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Abstract. This paper studies the (in)equational theory of simulation
preorder and equivalence over the process algebra BCCSP. We prove
that in the presence of a finite alphabet with at least two actions, the
(in)equational theory of BCCSP modulo simulation preorder or equiv-
alence does not have a finite basis. In contrast, in the presence of an
alphabet that is infinite or a singleton, the equational theory for simula-
tion equivalence does have a finite basis.

1 Introduction

Labeled transition systems constitute a fundamental model of concurrent com-
putation which is widely used in light of its flexibility and applicability. They
model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produce them. Several notions
of behavioral equivalence have been proposed, with the aim to identify those
states of labeled transition systems that afford the same observations. The lack
of consensus on what constitutes an appropriate notion of observable behav-
ior for reactive systems has led to a large number of proposals for behavioral
equivalences for concurrent processes.

Van Glabbeek [9] presented the linear time - branching time spectrum of
behavioral preorders and equivalences for finitely branching, concrete, sequential
processes. In this paper we focus on the simulation semantics in this spectrum. A
relation R between processes is a simulation if s0 R s1 and s0

a
→ s′0 implies s1

a
→

s′1 with s
′
0 R s′1. It was introduced by Milner in his seminal work on CCS [21], and

the first branching-time semantics to be used studied in the setting of process
algebra (before the formulation of bisimulation by Park [27] appeared). The
notion of simulation is well studied in the literatures, both from the theoretical
and from the practical point of view, see e.g. [14, 17].
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NNSFC (No. 60233010, No. 60273034, No. 60403014).
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Other semantics in the linear time - branching time spectrum are based
on simulation notions or on decorated traces. Figure 1 depicts the linear time -
branching time spectrum, where a directed edge from one equivalence to another
means that the source of the edge is finer than the target.
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Fig. 1. The linear time - branching time spectrum

Van Glabbeek [9] studied the semantics in his spectrum in the setting of
the process algebra BCCSP, which contains only the basic process algebraic
operators from CCS and CSP, but is sufficiently powerful to express all finite
synchronization trees. Van Glabbeek gave axiomatizations for the semantics in
the spectrum, such that two closed BCCSP terms can be equated by the axioms
if and only if they are equivalent.

Having defined a model of an axiomatization for a process algebra in terms
of labeled transition systems, it is natural to study the connection between the
equations that are valid in the chosen model, and those that are derivable from
the axioms using the rules of equational logic. A key question here is whether
there is a finite axiomatization that is ω-complete. That is, if all closed instances
of an equation can be derived, does this imply that the equation itself can be
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derived from the axiomatization using the rules of equational logic? (We also
refer to an ω-complete axiom system as a basis for the equational theory.) An
ω-complete axiomatization of a behavioral congruence yields a purely syntactic
characterization, independent of labeled transition systems and of the actual de-
tails of the definition of the behavioral congruence. This bridge between syntax
and semantics plays an important role in both the practice and the theory of
process algebras. From the point of view of practice, these proof systems can
be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the basis of purpose-built
axiomatic verification tools like, e.g., PAM [15]. In particular, for theorem prov-
ing applications, it is convenient if an axiomatization is ω-complete, because it
means that proofs by (structural) induction can be avoided in favor of purely
equational reasoning; see [16]. In [12] it was argued that ω-completeness is de-
sirable for the partial evaluation of programs.

The existence of a finite basis for an equational theory is a classic topic of
study in universal algebra (see, e.g., [20]), dating back to Lyndon [18]. Murskĭi
[26] proved that “almost all” finite algebras (namely all quasi-primal ones) are
finitely based, while in [25] he presented an example of a three-element algebra
that has no finite basis. Henkin [13] showed that the algebra of naturals with
addition and multiplication is finitely based, while Gurevic̆ [11] showed that
after adding exponentiation the algebra is no longer finitely based. McKenzie
[19] settled Tarski’s Finite Basis Problem in the negative, by showing that the
general question whether a finite algebra is finitely based is undecidable.

Notable examples of ω-incomplete axiomatizations in the literature are the
λKβη-calculus (see [28]) and the equational theory of CCS [24]. Therefore laws
such as commutativity of parallelism, which are valid in the initial model but
which cannot be derived, are often added to the latter equational theory. For
such extended equational theories, ω-completeness results were presented in the
setting of CCS [23, 3] and ACP [6].

