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Recently, methanol was identified as a sensitive target system to probe variations of the proton-to-electron
mass ratio x [Jansen et al., Phys. Rev. Lett. 106, 100801 (2011)]. The high sensitivity of methanol originates
from the interplay between overall rotation and hindered internal rotation of the molecule; that is, transitions
that convert internal rotation energy into overall rotation energy, or vice versa, have an enhanced sensitivity
coefficient, K,,. As internal rotation is a common phenomenon in polyatomic molecules, it is likely that other
molecules display similar or even larger effects. In this paper we generalize the concepts that form the foundation
of the high sensitivity in methanol and use this to construct an approximate model which makes it possible to
estimate the sensitivities of transitions in internal rotor molecules with C;, symmetry, without performing a full
calculation of energy levels. We find that a reliable estimate of transition sensitivities can be obtained from the
three rotational constants (A, B, and C) and three torsional constants (F, V3, and p). This model is verified by
comparing obtained sensitivities for methanol, acetaldehyde, acetamide, methyl formate, and acetic acid with a
full analysis of the molecular Hamiltonian. Of the molecules considered, methanol is by far the most suitable

candidate for laboratory and cosmological tests searching for a possible variation of .
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I. INTRODUCTION

Physical theories extending the standard model have pre-
sented scenarios that allow for, or even predict, spatiotemporal
variations of the constants of nature [1]. Currently, a number
of laboratory experiments and astronomical observations are
conducted to search for signatures of such variations [2]. One
of the dimensionless constants that are hypothesized to vary is
the proton-to-electron mass ratio, i = m,/m,. A variation of
W can be detected by comparing frequencies of spectral lines
in molecules as a function of time and/or position. A fractional
change in p will manifest itself as a fractional frequency shift.
As a measure for the inherent sensitivity of a transition, the
sensitivity coefficient, K,,, is defined by
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For pure rotational transitions K, = —1, for pure vi-

brational transitions K, = —%, while for pure electronic
transitions K, = 0 [3]. Transitions between the inversion
levels of ammonia [4,5] and hydronium (H3;O%) [6] have a
sensitivity of K, = —4.2 and K, = —2.5, respectively. It was
shown that the sensitivity of a transition between two near-
degenerate levels that have a different functional dependence
on u is enhanced significantly [6—10]. Recently, we reported
such an enhancement for torsional-rotational transitions in
methanol [11].

Methanol (CH30H), schematically depicted in Fig. 1,
consists of an OH group attached to a methyl group. The
OH and methyl group may rotate with respect to each other
about the C—O bond. On the left-hand side of the figure, the
potential energy curve is shown as a function of the torsional
angle, y. The interaction between the OH and methyl group
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results in a threefold barrier. Tunneling between the three wells
results in a splitting of each rotational level into three levels
of different torsional symmetries [12]. Transitions between
the different torsional levels have a sensitivity coefficient,
K, = —2.5. Asthetorsional levels A and E belong to different
symmetries, transitions between them are not allowed. It was
shown in Jansen et al. [11] that transitions converting internal
rotation energy into overall rotation energy, or vice versa, have
sensitivity coefficients, K, that range from —88 to 4330 in
the different isotopologues of methanol.

Hindered internal rotation is a common phenomenon found
in many polyatomic molecules. Hence, other molecules may
have similar or larger sensitivities to a variation of . In this
paper we calculate the sensitivities for methanol, acetaldehyde,
acetamide, methyl formate, and acetic acid, five relatively
small molecules that have a group of Ciz, symmetry that
rotates with respect to the remainder of the molecule. These
five molecules have been detected in the interstellar medium
of the local galaxy [13] and some at high redshift [14].
Methylamine, another relatively small internal rotor molecule
is computationally more complex and will be treated in a
separate paper [15].

