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The elements of the fourth rank non-linear susceptibility tensor x ¢’ are considered for four-wave-mixing processes in a gaseous
medium. In case of an isotropic medium 21 elements are non-zero, but only 3 are independent. Analytical expressions are derived
for rotational linestrengths corresponding to these independent elements in multiple resonant four-wave mixing (FWM). These
analytical expressions are appropriate for diatomic and symmetric-top molecules. The application of the model to resonant CARS
processes observed in gaseous Br, and I, is illustrated. The effect of different polarization configurations of the incoming waves
on the polarization of the generated anti-Stokes wave was investigated experimentaily as well as theoretically for one of the reso-
nant CARS processes in I,. The rotational linestrength expressions have a general validity and may also be used in the case of non-
saturated degenerate four-wave mixing.

1. Introduction

Over the last two decades coherent light scattering techniques have been developed into versatile tools for
non-intrusive measurements in hostile environments. The method of coherent anti-Stokes Raman spectroscopy
(CARS) is now commonly used for temperature and concentration measurements in the gas phase [1,2]. How-
ever for the detection of minor species, such as free radicals present as intermediates in combustion processes,
the conventional CARS-technique is not suitable. Interference with non-resonant background signals hampers
sensitive detection of diluted species. This drawback was overcome by using the complicated technique of three-
color resonance-enhanced CARS [3]. Recently the analogous but experimentally simpler method of degenerate
four-wave mixing (DFWM) [4-6] was introduced as a sensitive method for the detection of trace molecules in
flames. For quantitative analysis of the recorded spectra in terms of temperatures and concentrations a theory
for the calculation of rotational linestrengths in case of multiply resonant four-wave mixing (FWM) processes
is required. Abrams and Lind [7] developed a theory for DFWM that is particularly applicable in cases of
saturation. A theory of linestrengths based on an evaluation of the third order non-linear susceptibility x*
tensor, involving coherent sums over four-photon matrix elements was developed by Attal et al. [8] and by
Aben et al. [9].

In this paper we present a formalism for the calculation of rotational linestrengths that is applicable to all
possible combinations of polarizations of the incident and generated waves. Analytical expressions of rotational
linestrengths are derived for the three independent y 3’ elements that describe threefold-resonant FWM in iso-
tropic gaseous media. The elements of y¢3) are inspected for a variety of multiply resonant FWM processes in
gaseous media including resonances on bound and continuum states.

Experimentally we investigated threefold-resonant FWM processes in isotropic I, and Br, vapours. For var-
ious types of resonant CARS processes the calculations of linestrengths were compared with observations and
good agreement is found. Apart from the effects of arbitrary polarization orientations for the incident beams
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also the polarization of the generated wave was investigated. It is shown that in a particular geometrical setup
the polarization of the anti-Stokes waveﬁepends on the specific FWM process and the resonances involved.

The theory to calculate linestrengths is not restricted to the resonance CARS processes in diatomics such as I,
and Br,, but also holds for various FWM processes in polyatomic symmetric-top molecules. Moreover it is
capable of calculating linestrengths for DFWM processes as well.

2. Theoretical framework
2.1. Definition of the ™ tensor

In a FWM process a wave is generated with frequency w= T w, * w, 1 @, from incoming waves with frequen-
cies w,, w, and w respectively. The intensity of the generated FWM wave is proportional to the absolute square
of the induced third-order non-linear polarization [10,11]:

(@) |PCHw) |*= 1 () o EppEus |? (1)

in which %3 (@) is the third-order non-linear susceptibility tensor of rank four. The fields E,, represent mono-
chromatic plane waves with frequencies w,. The ¥(® tensor represents the characteristic response of the me-
dium. The y*? elements are independent of the field components; however the polarizations of the fields deter-
mine which elements of ¥ are needed to describe the FWM response. The Cartesian components of the non-
linear induced polarization at w are given by

S KO (—w; 01, @3, @) (Eay)o(Ean) e (Ean)s - )
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The ordering of the frequency terms and polarization indices (g, 7, ») is arbitrary as long as the pairs (o, @)
etc. are considered together (see section 2.3). n is the number of incident frequencies. In the most general case
n=3,

In FWM each one of the 81 x3), tensor elements consists of 48 terms of the following form [12]:

(3“3" —rnr =N (0) <aliua{b><biﬁrlc><ctﬂvid><d1ﬂpla> .
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(3)

Here la), 1), |c)> and |d) are rovibronic molecular states and g, is the component of the transition dipole
moment vector in the laboratory frame along the Cartesian o axis. e, is the transition frequency from state |i)
to |j>. Resonances are damped by the relaxation parameter I',. p52’ represents the relative population distri-
bution over initially populated states |a) of the system. Only contributions from FWM processes probing a
population density Np{2 in the electronic and vibrational ground state |a) are considered.

In threefold-resonant CARS the intensity at a particular resonance in the spectrum is dominated by one or
just a few terms in y ). Moreover, at a specific wavelength combination only a few well-defined states [a), |b),
lc> and |d) are involved [ 13]. At resonance the summation over all non-degenerate states then can be dropped.
However, the summation over the degenerate M, states has to be maintained. The three so-called resonance
denominators of eq. (3) determine at which combinations of frequencies resonance-enhancement of FWM
occurs in the medium. The rate of enhancement is then governed by the values of the three damping factors I,
In the present analysis it is assumed that for a specific FWM process the effect of the I's is similar for all spectral
components, i.c. independent of rotational quantum numbers. In that case the product of resonance denomi-
nators in ¥ has a certain, but constant value and may be dropped from the considerations on rotational line-
strengths. This leaves the following expression to be evaluated:
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(-0, 0, 0y, 03)c Y Lalp|by<blp.led{clpldy<dIp,la) . (4)
Ma, Mp,Mc, M4

In a previous study [9] the procedure for further evaluation of this equation was described in detail. At this

point we will summarize this procedure and discuss the implications of the results in a more general way.

