Supplementary Information for Methanol as a sensitive probe for spatial and temporal variations of the proton-to-electron mass ratio

Paul Jansen,¹ Li-Hong Xu,² Isabelle Kleiner,³ Wim Ubachs,¹ and Hendrick L. Bethlem¹

 ¹Institute for Lasers, Life and Biophotonics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
 ²Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
 ³Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583 et Universités Paris 7 et Paris Est,
 61 avenue du Général de Gaulle, 94010 Créteil Cédex, France

Transition, J_K	Transition (MHz)	K_{μ}	
	Experiment	BELGI	
$1_1 \rightarrow 1_1 A^{\mp}$	834.267(2)	834.280	-1.03(5)
$3_1 \rightarrow 3_1 A^{\mp}$	5005.32079(20)	5005.302	-1.03(5)
$5_1 \rightarrow 6_0 A^+$	6668.5192(8)	6668.567	-42.(2)
$9_{-1} \rightarrow 8_{-2}E$	9936.202(4)	9936.137	11.5(6)
$2_0 \rightarrow 3_{-1}E$	12178.597(4)	12178.587	-33.(2)
$2_1 \rightarrow 3_0 E$	19967.3961(2)	19967.376	-5.9(3)
$9_2 \rightarrow 10_1 A^+$	23121.0242(5)	23120.916	-11.7(6)
$3_2 \rightarrow 3_1 E$	24928.707(7)	24928.726	17.9(9)
$4_2 \rightarrow 4_1 E$	24933.468(2)	24933.502	17.9(9)
$2_2 \rightarrow 2_1 E$	24934.382(5)	24934.399	17.9(9)
$5_2 \rightarrow 5_1 E$	24959.0789(4)	24959.120	17.9(9)
$6_2 \rightarrow 6_1 E$	25018.1225(4)	25018.173	17.8(9)
$7_2 \rightarrow 7_1 E$	25124.8719(4)	25 124.929	17.7(9)
$8_2 \rightarrow 8_1 E$	25294.4165(2)	25 294.480	17.6(9)
$9_2 \rightarrow 9_1 E$	25541.3979(4)	25 541.464	17.3(9) 17.0(0)
$10_2 \rightarrow 10_1 E$	25878.2001(4)	208/8.334	17.0(9)
$12_2 \rightarrow 12_1E$ $12 \rightarrow 12 F$	20.847.233(50) 27.472.521(20)	20847.290	10.2(8) 15.7(8)
$13_2 \rightarrow 13_1E$ $14 \rightarrow 14F$	27472.001(50) 28160462(20)	27472.001	15.7(8)
$14_2 \rightarrow 14_1L$ $15_2 \rightarrow 15_2F$	28109.402(30) 28005812(30)	28 109.302	13.1(8) 14.5(7)
$102 \rightarrow 101E$	28 960 042(50)	28 900.800	14.0(7)
$0_2 \rightarrow 9_1 A$ $16_2 \rightarrow 16_2 F$	28909.942(30) 20636036(10)	28 909.905	-9.3(3) 14.0(7)
$10_2 \rightarrow 10_1 E$ $17_2 \rightarrow 17_4 E$	30308034(10)	29 030.940	13.0(7)
$4 \rightarrow 3_0 E$	36169265(30)	36 169 259	9.7(5)
$7_{-2} \rightarrow 8_{-1}E$	37703.700(30)	37 703.761	-4.3(2)
$6_2 \rightarrow 5_2 A^+$	38 293 268(50)	38 293 273	-15.1(8)
$6_2 \rightarrow 5_2 A^-$	38452677(50)	38 452 632	-15.0(8)
$7_2 \rightarrow 6_1 A^+$	44.069.410(10)	44.069.364	5.2(3)
$5 \rightarrow 4_0 E$	84 521 169(10)	84 521 169	3.6(2)
$7_{2} \rightarrow 6_{2} A^{-}$	86.615.600(5)	86 615 578	-7.2(4)
$7_2 \rightarrow 6_3 A^+$	86 902 949(5)	86 902 919	-7.2(1)
$8_2 \rightarrow 7_1 \Lambda^+$	95169463(10)	05 160 388	1.2(1) 1.88(0)
$11 \rightarrow 10 \circ E$	104300414(7)	104 300 334	0.18(5)
$3_1 \rightarrow 4_0 A^+$	$107013\ 803(5)$	107013836	-3.6(2)
$0_0 \rightarrow 1_1 E$	108893963(7)	108 893 948	-4.6(2)
$6_1 \rightarrow 5_0 E$	132890.692(10)	132890.759	1.9(1)
$9_0 \rightarrow 8_1 A^+$	146618.794(50)	146 618 696	0.87(5)
$8_0 \rightarrow 8_{-1}E$	156488.868(10)	156488.905	-3.5(2)
$2_1 \rightarrow 3_0 A^+$	156602.413(10)	156602.400	-2.8(1)
$7_0 \rightarrow 7_{-1}E$	156828.533(10)	156828.520	-3.5(2)
$6_0 \rightarrow 6_{-1}E$	157048.625(10)	157048.621	-3.5(2)