This paper is organized as follows. In Sec. I, we give a brief
review of the theory of internal rotor molecules and outline
how the torsional-rotational levels are numerically calculated
using the BELGI code [16]. In addition, we present approximate
expressions for obtaining the torsional energy splitting as func-
tion of the barrier height and the reduced moment of inertia,
and compare this to the output of numerical calculations of a
full Hamiltonian. In Sec. III, we discuss how the molecular
constants that appear in the torsional-rotational Hamiltonian
scale with u. These scaling relations are then used to determine
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FIG. 1. Variation of the potential energy of methanol as a function
of the relative rotation y of the OH group with respect to the
methyl group about the molecular axis. Shown are the J =1,
|K| = 1energies of the lowest torsion-vibrational levels. The splitting
between the different symmetry levels is due to tunneling through the
potential barriers. The A-symmetry species are split further due to
the asymmetry of the molecule (K splitting).

the sensitivities of selected transitions in five different internal
rotor molecules using BELGI. In Sec. IV the analytical expres-
sions for the torsional energy splitting presented in Sec. II are
used to construct a simple model for obtaining K, from the
three rotational constants (A, B, and C) and three torsional
constants (F, V3, and p). This model provides an intuitive
picture of the physics involved and makes it straightforward
to estimate the sensitivity of other internal rotor molecules.

II. HINDERED INTERNAL ROTATION

A review of hindered internal rotation can be found in the
seminal paper by Lin and Swalen [12], while a recent review
of various effective Hamiltonians, methods, and codes dealing
with asymmetric-top molecules containing one internal rotor
with C3, (or close to C3,) symmetry can be found in the paper
by Kleiner [17]. In this section, we summarize those results
that are relevant for obtaining the sensitivity coefficients.

A. Hamiltonian

The potential energy of an internal rotor molecule is a
periodic function of the torsional angle y between the Cz,
group and the remainder of the molecule, as shown in Fig. 1.
Hence, it can be expanded in a Fourier series as

1% v,
V(y) = 73(1 —cos3y) + 76(1 —cos6y)+ -, (2)

where typically Vg is about 100 times smaller than V3, but
provides information on the shape of the torsional potential.
If only the first term of the expansion is taken into account,
the torsional wave functions and energies follow from the
solutions of the Mathieu equation [12].

To express the kinetic part of the Hamiltonian an axis
system (a,b,c) must be defined. The symmetric part of the
molecule is defined as the internal rotor or top, whereas the
remainder of the molecule is referred to as the frame, which for
all molecules presented here has a plane of symmetry. The ori-
gin of the coordinate system coincides with the center of mass
of the molecule. The a axis is chosen parallel to the symmetry
axis of the top, and the b axis lies in the plane of symmetry. The
c axis follows from the definition of a right-handed coordinate
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system. The inertia tensor then takes the form

1. 0 0
I=10 I, —lul|, 3)
0 —Lab Ia

with I, = Y, m;(b? + ¢?) being the moment of inertia of
the molecule about the a axis. The subscript i runs over
all atoms with mass m; in the molecule. Expressions for
I, and I., the moments of inertia around the b and ¢ axis,
respectively, can be found by cyclic permutation of the a, b,
and ¢ labels. I, = Y, m;a;b; is the product of inertia about
the a and b axis. The kinetic energy can be expressed as [12]

T = 1L, + 3,0} + 3107
— Lipwawp + %[aZJ'/Z + lpway, “4)

with w,, wp, and w, the angular velocity components around
the a, b, and c axis, respectively, and /,, the moment of inertia
of the top along its own symmetry axis. For a given vibrational
state, the zeroth-order torsion-rotation Hamiltonian can be
separated into a symmetric top part, an asymmetric top part,
and a torsional part [18,19]

H® = HRs + Hgy + HY,.., (5a)

where
HRs = 3B+ C)(P? + P?) + AP?, (5b)
HRy = X(B — C)(P? — P?) + Dap(Pa Py + PyP,),  (5¢)
HY = F(p, + pP.)> + V(y). (5d)

P,, Py, and P, are the usual angular momentum operators
along the a, b, and c axis, respectively, and p, = —id/dy is
the angular momentum operator associated with the internal
rotation of the top with respect to the frame. The coupling
between the internal rotation and overall rotation in Eq. (5d)
can be eliminated partly by transforming to a different axis
system, the so-called ‘“rho-axis system.” In the resultant
“rho-axis method” (RAM), which is implemented in the
BELGI code used hereafter, the torsional Hamiltonian operator
contains only the +2Fp P, p, term. Itis important to note here
that two sign conventions are used in the literature for the
torsion-rotation operator in Eq. (5d), that is, F(p, + pP,)?
and F(p, — pP, )2. If the latter convention is adopted the £K
labeling of the E levels (vide infra) is reversed [20]. In this
paper we adopt the convention with the “4” sign, that is,
F(p, + pP, )2. The effective rotational and torsional constants
are defined by

1 I+ 1, I

A:—hz( +”2—2”2), ©)
20 \ Lty — 12, I}+12
1 I

B =W @)
2 2+ 12
1,1

C=-h*—, 3)
201,
1 Iab

Dy = —h*—"—, 9

T2 R+ ©)
1 L1, — I?

