signature. An example of a transition rule, for alternative composition, is

x1
a
−→ y

x1 + x2
a
−→ y

meaning for states t1, t2 and u that if state t1 can evolve into state u by the ex-
ecution of action a, then so can state t1 + t2. Larsen showed how to decompose
HML formulae with respect to a transition system specification in the De Si-
mone format [21]. This format was originally put forward to guarantee that the
bisimulation equivalence associated with a transition system specification is a
congruence, meaning that bisimulation equivalence is preserved by all functions
in the signature. Larsen and Liu [15] extended this decomposition method to
HML with recursion (which is equivalent to the modal µ-calculus).

Since modal proof systems for specific process algebras are tailor-made, they
may be more concise than the ones generated by the general decomposition
method of Larsen (e.g., [23–25]). However, in some cases the general decompo-
sition method does produce modal proof systems that are similar in spirit to
those in the literature (e.g., [22, 26]).

In Bloom, Fokkink & van Glabbeek [4] a method is given for decompos-
ing formulae from a fragment of HML with infinite conjunctions, with respect
to terms from any process algebra that has a structural operational semantics in
ntyft/ntyxt format [9] without lookahead. This format is a generalisation of the
De Simone format, and still guarantees that bisimulation equivalence is a con-
gruence. The decomposition method is not presented in its own right, but is used
in the derivation of congruence formats for a range of behavioural equivalences
from van Glabbeek [8].

In this paper the decomposition method from [4] is extended to full HML with
infinite conjunction, again with respect to terms from any process algebra that
has a structural operational semantics in ntyft/ntyxt format without lookahead.



2 Preliminaries

In this section we give the basic notions of structural operational semantics
and Hennessy-Milner Logic (HML) that are needed to define our decomposition
method.

2.1 Structural Operational Semantics

Structural operational semantics [19] provides a framework to give an operational
semantics to programming and specification languages. In particular, because of
its intuitive appeal and flexibility, structural operational semantics has found
considerable application in the study of the semantics of concurrent processes.

Let V be an infinite set of variables. A syntactic object is called closed if it
does not contain any variables from V .

Definition 1 (signature). A signature is a collection Σ of function symbols
f 6∈ V , equipped with a function ar : Σ →

�
. The set � (Σ) of terms over a

signature Σ is defined recursively by:

– V ⊆ � (Σ),
– if f ∈ Σ and t1, . . . , tar(f) ∈ � (Σ), then f(t1, . . . , tar(f)) ∈ � (Σ).

A term c() is abbreviated as c. For t ∈ � (Σ), var(t) denotes the set of variables
that occur in t. T (Σ) is the set of closed terms over Σ, i.e. the terms t ∈ � (Σ)
with var(t) = ∅. A Σ-substitution σ is a partial function from V to � (Σ).
If σ is a Σ-substitution and S is any syntactic object, then σ(S) denotes the
object obtained from S by replacing, for x in the domain of σ, every occurrence
of x in S by σ(x). In that case σ(S) is called a substitution instance of S. A
Σ-substitution is closed if it is a total function from V to T (Σ).

In the remainder, let Σ denote a signature and A a set of actions, satisfying
|Σ| ≤ |V | and |A| ≤ |V |.

Definition 2 (literal). A positive Σ-literal is an expression t
a
−→ t′ and a

negative Σ-literal an expression t 6
a
−→ with t, t′ ∈ � (Σ) and a ∈ A. For t, t′ ∈

� (Σ) and a ∈ A, the literals t
a
−→ t′ and t 6

a
−→ are said to deny each other.

Definition 3 (transition rule). A transition rule over Σ is an expression of
the form H

α
with H a set of Σ-literals (the premises of the the rule) and α a

positive Σ-literal (the conclusion). The left- and right-hand side of α are called
the source and the target of the rule, respectively. A rule H

α
with H = ∅ is also

written α.