2.2. Definition of the linestrength factors S34

For a calculation of linestrengths in threefold-resonant FWM a coherent sum over the product of the four
transition matrix elements of eq. (4) needs to be evaluated. Applying the Born—Oppenheimer approximation
the wavefunction of state |a) can be separated in an electronic, a vibrational and a rotational part:

|a>=‘¢§lemn>|¢\l,lib'>|JaQaMa> . (5)

Here J is the total angular momentum, Q is its projection onto the internuclear axis and M is the projection of J
on the space fixed z axis. 2 also equals the projection of the electronic angular momentum onto the internuclear
axis [14]. It should be noted that it is not straightforward to apply eq. (5) to all open-shell diatomic molecules.
For diatomics in a singlet state the rotational part may be written as |J,4,M,)> with 4, the projection of the
electronic orbital angular momentum onto the internuclear axis; in this case all following derivations can be
applied directly. This also holds for Hunds case (c) molecules that are commonly written in a {J,2,M,) basis.
In other cases, such as e.g. doublet states, more complicated wavefunctions must be invoked [8]. The corre-
sponding quantum numbers in a symmetric top are J, K and M respectively where K is the projection of J onto
the symmetry axis and K= —J, —J+1, ..., J. The set of K values is therefore usually much larger than that of 2
values.

The dipole vector components in the space fixed frame (u,, 1y, p1.) are rewritten in spherical components (4,
lo, i_1). To characterize the system a transformation to the molecular frame using Euler angles (e, 8, 7) is
required. The dipole transition matrix elements between arbitrary states |a> and |b) may then be factorized in
terms of a pure electronic dipole transition matrix element, a vibrational overlap factor and a rotational part
that depends on the polarization components of the light:

. ,2] +1
<Ja9aMa l Hs IJbeMb> = Z , (— 1 )m ea—mﬂgg—QbFab _Z—jb_‘_—laMa—-m—Mb,Oaﬂa—m’—f)b,O

X<Jb7 -Mb’ 1, —m|Ja’ _Mb'—m><']b’ _gb’ 1’ '—m,|Ja5 '_Qb—ml> . (6)

Here the last two factors written in brackets denote Clebsch—Gordan coefficients in the notation of Zare [14].
The vibrational overlap factor is denoted by F,,, u2~* is the electronic transition matrix element and e,
denotes the projection of the Cartesian o axis on the spherical m axis. Evaluation of the product of four dipole
transition matrix elements, each written in the form of eq. (6) and inserted in eq. (4), then yields a product of
four electronic dipole transition moments, four vibrational overlap factors and a rotational linestrength factor
denoted by S%. Consequently the third-order non-linear susceptibility depends on this linestrength factor in
the following way:

X3 (—w; 0y, Wy, W3) oc pE =PRSSy Ga= % F o Fy FoyFy 1;1: e” e e’ e, Sim . )]
IKim

By careful bookkeeping and summing over Clebsch~Gordan coefficients [9] an expression for the rotational

linestrength factor follows:

ka’}‘,,‘f =QabCJSjk1m . (83)

Here £29¢4 is the molecular prefactor:
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Qabcd= <Jb’ _'Qb, 1’ Qb_'Qa |Jaa _'Qa><']ca _Qca la Qc"'Qb |Jb’ _‘Qb>
X<Jda _'Qdy la 'Qd_‘Qc'Jca _Qc><-,aa _Qa: l; Qa_‘lest _‘Qd> s (8b)
and sy, the reduced linestrength factor:

jklm Z 5]+k+l+m0f(M )<Jb’] Ma’ la _lea: '_Ma><Jc’ k+j_Ma, 19 _kl']byj_Ma>

X Iy ltk+j—M,, 1, —1|J, j+k=—M,>{(Jy, —M,, |, —m|Jy, j+k+1-M,)> . (8¢c)

The superscripts in S5 denote the electronic orbital momentum of states |a), |b), |¢) and |d), while the
subcripts J, k, / and m represent the spherical components related to the Cartesian components g, 7, » and p of
the polarization of the light. Whenever the superscripts are not important they are left out of the notation. The
molecular prefactor £2%? depends only on the specific electronic angular momenta of the states involved (£2,,
£, ., £2;) and can easily be calculated. The reduced linestrength factor s,,,, depends on the polarization con-
figuration through j, &, / and m and involves a summation over degenerate M, values. The summation over M,
states is weighted by a function f(M,) to account for possible non-isotropic distributions of J vectors. We note
that the reduced linestrength factor is independent of the sequences of electronic angular momenta and may
therefore be calculated independent of the particular electronic resonances involved in the FWM process. How-
ever, both the molecular prefactor and the reduced linestrength factor depend on the specific (J,, J;, J., J2)
combination involved.

The relation between elements of the non-linear susceptibility tensor and the rotational linestrength factors is
determined by the transformation from Cartesian into spherical coordinates given by eq. (7). It follows that a
Cartesian component of the y®? susceptibility tensor involves in principle a sum over spherical linestrength
factors S.