F=_p? b e (10)
2 IaZ(lalIb - Ia[,)
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TABLE I. Some low-order Hamiltonian terms for an asymmetric top containing a C3, internal rotor and a partial parameter list as used in
the BELGI code (taken from Kleiner [17]). The n dependence of the molecular constants is given in parentheses. The product of the parameter
and operator from a given row yields the term actually used in the torsion-rotation Hamiltonian of the fitting program, except for F, p, and A,
which occur in the Hamiltonian in the form F(P, + p P,)* + AP? (see text).

Torsional/Potential

1 1 —cos3y Py P,p, 1 — cos 6y Py P.p}
Rotational (n°) (n°) (") (n°) (1°) (1) ()
1 (1°) V3/2 F o Ve/2 ky ks
P2 (N-_I) (B+C)/2 Fu Gv Lv Nv Mv k3]
P? (w™ A—(B+C)/2 ks ky ki K, K, ksk
th— PCZ (wh (B—-0)/2 () Cy Cyq C11 c3 C12
P, P, + PP, (u™h Dy dap Ay Bab daps AAgy 88ap

where I,; is the moment of inertia attributed to the frame,
defined by 1,1 = I, — I,». A dimensionless parameter p is
introduced by the axis transformation described earlier. For
a symmetric top, p is simply defined as the ratio between
the moment of inertia of the top divided by the moment of
inertia of the molecule along the a axis; that is, p = I,5/1,.
For asymmetric molecules p is a more complicated function
of the various moments of inertia:

Iu2\/ 1}12 + Iazh

11
L1, — 12, (i

10 =
The Hamiltonian of Eq. (5) can be expanded by adding
additional distortion and interaction terms. Many of these
higher-order constants multiply torsional operators by rota-
tional operators and can be considered as effective constants
after the van Vleck transformations of the torsion-rotation
Hamiltonian [17,19,21]. Some low-order symmetry-allowed
torsion-rotation terms for an asymmetric top containing a C3,
internal rotor are listed in Table I.
The overall Hamiltonian can now be written as

H=H’+ Hy + Heg, (12)

where H. 4. corresponds to the centrifugal distortion Hamilto-
nian and Hj, contains higher-order torsional-rotation interac-
tion terms.

B. Eigenfunctions and eigenvalues
1. Torsion

Herbst et al. [19] suggested to evaluate the Hamiltonian of
Eq. (12) in two steps. In the first step, the torsional Hamiltonian
H? . is diagonalized in a product basis set composed of free
rotor torsional eigenfunctions of p,, and eigenfunctions |K) =

(2m)~ "2 exp(—iK x) of P,, where  is the Euler angle:
1
|Kko) = —— |K) exp(i[3k + o]y), (13)
o P 14

where o can take the values —1, O, or +1 and k can be
any integer. The eigenvalues of p, are 3k 4 o as required
by the periodicity of the potential. Due to the symmetry of
the torsional Hamiltonian, basis functions of different o do
not mix. Moreover, basis functions of different K do not mix

either, as P, and H?  commute. The resulting Hamiltonian

matrix for each value of o and K is infinite in size, but it was
found that truncating it to a 21 x 21 matrix (—10 < k < 10)
is sufficient to obtain experimental accuracy for the molecules
under study here [19]. The torsional eigenfunctions can be
written as

10
> AR, expliBk +oly).  (14)
k=—10

1
Kvo) = —— K
|Kvio) ml)

. . . . K,
where v, is the torsional vibration quantum number and A3}

are expansion coefficients. States with o = 0 are labeled as
A, and states with 0 = +1 and o0 = —1 are labeled as E'1
and E2, respectively. For A torsional states, £K levels are
degenerate, whereas for E states a degeneracy exists between
E1l, K and E2, —K levels. Although the torsional E'1 and E2
state have different labels, transitions between these two states
are allowed. It was therefore suggested by Lees [22] to refer to
E1land E2levels as E levels where the sign of K distinguishes
the two symmetries.