A number of positive and negative results regarding finite ω-complete axiom-
atizations for BCCSP occur in the literature. For a comprehensive survey and
discussion of open problems, the interested reader is referred to [2].

– Infinite alphabets:1 Moller [23] proved that the ground-complete axiomati-
zation for BCCSP modulo bisimulation equivalence is ω-complete. Groote
[10] presented ω-completeness proofs for completed trace equivalence, for
trace equivalence (in the presence of an alphabet A with |A| > 1), and
for readiness and failures equivalence (if |A| = ∞). Van Glabbeek [9] noted
(without proof) that Groote’s technique of inverted substitutions can also be
used to prove that the ground-complete axiomatizations for BCCSP modulo
simulation, ready simulation and failure trace equivalence are ω-complete if
|A| =∞.

1 In case of an infinite alphabet, occurrences of action names in axioms should be
interpreted as variables, as otherwise most of the axiomatizations mentioned in this
paragraph would be infinite.
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Blom, Fokkink and Nain [4] proved that BCCSP modulo ready trace equiv-
alence does not have a finite sound and ground-complete axiomatization if
|A| = ∞. Aceto, Fokkink, van Glabbeek and Ingolfsdottir [1] proved such
a negative result for 2-nested simulation and possible futures equivalence,
independent of the cardinality of A.

– Finite alphabets: Fokkink and Nain [8] obtained an ω-complete axiomatiza-
tion for BCCSP modulo failures equivalence if |A| <∞, by adding one extra
axiom that uses the cardinality of A. In [7] they proved that if 1 < |A| <∞,
BCCSP modulo any semantics in between readiness and possible worlds
equivalence does not have a finite basis. In [5], Chen, Fokkink and Nain
proved that BCCSP modulo completed simulation equivalence does not have
a finite basis if |A| > 1, and that BCCSP modulo ready simulation equiva-
lence does not have a finite basis if 1 < |A| <∞.
If |A| = 1, then the semantics in the linear time - branching time spectrum
from completed trace up to ready simulation equivalence all coincide with
completed trace equivalence, while simulation equivalence coincides with
trace equivalence. And there exists a finite basis for the equational theo-
ries of BCCSP modulo completed trace and trace equivalence if |A| = 1.

In this paper we consider BCCSP modulo simulation semantics. We prove
that if 1 < |A| < ∞, then no finite sound and ground-complete axiomatization
for BCCSP modulo simulation preorder and equivalence is ω-complete. This
solves an open question mentioned by van Glabbeek [9, p78] and Aceto et al.
[2, p355]. To give some intuition for the infinite family of inequations on which
our negative result for simulation preorder is based, we present one of these
inequations, for A = {a, b}:

a(x+ aa0+ ab0+ ba0+ bb0) 4 a(x+ aa0+ ab0+ ba0)
+ a(x+ aa0+ ab0+ bb0)
+ a(x+ aa0+ ba0+ bb0)
+ a(x+ ab0+ ba0+ bb0)
+ a(a(a0+ b0) + b(a0+ b0))

It is sound modulo simulation preorder. Namely, given a closed substitution ρ,
ρ(x)+aa0+ab0+ba0+bb0 is simulated either by a(a0+b0)+b(a0+b0), if ρ(x)
cannot perform a trace of length two, or by for instance ρ(x) + aa0+ ab0+ bb0,
if ρ(x) can perform the trace ba. The equation above can be generalized to a
family of equations of any depth (see Section 3.1) that blocks the existence of a
finite basis. Our proof of this fact is based on what in [2, Section 2.3] is called
a proof-theoretic technique. Given a finite sound axiomatization E, we give a
property of equations that:

– holds true for each instantiation of the axioms in E;
– is preserved by the rules of equational logic; and
– fails for one of the equations in the aforementioned infinite family.

So then this latter sound equation cannot be derived from E.
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In contrast, using the technique of inverted substitutions from [10], we present
a proof of the claim in [9] that if |A| = ∞, then the ground-complete axioma-
tization of BCCSP modulo simulation equivalence is ω-complete. As remarked
above, if |A| = 1, then simulation equivalence coincides with trace equivalence,
and in that case a finite basis also exists.

We note that only one open question regarding ω-complete axiomatizations
for BCCSP modulo the semantics in the linear time - branching time spectrum
remains. Namely, it is unknown whether BCCSP modulo failure trace equiva-
lence has a finite basis if 1 < |A| <∞.