The relation between the x>’ elements and the S factors also depends on the resonance scheme of the partic-
ular FWM process. The schemes that we consider here are shown in fig. 1 and are all of the type wa s=2w,—
The elements of the tensor x/3), are determined by eq. (2):

Lah(—as; 01, 0y, —@r)oc{al s |6 by 1) (el pc 1) (d | ppla)y + (0 T) ,
XSaB (= Was; @1, @y, —@2) o< (@ | e | B (D | el €Y |y 1A DK | pp 107> + (042 7)
L5 (— Was; @y, @1, —@3)oc{a”| s |b”Y (b | e 1€ Y " |y 1d” YA | py1a" >+ (67) , %)

where the subscripts I, IT and III refer to the resonance schemes of fig. 1. Due to the degeneracy in the w, field
the x{3), element contains two terms which are nearly identical except for the permutation (o< 7). As an ex-
ample we express the x3). element in the corresponding linestrength factors. For the ground state CARS process
of fig. 1 we get

|c'> le">

> 0 -

|b'> Ibll>
@, d">
o, |9, s o, | ®
o, 2 0,
le>
ja> la’> [a">

Fig. 1. Energy level diagrams corresponding to ground-state
() GROUND-STATE CARs ‘1D EXCITED-STATE () EXCITED-STATE CARS, excited-state parametric CARS and excited-state non-
PARAMETRIC CARS NON-PARAMETRIC CARS parametric CARS.
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where use is made of some symmetry properties of the Sy, elements pertaining to an isofropic medium to be
discussed in the next section. In the case of the other two FWM processes of fig. 1 other S,,, elements must be
evaluated which, however, correspond to the same element ). The difference stems from the fact that the
incoming polarized waves enter x 3 at different resonances, which correspond to different transition matrix
elements.

In the case of four parallel fields the evaluation of Sygg is needed independent of the particular FWM scheme.
In the case of crossed polarizations of incident beams in the FWM processes of ground-state CARS (1), para-
metric excited-state CARS (II) and non-parametric excited-state CARS (III) (fig. 1) in an isotropic medium
the elements S;o_ 10, S1_100 and again S, _ 00 govern the rotational linestrengths (see section 3).

2.3. Symmetry considerations

The rotational linestrength factors S represent FWM processes, which imposes restrictions on the allowed

combinations of j, k, / and m. The J,4 4+ /+mo function in eq. (8c) implies angular momentum conservation
associated with the four-photon process [15]. Only 19 different ways of combining four (0, * 1) values are
possible, so 19 independent S elements differ from zero. The molecular prefactor in eq. (8b) connecting sto S
is independent of j, &, [, m and M, It can therefore be left out of the symmetry considerations.

The macroscopic symmetry of the medium enters into the equation through the weighted sum over M, states
in eq. (8c). Two cases will be considered: (1) a symmetrically aligned system where f(M,) =f(—M,) and (2)
an isotropic system f(M,) =1 for all M, values. For both systems additional symmetry rules for the x®’ ele-
ments can be derived through inspection of the linestrength factors in which they may be expressed.

The product of four Clebsch—-Gordan coefficients in eq. (8c¢) is invariant for a change of j, k, /, m and M, into
—Jj, —k, —1, —m and — M, In the case of f(M,) =f(—M,) this yields 9 additional relations between the non-
zero S elements leaving only 10 independent S elements.

In the case of an isotropic macroscopic ensemble with f(M,) =1 for all M, states extra symmetry relations

apply:

Soooo = —S100—1 —=S1-100—S10-10>

—So01-1 ="S1—100=+%S1—1—11 +%Sl-—ll—l _%Sll—l—l »
—Soto—1=—S10—10=F3S1 111 —1S1_1_1 +3Suo,

_S—IOOI = _SIOO—l = %Sl—l——ll +%Sl—ll—l +%S11—1—1 . (11)
In Cartesian components this results in
xS =) =x 2 =280 2y, XSk =x Sk =13 =Xk =Sk =12

B=xSh =S =X = AR =X P X=X =X =Sy =2 =25 - (12)

So for an isotropic ensemble there are 21 x*) elements different from zero, with just 3 of them independent,
namely x{33,, x{3); and x{33, (with 1, 2=x, y or z). This is consistent with the fact that for a fourth-rank tensor
there are only three invariant elements under any operation of the point group representing an isotropic system.

Butcher [15] has shown that as a consequence of time reversal symmetry an intrinsic permutation symmetry
of x® holds for the pairs (o, @), (7, w;) and (¥, w;) in eq. (2). In the case of degenerate fields the intrinsic
permutation symmetry results in additional relations between the x‘*’ elements. For example in the case of
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Table 1