Definition 4 (transition system specification). A transition system speci-
fication (TSS) is a pair (Σ,R) with R a collection of transition rules over Σ.

Definition 5 (proof). Let P = (Σ,R) be a TSS. A proof of a transition rule
H
α

from P is a well-founded, upwardly branching tree of which the nodes are
labelled by Σ-literals, and some of the leaves are marked “hypothesis”, such that:



– the root is labelled by α,
– H contains the labels of the hypotheses, and
– if β is the label of a node q which is not an hypothesis and K is the set of
labels of the nodes directly above q, then K

β
is a substitution instance of a

transition rule in R.

If a proof of K
α
from P exists, then K

α
is provable from P , notation P ` K

α
.

Definition 6 (transition relation). A transition relation over Σ is a relation

→ ⊆ T (Σ) × A × T (Σ). We write p
a
−→ q for (p, a, q) ∈ → and p 6

a
−→ for

¬∃q ∈ T (Σ) : p
a
−→ q.

Thus a transition relation over Σ can be regarded as a set of closed positive
Σ-literals (transitions). A TSS with only positive premises specifies a transition
relation in a straightforward way as the set of all provable transitions. But it
is much less trivial to associate a transition relation to a TSS with negative
premises. Several solutions are proposed in Groote [9], Bol & Groote [5]
and van Glabbeek [7]. From the latter we adopt the notion of a well-supported
proof and a complete TSS.

Definition 7 (well-supported proof). Let P = (Σ,R) be a TSS. A well-
supported proof of a closed literal α from P is a well-founded, upwardly branch-
ing tree of which the nodes are labelled by closed Σ-literals, such that:

– the root is labelled by α, and
– if β is the label of a node q and K is the set of labels of the nodes directly
above q, then
1. either K

β
is a closed substitution instance of a transition rule in R

2. or β is negative and for every set N of negative closed literals such that
P ` N

γ
for γ a closed literal denying β, a literal in K denies one in N .

We say α is ws-provable from P , notation P `ws α, if a well-supported proof of
α from P exists.

In [7] it was noted that `ws is consistent, in the sense that no standard TSS
admits well-supported proofs of two literals that deny each other.

Definition 8 (completeness). A TSS P is complete if for any closed literal

p 6
a
−→ either P `ws p

a
−→ p′ for some closed term p′ or P `ws p 6

a
−→.

Now a TSS specifies a transition relation if and only if it is complete. The
specified transition relation is then the set of all ws-provable transitions.

2.2 Hennessy-Milner Logic

A variety of modal logics have been developed to express properties of transition
relations. Modal logic aims to formulate properties of process terms, and to
identify terms that satisfy the same properties. Hennessy & Milner [11] have



defined a modal language, often called Hennessy-Milner Logic (HML), which
characterises the bisimulation equivalence relation on process terms, assuming
that each term has only finitely many outgoing transitions. This assumption can
be discarded if infinite conjunctions are allowed [17, 12].

Definition 9 (Hennessy-Milner Logic). Assume an action set A. The set �
of potential observations or modal formulae is recursively defined by

ϕ ::=
∧

i∈I

ϕi | 〈a〉ϕ | ¬ϕ

with a ∈ A and I some index set.

Definition 10 (satisfaction relation). Let P = (Σ,R) be a TSS. The satis-
faction relation |=P ⊆ T (Σ)× � is defined as follows, with p ∈ T (Σ):

p |=P

∧

i∈I

ϕi iff p |=P ϕi for all i ∈ I

p |=P 〈a〉ϕ iff there is a q ∈ T (Σ) such that P `ws p
a
−→ q and q |=P ϕ

p |=P ¬ϕ iff p 6|=P ϕ

We will use the binary conjunction ϕ1 ∧ ϕ2 as an abbreviation of
∧

i∈{1,2} ϕi,
whereas > is an abbreviation for the empty conjunction. We identify formu-
lae that are logically equivalent using the laws > ∧ ϕ ∼= ϕ,

∧

i∈I(
∧

j∈Ji
ϕj) ∼=

∧

i∈I, j∈Ji
ϕj and ¬¬ϕ ∼= ϕ. This is justified because ϕ ∼= ψ implies p |=P ϕ ⇔

p |=P ψ.

