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The elements of the fourth rank non-linear susceptibility tensor xc3) are considered for four-wave-mixing processes in a gaseous 

medium. In case of an isotropic medium 2 1 elements are non-zero, but only 3 are independent. Analytical expressions are derived 

for rotational linestrengths corresponding to these independent elements in multiple resonant four-wave mixing (FWM). These 

analytical expressions are appropriate for diatomic and symmetric-top molecules. The application of the model to resonant CARS 

processes observed in gaseous Br, and Iz is illustrated. The effect of different polarization configurations of the incoming waves 

on the polarization of the generated anti-Stokes wave was investigated experimentally as well as theoretically for one of the reso- 

nant CARS processes in Ir. The rotational linestrength expressions have a general validity and may also be used in the case of non- 

saturated degenerate four-wave mixing. 

1. Introduction 

Over the last two decades coherent light scattering techniques have been developed into versatile tools for 
non-intrusive measurements in hostile environments. The method of coherent anti-Stokes Raman spectroscopy 
(CARS) is now commonly used for temperature and concentration measurements in the gas phase [ 1,2 1. How- 
ever for the detection of minor species, such as free radicals present as intermediates in combustion processes, 
the conventional CARS-technique is not suitable. Interference with non-resonant background signals hampers 
sensitive detection of diluted species. This drawback was overcome by using the complicated technique of three- 
color resonance-enhanced CARS [ 31. Recently the analogous but experimentally simpler method of degenerate 
four-wave mixing (DFWM ) [ 4-61 was introduced as a sensitive method for the detection of trace molecules in 
flames. For quantitative analysis of the recorded spectra in terms of temperatures and concentrations a theory 
for the calculation of rotational linestrengths in case of multiply resonant four-wave mixing (FWM) processes 
is required. Abrams and Lind [ 71 developed a theory for DFWM that is particularly applicable in cases of 
saturation. A theory of linestrengths based on an evaluation of the third order non-linear susceptibility xt3) 
tensor, involving coherent sums over four-photon matrix elements was developed by Attal et al. [ 81 and by 
Aben et al. [9]. 

In this paper we present a formalism for the calculation of rotational linestrengths that is applicable to all 
possible combinations of polarizations of the incident and generated waves. Analytical expressions of rotational 
linestrengths are derived for the three independent x (3) elements that describe threefold-resonant FWM in iso- 
tropic gaseous media. The elements of xc3) are inspected for a variety of multiply resonant FWM processes in 
gaseous media including resonances on bound and continuum states. 

Experimentally we investigated threefold-resonant FWM processes in isotropic I2 and Br, vapours. For var- 
ious types of resonant CARS processes the calculations of linestrengths were compared with observations and 
good agreement is found. Apart from the effects of arbitrary polarization orientations for the incident beams 

Correspondence to: W. Ubachs, Laser Centre Free University Amsterdam, De Boelelaan 108 1, 108 1 HV Amsterdam, The Netherlands. 

0301-0104/93/$06.00 0 1993 Elsevier Science Publishers B.V. All rights reserved. 



114 L Aben et al. /Chemicd Physics 169 (1993) 113-128 

also the placation of the generated wave was investigated. It is shown that in a particular geometrical setup 
the polarization of the anti-Stokes wave%epends on the specific FWM process and the resonances involved. 

The theory to calculate linestrengths is not restricted to the resonance CARS processes in diatomics such as I2 
and Br2, but also holds for various FWM processes in polyatomic symmetric-top molecules. Moreover it is 
capable of calculating linestrengths for DFWM processes as well. 

2. TheoreticaI framework 

2. I. Definition of the xf3j tensor 

In a FWM process a wave is generated with frequency w= rt w1 i- w2 4: u3 from incoming waves with frequen- 
cies wl, o2 and w3 respectively. The intensity of the generated FWM wave is proportional to the absolute square 
of the induced third-order non-linear polarization [ IO,1 1 ] : 

Z(O)CC~P’~‘(~)~~=I~~~~(~)~EW,E~~~~~~, (1) 

in which x(3’ (w) is the third-order non-linear susceptibility tensor of rank four. The fields Eo, represent mono- 
chromatic plane waves with frequencies u,. The x f3) tensor represents the characteristic response of the me- 
dium The xc3) elements are independent of the field components; however the polarizations of the fields deter- 
mine *which elements of xc3) are needed to describe the FWM response. The Cartesian components of the non- 
linear induced polarization at o are given by 

The ordering of the frequency terms and polarization indices (a, T, Y) is arbitrary as long as the pairs (0, w1 ) 
etc. are considered together (see section 2.3). n is the number of incident frequencies. In the most general case 
n=3. 

In FWM each one of the 8 I x$.& tensor elements consists of 48 terms of the following form [ 12 1: 

(3) 

Here I a>) I b), I c) and f d) are rovibronic molecular states and p* is the component of the transition dipole 
moment vector in the laboratory frame along the Cartesian Q axis. o, is the transition frequency from state I i) 
to U) . Resonances are damped by the relaxation parameter 1;,. p$? represents the relative population distri- 
bution over initially populated states I a) of the system. Only contributions from FWM processes probing a 
population density Npgj in the electronic and vibrational ground state I a> are considered. 

In threefold-resonant CARS the intensity at a particular resonance in the spectrum is dominated by one or 
just a few terms ins. Moreover, at a specific wavelength combination only a few well-defined states I a), I b), 
I c) and I d) are involved [ 131. At resonance the summation over all non-degenerate states then can be dropped. 
However, the summation over the degenerate && states has to be maintained. The three so-called resonance 
denominators of eq. (3) determine at which combinations of frequencies resonance-enhancement of FWM 
occurs in the medium. The rate of enhancement is then governed by the values of the three damping factors f, 
In the present analysis it is assumed that for a specific FWM process the effect of the Ts is similar for all spectral 
components, i.e. independent of rotational quantum numbers. In that case the product of resonance denomi- 
nators in xt3) has a certain, but constant value and may be dropped from the considerations on rotations line- 
strengths. This leaves the following expression to be evaluated: 
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In a previous study [ 91 the procedure for further evaluation of this equation was described in detail. At this 
point we will summarize this procedure and discuss the implications of the results in a more general way. 