$5_0 \rightarrow 5_{-1}E$	157179.017(10)	157178.991	-3.5(2)
$4_0 \rightarrow 4_{-1}E$	157246.056(10)	157246.066	-3.5(2)
$1_0 \rightarrow 1_{-1}E$	157270.851(10)	157270.836	-3.5(2)
$3_0 \rightarrow 3_{-1}E$	157272.369(10)	157272.342	-3.5(2)
$2_0 \rightarrow 2_{-1}E$	157276.058(10)	157276.023	-3.5(2)
$8_{-1} \rightarrow 7_0 E$	229758.760(50)	229758.757	0.68(5)

Table I. Methanol (${}^{12}CH_{3}^{16}OH$) maser transitions and accurate rest frequencies taken from Table 1 of Müller *et al.* [4]. The third column shows the calculated frequencies using the constants listed in Table III. In the fourth column the sensitivity coefficients, K_{μ} , of the transitions are listed. The K_{μ} -coefficients are obtained by scaling the 119 molecular constants using the relations listed in Table III. The error in the last digit of the K_{μ} -coefficients are quoted in brackets, and is conservatively taken to be 5% if $K_{\mu} \ge 1$ or 0.05 if $K_{\mu} < 1$. The error in the sensitivity coefficients has 3 sources: (i) errors due to the uncertainty in the determination of the molecular constants. As the simulations reproduce almost all transitions <50 kHz for 12 CH $_3^{16}$ OH, this error is negligible small. (ii) Errors due to inexactness of the scaling relations of higher order constants. Many of the higher-order constants are products of torsional and rotational operators and can be considered as effective constants after the van Vleck transformations of the vibration-rotation-torsion Hamiltonian [3]. These higher order parameters may also be fairly correlated. Therefore, the exact relationships between the higher order parameters and the moments of inertia (and masses) are not obvious. As a check we have calculated the K_{μ} coefficients by scaling only the first 7, or the first 31 constants of the parameters listed in Table III. The obtained K_{μ} coefficients when scaling 7 or 31 constants typically agree within 5% or 0.5% of those obtained when all 119 constants are scaled, respectively. Thus, even if the scaling relations of the higher order constants are not exact, the effect of these on the obtained K_{μ} coefficients is small. (iii) Errors due to neglecting the μ dependence of the torsional potential. Within the Born-Oppenheimer approximation the torsional potential, V_3 , is independent of the mass of the nuclei and hence of μ . It is known however that V_3 does vary between isotopologues. For instance for ¹²CH₃¹⁶OH the torsional potential $V_3 \approx 373 \text{ cm}^{-1}$, and for ¹²CD₃¹⁶OD $V_3 \approx 362 \text{ cm}^{-1}$. A reliable model for this variation is not available. As a check, we have assumed V_3 to be a linear function of $I_{red} = I_{a1}I_{a2}/I_a$; $V_3 = V_3(^{12}\text{CH}_3^{16}\text{OH}) - 19.4(I_{red} - I_{red}(^{12}\text{CH}_3^{16}\text{OH}))$. As I_{red} is directly proportional to μ , this introduces a μ dependence in the potential. We found that the K_{μ} coefficients calculated by including the linear scaling for V_3 are typically 3% smaller than those obtained when the potential is assumed to be independent of μ .