3 Decomposing HML Formulae

In this section we will see how one can decompose HML formulae with respect
to process terms. The TSS defining the transition relation on these terms should
be in ready simulation format [4], allowing only ntyft/ntyxt rules [9] without
lookahead.

Definition 11 (ntyxt,ntyft,nxytt). An ntytt rule is a transition rule in which
the right-hand sides of positive premises are variables that are all distinct, and
that do not occur in the source. An ntytt rule is an ntyxt rule if its source is
a variable, and an ntyft rule if its source contains exactly one function symbol
and no multiple occurrences of variables. An ntytt rule is an nxytt rule if the
left-hand sides of its premises are variables.

Definition 12 (lookahead). A transition rule has no lookahead if the variables
occurring in the right-hand sides of its positive premises do not occur in the left-
hand sides of its premises.

Definition 13 (ready simulation format). A TSS is in ready simulation
format if its transition rules are ntyft or ntyxt rules that have no lookahead.



Definition 14 (free). A variable occurring in a transition rule is free if it does
not occur in the source nor in the right-hand sides of the positive premises of
this rule.

Definition 15 (decent). A transition rule is decent if it has no lookahead and
does not contain free variables.

In Bloom, Fokkink & van Glabbeek [4] for any TSS P in ready simulation
format the collection of P -ruloids is defined. These are decent nxytt rules for
which the following holds:

Theorem 1. [4] Let P be a TSS in ready simulation format. Then P `ws

σ(t)
a
−→ p for t a term, p a closed term and σ a closed substitution, iff there

are a P -ruloid H

t
a
−→u

and a closed substitution σ′ with P `ws σ
′(α) for α ∈ H,

σ′(t) = σ(t) and σ′(u) = p.

Given a TSS P = (Σ,R) in ready simulation format, the following definition
assigns to each term t ∈ � (Σ) and each observation ϕ ∈ � a collection t−1

P (ϕ)
of decomposition mappings ψ : V → � . Each of these mappings ψ ∈ t−1

P (ϕ)
guarantees, given a closed substitution σ, that σ(t) satisfies ϕ if σ(x) satisfies the
formula ψ(x) for all x ∈ var(t). Moreover, whenever for some closed substitution
σ the term σ(t) satisfies ϕ, there must be a decomposition mapping ψ ∈ t−1

P (ϕ)
with σ(x) satisfying ψ(x) for all x ∈ var(t). This is formalised in Theorem 2 and
proven thereafter.

Definition 16. Let P = (Σ,R) be a TSS in ready simulation format. Then
·−1
P : � (Σ)→ ( � → P(V → � )) is defined by:

– ψ ∈ t−1
P (〈a〉ϕ) iff there is a P -ruloid H

t
a
−→u

and a χ ∈ u−1
P (ϕ) and ψ : V → �

is given by

ψ(x) =











χ(x) ∧
∧

(x
b
−→y)∈H

〈b〉χ(y) ∧
∧

(x 6
c
−→)∈H

¬〈c〉> if x ∈ var(t)

> if x 6∈ var(t)

– ψ ∈ t−1
P (

∧

i∈I ϕi) iff

ψ(x) =
∧

i∈I

ψi(x)

where ψi ∈ t
−1
P (ϕi) for i ∈ I.

– ψ ∈ t−1
P (¬ϕ) iff there is a function h : t−1

P (ϕ) → var(t) and ψ : V → � is
given by

ψ(x) =
∧

χ∈h−1(x)

¬χ(x)

When clear from the context, the subscript P will be omitted.



It is not hard to see that if ψ ∈ t−1
P (ϕ) then ψ(x) = > for all x 6∈ var(t).