2.2. Definition of the linestrength factors S$$ 

For a calculation of linestrengths in threefold-resonant FWM a coherent sum over the product of the four 
transition matrix elements of eq. (4) needs to be evaluated. Applying the Born-Oppenheimer approximation 
the wavefunction of state I a) can be separated in an electronic, a vibrational and a rotational part: 

1 a) = l,,‘- ) I@“,“-) IJJwf,) . (5) 

Here J is the total angular momentum, 52 is its projection onto the internuclear axis and M is the projection of J 
on the space fixed z axis. B also equals the projection of the electronic angular momentum onto the internuclear 
axis [ 141. It should be noted that it is not straightforward to apply eq. (5 ) to all open-shell diatomic molecules. 
For diatomics in a singlet state the rotational part may be written as 1 J,A,,M,) with LI, the projection of the 
electronic orbital angular momentum onto the internuclear axis; in this case all following derivations can be 
applied directly. This also holds for Hunds case (c) molecules that are commonly written in a I J,Q#,) basis. 
In other cases, such as e.g. doublet states, more complicated wavefunctions must be invoked [ 81. The corre- 
sponding quantum numbers in a symmetric top are J, K and M respectively where K is the projection of J onto 
the symmetry axis and K= -J, -J+ 1, . . . . J. The set of K values is therefore usually much larger than that of D 
values. 

The dipole vector components in the space fixed frame (pX, p,,, ,uu,) are rewritten in spherical components (pi, 
A, p_, ). To characterize the system a transformation to the molecular frame using Euler angles (cy, 8, y) is 
required. The dipole transition matrix elements between arbitrary states I a) and I b) may then be factorized in 
terms of a pure electronic dipole transition matrix element, a vibrational overlap factor and a rotational part 
that depends on the polarization components of the light: 

x (Jb, -Mb, 1, -mlJa, -I%‘.&-m)(Jb, -526, 1, -m’(J,, -&-m’) . (6) 

Here the last two factors written in brackets denote Clebsch-Gordan coefficients in the notation of Zare [ 141. 
The vibrational overlap factor is denoted by F&,, p%fg-nb is the electronic transition matrix element and e”_, 
denotes the projection of the Cartesian c axis on the spherical m axis. Evaluation of the product of four dipole 
transition matrix elements, each written in the form of eq. (6) and inserted in eq. (4), then yields a product of 
four electronic dipole transition moments, four vibrational overlap factors and a rotational linestrength factor 
denoted by S;@. Consequently the third-order non-linear susceptibility depends on this linestrength factor in 
the following way: 

(7) 

By careful bookkeeping and summing over Clebsch-Gordan coefficients [ 91 an expression for the rotational 
linestrength factor follows: 

syg &y’bcdg. Jktm - 

Here sZahd is the molecular prefactor: 

@a) 
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(8b) 

and S,klm the reduced linestrength factor: 

s/wm = & s,+k+,+,,of(&) <Jb,.i-Ma, 1, -il J,, --Ma> (J,, k+_i-Ma, 1, -kl .&j-M, > 

X(Jdrl+k+j-Ma, 1, -llJc,j+k-M,)(J,, -Ma, 1, -mIJdrj+k+l-Ma) . (8~) 

The superscripts in STki denote the electronic orbital momentum of states la), I b), Ic) and Id), while the 
subcripts j, k, I and M represent the spherical components related to the Cartesian components a, r, v and p of 
the polarization of the light. Whenever the superscripts are not important they are left out of the notation. The 
molecular prefactor QRobcd depends only on the specific electronic angular momenta of the states involved (Q,, 
Gb, Sz,, &) and can easily be calculated. The reduced linestrength factor s,~,,, depends on the polarization con- 
figuration through j, k, I and m and involves a summation over degenerate Ma values. The summation over Ma 
states is weighted by a function f (Ma) to account for possible non-isotropic distributions of J vectors. We note 
that the reduced linestrength factor is independent of the sequences of electronic angular momenta and may 
therefore be calculated independent of the particular electronic resonances involved in the FWM process. How- 
ever, both the molecular prefactor and the reduced linestrength factor depend on the specific (J,, Jb, J,, Jd) 
combination involved. 

The relation between elements of the non-linear susceptibility tensor and the rotational linestrength factors is 
determined by the transformation from Cartesian into spherical coordinates given by eq. (7 ). It follows that a 
Cartesian component of the xc3) susceptibility tensor involves in principle a sum over spherical linestrength 
factors S. 

The relation between the x (3) elements and the S factors also depends on the resonance scheme of the partic- 
ular FWM process. The schemes that we consider here are shown in fig. 1 and are all of the type wAs = 204 - w2. 
The elements of the tensor x$& are determined by eq. (2): 

X$3( - OAS; wl, 01, -~2~~~~l~~l~~~~l~“I~~~~I~,I~~~~l~~l~~+(~~~~ 3 

$i!:I(-WAS;% ml, -~2~~~~‘I~,I~‘~~~‘I~,I~‘~~~‘I~“Id’~~d’I~~l~’~+(~~~~ 3 

$y ( - 
wAS; ml, wlr -W~)OC(a”~~,~b”)(b”~~u,Ic”)(c”I~~,Id”)(d”I~,Iu”)+(a~?)) (9) 

where the subscripts I, II and III refer to the resonance schemes of fig. 1. Due to the degeneracy in the w1 field 
the x$,, element contains two terms which are nearly identical except for the permutation (O-T). As an ex- 
ample we express the xXZZX (3) element in the corresponding linestrength factors. For the ground state CARS process 
oftig. 1 weget 

la”> - 

WI) EXCITED-STATE (1) GROUND-STATE CARS (‘I) EXC--STATE 
PARAMETRIC CARS NON-PARAMETRIC CARS 

Fig. 1. Energy level diagrams corresponding to ground-state 
CARS, excited-state parametric CARS and excited-state non- 
parametric CARS. 
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where use is made of some symmetry properties of the SJH,,, elements pertaining to an isotropic medium to be 

discussed in the next section. In the case of the other two FWM processes of fig. 1 other SJk,,,, elements must be 
evaluated which, however, correspond to the same element XxZZx. (3) The difference stems from the fact that the 

incoming polarized waves enter X (3) at different resonances, which correspond to different transition matrix 
elements. 