Transition, J_K	Transition (MHz)		K_{μ}	
	Experiment	BELGI		
$1_1 \to 1_1 A^{\mp}$	834.267(2)	834.280	-1.03(5)	
$2_1 \rightarrow 2_1 A^{\mp}$	2502.7785(10)	2502.768	-1.03(5)	
$3_1 \rightarrow 3_1 A^{\mp}$	5005.32079(20)	5005.302	-1.03(5)	
$2_0 \rightarrow 3_{-1}E$	12178.595(3)	12178.587	-33.(2)	
$2_1 \rightarrow 3_0 E$	19967.3961(2)	19967.376	-5.9(3)	
$2_2 \rightarrow 2_1 E$	24934.382(5)	24934.400	17.9(9)	
$4_{-1} \rightarrow 3_0 E$	36169.265(30)	36169.259	9.7(5)	
$1_0 \rightarrow 0_0 A^+$	48372.4558(7)	48372.460	-1.00(5)	
$1_0 \rightarrow 0_0 E$	48376.892(10)	48376.887	-1.00(5)	
$1_0 \rightarrow 2_{-1}E$	60531.489(10)	60531.477	-7.4(4)	
$1_1 \rightarrow 2_0 E$	68305.640(20)	68305.629	-2.4(1)	
$2_1 \rightarrow 1_1 A^+$	95914.309(5)	95914.311	-1.00(5)	
$2_{-1} \rightarrow 1_{-1}E$	96739.362(5)	96739.359	-1.00(5)	
$2_0 \rightarrow 1_0 A^+$	96741.375(5)	96741.372	-1.00(5)	
$2_0 \rightarrow 1_0 E$	96744.550(5)	96744.546	-1.00(5)	
$2_1 \rightarrow 1_1 E$	96755.511(5)	96755.502	-1.00(5)	
$2_1 \rightarrow 1_1 A^-$	97582.804(7)	97582.799	-1.00(5)	
$3_1 \rightarrow 4_0 A^+$	107013.803(5)	107013.836	-3.6(2)	
$0_0 \rightarrow 1_{-1}E$	108893.963(7)	108893.948	-4.6(2)	
$2_2 \rightarrow 1_1 E$	121689.975(10)	121689.901	2.9(1)	
$3_1 \rightarrow 2_1 A^+$	143865.801(10)	143865.796	-1.00(5)	
$3_0 \rightarrow 2_0 E$	145093.707(10)	145093.755	-1.00(5)	
$3_{-1} \rightarrow 2_{-1}E$	145097.370(10)	145097.436	-1.00(5)	
$3_0 \rightarrow 2_0 A^+$	145103.152(10)	145103.186	-1.00(5)	
$3_1 \rightarrow 2_1 E$	145131.855(10)	145131.865	-1.00(5)	
$3_1 \rightarrow 2_1 A^-$	146368.342(50)	146368.329	-1.00(5)	
$2_1 \rightarrow 3_0 A^+$	156602.413(10)	156602.400	-2.8(1)	
$1_0 \rightarrow 1_{-1}E$	157270.851(10)	157270.836	-3.5(2)	
$3_0 \rightarrow 3_{-1}E$	157272.369(10)	157272.342	-3.5(2)	
$2_0 \rightarrow 2_{-1}E$	157276.058(10)	157276.023	-3.5(2)	
$1_1 \rightarrow 1_0 E$	165050.195(10)	165050.175	-1.59(8)	
$2_1 \rightarrow 2_0 E$	165061.156(10)	165061.131	-1.59(8)	
$3_1 \rightarrow 3_0 E$	165099.271(10)	165099.241	-1.59(8)	
$3_2 \rightarrow 2_1 E$	170060.581(10)	170060.591	1.77(9)	
$4_1 \rightarrow 3_1 A^+$	191810.509(10)	191810.504	-1.00(5)	
$4_0 \rightarrow 3_0 E$	193415.367(10)	193415.325	-1.00(5)	
$4_{-1} \rightarrow 3_{-1}E$	193441.610(10)	193441.601	-1.00(5)	
$4_0 \rightarrow 3_0 A^+$	193454.361(10)	193454.360	-1.00(5)	
$4_1 \rightarrow 3_1 A^-$	195146.760(10)	195146.792	-1.00(5)	

Table II. Accurately known methanol (¹²CH₃¹⁶OH) transitions and corresponding frequencies detected or potentially detectable in dark clouds taken from Table 2 of Müller *et al.* [4]. The third column shows the calculated frequencies using the constants listed in Table III. In the fourth column the sensitivity coefficients, K_{μ} , of the transitions are listed. The K_{μ} -coefficients are obtained by scaling the 119 molecular constants using the relations listed in Table III. The error in the last digit of the K_{μ} -coefficients are quoted in brackets, and is conservatively taken to be 5% if $K_{\mu} \ge 1$ or 0.05 if $K_{\mu} < 1$.