The eigenvalues of the torsional Hamiltonian for methanol
[23], acetaldehyde [24], and acetic acid [25] are depicted in
Fig. 2 as a function of K for the ground torsional state (v, =
0) of those molecules. The solid circles, open circles, and
open triangles represent values numerically calculated using
the BELGI code [16] for the A, E1, and E2 torsional states,
respectively. It is seen that the torsional energies are periodic
functions of K with a period that is proportional to p~! (p =
0.81, 0.33, and 0.07 for methanol, acetaldehyde, and acetic
acid, respectively).

In order to obtain an analytical model for estimating
the sensitivities of transitions in internal rotor molecules,
discussed in Sec. IV, we now derive approximate solutions
to the torsional Hamiltonian. It is clear from Eq. (14) that
substituting o with o 4 3 results in identical eigenvalues;
consequently, the eigenvalues may be regarded as periodic
functions which can be expanded in a Fourier series as [12]

2
Eiors = F|:ao+a1 cos{g(pK+o)} —}—] (15)

where ag,a; and higher-order terms are (dimensionless) expan-
sion coefficients. It can be shown [12] that these coefficients
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FIG. 2. (Color online) Torsional energies obtained with BELGI for
A (solid circles), E'1 (open circles), and E2 (open triangles) levels
as function of K for methanol (CH3;OH), acetaldehyde (CH;COH),
and acetic acid (CH;COOH) for v, = 0. The solid curves are fits to
Eq. (15) for A, E1, and E2 states. Note that only integer values of K
have physical meaning.

are functions of the reduced barrier height s, with

4V;

s = oF (16)
and that in the moderate-to-high-barrier limit, the series
converges quickly. The solid curves shown in Fig. 2 are
obtained by fitting the first two terms of Eq. (15) for A
(0 =0),El1(c =+1),and E2 (6 = —1) states. The resulting
coefficients for methanol, acetaldehyde, and acetic acid, as
well as those for acetamide and methyl formate, are plotted
as the open diamonds in Fig. 3. By diagonalizing H?  for
several values of s and p > 0, while all other constants are
set to zero, and fitting the torsional energies according to
Eq. (15), a; coefficients were obtained for each value of s.
These generic coefficients are plotted as the solid diamonds in
Fig. 3. According to Lin and Swalen [12], the a; coefficients
are given by the following equation:

a) = AsPe Vs, (I7)

The solid line shown in Fig. 3 is obtained by fitting Eq. (17)
to the generic a; values, using A} = —5.296,B; = 1.111, and
C; = 2.120. Note that these fit parameters deviate from those
given in Table IV of Ref. [12], but the curves agree with the
curves shown in Fig. 7 of the same paper. Small differences
between the curves and the a; coefficients obtained for the
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FIG. 3. (Color online) The a; expansion coefficients of Eq. (15) as
afunction of the reduced barrier height s for the ground torsional state
v, = 0 and first excited torsional state v, = 1. Solid diamonds and
squares represent a; coefficients in v, = 0 and v, = 1, respectively,
determined by fitting the eigenvalues of Eq. (5d) obtained with BELGI
for different values of s according to the expansion of Eq. (15).
The solid and dashed curves are fits according to Egs. (17) and
(29), respectively. Open diamonds and squares are a; expansion
coefficients for several molecules taking into account higher-order
torsional parameters. The inset shows an enlargement of the v, =0
curve near the values for the six isotopologues of methanol.

different molecules can be attributed to higher-order torsional
terms which were not taken into account to obtain the fits.

2. Rotation

At this point the torsional Hamiltonian is diagonalized and
the first step of the approach by Herbst er al. is complete.
The second step of the approach consists of evaluating the
remainder of the full Hamiltonian, that is, overall rotation and
coupling terms, in the basis set

|JKv,o) =|JK)|Kvo), (18)
with |J K) the symmetric top rotational eigenfunctions [19].
The eigenvalues of the Hamiltonian of Eq. (5b) are

(JKvo| HY,,. |JKv,0)

sym

1 B+C
=B+ CO)JJ + 1)+ (A — er ) K% (19
Note that, in the case of an asymmetric top, torsional A levels
are split in &£ components for K > 0 due to the asymmetry of
the molecule.

