Supplemental Document

Optics EXPRESS

Parity-pair-mixing effects in nonlinear spectroscopy of HDO: supplement

MEISSA L. DIOUF,¹ ROLAND TÓBIÁS,² FRANK M. J. COZIJN,¹ EDCEL J. SALUMBIDES,¹ CSABA FÁBRI,² CRISTINA PUZZARINI,³ ATTILA G. CSÁSZÁR,^{2,4} AND WIM UBACHS^{1,*}

¹Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

²Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary

³Dipartimento di Chimica "Giacomo Ciamician", Universitá di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy

⁴attila.csaszar@ttk.elte.hu *w.m.g.ubachs@vu.nl

This supplement published with Optica Publishing Group on 5 December 2022 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.21520698

Parent Article DOI: https://doi.org/10.1364/OE.474525

1

Parity-pair-mixing effects in nonlinear spectroscopy of HDO

MEISSA L. DIOUF,¹ ROLAND TÓBIÁS,² FRANK M. J. COZIJN,¹ EDCEL J. SALUMBIDES,¹ CSABA FÁBRI,² CRISTINA PUZZARINI,³ ATTILA G. CSÁSZÁR,^{2,*} AND WIM UBACHS^{1,*}

¹ Department of Physics and Astronomy, LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

² Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary

³ Dipartimento di Chimica "Giacomo Ciamician," Universitá di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy

*w.m.g.ubachs@vu.nl, attila.csaszar@ttk.elte.hu

2

Figure S1. Two cases of the nonuplet model utilized in this study. The symbols of this figure are defined in the caption to Fig. 7 (see the main text). The only exception, *s*, is specified as +1 (-1) if the parities of L_1 and U_1 are identical (different). Cases A and B correspond to those cases when s = -1 and s = +1, respectively. Note that $L_2 \leftarrow L_1$ and $U_2 \leftarrow U_1$ are also dipole-allowed (a-type) transitions, but they are far off-resonant with our laser frequency and thus not displayed.

S1. Expressions for the relative positions of lines in Fig. S1

Upon a close look at Fig. S1, a set of constraints can be formulated among the nine resonance frequencies by using the principle of combination differences. Neglecting " (K_c) " from the symbols of the two K_c splittings to improve readability, one can deduce the following equations valid for the two cases shown on Fig. S1:

$$C_i = c_0 + (-1)^i \Delta_U / 2, \tag{S1}$$

$$c_i = c_0 + (-1)^{i+1} \Delta_L / 2, \tag{S2}$$

$$a_i = C_i + (-1)^i s \Delta_L / 2 = c_0 + (-1)^i \left[\Delta_U + s \Delta_L \right] / 2, \tag{S3}$$

$$f_i = a_{3-i} + (-1)^i \Delta_U = c_0 + (-1)^i \left[\Delta_U - s \Delta_L \right] / 2, \tag{S4}$$

where $X \in \{L, U\}$, $i \in \{1, 2\}$, and *s* is +1 or -1, depending on whether L_1 and U_1 have identical or opposite parity, respectively. In Eqs. (S3) and (S4), the expressions for C_i and a_i , respectively, are taken into account. It is clear from Eqs. (S1)–(S4) that the resonance frequencies C_i , c_i , a_i , and f_i can be calculated from the two splittings and the c_0 frequency. Furthermore, the expressions

$$\Delta C_i \equiv C_i - c_0 = (-1)^i \Delta_U / 2, \tag{S5}$$

$$\Delta c_i \equiv c_i - c_0 = (-1)^{i+1} \Delta_L / 2, \tag{S6}$$

$$\Delta a_i \equiv a_i - c_0 = (-1)^i \left[\Delta_U + s \Delta_L \right] / 2, \tag{S7}$$

$$\Delta f_i \equiv f_i - c_0 = (-1)^i \left[\Delta_U - s \Delta_L \right] / 2, \tag{S8}$$

imply that the frequencies relative to c_0 depend only on the splittings Δ_L and Δ_U . The possible frequency orderings of the nonuplet lines are collected in Table S1.

