Extreme ultraviolet laser excitation of isotopic molecular nitrogen: The dipole-allowed spectrum of ${}^{15}N_2$ and ${}^{14}N^{15}N$

J. P. Sprengers and W. Ubachs

Department of Physics and Astronomy, Laser Centre, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

K. G. H. Baldwin and B. R. Lewis

Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT, 0200, Australia

W.-Ü L. Tchang-Brillet

LERMA, UMR8112 du CNRS, Observatoire de Paris-Meudon, F-92195 Meudon Cedex, France and Université Pierre et Marie Curie (Paris 6), Paris, France

(Dated: March 19, 2003)

Data archive

This supplementary data archive contains the rotational line assignments and wave numbers for the ionization spectra discussed in the above article in The Journal of Chemical Physics, hereafter called I. Recommended term values are also given for the excited states, leading to the spectroscopic parameters given in I. The term values of the $X^{1}\Sigma_{q}^{+}(v=0)$ ground states of $^{15}N_{2}$ and 14 N¹⁵N are tabulated in Table I up to J = 30. The term values of the ground state are calculated using the rotational constants of Bendtsen [J. Ram. Spectrosc. 32, 989 (2001)]. Line positions and term values of the excited states of ${}^{15}N_2$ and ${}^{14}N^{15}N$ studied are tabulated in Tables II- XXII and XXIII- XXVII, respectively. Wave numbers given to three decimal places are from narrowbandwidth pulsed dye-laser (PDA) spectra, those to two decimal places are from pulsed dve-laser (PDL) spectra. Wavenumbers derived from blended lines are flagged with an asterisk (*), those from shoulders in the spectra by s, those from weak features by w, and doubtful assignments by ?. Line positions and term values of $^{14}N^{15}N$ which are blended with a ${}^{14}N_2$ line are labeled with *' (s' for shoulder). Wave numbers from PDA data which are relatively broad due to lifetime broadening or Doppler broadening are indicated with b. However, these relatively broad lines from the PDA data are significantly narrower than the lines from the PDL data.

In some of the spectra recorded with the PDL source, line broadening associated with the AC-Stark effect was observed, sometimes yielding asymmetric line shapes. This phenomenon was not investigated in detail, but the AC-Stark-induced shifts were compensated for by comparison with spectra obtained using the PDA source. For several bands, low-J lines were recorded with the PDA, while the entire band was recorded using the PDL at high laser intensity. Line positions from the PDA source were systematically lower by $\Delta_{\text{PDL-PDA}} \approx 0.05 - 0.20 \text{ cm}^{-1}$. Based on the observations with both systems, the PDL data were corrected for the AC-Stark shift, for those bands where ultra-high resolution PDA data were available. The PDL shifts are given in the captions of the tables. Due to the uncertain Stark shifts, the absolute wave-number uncertainty for the lines recorded with the PDL-based XUV source is $\pm 0.2 \text{ cm}^{-1}$, significantly worse than the calibration uncertainty of $\pm 0.05 \text{ cm}^{-1}$. The absolute calibration uncertainty for the PDA source is $\pm 0.003 \text{ cm}^{-1}$. This value represents a lower limit to the uncertainty for the narrowest spectral lines recorded. For lines where lifetime and/or Doppler broadening is of importance, the uncertainty is $\pm 0.02 \text{ cm}^{-1}$.

J	$T_e(J) {}^{15}\mathrm{N}_2$	$T_e(J)$ ¹⁴ N ¹⁵ N	J	$T_e(J) {}^{15}\mathrm{N}_2$	$T_e(J)$ ¹⁴ N ¹⁵ N
0	0	0	16	504.906	522.826
1	3.715	3.847	17	567.967	588.123
2	11.146	11.541	18	634.726	657.249
3	22.291	23.083	19	705.179	730.199
4	37.151	38.470	20	779.325	806.972
5	55.724	57.703	21	857.161	887.565
6	78.011	80.782	22	938.684	971.976
7	104.011	107.705	23	1023.893	1060.202
8	133.723	138.472	24	1112.784	1152.239
9	167.146	173.082	25	1205.354	1248.085
10	204.279	211.532	26	1301.601	1347.736
11	245.120	253.823	27	1401.521	1451.190
12	289.668	299.953	28	1505.111	1558.442
13	337.923	349.920	29	1612.367	1669.489
14	389.882	403.722	30	1723.288	1784.328
15	445.543	461.358			

TABLE I: Term values for the $X^{1}\Sigma_{g}^{+}(v=0)$ ground states of ${}^{15}N_{2}$ and ${}^{14}N^{15}N$. All values in cm⁻¹.

TABLE II: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(0,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=0)$ term values. PDL shift is -0.03 cm^{-1} .

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	100846.073					
1	100847.751	100842.31		1	100846.073	100846.02
2	100848.380	100840.31	100834.88	2	100851.466	100851.46
3	100848.021	100837.23	100829.12	3	100859.526	100859.52
4	100846.65	100833.18	100822.16*	4	100870.312	100870.33
5	100844.11	100828.02	100814.62*	5	100883.74	100883.74
6		100822.16*	100805.68	6	100899.89*	100900.17
7	100836.06	100814.62*	100795.94	7	100918.90*	100918.63
8		100806.30	100785.18	8	100940.07	100940.03
9	100823.77	100797.10		9		100964.25
10				10	100990.92	
11		$100775.70\mathrm{w}$		11		$101020.82\mathrm{w}$