This paper is set up as follows. Section 2 presents basic definitions regard-
ing simulation semantics, the process algebra BCCSP, and (in)equational logic.
Section 3 contains the proofs of the negative results for simulation preorder and
equivalence in case 1 < |A| <∞. Section 4 contains a short proof of the positive
result for simulation equivalence in case |A| =∞.

2 Preliminaries

Simulation semantics: A labeled transition system contains a set of states, with
typical element s, and a set of transitions s

a
→ s′, where a ranges over some set

A of labels.

Definition 1 (Simulation). Assume a labeled transition system. A simulation

is a binary relation R on states such that s0 R s1 and s0
a
→ s′0 imply s1

a
→ s′1

with s′0 R s′1.

We write s0 - s1 if s0 R s1 with R a simulation. Simulation equivalence,
i.e., - ∩ -−1, is denoted by '. If s0 ' s1, we say that s0 is similar to s1.

Syntax of BCCSP: BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions (with typical elements a, b). Open terms t, u, v, w can moreover contain
variables from a countably infinite set V (with typical elements x, y, z). The sets
of closed and open terms are denoted by T(BCCSP) and T(BCCSP), respec-
tively. We let var(t) denote the set of variables occurring in term t.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ, the term σ(t) is obtained by replacing every occurrence of
a variable x in t by σ(x).

Transition rules: Intuitively, closed BCCSP(A)-terms represent finite process
behaviors, where 0 does not exhibit any behavior, p+ q is the nondeterministic
choice between the behaviors of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a
→ x

x
a
→ x′

x+ y
a
→ x′

y
a
→ y′

x+ y
a
→ y′
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Simulation preorder - constitutes a precongruence for closed BCCSP(A)-terms.
That is, p1 - q1 and p2 - q2 implies ap1 - aq1 for a ∈ A and p1 + p2 - q1 + q2.
Likewise, simulation equivalence constitutes a congruence for closed BCCSP(A)-
terms.

Equations and inequations: An axiomatization E is a collection of either in-
equations t 4 u or equations t ≈ u. We write E ` t 4 u or E ` t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. An axiomatization E is sound modulo
- (or ') if for any open terms t, u, from E ` t 4 u (or E ` t ≈ u) it follows that
ρ(t) - ρ(u) (or ρ(t) ' ρ(u)) for all closed substitutions ρ. E is ground-complete
modulo - (or ') if p - q (or p ' q) implies E ` p 4 q (or E ` p ≈ q), for all
closed terms p and q. Finally, E is ω-complete if for any open terms t, u with
E ` ρ(t) 4 ρ(u) (or E ` ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we have
E ` t 4 u (or E ` t ≈ u).

The core axioms A1-4 [22] for BCCSP(A) below are ω-complete, and sound
and ground-complete modulo bisimulation equivalence, which is the finest se-
mantics in the linear time - branching time spectrum (see Figure 1).

A1 x+ y ≈ y + x

A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x

A4 x+ 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-4. A
term x or at is a summand of each term x + u or at + u, respectively. We use
summation

∑

i∈{i1,...,ik}
ti (with k ≥ 0) to denote ti1 + · · ·+ tik , where the empty

sum denotes 0. As binding convention, alternative composition and summation
bind weaker than prefixing.

Open terms: For open terms t and u, we define t - u (or t ' u) if ρ(t) - ρ(u)
(resp. ρ(t) ' ρ(u)) for all closed substitutions ρ.

Since we will be interested in ω-completeness, it is useful to extend the oper-
ational semantics to open terms, by assuming that variables do not exhibit any
behavior.

Definition 2 (Traces). A sequence a1 · · · am ∈ A∗, with m ≥ 0, is a trace of

a term t0 if there exists a sequence of transitions t0
a1→ t1

a2→ · · ·
am→ tm. We write

t0
a1···am→ tm.

The depth of a term t, denoted depth(t), is the length of a longest trace of t.

We prove some basic facts for relations t - u.

Lemma 1.

1. Let |A| > 1. If t - u, and x is a summand of t, then x is also a summand

of u.
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2. If t - u, then depth(t) ≤ depth(u).
3. If t - u, then var(t) ⊆ var(u).