Table S1. All possible frequency orderings of the nonuplet lines defined in Fig. S1.^a

Case	Subcase	Frequency ordering
	$\Delta L > 2\Delta U$	$f_1 \le c_2 \le a_2 < C_1 \le c_0 \le C_2 < a_1 \le c_1 \le f_2$
s = -1	$2\Delta U > \Delta L \ge \Delta U$	$f_1 \le c_2 \le C_1 \le a_2 \le c_0 \le a_1 \le C_2 \le c_1 \le f_2$
[Case A]	$\Delta_U > \Delta_L \ge \Delta_U/2$	$f_1 < C_1 < c_2 < a_1 < c_0 < a_2 < c_1 < C_2 < f_2$
	$\Delta U/2 > \Delta L$	$f_1 \le C_1 \le a_1 < c_2 \le c_0 \le c_1 < a_2 \le C_2 \le f_2$
	$\Delta L > 2 \Delta U$	$a_1 \le c_2 \le f_2 < C_1 \le c_0 \le C_2 < f_1 \le c_1 \le a_2$
s = 1	$2\Delta_U > \Delta_L \ge \Delta_U$	$a_1 \le c_2 \le C_1 \le f_2 \le c_0 \le f_1 \le C_2 \le c_1 \le a_2$
[Case B]	$\varDelta_U > \varDelta_L \ge \varDelta_U/2$	$a_1 < C_1 < c_2 < f_1 < c_0 < f_2 < c_1 < C_2 < a_2$
	$\Delta_U/2 > \Delta_L$	$a_1 \le C_1 \le f_1 < c_2 \le c_0 \le c_1 < f_2 \le C_2 \le a_2$

^{*a*} The symbols of this table are specified in the caption to Fig. 7 (see the main text) and Fig. S1. Cases A and B (see the first column) correspond to the two cases of Fig. S1. The second column contains the subcases, that is the relations between Δ_U and Δ_L , where Δ_X is an abbreviated form of the $\Delta_X(K_c)$ splitting. The third column provides the frequency orderings related to the individual (case,subcase) pairs.

S2. Resonances around the $(002)3_{2,1/2} \leftarrow (000)3_{3,0/1}$ doublet

Figure S2 exhibits the resonances around the $(002)3_{2,1/2} \leftarrow (000)3_{3,0/1}$ doublet of HD¹⁶O. First, only the a-type lines, a_1 and a_2 , were probed, for which fully symmetric Lamb dips were obtained. Nevertheless, a significant deviation, 91 kHz, was found for the $(000)3_{3,0/1}$ splitting, whose experimental value relies on a_1 and a_2 . Assuming that this large deviation is caused by parity-pair mixing, an attempt was made to identify the f-type analogues of a_1 and a_2 , as well. Despite their low intensity, which is due to the relatively high, but still sub-GHz-level $(000)3_{3,0/1}$ splitting, these f-type lines, f_1 and f_2 , were indeed measurable *via* a 30-hour averaging of multiple scans [see panels (c) and (d)]. Although the appearance of further resonances at the sides of f_1 and f_2 is less clear for the moment, the results of Fig. S2 corroborate our assumption that the frequency shifts of a_1 and a_2 are associated with the AC-Stark interaction of the $(000)3_{3,0/1}$ pair. The cross-over resonances, missing from the energy-level scheme of Fig. S2, are not investigated in this study.

Figure S2. Four resonances involving the $(002)3_{2,1/2}$ and $(000)3_{3,0/1}$ parity pairs of HD¹⁶O. The line centers, corresponding to zero detunings, are at 214771 692 247 kHz [panel (a)] and 214 833 573 271 kHz [panel (b)]. Panels (a)–(b) and (c)–(d) exhibit dipole-allowed (a-type) and dipole-forbidden (f-type) transitions, respectively. The f_1 and f_2 resonances are offset by \pm 824.66 MHz from a_1 and a_2 , respectively [see also panel (e)]. P = intra-cavity power.