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	$101458.455\mathrm{b}$					
1	$101460.014\mathrm{sb}$	$101454.737\mathrm{b}$		1	$101458.455\mathrm{b}$	$101458.452\mathrm{b}$
2	$101460.465\mathrm{b}$	$101452.565\mathrm{b}$	101447.17	2	$101463.729\mathrm{b}$	$101463.711\mathrm{b}$
3	$101459.890\mathrm{sb}$	$101449.310\mathrm{b}$	101441.35	3	$101471.611\mathrm{b}$	$101471.601\mathrm{b}$
4	101458.04	101444.88	101434.39	4	$101482.181\mathrm{b}$	101482.03
5	$101455.336\mathrm{b}$	101439.57	101426.39	5	101495.17	101495.29
6	101451.48	101433.10*	101417.13s	6	$101511.060{ m b}$	101511.12*
7	101446.35	101425.42	101406.99*	7	101529.44	101529.43
8	101440.40	101416.80s	101395.66s	8	101550.40	$101550.52\mathrm{s}$
9	101433.10*	101406.99*	101383.30	9	101574.21	101574.13*
10	101424.96s	101396.12s	101370.02	10	101600.27	$101600.40\mathrm{s}$
11	101415.54	101384.09	101355.18	11	101629.20	101629.21
12	101405.13	101371.26	101339.49	12	101660.67	101660.93
13	101393.44	101356.84	101322.75	13	101694.80	101694.77
14	101380.86	101341.52	101304.92	14	101731.41	101731.40
15	101367.16	101325.16	101285.91	15	101770.74	101770.70
16	101352.05	$101\ 307.69$	101265.83	16	101812.55	101812.59
17	101336.11	101289.12	101244.43	17	101857.02	101857.08
18	101318.90	101269.41	101222.36	18	101904.08	101904.14
19	101300.74	101248.45	101198.91	19	101953.66	101953.63
20	101281.30	101226.51	101174.38w	20	102005.87	102005.84
21	101260.79	101203.34	101148.66	21	102060.63	102060.51
22	101239.04w	101179.22w		22	102117.93	$102117.90\mathrm{w}$
23	101216.20	101153.84	$101094.02\mathrm{w}$	23	102177.73w	102177.73
24		101127.38w		24	102240.09	$102240.17\mathrm{w}$
25	101167.29w	101099.78w		25		$102305.13\mathrm{w}$
26				26	102 372.64w	

TABLE III: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(1,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=1)$ term values. PDL shift is -0.09 cm^{-1} .

TABLE IV: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(2,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=2)$ term values. No PDL shift applied.

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	102131.34*					
1	102132.97*	102127.81*		1	102131.34*	102131.53*
2	102132.97*	102125.58		2	102136.64	102136.73
3	102132.97*	102122.32	102114.29	3	102144.25	102144.61
4	102131.34*	102117.92*	102107.22	4	102155.09	102155.07*
5	102127.81*	102112.00*	102099.18	5	102168.49*	102167.72*
6	102123.54s	102105.58		6	102183.54*	102183.59
7	102117.92*	102097.50		7	102201.55s	102201.52
8	102112.00*	102088.71		8	102221.93*	102222.43
9	102104.49s	102078.83		9	102245.72*	102245.97
10	$102095.75\mathrm{w}$	102067.60		10	102271.64s	102271.88
11	102085.88	102055.13		11	$102300.02\mathrm{w}$	102300.25
12	$102075.08\mathrm{w}$	102041.47		12	102331.00	102331.14
13	102062.87	102026.52		13	102364.74w	102364.44
14	$102049.44\mathrm{w}$	102010.70		14	102400.79	102400.58
15	$102035.36{ m w}$	101994.06		15	102439.32w	102439.60
16		$101975.81\mathrm{w}$		16	102480.90w	102480.72w
17	$102003.16{\rm w}$	101956.50w		17		$102524.47\mathrm{w}$
18				18	$102571.12\mathrm{w}$	
19	101965.86w			19		
20				20	102671.03w	

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	102820.79s					
1	102821.77*	102816.65*		1	$102820.66\mathrm{s}$	102820.37*
2	102821.77*	102814.45	$102809.38 \mathrm{sw}$	2	102825.56	102825.60
3	102821.77*	102811.10	102803.34	3	102833.17	102833.39
4	102819.60s	102806.79*	102796.26	4	102843.89	102843.94*
5	102816.65*	102800.84	102787.99	5	102856.75	102856.56
6	102812.08s	102794.22	102778.74	6	102872.20*s	102872.23
7	102806.79*	102786.19	102768.00s	7	$102890.07\mathrm{s}$	102890.21
8		102777.22	102756.32s	8	102910.80*	102910.95
9	102792.71	102766.83		9	102933.79*	102933.97
10	102783.88	$102755.47\mathrm{s}$	102729.51*	10	102959.76	$102959.75\mathrm{s}$
11	102773.82	102743.19	102714.54*	11	102988.16	102988.31
12	$102762.71{ m w}$	102729.51*	102698.49*	12	103019.07	103019.18*
13	102750.42	102714.54*	102681.26*	13	$103052.53\mathrm{w}$	103052.46*
14	$102736.95\mathrm{w}$	102698.49*	102662.81 * w	14	103088.54	103088.37*
15	102722.25	102681.26*	102643.19*	15	103126.83w	103126.81*
16		102662.81 * w		16	103167.80	103167.71*w
17	$102689.27\mathrm{w}$	102643.19*	$102599.84 \mathrm{sw}$	17		103211.16*
18		$102623.10\mathrm{w}$		18	$103257.23\mathrm{w}$	$103257.83\mathrm{w}$
19	102651.78w	$102601.07\mathrm{sw}$		19		$103306.24 \mathrm{sw}$
20				20	103 356.96w	

TABLE V: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(3,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=3)$ term values. No PDL shift applied.

TABLE VI: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(4,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=4)$ term values. PDL shift is -0.18 cm^{-1} .