Term order $\{nlm\}$	Operator	Parameter		$^{12}CH_{3}^{16}OH$	μ dependence
		In BELGI	Literature	_	
{220}	P_{γ}^2	FPARA	F	27.64684641(28)	μ^{-1}
	$(1-\cos 3\gamma)/2$	V3	V_3	373.554746(12)	μ^0
{211}	$P_{\gamma}P_{a}$	RHORHO	ρ	0.8102062230(37)	μ^0
$\{202\}$	P_a^2	OA	A	4.2537233(71)	μ^{-1}
	P_b^2	В	B	0.8236523(70)	μ^{-1}
	P_c^2	\mathbf{C}	C	0.7925575(71)	μ^{-1}
	$\{P_a, P_b\}$	DAB	D_{ab}	-0.0038095(38)	μ^{-1}
{440}	P_{γ}^4	AK4	$F_m(k_4)$	$-8.976763(48) \times 10^{-3}$	μ^{-2}
	$(1-\cos 6\gamma)/2$	V6	V_6	-1.319650(85)	μ^0
{431}	$P_{\gamma}^{3}P_{a}$	AK3	$\rho_m(k_3)$	$-3.504714(14) \times 10^{-2}$	μ^{-1}
{422}	$P_{\gamma}^2 P^2$	GV	$F_J(G_v)$	$-1.373(31) \times 10^{-4}$	μ^{-2}
	$P_{\gamma}^{2}P_{a}^{2}$	AK2	$F_K(k_2)$	$-5.188031(18) \times 10^{-2}$	μ^{-2}
	$P_{\gamma}^{2}\{P_{a},P_{b}\}$	DELTA	$F_{ab}(\Delta_{ab})$	$3.112(23) \times 10^{-3}$	μ^{-2}
	$2P_{\gamma}^{\prime 2}(P_{b}^{2}-P_{c}^{2})$	C1	$F_{bc}(c_1)$	$-0.1955(97) \times 10^{-4}$	μ^{-2}
	$(1-\cos 3\gamma)P^2$	$_{\rm FV}$	$V_{3J}(F_v)$	$-2.4324(69) \times 10^{-3}$	μ^{-1}
	$(1-\cos 3\gamma)P_a^2$	AK5	$V_{3K}(k_{5})$	$1.117844(23) \times 10^{-2}$	μ^{-1}
	$(1-\cos 3\gamma)\{P_a,P_b\}$	ODAB	$V_{3ab}(d_{ab})$	$9.07791(65) \times 10^{-3}$	μ^{-1}
	$(1 - \cos 3\gamma)(P_h^2 - P_c^2)$	C2	$V_{3bc}(c_2)$	$-8.698(21) \times 10^{-5}$	μ^{-1}

Term order $\{nlm\}$	Operator	Parameter		$^{12}CH_{3}^{16}OH$	μ dependence
		In BELGI	Literature	-	
	$\sin 3\gamma \{P_a, P_c\}$	DAC	$D_{3ac}(D_{ac})$	$5.177(29) \times 10^{-2}$	μ^{-1}
	$\sin 3\gamma \{P_b, P_c\}$	DBC	$D_{3bc}(D_{bc})$	$0.538(12) \times 10^{-3}$	μ^{-1}
{413}	$P_{\gamma}P_aP^2$	ALV	$\rho_J(L_v)$	$-2.305(54) \times 10^{-4}$	μ^{-1}
	$P_{\gamma}P_a^3$	AK1	$\rho_K(k_1)$	$-3.4254(13) \times 10^{-2}$	μ^{-1}
	$P_{\gamma}(P_a^2 P_b + P_b P_a^2)$	ODELTA	$ \rho_{ab}(\delta_{ab}) $	$4.496(33) \times 10^{-3}$	μ^{-1}
	$P_{\gamma}\{P_a, (P_b^2 - P_c^2)\}$	C4	$ \rho_{bc}(c_4) $	$-0.7047(94) \times 10^{-4}$	μ^{-1}
$\{404\}$	$-P^{4}$	DJ	Δ_J	$1.688465(31) \times 10^{-6}$	μ^{-2}
	$-P^2 P_a^2$	DJK	Δ_{JK}	$9.20(25) \times 10^{-5}$	μ^{-2}
	$-P_a^4$	DK	Δ_K	$8.524(10) \times 10^{-3}$	μ^{-2}
	$-2P^2(P_b^2 - P_c^2)$	ODELN	δ_J	$5.9414(33) \times 10^{-8}$	μ^{-2}
	$-\{P_a^2, (P_b^2 - P_c^2)\}$	ODELK	δ_K	$5.7361(89) \times 10^{-5}$	μ^{-2}