Reduced rotational linestrength factors s, (€q. (8c)) calculated for an isotropic distribution of J vectors in a gaseous medium
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Sooco S10-10
J=1,7—1,7] —JI=1 /I 12021 /20+1 2TV JI+1 /2012741
' T 157 157
W J+1, 0] —(J+2)/20+1,/20+3 ~(J=3)/2T¥1/27+3
T 15(J+1) 00+1)
.0, J+1, J41] ~IJI+2/27+1,/27+3 2/1/T%2/20%1/20+3
T 15(J+1) 15(J+1)
W, J,J+1,7] - (J+2)/20+1,/27+3 —(J=3)/2T+1./2T+3
R 15(J+1) 300+1D)
W, 4,0, J+1] —(U+2)y2+1y27+3 —(J=3)JU+1,/27+3
T 15(J+1) 30(J+1)
4, J,J—1] ~U-DYH-1J2+1 —(J+4)/T-1/2J+1
T 157 307
UL J—1J—1] —JI=1/T+1/27-1/21+1 2T I+ 1T 1 /2T+1
e 15J 157
W, 0,d~1,J] —(J-1)/2~1/2J+1 —(J+H)S2T-1/2J+1
” ’ 157 307
[ J+1,J+1,J+1) —IV2UH1J2+3 —(J+5)/2+1/2]+3
T 15(J+ 1) 00+1)
I+, J41,J] —JI/T+2/2T+1/27+3 2/7/7+2/20%1,/20+3
o 15(J%1) 5(J+1)
(,J+1,J+2,7+1] U+ I+S5 -J2+1/27+5
* i) i 15 10
5+8J+4J2 27(J+2)
,J+1, 0, J+1] SO Al
2/2J~-1/2J+3 —J2J1./2+3
[, J+1,0,J—-1] e AT
LI-1,J,J+1] VU-1yD+3 ~JU=1/20¥3
[ WL, J, 5 0
47241 2J=1)(J+1)
W,J=1,J,0-1] = L
J=1,J—1,7—1] —(J+1)J2I-1/2J+1 —(J-4)J2U-1/2+1
3 > ’ lsJ 30"
2,/2J+1,/27-3 -J2+1/2023
(,J-1,0-2,7-1] eI -
63 +972+J—1 —(J=1)(J+2)(+1)
(7, %71 15J(J+1) 15J(J+1)
J,J=1,7,J] - (J-1)J2U-1y2+1 —(J+8)S2T=1 2T+
iJ,J-1,7, 5 -
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Table 1
(Continued)
Si—100 S100-1
[7,J-1,J-1,J] ~JI=1/J+1 /2T -1 /2T +1 _ I JIT /-1 /a1
T 307 o
[, J+1,7,J] (443)/20+1/27+3 — (J+2)/27+1,/2J+3
T 00+1) 300+1)
[, J,J+1,J+1] ~ISI+2/20+1/27+3 —JIST+2/2041,/27+3
o 300+ 0+
(2,7, J+1,J] ~(J+2)/2J+1/2J+3 (4_]+3)\/)?]ﬁ\/fjﬁ
A 00+ 1) 00+
14,4/, J+1] (47+3)/27+1/27+3 —U+2) ST/
T 30(+1) BT
[, J,J,J=1] (4J+1)/20=1,/27+1 —(J-1)J/2U=1/20+1
T 307 307
[J,J,J~1,J~1] ~ W=+ 1 /2T-1/2J+1 —JI1JT+1 ’_—U—IJEJTn
T 307 307
1, J,J—1,71 —(=1)J2-1y2+1 (4J+1)/27-1,/20+1
o 0J 30J
[, J41,J+1,J+1] ZIVHHY 23 (47+5)/27+1,/20+3
R 0+D 300+1)
[, J+1,J+1,7] —VII+2 /2 +1,/2743 ~I/T+2/20+1/20+3
B 0J+1) 300J+1)
[, 7+1,742,7+1] 2 ly2res RV EANEYES
I 15 10
— (J+2)(6J+5) _H6I+T)
[J,J+1,7,J+1] 00D AL
W J+1,0,J~1] —VP-lyH3 JI-1/20+3
R 10 15
(J.J=1,0,J+1] —VH-lya+s —J/2-1/27+3
o 10 15
—(J=1)(6J+1) 6 sI+1
,J-1,7,0—1] L =
W, J-1J=1,J-1] -yl @I-1)JT-1/2+1
R 307 o
W+1J20=3 - JU+1J27-3
[, J—1,J=-2,/-1] e /LA
[, J,J,J] —(2J+1)(2P+27+1) —(2J+1)(2J2+2J+1)
T 30J(+1) 70T
W, J—1,4,J] @+1)y2-1y2+1 —U-1)/20-1/27+1
T 307 207
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CARS where two beams with frequencies w,; and w, are used to generate a wave with frequency 2w, — w, the
elements 3], (—w; w;, w,, —w,) are equal to x{}};(—w; W, w;, —w,) (with 1, 2=x, y and z). So in an
isotropic medium there are then only two independent y 3 elements left namely ¥ {3}, ( — w; w,, w;, —w,) and
133 (—w; w,, w,, —w,). For the case of ground state CARS for example the elements x{3], and y{3}}, equal
(—=S1_100—S100—1) and ( —S;00_1 —S1_100) respectively. This is the justification for the inclusion of the (1)
factors in eq. (9) to account for the degeneracy in the w, beams.

Overall permutation symmetry, or Kleinman symmetry [ 16 ], applies when the y 3’ elements are independent
of the frequencies involved, so when the frequencies of the incoming fields which appear in the denominators
of x3) are far removed from molecular transition frequencies. In that case all permutations of the subindices of
the ¥’ tensor leave the elements unchanged and only a single independent tensor element remains. For the
case of the threefold resonance-enhanced CARS processes described in this paper Kleinman symmetry ob-
viously does not hold. For ground state CARS for example the elements x{3]> and x{3}, are equal to
(—Si_100—S100—1) and (—2810—_0) respectively. Table 1 shows that these elements are different.

2.4. Calculation of rotational linestrength factors S

2.4.1. Calculation of the reduced linestrength factors s,

Now we return to an evaluation of the individual s, factors. A sequence of four transition matrix elements,
going from state |a) through |6), |¢) and |d) back to |a), needs to be evaluated. For the transition matrix
elements the general AJ=0, % 1 selection rule holds, therefore 19 different (J,, J, J,, J4) routes are allowed in
general. This is illustrated in fig. 2.

The procedure to derive reduced s factors is elaborate because of the required summation over degenerate M,
values, appropriately weighted to account for possible macroscopic symmetry in the ensemble of molecules. The
weighted summation over M, states, ranging from —J, to J,,, can always be performed numerically, but in some
cases analytical expressions can be derived.

In the case of an isotropic medium there are three independent s factors ($;0_10, 51100 and $;00_; ). For all
possible 19 J-routes the summation over M, for these 3 elements have been performed. The results are listed in
table 1. The sgo00 cOmponent is also given as it is needed in the case of linear and parallel polarizations of the
incident waves. Sgo00 can also be obtained by adding the three independent components, in agreement with eq.