In the case of four parallel fields the evaluation of So, is needed independent of the particular FWM scheme. 

In the case of crossed polarizations of incident beams in the FWM processes of ground-state CARS (I), para- 
metric excited-state CARS (II ) and non-parametric excited-state CARS (III ) (fig. 1) in an isotropic medium 
the elements Slo_ ,o, S, _ ioo and again S , _ ,M) govern the rotational linestrengths (see section 3). 

2.3. Symmetry considerations 

The rotational linestrength factors S$$z represent FWM processes, which imposes restrictions on the allowed 

combinations of j, k, 1 and m. The 6J+k+l+,,,,O function in eq. (8~) implies angular momentum conservation 
associated with the four-photon process [ 15 1. Only 19 different ways of combining four (0, f 1) values are 
possible, so 19 independent S elements differ from zero. The molecular prefactor in eq. (8b) connecting s to S 
is independent of j, k, 1, m and M,. It can therefore be left out of the symmetry considerations. 

The macroscopic symmetry of the medium enters into the equation through the weighted sum over M, states 
in eq. (8~). Two cases will be considered: ( 1) a symmetrically aligned system wheref(A4,) =f( -MU) and (2) 
an isotropic systemf(M,) = 1 for all it4, values. For both systems additional symmetry rules for the Xc3’ ele- 
ments can be derived through inspection of the linestrength factors in which they may be expressed. 

The product of four Clebsch-Gordan coefficients in eq. (8~) is invariant for a change ofj, k, 1, m and M, into 
-j, -k, -1, -m and-M,. In the case off(M,) =f( -M,) this yields 9 additional relations between the non- 
zero S elements leaving only 10 independent S elements. 

In the case of an isotropic macroscopic ensemble with f(MO) = 1 for all M, states extra symmetry relations 

apply: 

Soooo= -SK%, -S,-loo-So-IO > 

-S~l-,=-s,-*~=+&s,-,-,1 +&%_,I_1 -&s,,_,_, , 

-So,o_,=-S,o-,o=+~S,_,_,~-fS~_~,_~+~S~,_,_~) 

-s_,ooL=- S *oo-,=-fS~_,_,,+fS,_,~_,+~S,~_~-, . (11) 

In Cartesian components this results in 

xQ),= 
xyyyy -xzzzz -xxyyx 

(3) - (3) - (3) +xgtw+x~y, x’3’ -x(3) -x(3) (3) - (3) - (3) 
.xxz.?- yyzr - xxyy =xyyn -xzzx.x -xrzJy Y 

X (3) _x(3) - (3) - (3) - (3) - (3) (3) - (3) - (3) - (3) - (3) - (3) 
zxzx - ryzy -xayAy -xyxyx -xxzxz -xyzyr> xxzzx -xyzzy -xxJYx -xwY -xzxxz -xzwz . (12) 

So for an isotropic ensemble there are 2 1 X c3) elements different from zero, with just 3 of them independent, 

namely Xl:i2, x{:)~ and X$24, (with 1,2 =x, y or z). This is consistent with the fact that for a fourth-rank tensor 
there are only three invariant elements under any operation of the point group representing an isotropic system. 

Butcher [ 15 ] has shown that as a consequence of time reversal symmetry an intrinsic permutation symmetry 
of Xt3) holds for the pairs (a, o, ), (7, co*) and (Y, 03) in eq. (2). In the case of degenerate fields the intrinsic 
permutation symmetry results in additional relations between the X c3) elements. For example in the case of 
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Table 1 
Reduced rotational linestrength factors s,~,,, (eq. (SC) ) calculated for an isotropic distribution of J vectors in a gaseous medium 

[J,J-l,J-l,J] 

[J, J+ 1, J, Jl 

[J, J, .r+ 1, J+ I] 

[J,J,J+I,Jl 

[J, J, J, J+ 11 

[J, J, J, J- 11 

[J,J,J-l,J-I] 

[J, J, J- 1,Jl 

[J,J+l,J+l,J+l] 

[J,J+l,J+l,J] 

[J,J+l,J+2,J+l] 

[J,J+l,J,J+l] 

[J,J+l,J,J-1] 

[J,J-l,J,J+l] 

[J,J-l,J,J-1] 

[J,J-l,J-l,J-1] 

[J,J-l,J-2,J-1] 

[J, J, J, 4 

[J, J- 1, J, Jl 

-JEJmJiiTJizi 
15J 

-(J+2),/nJu+3 
15(J+l) 

--&F2&iY@F3 
15(J+ 1) 

-(J+2JJ=dm 

15(J+ 1) 

-(J-+2)dmdm 
15(J+l) 

-(J- 1 )Ju-rJu+r 
15J 

-~@C@Yi=i&Fl 

15J 

-(J- 1 ),/EJu+r 
15J 

- JJZTi$.7Z 

15(J+ 1) 

-$~JxFl~iG 
15(J+ 1) 

zJiiK~Ji% 
15 

5+8J+4J2 
15(J+l) 

2JiZiJZG 
15 

2JZCiJiE 
15 

4J2+ 1 
15J 

- (J+ 1 )J=,/%~ 
15J 

2JZCJTC3 
15 

6J3+9J’+J-1 

15J(J+l) 