0 10248808	
0 103488.08	
1 103 489.61 103 484.45 1 103 488.08	103488.17*
2 103 490.23s 103 482.26 2 103 493.34	103493.41
3 103 489.29s 103 478.99 103 471.05 3 103 501.29s	s 103 501.28
4 103 487.75 103 474.60 103 464.05s 4 103 511.60s	5 103 511.75
5 103 484.90s* 103 469.43 103 455.89s 5 103 524.90	103525.15
6 103 481.27 103 462.84 103 466.65 * 6 103 540.69 *	∗ 103 <i>5</i> 40.85
7 103 476.26 103 455.31 103 436.75* 7 103 559.28	103559.32
8 103 446.65* 103 425.25s 8 103 580.27	103580.37*
9 103 463.34s 103 436.75* 103 413.21s 9 103 603.72	103603.90*
10 103 454.66s 103 425.97 103 399.44 10 103 630.20	103630.25
11 103 445.32 103 414.03 103 385.08 11 103 658.96	103659.15
12 103 434.82 103 400.86 103 369.30 12 103 690.54	103690.53
13 103 423.17 103 386.87 103 352.69 13 103 724.57	103724.79
$14 \qquad 103411.57 {\rm s} \qquad 103371.48 \qquad 103334.76 \qquad 14 \qquad 103761.10$	103761.36
15 $103396.08*$ 103355.10 103315.56 15 $103801.45s$	s 103 800.64
$16 \qquad 103\ 380.88 \qquad 103\ 337.05 \qquad 103\ 296.55s \qquad 16 \qquad 103\ 841.68$	103841.96
17 103 364.42 103 318.38 103 273.72 17 103 885.86	103886.35
$18 \qquad 103\ 346.82s \qquad 103\ 298.41s \qquad 103\ 251.19w \qquad 18 \qquad 103\ 932.54$	$103933.14\mathrm{s}$
19 103 328.09 103 277.10 103 227.51 19 103 981.83	ws 103 982.28
20 103 308.64w 103 254.82w 103 202.79w 20 104 033.41	$104034.15\mathrm{w}$
21 103 286.83s 103 231.08 103 176.37 21 104 087.53v	w 104 088.24
22 103 206.33w 103 148.74w 22 104 144.06	$104145.01\mathrm{w}$
23 103 180.28 103 120.17 23	104204.17
25 103 123.61 25	104328.96

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	104615.82					
1	104617.573	104612.133		1	104615.82	104615.848
2	104618.289	104610.075	104604.67	2	104621.288	104621.221
3	104618.011	104606.984	$104598.79\mathrm{s}$	3	104629.435	104629.275
4	104616.82	104602.88	$104592.13\mathrm{s}$	4	104640.302	104640.03
5	104614.42	104597.77	104584.60*	5	104653.92	104653.49
6	104611.31	$104591.60\mathrm{s}$	104575.86	6	104670.16	$104669.61\mathrm{s}$
7	104607.092	104584.60*	104566.15	7	104689.27	104688.61*
8	$104601.94\mathrm{s}$	104576.47	104555.51	8	104711.103	104710.20
9	104595.94	104567.27	104543.96	9	104735.67	104734.42
10	104588.97	104557.20	104531.40	10	104763.04	104761.48
11	104581.08	104546.10	104517.87	11	104793.24	104791.22
12	104572.37	104534.10	104503.57	12	104826.16	104823.77
13	104562.95	104521.13	104488.20	13	104862.12	104859.05
14	104552.39	104507.19	104472.32	14	104900.83	104897.08
15	104541.64	104492.24	104455.24	15	104942.41	104937.79
16		104476.76	104437.64	16	104987.19	104981.67
17		104459.69		17		105027.66
18		104442.11		18		105076.84

TABLE VII: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(5,0)$ band of ${}^{15}N_{2}$, together with $b^{1}\Pi_{u}(v=5)$ term values. PDL shift is -0.20 cm^{-1} .

TABLE VIII: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(6,0)$ band of ${}^{15}N_{2}$, together with $b^{1}\Pi_{u}(v=6)$ term values. PDL shift is -0.13 cm^{-1} .

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	105237.202					
1	105238.567	105233.484		1	105237.202	105237.199
2	105238.760	105231.129	105226.26	2	105242.282	105242.275
3	105237.777	105227.597	105220.12	3	105249.906	105249.888
4	105235.64	105223.05	105212.77	4	105260.068	105260.20
5	105232.286	105217.08	105204.37	5	105272.76	105272.80
6	105227.779	105210.10	105194.71	6	105288.010	105288.11
7	105222.22	105201.68	105184.01	7	105305.790	105305.69
8	105215.31	105192.35	105172.03	8	105326.25	105326.08
9	105207.35	105181.75	105159.12	9	105349.04	105348.90
10	105197.95	105169.90	105144.76	10	105374.44	105374.18
11	105187.73	105157.06	105129.26	11	105402.36	105402.18
12	105176.25	105142.88	105112.81	12	105432.85	105432.55
13	105163.67	105127.59		13	105465.92	105465.52
14	105149.71	105111.10		14	105501.60	105500.98
15	105134.83			15	105539.59	
16	105118.35w			16	105580.37	
17				17	$105623.25\mathrm{w}$	

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	105981.332					
1	105982.652	105977.619		1	105981.332	105981.334
2	105982.782	105975.231	105970.16	2	105986.367	105986.377
3	105981.722	105971.55*	105964.06	3	105993.927	105993.84*
4	105979.473	105966.90	105956.84	4	106004.131	106004.05
5	105976.033	105960.93	105948.25	5	106016.624	106016.65
6	105971.55*	105953.80	105938.60	6	106031.758	106031.81
7	105965.63	105945.40	105927.76	7	106049.43	106049.41
8	105958.74	105936.00	105915.71	8	106069.59	106069.72
9	105950.56	105925.44	105902.40	9	106092.41	106092.59
10	105941.28	105913.54	105888.07	10	106117.72	106117.82
11	105930.99	105900.54	105872.61	11	106145.56	106145.66
12	105919.72	105886.60	105855.91s*	12	106176.12	106176.27
13	105907.08	105871.50	105838.23*	13	106209.29	106209.42
14	105893.64	105855.42s*	105819.31	14	106245.05	106245.30s*
15	105879.23	105838.23*	105799.54	15	106283.52	106283.77*
16	105863.80	105820.17	105778.61*	16	106324.70	106325.08
17	105847.69	105801.32	105756.67	17	106368.67	106369.29
18	105830.65	105781.45	105733.90	18	106415.62	106416.18
19	105812.94	105760.90	105710.40	19	106465.28	106466.08
20	105794.77	105739.69	105685.86	20	106518.16	106519.02
21	105776.18	105718.18	105661.03	21	106574.10	106575.34
22	105757.38	105696.19	105635.36*	22	106633.39	106634.87
23	105738.33	105674.08	105609.53	23	106696.07	106697.97
24	$105719.56\mathrm{s}$			24	106762.21	
25	105700.99		105556.83	25	106832.36s	
26				26	106906.35	

TABLE IX: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(7,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=7)$ term values. PDL shift is -0.19 cm^{-1} .