	$\{P_a, P_b\}P^2$	DABJ	D_{abJ}	$-0.548(23) \times 10^{-7}$	μ^{-2}
(000)	$\{P_a^s, P_b\}$	DABK	D_{abK}	$1.443(11) \times 10^{-3}$	μ^{-2}_{-3}
<i>{660}</i>	P_{γ}°	AK4B	$F_{mm}(k_{4B})$	$1.01639(75) \times 10^{-6}$	μ^{-3}
(071)	$(1-\cos 9\gamma)/2$	V9	V_9	-0.05126(34)	μ°_{-2}
{651} [640]	$P_{\gamma}^{*}P_{a}$	AK3B	$\rho_{mm}(k_{3B})$	$6.7042(35) \times 10^{-8}$	μ
{642}	$P_{\gamma}^{-}P^{-}$ $P_{\gamma}^{4}P^{2}$	AMV DV1	$F_{mJ}(M_v)$	$9.215(14) \times 10^{-4}$	μ -3
	$P_{\gamma}P_{a}$	DELTAD	$F_{mK}(K_1)$ $E(\Lambda\Lambda)$	$1.79070(69) \times 10^{-6}$	μ 3
	$\Gamma_{\gamma} \{\Gamma_a, \Gamma_b\}$ $2D^4(D^2 - D^2)$	C2	$F_{mab}(\Delta \Delta_{ab})$	$0.773(34) \times 10^{-7}$	μ^{-3}
	$\frac{2\Gamma_{\gamma}(\Gamma_b - \Gamma_c)}{\left(1 - \cos 3\gamma\right) P^2 P^2}$	03 AK71	$\Gamma_{mbc}(c_3)$ $V_{-} = c(k_{-} - c)$	$0.214(18) \times 10^{-6}$	$\mu_{\mu^{-2}}$
	$(1 - \cos 6\gamma) P^2$	ANV	$V_{3mJ}(\kappa_7 J)$ $V_{2mJ}(N)$	$9.4(10) \times 10^{-5}$ $2.64(53) \times 10^{-5}$	$\mu_{\mu^{-1}}$
	$(1 - \cos 6\gamma)P^2$	BK9	$V_{6J}(N_v)$ $V_{6K}(K_0)$	$-1.3905(25) \times 10^{-4}$	μ μ^{-1}
	$(1 - \cos 6\gamma) \{P, P_i\}$	ODAB6	$V_{6K}(R_2)$ $V_{6-1}(dd_{-1})$	$-0.388(16) \times 10^{-4}$	μ^{-1}
	$(1 - \cos 6\gamma)(P_{i}^{2} - P^{2})$	C11	$V_{6ha}(c_{11})$	$-3.3840(70) \times 10^{-5}$	μ^{-1}
	$\sin 6\gamma \{P_a, P_c\}$	DAC6	D6ac	$3.401(58) \times 10^{-4}$	μ^{-1}
{633}	$P_a^3 P_a P^2$	AK3J	$\rho_{m,I}(k_{3,I})$	$7.875(69) \times 10^{-7}$	μ^{-2}
()	$P_{\alpha}^{\gamma}P_{\alpha}^{3}$	AK3K	$\rho_{mK}(k_{3K})$	$2.51512(70) \times 10^{-4}$	μ^{-2}
	$P^{j}_{\alpha}\left\{P^{2}_{a},P_{b}\right\}$	ODELTB	$\rho_{mab}(\delta\delta_{ab})$	$1.61(11) \times 10^{-6}$	μ^{-2}
	$P_{\alpha}^{j} \{ P_{a}, (P_{b}^{2} - P_{c}^{2}) \}$	C12	$\rho_{mbc}(c_{12})$	$6.903(52) \times 10^{-7}$	μ^{-2}
	$\{(1-\cos 3\gamma), P_a P^2 P_\gamma\}$	AK6J	$\rho_{3J}(k_{6J})$	$2.11(27) \times 10^{-5}$	μ^{-1}
	$\{(1-\cos 3\gamma), P_a^3 P_\gamma\}$	AK6K	$\rho_{3K}(k_{6K})$	$0.385(63) \times 10^{-4}$	μ^{-1}
$\{624\}$	$P_{\gamma}^2 P^4$	GVJ	$F_{JJ}(g_v)$	$0.5243(22) \times 10^{-9}$	μ^{-3}
	$P_{\gamma}^2 P_a^2 P^2$	AK2J	$F_{JK}(k_{2J})$	$1.769(19) \times 10^{-6}$	μ^{-3}
	$P_{\gamma}^2 \{P_a, P_b\} P^2$	DELTAJ	F_{Jab}	$2.75(21) \times 10^{-9}$	μ^{-3}
	$2P_{\gamma}^2 P^2 (P_b^2 - P_c^2)$	C1J	$F_{Jbc}(c_5)$		μ^{-3}