Proof. 1. Let m > depth(u), a 6= b, and ρ the closed substitution with ρ(x) =
amb0 and ρ(y) = 0 for any variable y 6= x. By assumption, x is a summand

of t, so ρ(t)
amb
→ 0. Since t - u, ρ(t) - ρ(u). It follows that ρ(u)

amb
→ p with

0 - p. Since m > depth(u), clearly u
a`

→ y + u′ and ρ(y)
am−`b
→ p, for some

` ≤ depth(u), variable y and term u′. Since ` ≤ depth(u) < m, we have

ρ(y) 6= 0, and hence y = x. Since ρ(y)
am−`b
→ p and a 6= b, it follows that

` = 0. Concluding, x is also a summand of u.
2. Let ρ be the closed substitution with ρ(x) = 0 for all variables x. Since

t 4 u, ρ(t) - ρ(u). From the definition of -, it follows that depth(ρ(t)) ≤
depth(ρ(u)). Hence depth(t) = depth(ρ(t)) ≤ depth(ρ(u)) = depth(u).

3. Suppose, towards a contradiction, that there exists some x ∈ var(t)\var(u).
Let m > depth(u) and ρ the closed substitution with ρ(x) = am0 and ρ(y) =
0 for any variable y 6= x. Since t - u, ρ(t) - ρ(u). Clearly, depth(ρ(t)) ≥
m > depth(ρ(u)), which contradicts (2).

ut

We note that Lemma 1(1) would not hold if |A| = 1. For instance, in that case,
we have ax+ x ' ax.

3 1 < |A| < ∞

In this section we present a proof that the (in)equational theory of BCCSP(A)
modulo simulation semantics does not have a finite basis, provided that 1 <

|A| <∞.

3.1 Simulation Preorder

We start with proving that the inequational theory of BCCSP(A) modulo - does
not have a finite basis. The corner stone for this negative result is the infinite
family of inequations

a(x+ Ψn) 4
∑

θ∈An

a(x+ Ψθn) + aΦn

for n ≥ 0. Here, the Φn are defined inductively as follows:
{

Φ0 = 0
Φn+1 =

∑

b∈A b Φn

Moreover, the Ψn and Ψθn are defined by:

Ψn =
∑

b1···bn∈An

b1 · · · bn0

Ψθn =
∑

b1···bn∈An\{θ}

b1 · · · bn0 for θ ∈ An
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For any p with depth(p) ≤ n, clearly p - Φn. So in particular, Ψn - Φn.
It is not hard to see that the inequations above are sound modulo -. The

idea is that, given a closed substitution ρ, either depth(ρ(x)) < n, in which case

a(ρ(x) + Ψn) is simulated by aΦn. Or ρ(x)
b1···bn→ , in which case a(ρ(x) + Ψn) is

simulated by a(ρ(x) + Ψ b1···bn
n ).

Proposition 1. Let E be a finite axiomatization over BCCSP(A) that is sound
modulo -. Let n > 1 be greater than or equal to the depth of any term in E.

Then from E we cannot derive the inequation

a(x+ Ψn) 4
∑

θ∈An

a(x+ Ψθn) + aΦn

The main part of this section is devoted to proving Proposition 1. We start
with two key lemmas.

Lemma 2. If a(x+ Ψn) - at -
∑

θ∈An a(x+ Ψθn) + aΦn, then at ' a(x+ Ψn).

Proof. Since x + Ψn - t, by Lemma 1(1), x is a summand of t. Then (modulo
A3) t = x+ t′ where x is not a summand of t′. We prove that t′ - Ψn.

Since at -
∑

θ∈An a(x + Ψθn) + aΦn, by Lemma 1(3), var(t′) ⊆ var(t) ⊆
{x}. Assume, towards a contradiction, that x occurs in t′. Consider a substi-
tution σ with σ(x) = an0. Clearly depth(σ(t′)) > depth(σ(x)). By assumption,
aσ(t) -

∑

θ∈An a(σ(x) + Ψ θn) + aΦn. However, depth(aσ(t)) = depth(σ(t)) + 1 ≥

depth(σ(t′)) + 1 > depth(σ(x)) + 1 = n+ 1, while depth(a(σ(x) + Ψ θ
n) + aΦn) =

n + 1. This is a contradiction according to Lemma 1(2). In summary, t′ is a
closed term.