-(J-l) J%i=iJ% 
15J 

~,/ZTJKI Ju-1 JiEi 
15J 

-(J-3)J2J+I,/m 
3O(J+l) 

~JJ~,/?%,/M 

15(J+l) 

-(J-3) JiGiJE 
3O(J+ 1) 

- (~-3]J21+1 Jm 
3O(J+ 1) 

- (~+4),/=,/= 

30J 

2J33$TiJu_IJu+l 
15J 

- (~+-4]J21-1&??1 

30J 

-(J+5),/EJu+3 

3O(J+ 1) 

2J~&?d%i,/= 

15(J+l) 

-TOW 

2J(J+2) 
15(J+l) 

-&Ci@F3 

-JiGYJiiG 
10 

2(J-l)(J+l) 
15J 

-(~-4),/m,/= 
30J 

-JiKJiiZ 
10 

-(J-l)(J+2)(2J+l) 
15J(J+ 1) 

- (~+4) JEJ%i 
30J 
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Table 1 
(Continued) 

[J,J-l,J-l,J] 

[J,J+l,J,Jl 

[J,J,J+l,J+l] 

[J,J,J+l,Jl 

[ 4 J, Jl J+ 1 I 

[J, J, J, J- 11 

[J,J,J-l,J-l] 

[J,J,J-1,Jl 

[J,J+l,J+l,J+l 

[J,J+l,J+I,J] 

[J,J+l,J+2,J+l 

[J,J+l,J,J+l] 

[J,J+l,J,J-1] 

[J,J-l,J,J+l] 

[J,J-l,J,J-1] 

[J,J-l,J-l,J-1] 

[J,J-l,J-2,J-l] 

1 J, J, J, Jl 

[J,J-l,J,Jl 

-JxiJFlJ~Ju+l 
305 

(4J+3),_/u+ldm 

3O(J+ 1) 

-J&bF2&Fl~~ 
3o(J+ I) 

-(J+2),/i%?d% 

3O(J+ 1) 

(4J+3)Ju?I,/m 

3O(J+ 1) 

(4J+ 1 ),/=,/%%i 

305 

-&i~&zi&irl 

30J 

- (J- 1 ),/mdm~ 

30J 

- J,/m&i?3 

3O(J+ I) 

-&hF2JiiTi~i7G 
3O(J+l) 

@rlJi7T5 
15 

-(J+2)(65+5) 

3O(J+l) 

-Jzi&K3 

-&&ia 
10 

-(J-1)(6J+l) 

30J 

- (J+ 1 )~E-@Ei 

30.r 

~izi&iz 

15 

-(2J+1)(2Jz+2J+1) 
3OJ( J+ 1) 

(4J+ 1 )Jm,/%i 

30J 

-JclJGiJzr-IJu+t 
30J 

- (J+2)J2J+I,/i%? 

3O(J+l) 

-fi$T2$rlJ 

3O(J+ I) 

(4J+3)JTKl$% 

3O(J+ 1) 

- (J+2),/mdG~ 

3O(J+ 1) 

-(J- 1 ),/%$%i 

30J 

-~\/J+rJu-r~iiTi 

30J 

(4J+ I ),/m,/m 
30J 

(4J+5),/=,/=~ 

3O(J+ 1) 

-~~~zz~Tiz 

3O(J+ 1) 

--&F@F5 
10 

-J(65+7) 

3O(J+I) 

J2J_1~%T? 

-&&G 

15 

-6J2-5J+ 1 
305 

(4J- 1 ),/mJu+r 

30J 

-JiiTiJu-3 

10 

-(U+l)(U~+W+l) 
3OJ( J+ 1) 

- (J- 1 )&i&6% 
305 
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CARS where two beams with frequencies o, and w2 are used to generate a wave with frequency 20, -w2 the 
elements xl:12 ( --o; ol, wi, -w2) are equal to xI:i2( --o; o,, w i, --02) (with 1, 2=x, y and z). So in an 
isotropic medium there are then only two independent x (3) elements left namely xi:12 ( -0; oi, wi, - w2) and 

xl% (--0’ 01 WI , -02). For the case of ground state CARS for example the elements x[:12 and xi:42 equal 

(-&-KM Ls,L_ 1 ) and ( -SloO_, -S, _ 1oo) respectively. This is the justification for the inclusion of the (P-Y) 
factors in eq. (9) to account for the degeneracy in the w, beams. 

Overall permutation symmetry, or Kleinman symmetry [ 16 1, applies when the xc3) elements are independent 
of the frequencies involved, so when the frequencies of the incoming fields which appear in the denominators 
ofX(3) are far removed from molecular transition frequencies. In that case all permutations of the subindices of 
the xc3) tensor leave the elements unchanged and only a single independent tensor element remains. For the 
case of the threefold resonance-enhanced CARS processes described in this paper Kleinman symmetry ob- 
viously does not hold. For ground state CARS for example the elements x{:12 and xl:& are equal to 
( -S, _ lW-Sloo_l ) and ( - 2S,,,_ iO) respectively. Table 1 shows that these elements are different. 

2.4. Calculation of rotational linestrength factors S 

2.4.1. Calculation of the reduced linestrength factors sjum 
Now we return to an evaluation of the individual slklm factors. A sequence of four transition matrix elements, 

going from state 1 a) through 1 b), 1 c) and 1 d) back to 1 a), needs to be evaluated. For the transition matrix 
elements the general AJ= 0, + 1 selection rule holds, therefore 19 different (J,, Jb, J,, Jd) routes are allowed in 
general. This is illustrated in fig. 2. 

The procedure to derive reduced s factors is elaborate because of the required summation over degenerate M, 
values, appropriately weighted to account for possible macroscopic symmetry in the ensemble of molecules. The 
weighted summation over M, states, ranging from -J, to J,, can always be performed numerically, but in some 
cases analytical expressions can be derived. 