(11).

2.4.2. Molecular prefactors Q¢

The molecular prefactors £2°%? in the expressions for the rotational linestrength, defined by eq. (8b), are a
simple product of four Clebsch-Gordan coefficients and involve only the total angular momentum J and the
projection of the electronic angular momentum onto the internuclear axis of the molecule 2. In table 2 molecular

ja> |b> le> ld> la>

Fig. 2. Diagrammatic representation of J state sequences in-
volved in a [J,, Jp, J, Ju] FWM cycle. The dashed one-photon
interactions are forbidden when the two electronic states in-
volved both have 2=0 symmetry.
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Table 2
Molecular prefactors 27 (eq. (8b)) calculated for sequences of electronic states with £,=£2,=£,.=0, or *+ 1 and 2,=0, or 1
‘20000 m)otl 520011()
J+1)(J+1) —(J+1)(J+2) —J(J+1)

JJ4+1,7,J+1 N LA ST S AL A e
! ] (2J+1)(2J+3) 2(2J+1)(2J+3) 2(2J+1)(2J+3)
U I+ Td-1] JUJ+1) —(J=1)(J+1) J(J+1)
T (2J+1)/27-1/2J+3 227+ 1) /27 -1/27+3 2(2J41)/27-1./27+3
[J,J+1,J,7] 0 — U 0

T 2/27+1/27+3

(J+1)
[J,J+1, J+1,J+41] 0 0 —_—
2/27+1/2J+3

[, J+1,J+2,J+1] U+1)(/+2) U+1)J+2) ~(J+1)(J+3)

’ ’ ’ (2J+3)/2J+1./2J+5 2(27+3) /2T +1,/2J+5 2(2J+3) /2041 /2045

J? —J(J-1) —J(J+1)
JJ=1,71,J—1 - =0 __—Jurlhy
1 I I (J-1)(2J+1) 2(27-1)(2J+1) 2(27-1)(2J+1)
VTt 1 I41] J(J+1) ~J(J+2) J(J+1)
U I+ 1) /2J-1/2J+3 2(2J+1)/20-1/2J+3 2274 1) /27 -1/27+3
J
[, J—-1,J,7] 0 —— 0
2/20+1 /201
J
(J,J-1,J—1,J—1] 0 0 T ——a——
2/27-1/2J+1

Uodm . J—2 T 1] J(J-1) J(J-1) —J(J=2)
oon T (-1)/27-3/27+1 2. /27+1 /271 22I-1)/27+1/27-3

prefactors Q0000 Q000*1 a5d Q%010 that play a role in the resonance CARS processes of fig. 1 in I, and Br, for
all possible J-routes are given. In some interactions AQ=0 and Q branches are forbidden under this condition.
In this case the number of possible pathways is smaller than 19, The extension of the present work to symmetric-
top molecules requires elaborate calculations because the K value, representing the projection of the angular
momentum on a molecule-fixed axis may range from —J to J and J may be a large number. The advantage of
the present analysis is that the K value only appears in the molecular prefactors which are easily evaluated.

2.4.3. Rotational linestrength factors Se8

Expressions for rotational linestrength factors S%d are obtained for each of the 19 J-routes by multiplication
of the appropriate molecular prefactor 2% with the reduced linestrength factor Sim- We calculated the rota-
tional linestrength factors for a sequence of four states with 2=0, with relevance for the resonance CARS ex-
periments in I, and Br,. The four elements $3333, S98%,0, $9%% and $I93° |, given in table 3, govern the lines-
trengths in resonance CARS processes with arbitrary polarizations of the incident waves. Because 2=0 for all
electronic states involved only 6 different J-routes are allowed. In section 3 we will discuss the particular §
factors that describe the so-called ground-state CARS spectra in Br, and the excited state CARS spectra in I,
(seefig. 1).
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Table 3
Rotational line strength factors S (eq. (8a)) for 2,=Q,=0.=Q,=0

53586 S5%%0 S9%000 S,
W T+ 1,0 41] (J+1)(5+8J+4J2) 27(J+1)(J+2) —(J+2)(6J+5)(J+1)  —J(T+1)(6J+7)
T 15(27+1)(27+3) 15(2J+1)(27+3) 30(2J+1)(2J+3) 30(2J+1)(2J+3)
2(J+1) —J(J+1) —J(J+1) J(J+1)
[J,7+1,2,7-1] 15(27+1) 10(27+1) 10(2J+1) 15(27+1)
204+ 1)(J+2) —(J+1)(J+2) (J+1)(J+2) —(J+1)(J+2)
(] J+1,742,7+1] 15(27+3) 10(27+3) 15(2J+3) 10(27+3)
U I—1,07-1] J(4J2+1) 2(I-1)(J+1) —J(J-1)(6J+1) J(—6J2=5J+1)
T 15(27—1)(2J+1) 15(2J-1)(2J+1) 30(2/-1)(2J+1) 30(27—1)(2J+1)
20(J+1) ~J(J+1) —J(J+1) ~J(J+1)
(JJ=1,2,7+1] 15(27+1) 10(27+1) 10(27+1) 15(27+1)
27(J-1) —J(J~1) J(J=1) —J(J-1)
[J.7=1,7-2,7-1] 15(2J-1) 10(2J-1) 15(27-1) 10(27-1)

2.5. Resonance-enhancement in FWM by continuum states

In the calculations of linestrengths for threefold-resonant FWM processes in the preceding sections well-de-
fined sequences of angular momentum states [J,, J,, J., J;] were postulated. In the case of resonance on bound
states the frequencies at which they appear in the spectrum allow for a determination of the values of the angular
momenta of the quantum states involved. In case of resonance enhancement on a dissociative state, related to a
purely repulsive potential, or in the positive energy range of an attractive potential, this is not the case. Then all
J values allowed by dipole transitions, connecting the continuum state to the FWM cycle, give rise to enhance-
ment. Contributions of different J values interfere and must be summed coherently. The number of contributing
J states in the continuum is at maximum three and at minimum one, depending on the  values of the electronic
states involved.