Consider a substitution ρ with ρ(x) = an+10. By assumption, a(ρ(x) + t′) -
∑

θ∈An a(ρ(x) + Ψθn) + aΦn. Clearly, ρ(x) + t′ 6- Φn, so ρ(x) + t′ - ρ(x) + Ψθn for

some θ ∈ An. Hence t′ - an+10 + Ψθn. Since at -
∑

θ∈An a(x + Ψθn) + aΦn, by

Lemma 1(2), depth(t′) ≤ depth(t) ≤ n. So it follows that t′ - an0+ Ψθn - Ψn.
Then at = a(x + t′) - a(x + Ψn). By assumption, a(x + Ψn) - at. Hence

at ' a(x+ Ψn). ut

Lemma 3. Assume that:

– t - u;

– n ≥ depth(u) and n > 1;
– σ(t) has a summand similar to a(x+ Ψn); and
– σ(u) -

∑

θ∈An a(x+ Ψθn) + aΦn.

Then σ(u) has a summand similar to a(x+ Ψn).

Proof. We can write t =
∑

i∈I ti and u =
∑

j∈J uj for some finite index sets I
and J , where each term ti and uj is either a variable or of the form av. According
to the third proviso of this lemma, for some i0 ∈ I, σ(ti0) has a summand similar
to a(x+ Ψn). We proceed by a case analysis on the form of ti0 .
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1. Let ti0 ∈ V . Since t - u and ti0 ∈ V , by Lemma 1(1), u also has ti0 as a
summand. Since σ(ti0) has a summand similar to a(x+Ψn), the same holds
for σ(u).

2. Let ti0 = at′ for some term t′. Then aσ(t′) ' a(x+Ψn). Let {yk | k ∈ K} be
the collection of variable summands of t′, for some finite index set K. Since
σ(t′) ' x+Ψn, by Lemma 1(1), x is a summand of σ(t′). So x is a summand
of σ(yk0

) for some k0 ∈ K. In particular, K 6= ∅.
Since V is countable, there exists an injective function p·q : V → N. Let the
closed substitution ρ be defined by

ρ(z) = apzq·nb0 for all z ∈ V.

t - u implies ρ(t) - ρ(u). Since ρ(t)
a
→ ρ(t′), there is a j0 ∈ J such that

ρ(uj0)
a
→ p with ρ(t′) - p.

The term uj0 cannot be a variable. Namely, in that case we would have

p = apuj0
q·n−1b0. On the other hand, K 6= ∅ implies that ρ(t′)

apykq·nb
→ 0 for

some k ∈ K. Since a 6= b and n > 1, this would clearly contradict ρ(t′) - p.
So it follows that uj0 = au′ for some term u′ with p = ρ(u′).

Consider a trace t′
b1···bm→ z + t′′ for some 0 ≤ m < n, variable z and

term t′′. We will now prove that there exists a trace u′
b1···bm→ z + u′′. Since

ρ(t′) - ρ(u′), there is a trace ρ(u′)
b1···bm→ p′ with ρ(z + t′′) - p′. Assume,

towards a contradiction, that u′
b1···b`→ y + u1 and ρ(y)

b`+1···bm
→ p′ for some

0 ≤ ` < m, variable y and term u1. Since ρ(y) = apyq·nb0, 0 < m − ` < n,

and a 6= b, it follows that p′ cannot simulate the trace ρ(z+t′′)
apzq·nb
→ 0. This

contradicts ρ(z + t′′) - p′. Hence, since ρ(u′)
b1···bm→ p′, we have u′

b1···bm→ u2

for some term u2 with ρ(u2) = p′. By the second proviso of this lemma,

depth(u2) < n. Since moreover ρ(u2) can simulate ρ(z+t′′)
apzq·nb
→ 0, it follows

from the definition of ρ that u2 = z + u′′ for some term u′′. Concluding,

t′
b1···bm→ z + t′′ implies u′

b1···bm→ z + u′′.

Now consider any b1 · · · bn ∈ An. Since Ψn - σ(t′) and (by the second proviso

of this lemma together with Lemma 1(2)) depth(t′) < n, we have t′
b1···bm→

z + t′′ and σ(z)
bm+1···bn
→ for some 0 ≤ m < n, variable z and term t′′. We

proved above that t′
b1···bm→ z + t′′ implies u′

b1···bm→ z + u′′ for some term u′′.

Since σ(z)
bm+1···bn
→ , this yields σ(u′)

b1···bn→ . This holds for all b1 · · · bn ∈ An,
so Ψn - σ(u′).