	$P_{\gamma}^2 P_a^4$	AK2K	$F_{KK}(k_{2K})$	$1.94907(47) \times 10^{-4}$	μ^{-3}
	$P_{\gamma}^2\{P_a^3, P_b\}$	DELTAK	F_{Kab}	$8.29(59) \times 10^{-7}$	μ^{-3}
	$P_{\gamma}^{2}\{P_{a}^{2},(P_{b}^{2}-P_{c}^{2})\}$	C1K	$F_{Kbc}(c_8)$	$1.518(15) \times 10^{-6}$	μ^{-3}
	$(1 - \cos 3\gamma)P^4$	OFV	$V_{3JJ}(f_v)$	$9.149(21) \times 10^{-9}$	μ^{-2}
	$(1 - \cos 3\gamma)P_a^2 P^2$	AK5J	$V_{3JK}(k_{5J})$	$7.6(26) \times 10^{-6}$	μ^{-2}
	$(1 - \cos 3\gamma) \{P_a, P_b\} P^2$	ODABJ	$V_{3Jab}(d_{abJ})$	$-2.027(17) \times 10^{-7}$	μ^{-2}_{-2}
	$2(1 - \cos 3\gamma)(P_b^2 - P_c^2)P^2$	C2J	$V_{3Jbc}(c_{2J})$	$1.251(43) \times 10^{-6}$	μ^{-2}_{-2}
	$(1 - \cos 3\gamma)P_a$	AK5K	$V_{3KK}(f_k)$	$0.78(10) \times 10$ 1.528(70) × 10 ⁻⁷	μ_{-2}
	$(1 - \cos 3\gamma) \{P_a^2, P_b^2\}$	ODABK	$V_{3Kab}(a_{abK})$	$-1.538(79) \times 10^{-6}$	μ u^{-2}
	$(1 - \cos 3\gamma) \{P_a, (P_b - P_c)\}$	DACI	$V_{3Kbc}(c_9)$	$(1.232(80) \times 10^{-7})$	μ μ^{-2}
	$\sin 3\gamma r \{r_a, r_c\}$	DRCI	D_{3acJ}	$-2.888(23) \times 10^{-8}$	μ μ^{-2}
	$\sin 3 \gamma I \{I_b, I_c\}$ $\sin 3 \gamma \int P^3 P $	DACK	D_{3bcJ}	$-1.070(33) \times 10^{-6}$ 0.70(10) $\times 10^{-6}$	$\mu_{\mu^{-2}}$
	$\sin 3\gamma \{P^2 \{P_1, P_2\}\}$	DBCK	Datak	$-0.585(70) \times 10^{-6}$	μ^{-2}
{615}	$P_{\alpha}P_{\alpha}P^{4}$	OLV	$\rho_{II}(l_{\alpha})$	$0.8961(62) \times 10^{-9}$	μ^{-2}
[010]	$P_{\sim}P^{3}P^{2}$	AK1J	$\rho_{JJ}(v_{v})$	$1.231(14) \times 10^{-6}$	μ^{-2}
	$P_{\alpha}P^{2}\{P^{2}, P_{b}\}$	DAGJ	0 Jab	$1.91(18) \times 10^{-9}$	μ^{-2}
	$P_{\gamma}P^{2}\{P_{a},(P_{b}^{2}-P_{a}^{2})\}$	C4J	$\rho_{Jbc}(c_7)$	$0.426(33) \times 10^{-9}$	μ^{-2}
	$P_{\gamma}P_{\alpha}^{5}$	AK1K	$\rho_{KK}(l_k)$	$7.9805(24) \times 10^{-5}$	μ^{-2}
	$P_{\gamma}\{P_{a}^{3},(P_{b}^{2}-P_{c}^{2})\}$	C4K	$\rho_{Kbc}(c_{7K})$	$1.119(16) \times 10^{-6}$	μ^{-2}
{606}	P^6	HJ	H_J	$-1.191(16) \times 10^{-12}$	μ^{-3}
	$P^4 P_a^2$	HJK	H_{JK}	$4.781(40) \times 10^{-10}$	μ^{-3}
	$P_a^4 P^2$	HKJ	H_{KJ}	$2.336(37) \times 10^{-7}$	μ^{-3}
	P_a^6	HK	H_K	$1.35675(51) \times 10^{-5}$	μ^{-3}
	$P^{2}\{P_{a}^{2}, (P_{b}^{2} - P_{c}^{2})\}$	OHJK	h_{JK}	$0.427(31) \times 10^{-9}$	μ^{-3}
	$\{P_a^4, (P_b^2 - P_c^2)\}$	OHK	h_K	$2.928(54) \times 10^{-7}$	μ^{-3}
$\{880\}$	$P^{8}_{\underline{\gamma}}$	AK4C	$F_{mmm}(k_{4BB})$	$-0.5887(30) \times 10^{-7}$	μ^{-4}