In the case of an isotropic medium there are three independent s factors (siO_ iO, sI _ ioo and sloe_ I 1. For all 
possible 19 J-routes the summation over M, for these 3 elements have been performed. The results are listed in 
table 1. The soooO component is also given as it is needed in the case of linear and parallel polarizations of the 
incident waves. soooo can also be obtained by adding the three independent components, in agreement with eq. 

(11). 

2.4.2. Molecular prefactors Otid 
The molecular prefactors Phd in the expressions for the rotational linestrength, defined by eq. (8b), are a 

simple product of four Clebsch-Gordan coefficients and involve only the total angular momentum J and the 
projection of the electronic angular momentum onto the internuclear axis of the molecule Q. In table 2 molecular 

I- lb> I- Id> I- 

J --______* J 

I J-21 

Fig. 2. Diagrammatic representation of J state sequences in- 
volved in a [Ja, .I,,, J, JJ FWM cycle. The dashed one-photon 
interactions are forbidden when the two electronic states in- 
volved both have Q=O symmetry. 
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Table 2 

Molecular prefactors Pbed (eq. (8b) ) calculated for sequences of electronic states with Q,=Q,=Q,=O, or + 1 and Q,=O, or + 1 

szoooo Qooo?I QookNJ 

[J,J+l,J,J-1] 
J(J+ 1) -(J-l)(J+l) 

(2J+ 1 ),/Ed= 2(2J+ l),,/mJ2Jrj 

0 

[J,J+l,J+l,J+l] 0 0 

-J(J+ 1) 

2(2J+1)(21+3) 

J(J+ 1) 

2(2J+ 1 )~~J2jT7 

0 

[J,J+l,J+2,J+l] 
(J+ l)(J+2) (J+l)(J+2) -(J+l)(J+3) 

(2J+3)Ju+1dm 2(2J+3)JmJu+5 2(2J+3)&E@T5 

[J,J-l,J,J-1] 
(2J-1)(2J+l) 

-J(J-1) 

2(2.1-1)(2J+l) 

-J(J+l) 

2(2J-1)(2J+l) 

[J,J-l,J,J+l] 
J(J+ 1) -J(J+2) J(J+ 1) 

(2J+ l)~ziJz1+3 2(2J+ 1)@7/= 2(2J+ 1 )d=&% 

J 
[J, J- 1, J, Jl 0 

2J21+1Ju-1 
0 

[J,J-l,J-l,J-1] 
J 

0 0 
2~iz&iz 

[J,J-1, J-2,J-l] 
J(J- 1) J(J- 1) 

(2J- 1 )d%=&%? 2J2J+ 1 J2J-1 

-J(J-2) 

2(2J- 1 )J2J+1Ju-3 

prefactors aoooo, sZooo * ’ and L2 OO* ‘O that play a role in the resonance CARS processes of fig. 1 in I2 and Br2 for 
all possible J-routes are given. In some interactions AG= 0 and Q branches are forbidden under this condition. 
In this case the number of possible pathways is smaller than 19. The extension of the present work to symmetric- 
top molecules requires elaborate calculations because the K value, representing the projection of the angular 
momentum on a molecule-fixed axis may range from -J to J and J may be a large number. The advantage of 
the present analysis is that the K value only appears in the molecular prefactors which are easily evaluated. 

2.4.3. Rotational linestrength factors S$!$i 
Expressions for rotational linestrength factors S$$ are obtained for each of the 19 J-routes by multiplication 

of the appropriate molecular prefactor &Pd with the reduced linestrength factor Sju,. We calculated the rota- 
tional linestrength factors for a sequence of four states with a=O, with relevance for the resonance CARS ex- 
periments in Iz and Br,. The four elements Ssg, Sv,o, SEW and Syi8’?, , given in table 3, govern the lines- 
trengths in resonance CARS processes with arbitrary polarizations of the incident waves. Because 52=0 for all 
electronic states involved only 6 different J-routes are allowed. In section 3 we will discuss the particular S 
factors that describe the so-called ground-state CARS spectra in Br2 and the excited state CARS spectra in Iz 
(seefig. 1). 
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Table 3 
Rotational line strength factors .S,E (eq. (8a)) forQ,=Q~=QC=X2d=0 

S.%% %?%I GYoo GE I 

[J,J+l,J,J+l] 

[J,J+l,J,J-I] 

(J+1)(5+8J+4J2) 2J(J+ l)(J+2) -(J+2)(6J+5)(J+l) -J(J+l)(6J+7) 
15(2J+l)(2J+3) 15(21+1)(21+3) 30(25+1)(2J+3) 30(2J+1)(21+3) 

2J(J+ 1) 

15(2J+l) 

[J,J+l,J+2,J+l] 
2(J+ l)(J+2) 

15(2/+3) 

[J,J-l,J,J-1] 

[J,J-l,J,J+l] 

J(4J2+ 1) 
15(2J-1)(2J+l) 

2J(J+ I ) 

15(x+ 1) 

[J, J-l,J-2, J-l] 
2J(J- 1) 
15(2J- 1) 

-J(J+ 1) -J(J+ 1) 
10(2J+ 1) 10(2J+l) 

-(J+l)(J+2) 

10(2J+3) 

(J+l)(J+2) 
15(2/+3) 

J(J+I) 

15(2J+l) 

-(J+l)(J+2) 

10(2J+3) 

2J(J-l)(J+l) -J(J-1)(6J+l) J(-6J2-5J+l) 

15(2J-l)(2J+T) 30(2J-1)(2J+l) 30(2J-1)(2J+l) 

-J(J+l) 

10(2J+ 1) 

-J(J-I) 

10(2J- 1) 

-J(J+ 1) 
10(2J+l) 

J(J-I) 

15(21-l) 

-J(J+l) 

15(2J+l) 

-J(J- 1) 
10(2J- 1) 

2.5. Resonance-enhancement in FWA4 by continuum states 

In the calculations of linestrengths for threefold-resonant FWM processes in the preceding sections well-de- 
fined sequences of angular momentum states [J,, Jb, J,, Jd] were postulated. In the case of resonance on bound 
states the frequencies at which they appear in the spectrum allow for a determination of the values of the angular 
momenta of the quantum states involved. In case of resonance enhancement on a dissociative state, related to a 
purely repulsive potential, or in the positive energy range of an attractive potential, this is not the case. Then all 
J values allowed by dipole transitions, connecting the continuum state to the FWM cycle, give rise to enhance- 
ment. Contributions of different Jvalues interfere and must be summed coherently. The number of contributing 
Jstates in the continuum is at maximum three and at minimum one, depending on the L? values of the electronic 
states involved. 