Furthermore, recall that yk0
is a summand of t′, and that x is a summand

of σ(yk0
). Since t′

λ
→ t′ (where λ denotes the empty trace), we proved above

that u′
λ
→ yk0

+ u′′ for some term u′′. So yk0
is a summand of u′. Hence x is

a summand of σ(u′).
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Concluding, x + Ψn - σ(u′), so a(x + Ψn) - aσ(u′). By the fourth proviso
of this lemma, aσ(u′) - σ(u) -

∑

θ∈An a(x + Ψθn) + aΦn. So by Lemma 2,
aσ(u′) ' a(x+ Ψn).

ut

The following lemma paves the way for the proof of Proposition 1.

Lemma 4. Let E be a finite axiomatization that is sound modulo -. Assume

that:

– E ` v 4 w;
– n > 1 is greater than or equal to the depth of any term in E;
– v has a summand similar to a(x+ Ψn); and
– w -

∑

θ∈An a(x+ Ψθn) + aΦn;

Then w has a summand similar to a(x+ Ψn).

Proof. By induction on the depth of the proof of the inequation v 4 w from
E. We proceed by a case analysis on the last rule used in the derivation of
v 4 w from E. The case of reflexivity is trivial. Below we consider the other
possibilities.

– Case E ` v 4 w because σ(t) = v and σ(u) = w for some t 4 u ∈ E and
substitution σ. The claim follows by Lemma 3.

– Case E ` v 4 w because E ` v 4 t and E ` t 4 w for some term t. By the
soundness of E, t - w -

∑

θ∈An a(x + Ψθn) + aΦn, so by induction, t has a
summand similar to a(x+Ψn). Hence, again by induction, w has a summand
similar to a(x+ Ψn).

– Case E ` v 4 w because v = v′+ v′′ and w = w′+w′′ with E ` v′ 4 w′ and
E ` v′′ 4 w′′. Since v has a summand similar to a(x+Ψn), so does either v′

or v′′. Assume, without loss of generality, that v′ has a summand similar to
a(x+ Ψn). Since w

′ - w -
∑

θ∈An a(x+ Ψθn) + aΦn, by induction, w′ has a
summand similar to a(x+ Ψn).

– Case E ` v 4 w because v = av′ and w = aw′ with E ` v′ 4 w′. Then
av′ ' a(x+ Ψn). Since aw

′ -
∑

θ∈An a(x+ Ψθn) + aΦn, by Lemma 2, aw′ '
a(x+ Ψn).

ut

Now we are in a position to prove Proposition 1.

Proof. Let E be a finite axiomatization over BCCSP(A) that is sound modulo
-. Let n > 1 be greater than or equal to the depth of any term in E.

∑

θ∈An a(x + Ψθn) + aΦn does not contain a summand similar to a(x + Ψn).

So according to Lemma 4, the inequation a(x+ Ψn) 4
∑

θ∈An a(x+ Ψθn) + aΦn,
which is sound modulo -, cannot be derived from E. ut

Theorem 1. The inequational theory of BCCSP(A) modulo - is not finitely

based.

Proof. By Proposition 1, no finite axiomatization over BCCSP(A) that is sound
modulo - proves all inequations that are sound modulo -. ut
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3.2 Simulation Equivalence

Following the same line as in Section 3.1, we can prove that the equational theory
of BCCSP(A) modulo ' does not have a finite basis. The following lemma is the
counterpart of Lemma 4 for simulation equivalence.

Lemma 5. Let E be a finite axiomatization that is sound modulo '. Assume
that:

– E ` v ≈ w;

– n > 1 is greater than or equal to the depth of any term in E;

– v has a summand similar to a(x+ Ψn); and
– w '

∑

θ∈An a(x+ Ψθn) + aΦn;

Then w has a summand similar to a(x+ Ψn).

Proof. Note that Lemma 3 remains true if all occurrences of - are replaced with
', owing to the fact that the relation ' is included in -.

By postulating that for each axiom t ≈ u in E also its symmetric counterpart
t ≈ u is present, one may assume, without loss of generality, that applications
of symmetry happen first in equational derivations.

Now the proof proceeds by a case analysis on the last rule used in the deriva-
tion of v ≈ w from E, similar to the proof of Lemma 4. This case analysis is
omitted here. ut

Proposition 2. Let E be a finite axiomatization over BCCSP(A) that is sound
modulo '. Let n > 1 be greater than or equal to the depth of any term in E.