$\{871\}$	$P_{\gamma}^{\prime}P_{a}$	AK3C	$\rho_{mmm}(k_{3BB})$	$-0.3447(19) \times 10^{-6}$	μ^{-3}
				(continued	on next page)

Term order $\{nlm\}$	Operator	Parameter		$^{12}\mathrm{CH}_{3}^{16}\mathrm{OH}$	μ dependence
		In BELGI	Literature	-	
{862}	$P^6_{\gamma}P^2$	AK4BJ	F_{mmJ}	$-0.4129(60) \times 10^{-9}$	μ^{-4}
	$P^{\dot{6}}_{\alpha}P^2_{a}$	AK4BK	F_{mmK}	$-0.8527(55) \times 10^{-6}$	μ^{-4}
	$(1-\cos 9\gamma)P^2$	V9J	$V_{9,I}$	$-1.31(66) \times 10^{-6}$	μ^{-1}
	$(1-\cos 9\gamma)\{P_a, P_b\}$	ODAB9	V_{9ab}	$-0.819(43) \times 10^{-4}$	μ^{-1}
$\{853\}$	$P^5_{\gamma}P_aP^2$	AK3BJ	ρ_{mmJ}	$-1.635(26) \times 10^{-9}$	μ^{-3}
. ,	$P_{2}^{5}P_{a}^{3}$	AK3BK	ρ_{mmK}	$-1.1548(88) \times 10^{-6}$	μ^{-3}
{844}	$P^{4}_{\alpha}P^{2}_{\alpha}P^{2}$	G4J2K2	$F_{mJK}(K_{1J})$	$-2.097(63) \times 10^{-9}$	μ^{-4}
	$P^{4}_{\alpha}P^{2}_{\alpha}\{P_{a},P_{b}\}$	DG4J	F_{mJab}	$-8.67(73) \times 10^{-12}$	μ^{-4}
	$P_{a}^{4}P_{a}^{4}$	G4K4	$F_{mKK}(K_{1K})$	$-0.9220(84) \times 10^{-6}$	μ^{-4}
	$P^{\eta}_{\alpha}\{P^{2}_{pa}, (P^{2}_{h} - P^{2}_{c})\}$	G4BCK	F _{mKbc}	$0.886(95) \times 10^{-10}$	μ^{-4}
	$(1 - \cos 6\gamma)P^4$	C6J4	$V_{6JJ}(N_{vJ})$	$4.44(32) \times 10^{-10}$	μ^{-2}
	$(1-\cos 6\gamma)P^2P_a^2$	C6J2K2	$V_{6,IK}$	$1.953(61) \times 10^{-7}$	μ^{-2}
	$(1-\cos 6\gamma)P^2\{P_a, P_b\}$	CABJ	V_{6Jab}	$3.50(15) \times 10^{-8}$	μ^{-2}
	$2(1-\cos 6\gamma)P^2(P_b^2-P_c^2)$	C6BCJ	$V_{6,Ibc}$	$1.326(52) \times 10^{-9}$	μ^{-2}
	$(1 - \cos 6\gamma)P_a^4$	C6K4	V_{6KK}	$-3.143(66) \times 10^{-7}$	μ^{-2}
	$(1-\cos 6\gamma)\{P_a^3,P_b\}$	CABK	$V_{6Kab}(dd_{abK})$	$2.26(21) \times 10^{-7}$	μ^{-2}
	$(1 - \cos 6\gamma) \{P_a^2, (P_b^2 - P_c^2)\}$	C6BCK	$V_{6Kbc}(c_{11K})$	$-1.351(43) \times 10^{-7}$	μ^{-2}
$\{835\}$	$P^3_{\gamma}P^3_aP^2$	GAJ2K2	ρ_{mJK}	$-1.062(64) \times 10^{-9}$	μ^{-3}
	$P_{\alpha}^{'3}P_{a}^{'5}$	GAK4	ρ_{mKK}	$-4.305(48) \times 10^{-7}$	μ^{-3}
	$P_{\alpha}^{j}\{P_{a}^{3},(P_{b}^{2}-P_{c}^{2})\}$	AG3BCK	ρ_{mKbc}	$8.66(94) \times 10^{-11}$	μ^{-3}
	$\{(1 - \cos 3\gamma), P_a^3 P_{\gamma}\}P^2$	AK6JK	ρ_{3JK}	$5.58(22) \times 10^{-8}$	μ^{-2}
{826}	$P^2_{\gamma}P^2_aP^4$	GJ4K2	F_{JJK}	$1.477(32) \times 10^{-12}$	μ^{-4}
. ,	$P_{\alpha}^{2}P_{a}^{4}P^{2}$	GJ2K4	F_{JKK}	$-1.90(20) \times 10^{-10}$	μ^{-4}