TABLE X: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(8,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=8)$ term values. No PDL shift applied.

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
1	106767.40	106762.34s		1		106766.06s
2	$106767.87\mathrm{s}$	106760.01		2	106771.12	106771.16
3	106766.84	106756.58	106748.98*	3	106778.82	106778.87
4	106764.89	106752.07*	106741.67	4	106789.12	106789.22*
5	106761.80	106746.26*	106733.39	5	106802.03	106801.98*
6	106757.58	106739.05*	106724.01	6	106817.52	106817.06*
7	106752.38*	106731.20	106713.44s	7	106835.59	106835.21
8	106746.26*	106722.07*	$106\ 701.98*$	8	106856.31*	106855.79*
9	106739.05*	106712.16*	106689.09*	9	$106879.90\mathrm{s}$	106879.31*
10	$106730.87\mathrm{s}$	106701.08	$106675.62\mathrm{s}$	10	106906.15	106905.36
11	106722.07*	106689.09*	106661.03	11	106935.28	106934.21*
12	106712.16*	106676.30	106645.62	12	106967.23	106965.97
13	106701.98*	106662.54	106629.30	13	107002.07	107000.46
14	106691.03	106648.21	106612.19	14	107040.07	107038.09
15	106679.76	106633.13	106594.53	15	107081.01	107078.67
16	106667.92	106617.60	106576.20	16	107125.27	107122.51
17	106656.11	106601.57	106557.28	17	107172.83	107169.54
18	106644.24	106585.05		18	107224.06	107219.78
19	106632.04	106568.48s*	106518.86	19	107278.97	107273.66s*
20	106620.09	$106551.81\mathrm{s}$	106499.60s	20	107337.23	107331.14
21	106608.16			21	107399.42	
22				22	107 465.33	

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	107446.19					
1	107447.10*	107442.61		1	107446.19	107446.33
2	107447.10*	107439.75		2	107450.95	107450.90
3	107444.83	107435.51	107428.66	3	107457.84	107457.80
4	107441.58	107429.97	107420.69	4	107467.14	107467.12
5	107436.79	107423.06*	107411.44	5	107478.73	107478.78*
6	107430.70	107414.58*	107400.72	6	107492.48	107492.59*
7	107423.06*	107404.72	107388.43	7	107508.69	107508.73
8	107414.58*	107393.43	107374.95	8	107527.35	107527.15
9	$107404.17\mathrm{s}$	107380.99	107360.21	9	107548.15	107548.14
10	107392.48	107366.96	107343.87	10	107571.18	107571.24
11	107379.54	107351.73	107326.06	11	107596.75	107596.85
12	107365.02	107334.90	107307.08	12	107624.67	107624.57
13	107349.46	107316.71	107286.73	13	107654.69	107654.63
14		107297.26	107264.80	14	107687.25	107687.14
15	107313.47	107276.27	107241.57	15		107721.81
16	107293.52	107254.15		16	107759.01	107759.06
17	107272.35			17	107798.43	
18				18	107840.32	

TABLE XI: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(9,0)$ band of ¹⁵N₂, together with $b^{1}\Pi_{u}(v=9)$ term values. No PDL shift applied.

TABLE XII: Rotational line assignments and wave numbers for the $c_3 {}^1\Pi_u - X {}^1\Sigma_g^+(0,0)$ band of ${}^{15}N_2$, together with $c_3 {}^1\Pi_u(v = 0)$ term values. PDL shift is -0.08 cm^{-1} .

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	$104072.725\mathrm{b}$					
1	$104074.547{ m b}$	104069.052b*		1	$104072.725\mathrm{b}$	$104072.767\mathrm{b}*$
2	$104075.316\mathrm{b}*$	$104067.199\mathrm{b}$	$104061.48\mathrm{s}$	2	$104078.262\mathrm{b}$	$104078.345\mathrm{b}$
3	104075.316b*	$104064.421\mathrm{b}$	104056.07*	3	$104086.462\mathrm{b}$	$104086.712\mathrm{b}$
4	$104074.306\mathrm{b}$	104060.76*	104049.32	4	$104097.607{ m b}$	104097.91*
5	$104072.224\mathrm{b}$	104056.07*	104041.90	5	$104111.457\mathrm{b}$	104111.79*
6	104069.17*	104050.54	104033.40	6	$104127.948\mathrm{b}$	104128.55
7	$104065.334\mathrm{b}$	104044.06	104023.90	7	104147.22	104148.07
8	104060.76*	104036.61	104013.53	8	$104169.345\mathrm{b}$	104170.33
9	104054.52	104028.26	104002.25	9	104194.32	104195.41
10	104047.78	104018.84	103989.87	10	104221.65	104223.12
11	104040.02	104008.52	103976.52	11	104252.02	104253.64
12	104031.25	103997.34	103962.31	12	104285.15	104287.01
13	104021.40	103985.08	103947.23	13	104320.91	104323.00
14	104010.72	103971.97*	103931.02	14	104359.36	104361.85*
15	103998.93	103957.55*	103913.87	15	104400.53	104403.09*
16		103942.18	103895.56	16	104444.41	104447.09
17	103971.97*	103925.78	103876.38	17	104491.00	104493.74
18	103957.55*	103908.43	103856.28	18	104540.07	104543.15
19	103941.14	103889.88	103835.03	19	104592.08	104595.06
20	103923.81	103870.26	$103812.55 {\rm w}$	20	104646.35	104649.58
21	103905.65	103849.48	103789.21	21	104703.21	104706.64
22	103886.08	103827.62	$103764.60{ m w}$	22	104762.84	104766.31
23	103865.29	103804.17	$103738.98\mathrm{w}$	23	104824.76	104828.07
24	103843.62w	103780.15w		24	104889.29	$104892.94\mathrm{w}$
25	103820.18	103754.43	$103684.05{ m w}$	25	$104956.41\mathrm{w}$	104959.79
26	$103795.77\mathrm{w}$	103727.53w		26	105025.53	$105029.14\mathrm{w}$
27		$103699.30\mathrm{w}$		27	$105097.37\mathrm{w}$	$105100.82\mathrm{w}$