C. Level schemes and selection rules

In Fig. 4 the lowest energy levels of 12CH;G’OH are shown
for the A and E species. A and E symmetry species can be
considered as two different molecular species in the same sense
as para- and ortho-hydrogen: Radiative transitions beween A
and E species do not occur. The arrangement of energy levels
within a symmetry state is quite similar to the structure of the
K ladders in a (prolate) symmetric top; however, in the case
of internal rotation each K ladder attains an additional offset,
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FIG. 4. Energy of the lowest rotational levels in the torsion-vibrational ground state (v, = 0) of methanol (12CH§6OH) [23]. The levels are
denoted by J (indicated on the left side of each level), K. For the A levels the so-called parity quantum number (4/—) is also used. The panel
on the left displays the A state levels, whereas the panel on the right displays the E state levels. High sensitivities are expected for transitions

that connect near degenerate levels with different K .

E\ors(K), induced by the tunneling splitting. The + or — com-
ponent of the A state refers to the |J,K,v;,0) = |J, — K,v;,0)
and |J,K,v,,0) F |J, —K,v;,0) linear combinations of basis
functions for K even and K odd, respectively. The overall
parity of the levels is given by £(—1)’*" [19]. The selection
rules for allowed transitions within a torsion-vibrational state
are [19]

Alevels: £« F AJ =0 |AK| = 0(K #0),1,
+ <+ |AJ] =1 |AK| = 0,1,
E levels: AJ =0 |AK| =1,
|AJ| =1 |AK]| = 0,1,

where K is only a good quantum number in the limit of a
symmetric top. As a consequence, transitions with [AK| > 1
are allowed in asymmetric top molecules.

III. SCALING AND SENSITIVITY COEFFICIENTS
The sensitivity to a variation of p of a transition between
states |v,,J”, K", Ts") and |v/,J’,K’,Ts') is given by
K, J" K" Ts" — v.,J K'Ts)
_ WQED ), o gn T — WOEIW),, 11 o Ty
E(.J" K" Ts") — E(v,J' K", Ts)

(20)

Thus, in order to calculate the K, coefficients, the energy of
each level and its dependence on w has to be obtained. This

translates into knowing the values of the molecular constants
that go into BELGI and how these constants scale with /.

We first examine the scaling relations for the lowest-order
constants. We implicitly assume that the neutron-electron
mass ratio follows the same behavior as the proton-electron
mass ratio and that no effects depending on quark structure
persist [26]. As a consequence, the atomic masses and hence
the moments of inertia are directly proportional to w. The
rotational, centrifugal, and torsional constants A, B, C, Dy,
and F and the factor p are explicit functions of I, I, I., and
1,5, their u dependence is obtained from Eqgs. (6)—(11). Within
the Born-Oppenheimer approximation, the torsional potential
V3 is independent of the mass of the nuclei and hence of .

The scaling relations for higher-order constants are derived
from combinations of lower-order torsional and rotational
operators. Some symmetry-allowed torsion-rotation terms are
listed in Table I. Let us, for example, inspect the constant M,,,
which can be considered as a product of the torsional operator

p;‘, with the rotational operator P2. As the term with pf; scales

as ;2 and the term with P? scales as ="', we expect M, to

scale as 1>, The scaling relations of constants associated with
other operators follow in a similar manner. The supplementary
material of Ref. [11] lists the scaling relations for all constants
used for methanol.

In this work, as well as in our previous work [11], we
interpreted higher-order terms multiplying operators with
powers of P, P, [such as p;(L,), px(k1), pm(k3)] as the J,
K, and m dependence of p (hence, we assumed these terms

062505-5



JANSEN, KLEINER, XU, UBACHS, AND BETHLEM

should be scaled as p~!). It was, however, kindly brought to
our attention [27] that those terms might have been interpreted
as powers of 2 Fp (in which case they should be scaled as ;1 =2).
Interestingly, when we use these alternative scaling relations,
the obtained sensitivities for the various transitions calculated
using 119 constants are much closer to the values found when
using only 7 constants (A, B, C, Dy, F, V3, and p). This might
be taken as an indication (but not a proof) that the latter scaling
relations are, in fact, the correct ones. To fully understand the
implications of this finding, a careful study is needed where
(i) proper expressions for the higher-order terms should be
derived explicitly as functions of the mass (or the moment of
inertia) and (ii) a consistent set of axis system must be assured
for all parameters to be scaled. Although understanding the
physical meaning of the higher-order constants is relevant in its
own right, the exact scaling relations do not alter the obtained
sensitivities significantly.