	$P_{\alpha}^{2}P^{2}\{P_{\alpha}^{3},P_{b}\}$	DELTJK	F_{JKab}	$4.53(59) \times 10^{-12}$	μ^{-4}
	$P^{\frac{1}{2}}_{\gamma}P^{6}_{a}$	GK6	F_{KKK}	$-1.068(15) \times 10^{-7}$	μ^{-4}
	$P_{\alpha}^{\frac{1}{2}}\{\tilde{P}_{a}^{5},P_{b}\}$	DELTKK	F_{KKab}	$-0.89(11) \times 10^{-11}$	μ^{-4}
	$(1-\cos 3\gamma)P^2P_a^4$	FJ2K4	V_{3JKK}	$0.914(36) \times 10^{-7}$	μ^{-3}
	$(1-\cos 3\gamma)P_a^6$	FK6	V_{3KKK}	$-1.00(46) \times 10^{-10}$	μ^{-3}
	$\sin 3\gamma P^4 \{P_a, P_c\}$	DACJJ	D_{3acJJ}	$-0.717(46) \times 10^{-11}$	μ^{-3}
	$\sin 3\gamma P^2 \{P_a^3, P_c\}$	DACJK	D_{3acJK}	$-1.593(30) \times 10^{-9}$	μ^{-3}
{817}	$P_{\gamma}P_a^3P^4$	AGJ4K2	ρјјк	$1.192(20) \times 10^{-12}$	μ^{-3}
. ,	$P_{\gamma}P_{q}^{7}$	AGK6	$\rho_{KKK}(l_{KK})$	$-1.033(21) \times 10^{-8}$	μ^{-3}
$\{10100\}$	P_{γ}^{10}	AK4D	F_{mmmm}	$-0.940(20) \times 10^{-10}$	μ^{-5}
{1091}	$P^{\dot{9}}_{\gamma}P_a$	AK3D	ρ_{mmmm}	$-4.663(92) \times 10^{-10}$	μ^{-4}
$\{1082\}$	$P^{\$}_{\gamma}P^{2}_{a}$	AK4CK	F_{mmmK}	$-0.939(17) \times 10^{-9}$	μ^{-5}
{1073}	$P^{\dagger}_{\gamma}P^{\overline{3}}_{a}$	AK3CK	ρ_{mmmK}	$-0.957(17) \times 10^{-9}$	μ^{-4}
$\{1064\}$	$P_{\alpha}^{\dot{6}}P_{a}^{\bar{4}}$	AK4BK4	F_{mmKK}	$-4.915(82) \times 10^{-10}$	μ^{-5}
{1055}	$P_{2}^{5}P_{a}^{5}$	AK3BK4	ρ_{mmKK}	$-1.017(16) \times 10^{-10}$	μ^{-4}
. ,	1 4			× /	

Table III. Molecular constants used to simulate the torsional groundstate of ${}^{12}\text{CH}_3^{16}\text{OH}$, taken from ref. [?]. The last column shows the dependence of these constants to the proton-to-electron mass ratio, μ . The rotational, centrifugal and torsional constants A, B, C, D_{ab}, F and ρ are explicit functions of I_a, I_b , and I_c and are given in ref. [2]. The dependence of these constants on μ can be obtained by realizing that all moments of inertia are directly proportional to μ . Within the Born-Oppenheimer approximation the torsional potential, V_3 , is independent of the mass of the nuclei and hence of μ . The higher order constants can be considered as products of the first 7 constants.

- [1] L.-H. Xu et al., J. Mol. Spec. 251, 305 (2008), and references therein.
- [2] C. C. Lin and J. D. Swalen, Rev. Mod. Phys. **31**, 841 (1959).
- [3] B. Kirtman, J. Chem. Phys. **37**, 2516 (1962).
- [4] H. S. P. Müller, K. M. Menten, and H. Mäder, A&A 428, 1019 (2004).