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	106452.06					
1	106454.66	106448.34		1	106452.06	106452.06
2	106456.59*	106447.13	$106\ 441.04s$	2	106458.35	106458.28
3	106459.37*	106445.28	106436.02	3	106467.70	106467.57
4	106459.37*	106444.30s	106430.55	4	106481.56	$106481.45\mathrm{s}$
5	106459.37*	106440.59	106425.84	5	106496.61	106496.31
6		106436.74	106418.60	6	106515.09*	106514.75
7	$106458.86\mathrm{s}$	106431.85	$106\ 411.08*$	7		106535.86
8	106456.59*	106429.21		8	106562.98	106562.93
9	$106453.06\mathrm{s}$	106423.22	106395.84	9	106590.21	106590.37
10	$106451.77\mathrm{s}$	106416.52	106385.93	10	106620.28	106620.80
11	$106445.98\mathrm{s}$	106411.08*	106375.16	11	$106656.02\mathrm{s}$	106656.20*
12	$106439.61\mathrm{ws}$	106402.73*	$106366.33\mathrm{s}$	12	106691.12	106692.40*
13	106432.62	106393.84	106353.19	13	106729.39	106731.76
14	106424.06	106384.02	106339.51	14	106770.56	106773.90
15	106414.52	106373.17	106325.03	15	106813.97	106818.71
16	106403.72	106361.24	106309.10s	16	106860.10	106866.15
17	106391.87	106347.92	106292.17	17	106908.61	106915.89
18	106379.15	106333.27	106273.86	18	106959.87	106968.00
19	106365.47	106317.11	106254.71	19	107013.93	107022.29
20	106350.56	106299.10	106234.66	20	107070.68	107078.43
21	106334.16	106279.51	106213.53	21	107129.89	107136.67
22		106258.11	$106\ 191.36w$	22	107191.37	107196.79
23		106234.67*	106167.51	23	107254.57w	107258.56*
24		$106209.50\mathrm{w}$	$106\ 141.79w$	24	107319.98*	107322.28w
25		106182.29	106114.63*	25	$107385.68\mathrm{w}$	107387.64
26		$106153.37\mathrm{w}$	$106084.08\mathrm{w}$	26		$107454.97\mathrm{w}$
27		$106122.10\mathrm{w}$		27		$107523.62\mathrm{w}$

TABLE XIII: Rotational line assignments and wave numbers for the $c_3 \, {}^1\Pi_u - X \, {}^1\Sigma_g^+(1,0)$ band of ${}^{15}N_2$, together with $c_3 \, {}^1\Pi_u(v = 1)$ term values. No PDL shift applied.

TABLE XIV: Rotational line assignments and wave numbers for the $o^1 \Pi_u - X^1 \Sigma_g^+(0,0)$ band of ¹⁵N₂, together with $o^1 \Pi_u (v = 0)$ term values. PDL shift is -0.19 cm^{-1} .

$J^{\prime\prime}$	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	105648.544					
1	105651.206	105644.602		1	105648.543	105648.317
2	105653.434s	105643.485	105637.396	2	105654.921	105654.631
3	$105653.459 { m s}$	105641.820	105632.630	3	$105664.579 { m s}$	105664.111
4	105654.744	$105639.595{ m w}$	105627.424	4	$105675.751\mathrm{s}$	105676.746
5	$105655.185 \mathrm{w}$	$105636.805{ m w}$	$105620.017 { m s}$	5	105691.895	105692.529
6	105654.946	105633.444	105613.875	6	105710.910	105711.455
7	105654.072	105629.507	105606.889	7	105732.961	105733.518
8	105652.574	105624.985	105599.240	8	105758.088	105758.708
9	$105650.364 \mathrm{w}$	$105619.860\mathrm{s}$	105590.946	9	105786.302	105787.006s
10	$105647.731 \mathrm{w}$	$105613.963\mathrm{s}$	105582.027	10	$105817.511{ m w}$	105818.242s
11	105644.271	105607.847	105572.39	11	$105852.011{ m w}$	105852.967
12	105640.217	105600.828	105562.33	12	105889.392w	105890.496
13	105635.314	105593.191	105551.37	13	105929.887	105931.114
14		105584.809	$105540.12 { m w}$	14	105973.239	105974.691
15	105623.275	105575.686		15		106021.229
16	$105615.86{ m w}$	105565.95		16	106068.821	106070.86
17	$105607.07\mathrm{s}$	105555.54		17	106120.77w	106123.51
18	105602.10			18	106175.04s	
19	105589.49			19	106236.83	
20				20	106294.68	
21	105564.54			21		
22				22	106 421.71	

TABLE XV: Rotational line assignments and wave numbers for the $o^1 \Pi_u - X^1 \Sigma_g^+(1,0)$ band of ¹⁵N₂, together with $o^1 \Pi_u (v=1)$ term values. No PDL shift applied.