As an example we calculated the linestrengths in the threefold-resonant ground state CARS scheme of fig. 1
with the assumptions of Q,=,= =0 and the projected electronic angular momentum of the continuum state
£, either 0 or 1. In section 2.2 it was shown that in an isotropic medium two S factors play a role for this
process: Sgooo for the case of parallel linear polarizations and S,o_,, for the case of crossed linear polarizations
of the two incident beams. The Raman resonances give rise to a branching in conventional O(J), Q(J) and
S(J) lines. The S and O lines may only be enhanced by an R respectively P transition on the first @, resonance.
For the Q lines there are two possibilities QF and QF, where the superscript denotes the angular momentum
sequence of the first resonance. From the point of view of frequencies there is only one Q branch, but for the
linestrengths a distinction has to be made between QF and QR lines because the resulting values are different.
For the S and O lines there is only one possibility to complete the FWM cycle, [J, J+1,J+2, J+1] and [J,
J—1,J-2,J—1] respectively. The linestrength factors are given in tables 3 and 4. For the Q lines the number
of routes for completing the FWM cycle depends on the value of ©, of the continuum. For 2,=0 two channels
and for ,= * | three channels interfere respectively. For example the linestrength of the QF (J) line, assuming
Q;= *1, is determined by the coherent addition of the linestrength factors of the routes [J, J—1,J, J—11], [J,
J—1,J,J+1]) and [J, J—1, J, J] to be taken from table 4. By following this procedure the rotational line-
strengths for the cases of linear parallel and linear crossed polarization for this ground-state resonant CARS
process were calculated (see table 5).
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Table 4

Rotational line strength factors S%0:! (eq. (8a)) for 2,=Q,=02,=0and 2,=1

55655 598254
— (J42)(5+8J+4J%) —J(J+2)(J+2)
[, 741, J,J+1] 30(27+1)(27+3) 15(27+1)(2J+3)
—(J=1)(J+1) U~1)(J+1)
/41,7, 7-1] 15(2J+1) 20(2J+1)
~(J+2) —(J-3)
[, J+1,J,J] 0 <
J+1)(J+2) —(J+1)(J+2)
o+ 2, J+1) 15(27+3) 20(27+3)

~(4r+1)(J-1)

—(J-1D){-1)(J+1)

=t =l 30(2J-1)(2J+1) 15(2/—1)(2J+1)
(,J—1,7,J+1] 1:5%%1) 2;&:2)
(7, J-1,J,J] ~(;‘;1) _(234)
WJ—1,0-2,71] %%;il% 2—0{(211:11))

2.6. Polarization orientation of the wave generated in a FWM process

The elements of the third-order non-linear susceptibility tensor x ¢*) and the related S factors are independent
of the polarizations of the applied fields. The induced non-linear polarization P3? however does depend on the
incident polarizations through eq. (2). The field of a monochromatic wave may be written as

E.(t)=}[E,(cos@Z+sinfe” R) exp(—iwt)+c.c.] .

(13)

A description of plane waves travelling along the  axis is adopted and all spatial dependences are left out of the
description at this point. 8 is the angle of the polarization vector relative to the Z axis. The factor e is introduced
to represent the different polarization states. For linearly polarized light ¢=0 and 6 can have any value. For
circularly polarized light ¢=n/2 and 0 is either n/4 (left) or 3n/4 (right).

Allowing for all possible polarizations in the xz plane the Cartesian components of the induced third-order
non-linear polarization in eq. (2) can be rewritten as

P () ={xL3), cos 6, cos B, cos 03 +x 32, cos 8, sin 6, sin O exp[i(@, —P3) ]
+x 22 sin 8y cos 6, sin 05 exp[i(#; —¢3) ] + L3} sin 6; sin 6, cos 05 exp[i(¢) —62) 1} ey Een Eurs » (14)

by using the expression for the fields of eq. (13). A similar expression can be derived for P{¥ (w).

The polarization orientation of the generated wave is determined by the resultant of P{>’ and P{>. In case of
resonance CARS, with production of a frequency was=2m, — w, with linearly polarized incident waves, simple
expressions follow. The pump frequency @, may be chosen polarized along Z and the polarization of the Stokes
wave w, with an angle 65 with respect to Z without loss of generality. The polarization of the generated anti-
Stokes wave is then given by

PP =y3) sinfs x+x3) cosbs 2. (15)
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It follows that the generated anti-Stokes has a polarization angle 6,5 with respect to the Z axis given by

(3)

P 3)
Oas =arctan PE” =arctan( Ty tanbs | . (16)

zZzzz

The tensor elements y$3), and y$3), both depend on linestrength factors S that are different for particular FWM
processes or J states probed. As a consequence we find that in general the polarization orientation of the anti-
Stokes wave will vary throughout the CARS spectrum. In the two simplest cases this is, however, not true. When
both the w, and w, waves are linearly and parallelly polarized, only x &), is needed and the anti-Stokes wave is
also linearly polarized parallel to the incident waves, independent of any resonance. In case of crossed linear
polarizations only y{3), is appropriate and we find that the anti-Stokes wave is polarized parallel to the Stokes
wave throughout the CARS spectrum.