In order to determine the sensitivity coefficients, we have
written a computer code that generates the molecular constants
as a function of p using the discussed scaling relations, calls
BELGI with these constants as input, and subsequently stores
the computed level energies.

As an example, the top panel of Fig. 5 shows the energies
of the 2, E, 21 E, 3_1 E, and 2¢ E levels in methanol as a
function of Ap/u. The sensitivity coefficient of the 2p —
3_; E and 2; — 2, FE transitions can be obtained by dividing
the difference in slope by the difference in energy [cf. Eq. (20)].

155 ;.' T i T T L T T ]

(., avoided crossing

—
ot
fe=}

—
=
Ut

crossing

Level energy (cm)
5

-500

-1000

-0.10 -0.05 0
Ap/p

FIG. 5. (Color online) Energies of selected rotational levels in
methanol (]ZCH§60H) as a function of the fractional change in
the proton-to-electron mass ratio. The insets in the top panel show
magnifications of the regions where the levels cross. It can be seen
that levels with same J give rise to avoided crossings, whereas levels
with different J do not. The bottom panel depicts the sensitivity
coefficients of the 2y — 2, £ and 2y — 3_; E transitions as a
function of Ay /. For transitions between levels with same J, K,
goes to zero at the (avoided) crossing, whereas transitions between
levels with different J, K, diverges to infinity at the crossing.
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The sensitivity coefficients of these transitions as a function of
the relative variation of the proton-electron mass ratio, Au/u,
are shown in the bottom panel of Fig. 5. As expected from
Eq. (20), the sensitivity is strongly enhanced when the energy
difference between the levels becomes small.

The behavior of the sensitivity coefficient close to the
resonance depends on the quantum numbers of the levels
involved. For instance, in methanol, K is not a good quantum
number due to the asymmetry of the molecule, and levels
with equal J mix. As a consequence, the 2; E and 2; E
levels shown in Fig. 5 display an avoided crossing, and the
sensitivity coefficient for the 2, — 2, FE transition is zero at the
resonance. In contrast, J is a good quantum number and levels
of different J will not mix. As a consequence, the sensitivity
coefficient for the 2o — 3_; E transition becomes infinite at
the resonance. In practice, we are only interested in the value of
K,atAp/p < 1073 and the effects of avoided crossings are
relevant only if the levels cross extremely close to A/ = 0.
In our study we have only come across one transition that
has a significantly reduced sensitivity coefficient as a result of
mixing of the energy levels involved, namely, the 8 — 8_, F
transition in 2CD1°0OD at 4.2 GHz with K, = 0.7. Note that
the sign of the sensitivity coefficients at Au/u = 0 is positive
if the levels cross at Au/u < 0, and negative if the levels cross
at Au/u > 0.

Using the recipe described above, the sensitivity coefficient
of any desired transition in a molecule containing a Csi,
symmetry group can be calculated. We have calculated the sen-
sitivity coefficients of many (>1000) transitions in methanol,
acetaldehyde, acetamide, methyl formate, and acetic acid,
using the constants listed in Refs. [23-25,29,30], respectively.
In Table II sensitivity coefficients of selected transitions in
the vibrational ground state (v, = 0) of these molecules are
listed. For methanol, the most sensitive transitions involving
levels with J < 10 are listed. For the other molecules no large
sensitivities were found for the vibrational ground state and
the eight lowest transition frequencies that have been observed
in the interstellar medium have been listed [28]. From the
table, we see in particular that transitions in methanol are
much more sensitive to a variation of w than the transitions
listed for the other molecules. Except for the 1_; — 1, E
transition in acetaldehyde with K,, = —3.7, all transitions in
acetaldehyde, acetamide, methyl formate, and acetic acid have
-1.57 < K, < —0.74.