τ//	D(I'')	O(T'')	D(I'')	т		
J	$R(J^{-})$	$Q(J^{+})$	$P(J^{+})$	J	$T_e(J)$	$T_f(J)$
0	107579.76					
1	107582.59	107575.99		1	107579.76	107579.71
2	107584.81	107575.08	$107568.66\mathrm{s}$	2	107586.30	107586.23
3	107586.61	107573.62	107564.00	3	107595.96	107595.91
4	107587.92 ws*	107571.75	$107558.82\mathrm{s}$	4	107608.95	107608.90
5	107588.81*	107569.41	107553.28	5	107625.11	107625.13
6	107589.24s*	107566.62	107547.10	6	107644.50	107644.63
7	107588.81*	107563.22	107540.49	7	107667.10*	107667.23
8	107588.42*	107559.36	107533.23*	8	107692.93	107693.08
9	$107587.28\mathrm{s}$	107555.15	107525.79	9	107722.04	107722.30
10		107550.34	107517.76	10	107754.45	107754.62
11	$107583.59\mathrm{s}$	107545.07	107509.33	11	107789.95	107790.19
12	107580.94*	$107539.27\mathrm{s}$	107500.29	12	107828.81	$107828.94\mathrm{s}$
13	107577.83	107533.23*	107490.88	13	107870.66	107871.15*
14		$107526.30\mathrm{s}$	107480.83	14	107915.89	$107916.18\mathrm{s}$
15	$107570.25\mathrm{s}$	107519.17	107470.35	15	107964.31	107964.71
16		107511.59	107459.41	16	$108015.82\mathrm{s}$	108016.50
17	$107560.64\mathrm{s}$	107503.48	107447.89s	17		108071.45
18		107494.90		18	108128.61s	108129.63
19	107548.66	107485.77		19	108189.77	108190.95
20		107476.18s*	$107410.45\mathrm{s}$	20	108253.88	108255.51s*
21		107466.05	107396.74	21		108323.21
22		107455.46		22		108 394.14

TABLE XVI: Rotational line assignments and wave numbers for the $b' \, {}^{1}\Sigma_{u}^{+} - X \, {}^{1}\Sigma_{g}^{+}(1,0)$ band of ${}^{15}N_{2}$, together with $b' \, {}^{1}\Sigma_{u}^{+}(v=1)$ term values. PDL shift is -0.08 cm^{-1} .

J''	R(J'')	P(J'')	J	$T_e(J)$
0	104422.045		0	104419.90
1	104422.626	104416.18	1	104422.045
2	104421.637		2	104426.341
3	104419.27*	104404.17	3	104432.783
4	104414.98	104395.67	4	104441.50
5	104409.31	104385.71	5	104452.13
6	104402.05		6	104465.03
$\overline{7}$	104393.38		7	104480.06
8	104383.00		8	104497.39
9			9	104516.72

TABLE XVII: Rotational line assignments and wave numbers for the $b'^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}(3,0)$ band of ¹⁵N₂, together with $b'^{1}\Sigma_{u}^{+}(v=3)$ term values. PDL shift is -0.19 cm^{-1} .

J''	R(J'')	P(J'')	J	$T_e(J)$
0	105826.41s*		0	$105824.43 \mathrm{sw}$
1	105827.06	$105820.71\mathrm{sw}$	1	105826.48
2	105826.17s*	105815.33	2	105830.83
3	105823.67	105808.59	3	$105837.42\mathrm{s}$
4	105819.30*	$105800.27\mathrm{sw}$	4	105845.98
5	105813.90	105790.27	5	
6	105806.92	105778.62*	6	105869.66
$\overline{7}$	105798.07	105765.68	7	105884.91
8	105787.80	105751.17	8	105902.03
9	105775.71s	105734.84	9	105921.46
10	105762.34s	105717.14	10	105943.05
11	105747.25	105697.93	11	105966.53
12	105730.67	105676.87	12	105992.40
13	105712.31	$105654.480{ m w}$	13	106020.33
14	$105692.61\mathrm{w}$	$105630.430{ m w}$	14	106050.23
15	105671.11?	105604.68	15	106082.52
16		105577.65	16	106116.77
17	$105624.210 \mathrm{w}$	105548.81	17	
18	105593.569		18	$106192.181 \mathrm{w}$
19	105568.08		19	106228.298
20			20	106273.27

TABLE XVIII: Rotational line assignments and wave numbers for the $b' \, {}^{1}\Sigma_{u}^{+} - X \, {}^{1}\Sigma_{g}^{+}(4,0)$ band of ${}^{15}N_{2}$, together with $b' \, {}^{1}\Sigma_{u}^{+}(v=4)$ term values. No PDL shift applied.

J''	R(J'')	P(J'')	J	$T_e(J)$
0	106570.47*		0	
1	106571.31s*		1	106570.47*
2	106570.47*		2	106574.92s*
3	106568.92s*	106552.51s*	3	106581.83
4	106565.79	106544.68	4	106591.21*
5	106561.51	106535.49*	5	106603.03
6	106555.97	106525.11	6	106617.27
7	106549.24	106513.30	7	106634.00
8	106541.33w	106500.30	8	106653.21
9	106532.45	106486.03	9	106675.03
10	106522.81	106470.75	10	106699.59
11	$106512.36\mathrm{s}$		11	$106\ 727.09$
12	$106501.47\mathrm{s}$		12	106757.49s
13	106490.34		13	106791.17
14	$106478.96\mathrm{s}$	106401.29	14	106828.24
15		106382.66	15	106868.82
16		106363.92	16	106912.80
17		106344.84	17	$106960.94\mathrm{s}$
18		$106326.21\mathrm{s}$	18	107012.52
19		106307.34	19	$107067.75\mathrm{sw}$
20		106288.43s*	20	107126.63
21	106398.55*	106269.47	21	107189.09w
22		$106250.41\mathrm{w}$	22	107255.70
23	$106377.02 \mathrm{sw}$	106231.81	23	
24			24	107400.84
25	$106356.88\mathrm{w}$	106195.49	25	107479.63
26		106178.03	26	$107562.14\mathrm{w}$
27		$106160.53\mathrm{w}$	27	

TABLE XIX: Rotational line assignments and wave numbers for the $b' {}^{1}\Sigma_{u}^{+} - X {}^{1}\Sigma_{g}^{+}(5,0)$ band of ${}^{15}N_{2}$, together with $b' {}^{1}\Sigma_{u}^{+}(v=5)$ term values. No PDL shift applied.