Theorem 2. Let P = (Σ,R) be a complete TSS in ready simulation format.
Let ϕ ∈ � . For any term t ∈ � (Σ) and closed substitution σ : V → T (Σ) one
has

σ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ)∀x ∈ var(t)
(

σ(x) |= ψ(x)
)

Proof. With induction on the structure of ϕ.

– ϕ = 〈a〉ϕ′

⇒ Suppose σ(t) |= 〈a〉ϕ′. Then by Definition 10 there is a p ∈ T (Σ) with

P `ws σ(t)
a
−→ p and p |= ϕ′. Thus, by Theorem 1 there must be a P -ruloid

H

t
a
−→u

and a closed substitution σ′ with P `ws σ
′(α) for α ∈ H, σ′(t) = σ(t),

i.e. σ′(x) = σ(x) for x ∈ var(t), and σ′(u) = p. Since σ′(u) |= ϕ′, the
induction hypothesis can be applied, and there must be a χ ∈ u−1(ϕ′) such
that σ′(z) |= χ(z) for all z ∈ var(u). Furthermore σ′(z) |= χ(z) = > for all
z 6∈ var(u). Now define ψ as indicated in Definition 16. By definition, ψ ∈

t−1(〈a〉ϕ′). Let x ∈ var(t). For (x
b
−→ y) ∈ H one has P `ws σ

′(x)
b
−→ σ′(y)

and σ′(y) |= χ(y), so σ′(x) |= 〈b〉χ(y). Moreover, for (x 6
c
−→) ∈ H one has

P `ws σ
′(x) 6

c
−→, so the consistency of `ws yields P 6`ws σ

′(x)
c
−→ q for all

q ∈ T (Σ), and thus σ′(x) |= ¬〈c〉>. It follows that σ(x) = σ′(x) |= ψ(x).

⇐ Now suppose that there is a ψ ∈ t−1(〈a〉ϕ′) such that σ(x) |= ψ(x) for
all x ∈ var(t). This means that there is a P -ruloid

{x
ai−→ yi | i ∈ Ix, x ∈ var(t)} ∪ {x 6

bj

−→| j ∈ Jx, x ∈ var(t)}

t
a
−→ u

and a decomposition mapping χ ∈ u−1(ϕ′) such that, for all x ∈ var(t),

σ(x) |= χ(x) ∧
∧

i∈Ix

〈ai〉χ(yi) ∧
∧

j∈Jx

¬〈bj〉>

By Definition 10 it follows that, for x ∈ var(t) and i ∈ Ix, P `ws σ(x)
ai−→ pi

for some pi ∈ T (Σ) with pi |= χ(yi). Moreover, for x ∈ var(t) and j ∈ Jx,

P 6`ws σ(x)
bj

−→ q for all q ∈ T (Σ), so by the completeness of P , P `ws

σ(x) 6
bj

−→. Let σ′ be a closed substitution with σ′(x) = σ(x) for x ∈ var(t)
and σ′(yi) = pi for i ∈ Ix and x ∈ var(t). Here we use that the variables
x and yi are all different. Now σ′(z) |= χ(z) for z ∈ var(u), using that
u contains only variables that occur in t or in the premises of the ruloid.
Thus the induction hypothesis can be applied, and σ′(u) |= ϕ′. Moreover,

P `ws σ
′(x)

ai−→ σ′(yi) for x ∈ var(t) and i ∈ Ix, and P `ws σ
′(x) 6

bj

−→ for

x ∈ var(t) and j ∈ Jx. So, by Theorem 1, P `ws σ
′(t)

a
−→ σ′(u), which

implies σ(t) = σ′(t) |= 〈a〉ϕ′.