Finally we consider the effect of a polarization analyzer, again under the condition of linearly polarized beams
o, and w,, with w; chosen along Z and w, with an angle 6, with respect to Z. This configuration is depicted in
fig. 3. When the axis of the analyzer ey is set at angle 61 (with respect to Z) we find

PP e =P sinOr + P cos Oy =x L3, sin s sinOy + x$2), cos O5 cos Oy . (17)
The total intensity (without analyzer) becomes

Icars o [P 2= 2 3) sin 05|+ | x2) cos 6512, (18)
and with analyzer

Icarsoc | P er | 2= | x3), sin b5 sin Or +x$2), cos O cos 01 | % . (19)

3. Applications in resonance CARS

Resonance CARS measurements were performed in I, and Br, vapours. A pump beam, from a fixed-frequency
(w,) narrow-band Nd-YAG laser at 532 nm colinearly propagates with a wavelength-tunable Stokes beam (w,)
along a chosen j axis. The beams are focused in a gas cell containing the non-linear medium. Either the total
intensity or the intensity transmitted through a polarization analyzer of the generated wave at was=2w, —©, is
detected (see fig. 3). In previous papers the frequency dependence of resonance CARS in I, [13] and Br, [17]
was discussed. Well-known characteristics of threefold-resonant CARS spectra are the appearance of selected
rotational lines in series of vibrational overtones. It suffices to note that a precise determination of resonance
frequencies allows for an unambiguous assignment of the CARS spectral features in sequences of J states. In Br,
only a single FWM process could be observed, namely a ground-state resonant CARS process enhanced by
bound transitions in the B 3[1}~X 'Z} system and by a continuum state at the one-photon level. In I,, apart
from a similar ground-state resonant CARS process, also two distinguishable excited-state CARS processes were
identified (fig. 1) in which a continuum state at the two-photon level gives rise to resonance enhancement. In
the following we will demonstrate how to invoke the theoretical framework on rotational linestrengths devel-

z z 1
) Y
[0
3 ' s ” ] .
PR S — /// Fig. 3. Collinear setup for resonant CARS measurements; the
\]7 ” \J analyzer is an option that was not used in measurements of total

X . . .
filter analyzer intensities; focusing lenses are not shown.
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Table §
Linestrengths for ground-state resonant CARS *)

Parallel (2,=0) Parallel (Q=11) Crossed {£2,=0) Crossed (§2;,=11)
QR line (J+1)(4J+5) —(3J+5)(J+1) —J(J+1) —J(J+1)
s 15(27+3) 15(27+3) 30(2J+3) §0(27+3)

SR lines 2(J+1)(J+2) U+HI+2) —U+DI+2) —Y+hHu+d)
15(27+3) 15(27+3) 10027+3) 20(27+3)

QF lines J(4J~1) —J(3J-2) —J(J+1) —J(J+1)
15(27-1) 15(27—1) 30(27-1) 60(27—1)
e 2U(J-1) JU-1) —JU=1) —JI-1)
O lines 15(2/—-1) 15(27—1) 10(27—1) 20(27—1)

21 We note here that in a preliminary report on resonance CARS in Br, molecules [17] the linestrengths for QF lines (parallel
polarization ) and QF lines {crossed polarization), both in case £2,==0, were erroneously interchanged.

oped in section 2 for a comparison with the signal intensities observed in the various processes.
3.1. Polarization-dependent intensity ratios

Given a certain polarization configuration first the appropriate 3 ) elements must be determined. Assuming
linear polarizations for the incident waves it is shown in eq. (18) that the CARS intensity in general has a
parallel contribution proportional to ¥$3), and a crossed contribution given by x{3).. For all resonance schemes
the x£3), element corresponds to the Sgoee-rotational linestrength factor, whereas for the x{3), element it is pro-
cess dependent. In eq. (10) the transformation of ), is given for the ground-state resonant CARS process and
the transformation for the other processes can be worked out in an analogous way. It follows that e.g. the rota-
tional linestrength in case of crossed polarizations of the incident beams in the ground-state resonant CARS
process is determined by Sjo. 10, While Sy _ ;0 is needed in the excited-state CARS processes. The corresponding
reduced linestrength factors $;0. 10 and §; _ 100 can be extracted from table 1. At this point the assumption of an
isotropic medium is made.

Next we have to determine the molecular prefactors 29 that depend on the molecular system involved. In
the I, and Br, experiments the CARS processes are resonantly-enhanced by bound transitions in the B I}~
X 'E} system, thus involving Q=0 states. Continuum enhancement in ground-state CARS is achieved at the
one-photon level by B (2=0) and T1,,(2=+1). Their contribution depends on the different overlap
integrals and the electronic transition moments of eq. (7). For the excited-state CARS processes in I, however,
continuum enhancement is obtained at the two-photon level where an £.=0 repulsive state is assumed [9]. In
table 2 the different molecular prefactors needed in various cases are given.

For a specified [J,, J5, J,, J4] combination the appropriate £2°? and s, factors must be multiplied next. For
the case of £299% the resulting rotational linestrengths are given in table 3. As explained in section (2.5) reso-
nance-enhancement by a continuum can be taken into account in the rotational linestrength by coherently add-
ing all allowed J-routes. In the case of ground-state resonant CARS this means a summation over J, states,
whereas a summation over J, states has to be evaluated for the excited-state CARS processes. So finally all
allowed J-combinations, determined by molecular prefactors, must be added. In tables 5 and 6 the rotational
linestrengths are tabulated for the cases of 2=0 or 1 and for parallel and crossed polarizations. These values
must be squared to compare with observed CARS rotational linestrengths.