J''	R(J'')	P(J'')	J	$T_e(J)$
0			0	107227.44
1	107230.24	107223.72	1	107229.73
2	$107229.43\mathrm{s}$	$107218.58\mathrm{s}$	2	107234.00
3	107226.74	107211.74	3	107240.56
4	$107222.86\mathrm{s}$	107203.41	4	107249.10
5	107217.33	107193.45	5	107260.06
6	107210.30	107182.05	6	107272.99
$\overline{7}$	107201.59	107168.91	7	107288.31
8	107191.28		8	107305.60
9	107179.67		9	107325.00
10	107166.16		10	107346.81
11			11	107370.44
17			17	107558.95
18		106924.22	18	107597.92
19		106892.74	19	107639.04
20		106859.72	20	107682.31
21	106918.59	106825.15	21	107727.87
22	106887.15	106789.19	22	107775.76
23	106854.45	$106751.75\mathrm{s}$	23	107825.84
24	106820.31	106712.89s*	24	107878.28
25	106785.10	106672.85	25	107933.11
26			26	107990.49
27		$106589.01\mathrm{w}$	27	

TABLE XX: Rotational line assignments and wave numbers for the $b'^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}(6,0)$ band of ${}^{15}N_{2}$, together with $b'^{1}\Sigma_{u}^{+}(v=6)$ term values. No PDL shift applied.

<i>I''</i>	P(I'')	D(I'')	T	T(I)
J	$\frac{107.977.10}{107.977.10}$	I(J)	<u> </u>	$\frac{I_e(J)}{107.975.00}$
0	107 877.12S*		0	107875.00S*
1	107878.02	107871.28s*	1	107877.15s
2	107877.36s*	$107866.00\mathrm{s}$	2	107881.76
3	107875.38	107859.49	3	$107888.47\mathrm{s}$
4	107871.84s*	107851.32s	4	107897.64
5	107866.63	107841.88	5	107908.96s*
6	$107860.10\mathrm{s}$	107830.92s*	6	107922.40
7	107852.02	107818.43	7	$107938.11\mathrm{s}$
8	$107842.60\mathrm{s}$	107804.66*	8	107956.04
9	107831.47s*	107788.91*	9	$107976.32\mathrm{s}$
10	$107818.94\mathrm{s}$	107771.97*	10	107998.54
11	107804.66*	107753.42*	11	108023.09s
12	107788.91*	107733.29s	12	108049.90
13	107771.97*	107711.97	13	108078.88
14	107753.42*	107689.00	14	108109.69
15	107732.69	107664.15	15	108142.96
16	$107710.56\mathrm{s}$	107638.06	16	108178.27
17	107687.54	107610.36	17	$108215.59\mathrm{s}$
18	$107662.59\mathrm{s}$	$107580.97\mathrm{ws}$	18	108255.51
19	107635.93		19	$108297.31\mathrm{s}$
20	107607.98		20	108341.12
21			21	108387.31

TABLE XXI: Rotational line assignments and wave numbers for the $c'_4 {}^1\Sigma^+_u - X {}^1\Sigma^+_g(0,0)$ band of ${}^{15}N_2$, together with $c'_4 {}^1\Sigma^+_u(v=0)$ term values.

$J^{\prime\prime}$	R(J'')	J	$T_e(J)$
0	104329.845	0	
1	104333.285	1	104329.845
2	104336.581	2	104337.000
3	104339.730	3	104347.727
4		4	104362.021

TABLE XXII: Rotational line assignments and wave numbers for the $c'_4{}^1\Sigma^+_u - X{}^1\Sigma^+_g(1,0)$ band of ${}^{15}N_2$, together with $c'_4{}^1\Sigma^+_u(v=1)$ term values. No PDL shift applied.

-				
J''	R(J'')	P(J'')	J	$T_e(J)$
0	106311.13		0	106307.90
1	106313.86	106304.18	1	106311.10
2	106316.16	106299.92	2	106317.60
3	106317.85*	106295.32	3	106327.35
4	106319.00*	106290.24	4	106340.09
5	106319.65*	106284.37	5	106356.21
6	106319.65*	106278.20	6	106375.34
$\overline{7}$	106319.00*	106271.33	7	106397.79
8	106317.85*	106264.07	8	106423.04
9	106315.60	106255.90	9	106451.47
10	106312.58	106247.19	10	106482.73
11	106308.65	106237.60	11	106516.87
12	$106303.47\mathrm{s}$	106227.21	12	106553.78
13	106296.82	106215.85	13	106593.04
14	106288.78	106203.16	14	106634.81
15	$106278.59\mathrm{s}$	106189.32	15	106678.64
16	$106266.34\mathrm{w}$	106173.72	16	106724.22
17	$106251.71\mathrm{w}$	106156.26	17	106771.19
18	106234.65*	106136.40	18	106819.68w
19	$106214.50\mathrm{ws}$	106114.63*	19	106869.17
20	$106191.34\mathrm{w}$	106089.85	20	106919.79
21	106166.38	106062.63	21	$106970.67\mathrm{w}$
22	106138.28		22	107023.54
23	106108.07		23	107076.96
24			24	107 131.96

TABLE XXIII: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(5,0)$ band of ${}^{14}N^{15}N$, together with $b^{1}\Pi_{u}(v=5)$ term values. PDL shift is -0.14 cm^{-1} .