As an example we calculated the linestrengths in the threefold-resonant ground state CARS scheme of fig. 1 
with the assumptions of L$ = 52,= in, = 0 and the projected electronic angular momentum of the continuum state 
Sz, either 0 or 2 1. In section 2.2 it was shown that in an isotropic medium two S factors play a role for this 
process: S,,, for the case of parallel linear polarizations and SlO_10 for the case of crossed linear polarizations 
of the two incident beams. The Raman resonances give rise to a branching in conventional 0 (J), Q(J) and 
S(J) lines. The S and 0 lines may only be enhanced by an R respectively P transition on the first w, resonance. 
For the Q lines there are two possibilities Q’ and QR, where the superscript denotes the angular momentum 
sequence of the first resonance. From the point of view of frequencies there is only one Q branch, but for the 
linestrengths a distinction has to be made between Q’ and QR lines because the resulting values are different. 
For the S and 0 lines there is only one possibility to complete the FWM cycle, [J, J+ 1, J+2, J+ 1 ] and [J, 
J- 1, J- 2, J- 1 ] respectively. The linestrength factors are given in tables 3 and 4. For the Q lines the number 
of routes for completing the FWM cycle depends on the value of s2, of the continuum. For &= 0 two channels 
and for 52,= + 1 three channels interfere respectively. For example the linestrength of the QP (J) line, assuming 
L&,= + 1, is determined by the coherent addition of the linestrength factors of the routes [J, J- 1, J, J- 11, [J, 
J- 1, J, J+ 1 ] and [J, J- 1, J, J] to be taken from table 4. By following this procedure the rotational line- 
strengths for the cases of linear parallel and linear crossed polarization for this ground-state resonant CARS 
process were calculated (see table 5 ). 
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Table 4 
Rotational line strength factors S,ym,’ (eq. (8a)) for sZ,=L$.=sZ,=0 and sZ,= 1 

G% ’ py* I 10 10 

[J,J+l,J,J+l] 

(J,J+l,J,J-I] 

[J, J+ 1, J, Jl 

[J,J+l,J+2,J+l] 

[J,J-l,J,J-I] 

[J,J-l,J,J+l] 

lJ,J-l,J,Jl 

[J,J-l,J-2,J-I] 

-(J+2)(5+8J+4J2) 

30(2J+1)(2J+3) 

-(J-l)(J+l) 

15(2J+ 1) 

-(J+2) 

30 

-J(J+2)(J+2) 

15(2J+l)(25+3) 

(J-l)(J+l) 

20(2J+ 1) 

-(J-3) 

60 

(J+ l)(J+2) -(J+l)(J+2) 

15(2J+3) 20(2J+3) 

-(4J’+l)(J-1) 
30(2J-1)(2J+l) 

-J(J+2) 

15(2J+ I) 

-(J-l) 
30 

J(J- 1) 

15(2J- 1) 

-(J-l)(J-l)(J+l) 

15(2J-1)(2J+l) 

J(J+2) 

20(2J+ 1) 

- (J+4) 

60 

-J(J- 1) 

20(2J- 1) 

2.6. Polarization orientation of the wavegenerated in a FWMprocess 

The elements of the third-order non-linear susceptibility tensor x(3’ and the related S factors are independent 

of the polarizations of the applied fields. The induced non-linear polarization Pc3) however does depend on the 
incident polarizations through eq. (2). The field of a monochromatic wave may be written as 

E,(t)=f[E,(cosBi+sin8e’@Z)exp(-iot)+c.c.]. (13) 

A description of plane waves travelling along the 9 axis is adopted and all spatial dependences are left out of the 
description at this point. 8 is the angle of the polarization vector relative to the 5 axis. The factor ei@ is introduced 
to represent the different polarization states. For linearly polarized light @=O and 8 can have any value. For 
circularly polarized light @=7t/2 and 8 is either n/4 (left) or 3x/4 (right). 

Allowing for all possible polarizations in the xz plane the Cartesian components of the induced third-order 
non-linear polarization in eq. (2) can be rewritten as 

p!“(rJJ)={x!:?Z cos e1 cos e, cos e3 + x:zA cos 8, sin eZ sin e3 exp [ i ( gz - es ) ] 

+~g&sine, coseZsine3exp[i(@,-@,)]+xg= sin 8, sin e2 cos e3 exp [ i ( @, - dz ) ] }E,, E,,E, , (14) 

by using the expression for the fields of eq. ( 13 ). A similar expression can be derived for Pi3) (CO). 
The polarization orientation of the generated wave is determined by the resultant of PL3) and P!3’. In case of 

resonance CARS, with production of a frequency wAs= 2w, - o2 with linearly polarized incident waves, simple 
expressions follow. The pump frequency o, may be chosen polarized along i and the polarization of the Stokes 
wave wz with an angle 0s with respect to i without loss of generality. The polarization of the generated anti- 
Stokes wave is then given by 

P(3)=x$:& sin es a+~!;?~ cos es f . (15) 
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It follows that the generated anti-Stokes has a polarization angle O, with respect to the i axis given by 

8 AS =arctan$ =arctan($j tan 8s). (16) 

The tensor elements ~2.:~ and x!&)= both depend on linestrength factors S that are different for particular FWM 
processes or J states probed. As a consequence we find that in general the polarization orientation of the anti- 
Stokes wave will vary throughout the CARS spectrum. In the two simplest cases this is, however, not true. When 
both the w, and w2 waves are linearly and parallelly polarized, only xrrzz (3) is needed and the anti-Stokes wave is 
also linearly polarized parallel to the incident waves, independent of any resonance. In case of crossed linear 
polarizations only ,& is appropriate and we find that the anti-Stokes wave is polarized parallel to the Stokes 
wave throughout the CARS spectrum. 