Then from E we cannot derive the equation

a(x+ Ψn) +
∑

θ∈An

a(x+ Ψθn) + aΦn ≈
∑

θ∈An

a(x+ Ψθn) + aΦn

Proof.
∑

θ∈An a(x+Ψθn)+aΦn does not contain a summand similar to a(x+Ψn).

So according to Lemma 5, the equation a(x+ Ψn) +
∑

θ∈An a(x+ Ψθn) + aΦn ≈
∑

θ∈An a(x+Ψθn)+aΦn, which is sound modulo ', cannot be derived from E. ut

Theorem 2. The equational theory of BCCSP(A) modulo ' is not finitely based.

Proof. By Proposition 2, no finite axiomatization over BCCSP(A) that is sound
modulo ' proves all equations that are sound modulo '. ut

4 Simulation Equivalence with |A| = ∞

In [9], van Glabbeek gave a finite axiomatization that is sound and ground-
complete for BCCSP(A) modulo '. It consists of axioms A1-4 (see Section 2)
together with

S a(x+ y) ≈ a(x+ y) + ax
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Likewise, a finite sound and ground-complete axiomatization for BCCSP(A)
modulo - is obtained by adding x 4 x+ y to A1-4.

It was stated in [9, p78] and in [2, p355] that if A is infinite, then the ax-
iomatization A1-4 + S is ω-complete. In both articles it was claimed that this
could be proved using the technique of inverted substitutions from Groote [10],
but the proof itself was never given.

For the sake of completeness, here we present a proof that A1-4 + S is ω-
complete, using inverted substitutions. This technique works as follows. Consider
an axiomatization E. For each equation t ≈ u of which all closed instances can
be derived from E, one must define a closed substitution ρ and a mapping
R : T(BCCSP)→ T(BCCSP) such that:

(1) E ` R(ρ(t)) ≈ t and E ` R(ρ(u)) ≈ u;

(2) for each function symbol f (with arity n), E ∪ {pi ≈ qi, R(pi) ≈ R(qi) |
i = 1, . . . , n} ` R(f(p1, . . . , pn)) ≈ R(f(q1, . . . , qn)) for all closed terms
p1, . . . , pn, q1, . . . , qn; and

(3) E ` R(σ(v)) ≈ R(σ(w)) for each v ≈ w ∈ E and closed substitution σ.

Then, as proved in [10], E is ω-complete.

Theorem 3. If |A| =∞, then A1-4+S is ω-complete.

Proof. Consider terms t and u. Define ρ : V → T(BCCSP) by ρ(x) = ax0, where
ax is a unique action for x ∈ V that occurs in neither t nor u. Such actions exist
because A is infinite. We define R : T(BCCSP)→ T(BCCSP) as follows:















R(0) = 0
R(ap) = aR(p) if a 6= ax for all x ∈ V

R(axp) = x

R(p1 + p2) = R(p1) +R(p2)

We now check the three properties from [10]:

(1) Since t and u do not contain actions of the form ax, clearly R(ρ(t)) = t and
R(ρ(u)) = u.

(2) Consider the operator + . From R(p1) ≈ R(q1) and R(p2) ≈ R(q2) we
derive R(p1 + p2) = R(p1) +R(p2) ≈ R(q1) +R(q2) = R(q1 + q2).

Consider the prefix operator a . We distinguish two cases.
• a 6= ay for all y ∈ V . Then from R(p1) ≈ R(q1) we derive R(ap1) =
aR(p1) ≈ aR(q1) = R(aq1).

• a = ay for some y ∈ V . Then R(ayp1) = y = R(ayq1).

(3) For A1-4, the proof is trivial. We check the remaining case S. Let σ be a
closed substitution. We consider two cases.
• a = az for some z ∈ V . Then

R(a(σ(x) + σ(y))) = z

≈ z + z

= R(az(σ(x) + σ(y))) +R(azσ(x))
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• a 6= az for all z ∈ V . Then

R(a(σ(x) + σ(y))) = a(R(σ(x)) +R(σ(y)))
≈ a(R(σ(x)) +R(σ(y))) + aR(σ(x))
= R(a(σ(x) + σ(y)) + aσ(x))

This completes the proof. ut

Acknowledgement. We thank Bas Luttik for his constructive comments.
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