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	104659.674					
1	104661.418	104655.805		1	104659.674	104659.652
2	104662.110	104653.661	$104648.17\mathrm{w}$	2	104665.265	104665.202
3	104661.760	104650.51*'	104642.07	3	104673.651	104673.59*'
4	104660.371	104646.18	104635.23	4	104684.843	104684.65
5	104657.91	104640.70	104627.00**'	5	104698.841	104698.40
6	$104654.44\mathrm{s}$	104634.44	104618.45*	6	104715.67	104715.23
7	$104649.79\mathrm{s*}'$	104627.00**'	104608.02	7	$104735.18\mathrm{ss'}$	$104734.71{**}'$
8	$104644.54\mathrm{w}$	104618.45*	$104596.66\mathrm{s}'$	8	$104757.60{ m s's}{ m s}{ m s'}$	104756.92*
9		104609.02	$104584.62\mathrm{s}'$	9	104783.10	104782.10
10		$104598.28\mathrm{s}'$	104571.66	10	104811.26	$104809.81\mathrm{s}'$
11		104586.71	104557.43	11	104842.44	104840.54
12		104574.09	104542.48	12	$104876.25\mathrm{s}'$	104874.04
13		104560.59	$104526.33\mathrm{s}'$	13	104913.10	104910.51
14			104509.38	14	$104952.95\mathrm{s'w}$	
15		$104530.50\mathrm{s'w}$	$104491.59\mathrm{s'w}$	15	$104995.78\mathrm{s'w}$	$104991.86\mathrm{s'w}$
16		$104513.88\mathrm{s}'$	$104472.95\mathrm{s'w}$	16	$105041.60\mathrm{w}$	$105036.71\mathrm{s}'$
17		$104496.39\mathrm{w}$	$104453.47\mathrm{w}$	17	$105090.73\mathrm{w}$	$105084.51\mathrm{w}$
18			$104433.48\mathrm{w}$	18		
19		$104458.88\mathrm{w}$		19		$105189.08\mathrm{w}$
20		$104438.56\mathrm{w}$		20		$105245.53\mathrm{w}$

TABLE XXIV: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(6,0)$ band of ${}^{14}N^{15}N$, together with $b^{1}\Pi_{u}(v=6)$ term values. PDL shift is -0.16 cm^{-1} .

J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	105293.848					
1	105295.267	105289.997		1	105293.848	105293.844
2	105295.472	105287.567	105282.35w	2	105299.114	105299.108
3	105294.461	$105283.95{ m s}'*$		3	105307.013	$105307.04{ m s}'*$
4	105292.13*'	105279.13*'	$105268.57\mathrm{w}$	4	105317.544	105317.60*'
5	$105288.73\mathrm{ss'}$	105273.03	$105259.88\mathrm{w}$	5	105330.60*'	105330.74
6	$105283.95{ m s}'*$	105265.62*'		6	$105346.44\mathrm{ss'}$	105346.41*'
7	$105278.26\mathrm{s}$	105257.11		7	$105364.74{ m s}'*$	105364.82
8	105271.20w			8	$105385.97\mathrm{s}$	
9		$105236.43\mathrm{w}$		9	105409.68w	$105409.51\mathrm{w}$
10		$105224.33\mathrm{w}$		10		$105435.86\mathrm{w}$

ω(/	11				
J''	R(J'')	Q(J'')	P(J'')	J	$T_e(J)$	$T_f(J)$
0	106047.77*					
1	106048.93*	106043.72		1	106047.71	106047.57
2	106048.93*	$106041.289 \mathrm{bs'}$	106036.11	2	106052.77	$106052.830\mathrm{bs'}$
3	106047.77*	106037.51	106029.68	3	106060.52	106060.60
4	106045.46	106032.47	106022.09	4	106070.89	106070.94
5	$106041.81\mathrm{s}$	106026.21	106013.22	5	106083.94	106083.91
6	$106036.91\mathrm{s}$	106018.66	106003.17	6	106099.53	106099.44
7	106030.73	106010.04	105991.84	7	106117.66	106117.74
8	106023.38	106000.14	105979.16	8	106138.43	106138.61
9	106014.71	105988.85	105965.34	9	106161.86	106161.94
10		105976.35	105950.35	10	106187.67	106187.88
11		105962.72	105933.74	11	106216.52	106216.54
12		105947.81	105916.56	12		106247.76
13		105931.70		13		106281.62
14		105914.58		14		106318.30

TABLE XXV: Rotational line assignments and wave numbers for the $b^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}(7,0)$ band of ¹⁴N¹⁵N, together with $b^{1}\Pi_{u}(v=7)$ term values. No PDL shift applied.

TABLE XXVI: Rotational line assignments and wave numbers for the $c_3 {}^1\Pi_u - X {}^1\Sigma_g^+(0,0)$ band of ${}^{14}N^{15}N$, together with $c_3 {}^1\Pi_u(v=0)$ term values.

J''	R(J'')	Q(J'')	J	$T_e(J)$	$T_f(J)$
0 1 2 3 4 5 6 7 8	104 107.794b 104 109.669b 104 110.521b* 104 110.521b* 104 109.396b 104 107.335b 104 104.274b 104 100.269b	104 103.991b 104 102.099b	1 2 3 4 5 6 7 8	104 107.794b 104 113.516b 104 122.062b* 104 133.604b* 104 147.866b 104 165.038b 104 165.038b 104 185.056b	104 107.838b 104 113.640b

TABLE XXVII: Rotational line assignments and wave numbers for the $b' {}^{1}\Sigma_{u}^{+} - X {}^{1}\Sigma_{g}^{+}(1,0)$ band of ${}^{14}\mathrm{N}^{15}\mathrm{N}$, together with $b' {}^{1}\Sigma_{u}^{+}(v=1)$ term values.

	u ()			
J''	R(J'')	P(J'')	J	$T_e(J)$
0	104421.228s'		0	
1	104421.840		1	104421.233
2	104420.817	104409.696	2	104425.687
3	104418.177		3	104432.358
4	104413.916		4	104441.260
5	104408.039		5	104452.386
6			6	104 465.742