Finally we consider the effect of a polarization analyzer, again under the condition of linearly polarized beams 
w, and w2, with wi chosen along f and w2 with an angle 6, with respect to i. This configuration is depicted in 
fig. 3. When the axis of the analyzer e, is set at angle 6, (with respect to i) we find 

Pc3)-e, =Pc3) sin & +Pc3) cos 0, =xc3) x z xruc sin 0, sin& +x!:!z cos 6, cos (3, . 

The total intensity (without analyzer) becomes 

(17) 

and with analyzer 

Zo,sa~P(3)~eT~2=~~~~~~sin8ssin8,+~~~!,c0sBsc0se,~2. (19) 

3. Applications in resonance CARS 

Resonance CARS measurements were performed in I2 and Br, vapours. A pump beam, from a fixed-frequency 
(w, ) narrow-band Nd-YAG laser at 532 nm colinearly propagates with a wavelength-tunable Stokes beam ( w2) 
along a chosen j axis. The beams are focused in a gas cell containing the non-linear medium. Either the total 

intensity or the intensity transmitted through a polarization analyzer of the generated wave at oks= 20, - w2 is 
detected (see fig. 3). In previous papers the frequency dependence of resonance CARS in I2 [ 131 and Br2 [ 171 
was discussed. Well-known characteristics of threefold-resonant CARS spectra are the appearance of selected 
rotational lines in series of vibrational overtones. It s&ices to note that a precise determination of resonance 
frequencies allows for an unambiguous assignment of the CARS spectral features in sequences of Jstates. In Br2 
only a single FWM process could be observed, namely a ground-state resonant CARS process enhanced by 
bound transitions in the B 311$-X ‘Cl system and by a continuum state at the one-photon level. In 12, apart 
from a similar ground-state resonant CARS process, also two distinguishable excited-state CARS processes were 
identified (fig. 1) in which a continuum state at the two-photon level gives rise to resonance enhancement. In 
the following we will demonstrate how to invoke the theoretical framework on rotational linestrengths devel- 

z @T 
*r 

0.4s 
01 

*1 . 2.; % _ %S 

b y 
..,./ a/c I 

Fig. 3. Collinear setup for resonant CARS measurements; the 
analyzer is an option that was not used in measurements of total 

x 
iiker analyzer intensities; focusing lenses are not shown. 
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Table 5 
Linestrengths for ground-state resonant CARS a) 

Parallel (&=O) Parallel (S+ + 1) Crossed f.&=O) Crossed (S&= -t 1 f 

QR lines 

SR lines 
2(Jf 1)(5+2) 

15(2J+-3) 

Qp lines 
J(4J- 1) 
15(2J-1) 

-(J+l)(Jf2) 

lO(2Jf3) 

-J(J+ 1) 
3O(W-1) 

-J(JS 1) 
60(2J+3) 

-fJ+l)(J+Z) 

20(2J+3) 

-J(J+ I ) 
60(2J- 1) 

0’ lines 
ZJ(J- 1) J(J- 1) -J(J- 1) -J(J- 1) 

IS(zr-1) 15(U-1) fOfZJ-1) ZO(zJ--1) 

‘I We note here that in a preliminary report on resonance CARS in Br2 molecules [ 17 ] the lin~t~~~hs for QR lines (parallel 
polarization) and Q”lines (crossed polarization), both in case sZ,=O, were erroneously interchanged. 

oped in section 2 for a comparison with the signal intensities observed in the various processes. 

3. I. Polarization-dependent i~te~~~ty ratios 

Given a certain polarization configuration first the appropriate x f3) elements must be determined. Assuming 
linear polarizations for the incident waves it is shown in eq. ( 18) that the CARS intensity in general has a 
parallel contribution proportional to xi&$ and a crossed contribution given by ,$&. For all resonance schemes 
the x&?& element corresponds to the S --rotational linestrength factor, whereas for the x$i& element it is pro- 
cess dependent. In eq. ( IO) the transfo~ation ofx I:& is given for the ground-state resonant CARS process and 
the transfo~ation for the other processes can be worked out in an analogous way. It follows that e.g. the rota- 
tional linestrength in case of crossed polarizations of the incident beams in the ground-state resonant CARS 
process is dete~ined by &a_ iO, while St _ lea is needed in the excited-state CARS processes. The co~esponding 
reduced linestrength factors s,e_ ,e and si _ ,M1 can be extracted from table 1. At this point the assumption of an 
isotropic medium is made. 

Next we have to determine the molecular prefactors Qakd that depend on the molecular system involved. In 
the I, and BrZ experiments the CARS processes are resonantly-enhanced by bound transitions in the B ‘II&- 
X ‘Zc system, thus involving L&O states. Continuum enhancement in ground-state CARS is achieved at the 
one-photon level by B 311& (&LO) and ‘II,,(Q= + 1). Their contribution depends on the different overlap 
integrals and the electronic transition moments of eq. ( 7 ) , For the excited-state CARS processes in 12, however, 
continuum enhancement is obtained at the two-photon level where an L&=0 repulsive state is assumed [ 91. In 
table 2 the different molecular prefactors needed in various cases are given. 

For a specified [ .I,, Jbr J,, Jd] combination the appropriate au&d and s,~~ factors must be multiplied next. For 
the case of Doooo the resulting rotational linestrengths are given in table 3. As explained in section (2.5 ) reso- 
nance-enhancement by a continuum can be taken into account in the rotational linestrength by coherently add- 
ing all allowed J-routes. In the case of hound-state resonant CARS this means a summation over Jd states, 
whereas a summation over J, states has to be evaluated for the excited-state CARS processes. So finally all 
allowed J-combinations, determined by molecular prefactors, must be added. In tables 5 and 6 the rotational 
linestrengths are tabulated for the cases of L&O or 1 and for parallel and crossed polarizations. These values 
must be squared to compare with observed CARS rotational linestrengths. 