The calculated J-dependence of the intensity ratios (obtained from table 6) of the characteristic doublets
[9,13] in the non-parametric excited-state CARS process (£2,=0) for parallel and crossed polarization is shown
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Linestrengths for excited-state resonant CARS

Paraliel (2,=0)

Parallel (2, =%1)

Crossed (£2,==0)

Crossed (.= %1)

ISYZ ¥ \

3

QX lines {(J+1){4/+3) -+ 1j{37+1) —{JH1I(I+2) —{J+1{J+2)
15(2J+1) 15(27+1) 30¢2J+1) §0(2J+1)
2I( I+ 1) JOr+1) —HI+ 1) _JIE1Y
OR lines e i Sl St A BELA LS4 PO sl
15¢(27+1) 5+ 1) 10(2J+1) 20(27+1)
Q" fines JAJ+ 1) ~J(3J+2) —J{J-1) ~JJ-1)
15(2/+1) 15(27+1) 30(27+1) 60(2J+1)
P i 1) JU+1) ~J{I+1) =JI+)
O 15(27+1) 15(27+1) 10(2/+1) 20027+ 1)
10? ¥ T ¥ T T T ;“
Ewﬂ . z
[ 2 ATt waY
o 177w | Sl
g / s; an o, sy
z 1) E vl
] |
g1 N it | $(53), O(56)
0.14 I ————— ; » -
] K/S)T i /e, ®,
LANEES [ Aant S S A AL
[ o 20 30 4 50 60
X
J

Fig. 4. Theoretical /-dependence of intensity ratios for parallel
{upper) and crossed {lower) polarization for the excited-state
parametric CARS process as discussed in the text. Experimental
points for I, are given. Black circles (@) denote the linestrength
ratio Q/O and open circles () ratio of Q/S lines. In the esti-
mated uncertainties in the data points the uncertainty in the rel-
ative angles between polarization vectors are included.

Fig. 5. Polarization configuration for excited-state CARS exper-
iment. The pump ¢, is linearly polarized along the 7 axis, while
the linearly polarized Stokes wave makes an angle of f;=70° with
the 2 axis. Calculated angles 8, are shown for Q and O/S branches
in case of a continuum state with £2,=0 (black arrow) as well as
+ 1 (dashed arrow).

in fig. 4. A few experimental points for I, are inserted as well and agreement with theoretical prediction is
obtained.

3.2. Polarization of the anti-Stokes wave in excited-state parametric CARS

In the setup with a polarization analyzer (see fig. 3) the excited-state parametric CARS process in I, was
investigated in the energy range with a Stokes shift of 910-925 cm~'. The angle between the linear polarization
vectors of the incident waves was chosen at 8,=70°. The polarization configuration of the waves involved is
represented in fig. 5. Applying eqs. (15) and (16), inserting the appropriate linestrength factors (from table 6)
pertaining to the two relevant tensor elements ¥ 3], and x 32, the polarization orientation of the generated wave
was calculated. Angles SAS of 19° for the QP(53) and QR(S(S) and 64° for the O(56) and S{53) lines were

P f thaan £
deduced. To vmuy these drastic puuuumxuuu effects CARS spectra of these four resonances were recorded at

different settings &; of the polarization analyzer. These spectra are shown in fig. 6. Indeed it is found that for 6
at a value perpendicular to the calculated values for 8. the signals in the Q branch (at Gr=—70°) or the O/S
branch (at €= —25°) vanish. The upper spectrum in fig. 6 is taken at G;==60° for which doublet ratios of 0.5
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S(53) 0 = 60
T
Q) 0(56)
J Q(56)
0 = -70°
T

Fig. 6. Excited-state parametric CARS spectra taken with differ-
© 1 - @ , T ent analyser settings (8r with respect to the 7 axis) and an angle
of 6s=70° between the two incoming linearly polarized beams.

and 0.45 are predicted for the Q/O(56) and Q/S(53) lines respectively. This agrees well with the observed
ratios of 0.6 and 0.43.

So we conclude that the theory for calculating the orientation of the polarization vector of the anti-Stokes
wave produces excellent agreement with the features observed in I,. These calculations were based on the as-
sumption that the continuum state at the two-photon level is an £2.=0 state. To verify this assumption §,5 was
also calculated for an £,=1 continuum state. Again the lines of the O and S branch show a maximum intensity
near f,5=64°, but the lines of the Q branch near ,5= — 14° for J values 53 and 56. This is shown in fig. 5. The
strong dependence of the polarization orientation of the generated CARS wave on £, is another tool to deter-
mine the electronic character of states involved in the resonant CARS processes. The assumption of enhance-
ment by a 0, -continuum state in I, [ 13] is supported by the present polarization data.

4. Concluding remarks

Although the formalism presented in this paper can be applied quite generally, several assumptions are made.
E.g. it is implicitly assumed that a generated wave propagates in the direction determined by a phase-matching
condition. Furthermore the effects of fast relaxation mechanisms are ignored and calculations hold for the sta-
tionary limit. Also effects of saturation are not included as the expression for x*’ is deduced from a perturbative
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approach and higher-order y ™ terms are left out. Within these restrictions the analytical expressions for the
rotational linestrengths are applicable for diatomics and symmetric-top molecules in isotropic gaseous media.
Furthermore they may be used for any threefold resonant FWM process including e.g. the case of resonance-
enhanced third harmonic generation. Particularly an application in the new powerful technique of degenerate
four-wave mixing, that is now finding widespread use in combustion diagnostics, should follow straightfor-
wardly. It should be noted however that extreme care must be taken to select the appropriate terms of the x
tensor for this DFWM process. Work along these lines is in progress.
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