– ϕ =
∧

i∈I ϕi
σ(t) |=

∧

i∈I ϕi ⇔ ∀i∈I : σ(t) |= ϕi
⇔ ∀i∈I ∃ψi∈ t

−1(ϕi) ∀x∈var(t) : σ(x) |= ψi(x)
⇔ ∃ψ∈ t−1(

∧

i∈I ϕi) ∀x∈var(t) : σ(x) |= ψ(x).
– ϕ = ¬ϕ′

⇒ Suppose σ(t) |= ¬ϕ′. Then by Definition 10 we have σ(t) 6|= ϕ′. Using
the induction hypothesis, there is no χ ∈ t−1(ϕ′) such that σ(x) |= χ(x)
for all x ∈ var(t). So for all χ ∈ t−1(ϕ′) there is an x ∈ var(t) such that
σ(x) |= ¬χ(x). Let us denote this x as h(χ), so that we obtain a function
h : t−1(ϕ′) → var(t) such that σ(h(χ)) |= ¬χ(h(χ)) for all χ ∈ t−1(ϕ′).
Define ψ ∈ t−1(¬ϕ′) as indicated in Definition 16, using h. Let x ∈ var(t).
If x = h(χ) for some χ ∈ t−1(ϕ′) then σ(x) |= ¬χ(x). Hence, σ(x) |=
∧

χ∈h−1(x) ¬χ(x) = ψ(x).

⇐ Suppose that there is a ψ ∈ t−1(¬ϕ′) such that σ(x) |= ψ(x) for all
x ∈ var(t). By Definition 16 there is a function h : t−1(ϕ′)→ var(t) such that
ψ(x) =

∧

χ∈h−1(x) ¬χ(x) for all x ∈ var(t). So for all x ∈ var(t) and for all

χ ∈ h−1(x) we have that σ(x) |= ¬χ(x). In other words, for all χ ∈ t−1(ϕ′),we
have σ(h(χ)) |= ¬χ(h(χ)). So ¬∃χ ∈ t−1(ϕ′)∀x ∈ var(t)

(

σ(x) |= χ(x)
)

.
Then using the induction hypothesis, we have σ(t) 6|= ϕ′, so σ(t) |= ¬ϕ′.

We give a few examples of the application of Definition 16.

Example 1. Let A = {a, b} and let P = (Σ,R) with Σ consisting of the constant
c and the binary function symbol f and R is:

c
a
−→ c

x1
a
−→ y

f(x1, x2)
b
−→ y

x2
a
−→ y x1 6

b
−→

f(x1, x2)
b
−→ y

This TSS is complete and in ready simulation format. We proceed to com-
pute f(x1, x2)

−1(〈b〉>). There are two P -ruloids with a conclusion of the form

f(x1, x2)
b
−→ , namely x1

a
−→y

f(x1,x2)
b
−→y

and x2

a
−→y x1 6

b
−→

f(x1,x2)
b
−→y

. According to Definition

16, we have f(x1, x2)
−1(〈b〉>) = {ψ1, ψ2} with ψ1 and ψ2 as defined below, using

χ ∈ y−1(>) (so χ(x) = > for all variables x ∈ V ):

ψ1(x1) = χ(x1) ∧ 〈a〉χ(y) = > ∧ 〈a〉> = 〈a〉>
ψ1(x2) = χ(x2) = >
ψ1(x) = > for x 6∈ var(f(x1, x2))

ψ2(x1) = χ(x1) ∧ ¬〈b〉> = > ∧ ¬〈b〉> = ¬〈b〉>
ψ2(x2) = χ(x2) ∧ 〈a〉χ(y) = > ∧ 〈a〉> = 〈a〉>
ψ2(x) = > for x 6∈ var(f(x1, x2))

By Theorem 2 a closed term f(u1, u2) can execute a b if and only if the closed
term u1 can execute an a, or the closed term u1 can not execute a b and the
closed term u2 can execute an a. Looking at the premises, this is what we would
expect.



Example 2. Using the TSS and the mappings ψ1, ψ2 ∈ f(x1, x2)
−1(〈b〉>) from

Example 1, we can compute f(x1, x2)
−1(¬〈b〉>). There are four possible func-

tions h : f(x1, x2)
−1(〈b〉>) → var(f(x1, x2)), yielding four possible definitions

of ψ ∈ f(x1, x2)
−1(¬〈b〉>).