The calculated J-dependence of the intensity ratios (obtained from table 6) of the characteristic doublets 
[ 9,13 ] in the non-parametric excited-state CARS process (f2,= 0) for parallel and crossed pola~zation is shown 
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Table 6 
Linestrengths for excited-state resonant CARS 

Paraiiel (&==O) Parahet (52,= i 1) Crossed f&=0) Crossed (fa,= If 1) 

QR lines 
(J.+1)(4Ji3) 

15(2JSl) 

OR lines 
2J(J+ 1) 
15(2Jfi) 

QP lines 
J(4J.t I) 
Is(wT+I) 

SF tines 
U(J-+ 1) 
1S(2&i) 

.?(J+ 1) 
lS(2Jfl) 

-(J-&1)(5+2) -(Jcl)(J+z) 
30fW.t I) 60(2J+ 1) 

-J(di- 1 f 

10(2Jfl) 

-J(J-1) 
30(25+1) 

-J(J+ 1) 
1o@J+ 1) 

-J&f+ 1) 

20(2J.+l) 

-J(J--1) 
60(2J+ 1) 

* 20 30 40 50 60 

J 

Fig. 4. Theoretical J-dependence of intensity ratios for par&let 
(upper) and crossed (lower) polarization for the excited-state 
parametric CARS process as discussed in the text. Experimental 
points for Ia are given. Black circles (e) denote the linestrength 
ratio Q/O and open circles (0) ratio of Q/S tines. in the esti- 
mated uncertainties in the data points the uncertainty in the rel- 
ative angles between po~a~tion vectors are included, 

Fig. 5. PoIa~2ation ~n~guration for excited-state CARS exper- 
iment. The pump w, is haearly polarized along the i axis, while 
the linearly polarized Stokes wave makes an angle of 9=70” wirh 
the i axis. Calculated angles BM are shown for Q and O/S branches 
in case of a ~ntinuum state with &=O (black arrow) as weli as 
i 1 (dashed arrow). 

in fig. 4. A few experimental points for I2 are inserted as well and agreement with theoretical prediction is 
obtained. 

In the setup with a polarization analyzer (see fig. 3) the excited-state parametric CARS process in I2 was 
investigated in the energy range with a Stokes shift of 910-925 cm- ‘. The angle between the linear pola~zatio~ 
vectors of the incident waves was chosen at 8,=70”, The ~la~zation con~gu~tion of the waves involved is 
represented in fig. 5. Applying eqs. ( 15 ) and ( 16 ) , inserting the appropriate linestrength factors (from table 6 ) 
pe~aini~g to the two relevant tensor elements x$$& and &&, the pola~zatio~ o~e~tation of the generated wave 
was calculated. Angles Bks of 19” for the Qp( 53) and Qn( 56) and 64” for the O(56) and S( 53) lines were 
deduced. To verify these drastic polarization effects CARS spectra of these four resonances were recorded at 
different settings Cr, of the pola~zation analyzer. These spectra are shown in fig. 6. Indeed it is found that for % 
at a value ~~en~c~ar to the calculated values for 6, the signals in the Q branch (at @= -70” ) or the O/S 
branch (at &= - 25 o ) vanish. The upper spectrum in fig. 6 is taken at Gr= 60” for which doublet ratios of 0.5 
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eT = 60’ 

II QW O(56) 

925 920 915 cm - 

0 
1 

- co2 - 
Fig. 6. Excited-state parametric CARS spectra taken with differ- 
ent analyser settings (6 with respect to the i axis) and an angle 
of es= 70” between the two incoming linearly polarized beams. 

and 0.45 are predicted for the Q/0( 56) and Q/S( 53) lines respectively. This agrees well with the observed 
ratios of 0.6 and 0.43. 

So we conclude that the theory for calculating the orientation of the polarization vector of the anti-Stokes 
wave produces excellent agreement with the features observed in IZ. These calculations were based on the as- 
sumption that the continuum state at the two-photon level is an 52,= 0 state. To verify this assumption 6, was 
also calculated for an L&= 1 continuum state. Again the lines of the 0 and S branch show a maximum intensity 
near 8 ,,s=640, but the lines of the Q branch near 8,= - 14” for Jvalues 53 and 56. This is shown in fig. 5. The 
strong dependence of the polarization orientation of the generated CARS wave on Qc is another tool to deter- 
mine the electronic character of states involved in the resonant CARS processes. The assumption of enhance- 
ment by a 0: -continuum state in I2 [ 131 is supported by the present polarization data. 

4. Concluding remarks 

Although the formalism presented in this paper can be applied quite generally, several assumptions are made. 
E.g. it is implicitly assumed that a generated wave propagates in the direction determined by a phase-matching 
condition. Furthermore the effects of fast relaxation mechanisms are ignored and calculations hold for the sta- 
tionary limit. Also effects of saturation are not included as the expression forXc3) is deduced from a perturbative 



128 I.Abenetal./ChemicalPhysics169(1993) 113-128 

approach and higher-order xc”) terms are left out. Within these restrictions the analytical expressions for the 
rotational linestrengths are applicable for diatomics and symmetric-top molecules in isotropic gaseous media. 
Furthermore they may be used for any threefold resonant FWM process including e.g. the case of resonance- 
enhanced third harmonic generation. Particularly an application in the new powerful technique of degenerate 
four-wave mixing, that is now finding widespread use in combustion diagnostics, should follow straightfor- 
wardly. It should be noted however that extreme care must be taken to select the appropriate terms of the xC3’ 
tensor for this DFWM process. Work along these lines is in progress. 
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