Ultraviolet-Microwave Double Resonance Spectroscopy on OH

J.J. Ter Meulen, W. Ubachs, and A. Dymanus Fysisch Laboratorium, K.U. Nijmegen, Toernooiveld NL-6525 ED Nijmegen, The Netherlands

The spin-rotation and hyperfine structure of OH in the first excited electronic state $A^2\Sigma_{1/2}^+$ has been investigated by molecular beam LIF [1] and quantum beat [2] spectroscopy. In the present work the N' = 3 and N' = 4 splittings in $A^2\Sigma_{1/2}^+$, v' = 0 have been measured with a much higher accuracy by inducing magnetic dipole transitions between the ρ -doublet states in a microwave — UV double resonance experiment.

The experimental set-up is shown schematically in fig. 1. The OH radicals are produced in the reaction $H + NO_2 \rightarrow OH + NO$ in front of the molecular beam source. The fraction of OH radicals in the molecular beam is about 1%. The radicals are excited from the ground state $X^2\Pi_{3/2}$ to the $A^2\Sigma_{1/2}^+$ state by a perpendicularly incident UV beam at 307 nm. The UV radiation is obtained by frequency doubling in an angle-tuned LiIO₃ crystal inside the cavity of a stabilized ring dye laser operating with R6G. The $^2\Sigma_{1/2} \leftarrow ^2\Pi_{3/2}$ transitions induced are N' = 3, J' = $^2\Pi_{3/2}$ transitions induced are N' = 3, J' = $^2\Pi_{3/2}$ transition takes place inside a microwave cavity resonating in the $^2\Pi_{3/2}$ mode. The excited OH radicals decay back to the $^2\Pi_{3/2}$ state within 1 $^2\Pi_{3/2}$ shout 1/3 of them return to the initial state. At 5 cm from the cavity the population of the initial state is probed by LIF. In the microwave cavity magnetic dipole transitions are induced between the upper and lower

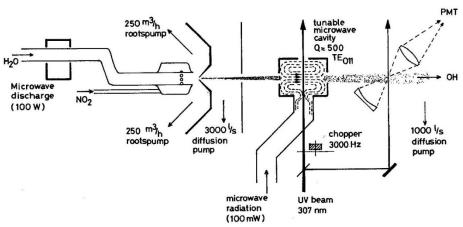


Fig. 1.: Schematic view of the OH beam double resonance set-up

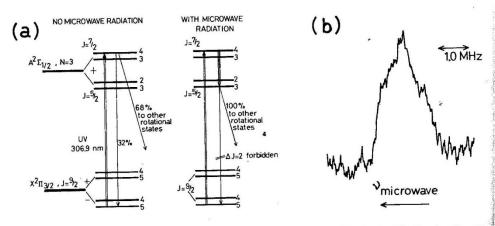


Fig. 2: (a) Working principle of the double resonance experiment. (b) The J=7/2, $F=4 \rightarrow J=5/2$, F=3 transition in $A^2\Sigma^+_{1/2}$, N'=3 at 23 975.2 MHz

 ρ -doublet hyperfine states. Molecules that have made a microwave transition cannot decay back to the initial state because of the selection rule $\Delta J = 0, \pm 1$. This is shown schematically in fig. 2a. As a result the population of the initial state as measured by the probe laser beam decreases in case of a microwave resonance.

In the measurements the UV pump beam was modulated and the microwave frequency was scanned. The signal-to-noise ratio varied between 5 and 20 at integration times of about 20 minutes. The linewidth (FWHM) was equal to 1.8 MHz. A typical result is given in fig. 2b. The observed transitions and their frequencies are listed in table 1. The frequencies have been fitted to an effective Hamiltonian for a $^2\Sigma_{1/2}^+$ diatomic molecule [1]

$$\mathbf{H} = \mathbf{B}\mathbf{N}^2 + (\gamma + \gamma_{\mathrm{D}}\mathbf{N}^2)\mathbf{N} \cdot \mathbf{S} + \mathbf{b}\mathbf{I} \cdot \mathbf{S} + \mathbf{c}\mathbf{I}_{\mathbf{z}}\mathbf{S}_{\mathbf{z}}.$$

The preliminary results for the spin-rotation coupling constants γ and γ_D and the hyperfine coupling constants b and c are (in MHz) b = 718.05 ± 0.09, c = 158.6 ± 1.2, γ = 6776.69 ± 0.07, γ_D = -1.418 ± 0.004. The accuracy will be improved further by the measurement of the N' = 1 and N' = 2 transitions at 10 and 17 GHz respectively.

Table 1: The ρ -doublet transition frequencies (in MHz) of OH in $A^2\Sigma_{1/2}^+$, v'=0

	$J, F \rightarrow J, F'$	observed frequency	previous work [1]
N' = 3	$7/2, 3 \rightarrow 5/2, 2$	23 260.80 ± 0.05 23 561.49 ± 0.08	23 258.9 ± 12.0 23 559.8 ± 12.0
	$7/2, 3 \rightarrow 5/2, 3$ $7/2, 4 \rightarrow 5/2, 3$	23 975.20 ± 0.05	23 974.9 ± 12.0
N' = 4	$9/2, 5 \rightarrow 7/2, 4$	30 695.08 ± 0.05	30 695.9 ± 6.0
	$9/2, 4 \rightarrow 7/2, 3$	29 979.02 ± 0.08	29978.3 ± 6.0

References

- 1. J.J. ter Meulen, W.A. Majewski, W.L. Meerts and A. Dymanus: Chem. Phys. Lett 24, 25 (1983)
- 2. F. Raab, T. Bergeman, D. Lieberman and H. Metcalf: Phys. Rev. A24, 3120 (1981) 346