1. If h(ψ1) = h(ψ2) = x1 then

ψ(x1) = ¬ψ1(x1) ∧ ¬ψ2(x1) = ¬〈a〉> ∧ ¬¬〈b〉> = ¬〈a〉> ∧ 〈b〉>
ψ(x2) = >

2. If h(ψ1) = h(ψ2) = x2 then

ψ(x1) = >
ψ(x2) = ¬ψ1(x2) ∧ ¬ψ2(x2) = ¬> ∧ ¬〈a〉>

3. If h(ψ1) = x1 and h(ψ2) = x2 then

ψ(x1) = ¬ψ1(x1) = ¬〈a〉>
ψ(x2) = ¬ψ2(x2) = ¬〈a〉>

4. If h(ψ1) = x2 and h(ψ2) = x1 then

ψ(x1) = ¬ψ2(x1) = ¬¬〈b〉> = 〈b〉>
ψ(x2) = ¬ψ1(x2) = ¬>

By Theorem 2 a closed term f(u1, u2) can not execute a b if and only if (1)
the closed term u1 can execute a b but not an a, or (3) the closed term u1 can
not execute an a and the closed term u2 can not execute an a. Looking at the
premises, this is again what we would expect. The other two possibilities (2) and
(4) do not qualify, since no term can ever satisfy ¬>.

A little less obvious example is the following:

Example 3. Let A = {a, b} and let P = (Σ,R) with Σ consisting of the constant
c and the unary function symbol f and R is:

c
a
−→ c

x
a
−→ y

f(x)
b
−→ y

x
b
−→ y

f(x)
a
−→ f(y)

This TSS is complete and in ready simulation format. We proceed to compute

f(f(x))−1(〈b〉〈a〉>). The only P -ruloid that has a conclusion f(f(x))
b
−→

is x
b
−→y

f(f(x))
b
−→f(y)

. So for each ψ ∈ f(f(x))−1(〈b〉〈a〉>), ψ(x) = χ(x) ∧ 〈b〉χ(y)

with χ ∈ f(y)−1(〈a〉>). The only P -ruloid that has a conclusion f(y)
a
−→

is y
b
−→z

f(y)
a
−→f(z)

. So χ(y) = χ′(y) ∧ 〈b〉χ′(z) with χ′ ∈ f(z)−1(>). Since χ′(y) =

χ′(z) = > we have χ(y) = 〈b〉>. Moreover x 6∈ var(f(y)) implies χ(x) = >.
Hence ψ(x) = 〈b〉〈b〉>.

By Theorem 2 a closed term f(f(u)) can execute a b followed by an a if and
only if the closed term u can execute two consecutive b’s.



The following example shows that in Theorem 2 it is essential that the TSS is
complete. That is, the theorem would fail if we would take the transition relation
induced by a TSS to consist of those transitions for which a well-supported proof
exists.

Example 4. Let A = {a, b} and let P = (Σ,R) with Σ consisting of the constant
c and the unary function symbol f and R is:

x 6
a
−→

f(x)
b
−→ c

c 6
a
−→

c
a
−→ c

This TSS, which is in ready simulation format, is incomplete. For example,
neither P `ws c

a
−→ t for a closed term t nor P `ws c 6

a
−→.

Let us assume that the transition relation induced by this TSS consists of
those transitions for which a well-supported proof exists. Then there is no a-
transition for c and no b-transition for f(c), so c 6|= 〈a〉> and f(c) 6|= 〈b〉>.

The only P -ruloid is x 6
a
−→

f(x)
b
−→c

. Hence Theorem 2 would yield f(c) |= 〈b〉> ⇔

c |= ¬〈a〉> ⇔ c 6|= 〈a〉>. Since this is false, Theorem 2 would fail with respect
to P .
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