The error in the last digit of the K, coefficients is quoted
in brackets, and is conservatively taken to be 5% if | K| > 1
or 0.05 if |K, | < 1. The error in the sensitivity coefficients
has three sources. (i) The first consists of errors due to the
uncertainty in the determination of the molecular constants.
As the simulations reproduce almost all transitions <100 kHz,
this error is negligible small. (ii) The second source consists
of errors due to inexactness of the scaling relations of
higher-order constants. Many of the higher-order constants
are products of torsional and rotational operators and may
also be fairly correlated. Therefore, the exact relationships
between the higher-order parameters and the moments of
inertia (and masses) are not obvious. For methanol we have
investigated the influence of the higher-order paramaters by
comparing K, coefficients calculated by scaling only the first
7 and the first 31 constants to K, coefficients obtained by
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TABLE II. Selected transitions [28] and K, coefficients for different molecules, calculated with BELGI (fourth column) using the constants
from Refs. [23-25,29,30] and the approximate model (fifth column) discussed in the text. For methanol the most sensitive lines are shown,
whereas for the other molecules the eight lowest transitions that have been observed in the interstellar medium as listed in the review by
Lovas [28] are given. The error in the last digit(s) is given within brackets. Molecules marked with an asterisk (*) are labeled according to the
sign convention opposite to the one as used in the text to be consistent with literature, that is, F(p, — pP,)* instead of F(p, + pP,)*. As a

consequence, the sign of the £K labeling of the E transitions is reversed for these molecules.

Molecule Transition, Jg Transition (MHz) G K;"y
Methanol 51 — 6pAT 6 668.5192(8) —42.12) —46
9_, — 8,L,E 9936.202(4) 11.5(6) 16.7
5, > 43A% 9978.686(4) 53.(3) 35
5, > 43A° 10 058.257(12) 52.(3) 35
20— 3, E 12 178.593(4) —33.(2) -32
2, — 30E 19 967.396(2) —-5.93) -5.0
9, > 10,A* 23 121.024(2) —~11.7(6) ~10.8
3, > 3E 24 928.715(14) 17.909) 15.2
2, > 2E 24 934.382(5) 17.9(9) 15.2
8 — 9,A~ 28 969.954(20) —9.5(6) —8.8
4_; — 3oE 36 169.290(14) 9.7(5) 9.6
6, —> 53A~ 38 293.292(14) —15.1(8) —-104
6, — 53AT 38 452.653(14) —15.0(8) —-104
7o — 6,AT 44 069.476(15) 5.2(3) 5.9
lp > 2_E 60 531.489(10) —7.4(4) -7.3
1, —» 20E 68 305.680(7) —2.4(1) 2.2
Acetaldehyde 1., - LE 1 849.634(7) -3.7(2) —4.2
1 — 20u+ 8 243.462(3) —1.11(6) ~1.15
lop —> 0E 19 262.140(4) —1.00(5) —1.00
1o — 0pA™ 19 265.137(1) —1.00(5) —1.00
20 — 1oE 38 506.035(3) —1.00(5) —1.00
20 = 1pAt 38 512.081(3) —1.00(5) —1.00
1_1 — 1hE 47 746.980(5) —1.03(5) —0.93
1, = 1pA* 47 820.620(4) ~1.02(5) ~1.03
Acetamide* 2, = 2,A* 9254.418(4) —1.04(5) ~1.12
lo - 1,E 13 388.703(4) —1.57(8) —1.34
43 — 4,AF 14 210.349(4) —1.03(5) —1.12
3, > 3,A% 14 441.705(4) ~1.05(5) ~1.12
20— 21E 15 115.748(4) —1.43(7) —1.30
2, — 1,E 22 095.527(4) —0.74(5) —0.78
3, > 3,A* 22 769.635(4) ~1.03(5) ~1.08
4, — 33E 47 373.320(4) —1.04(5) —1.11
Methyl formate* I, > 1,E 1610.900(2) —1.00(5) -0.70
2., —> 1,E 22 827.741(8) —1.00(5) —1.00
2, = 1,A* 22 828.134(8) ~1.00(5) ~1.00
20 — 1oE 24 296.491(8) —1.00(5) —1.00
20— 1,A" 24 298.481(8) —1.00(5) —1.00
2, — 1,E 26 044.796(8) ~1.00(5) ~1.00
2, —> 1A~ 26 048.534(8) —1.00(5) —1.00
4y — 30E 47 534.069(16) —1.00(5) —1.00
Acetic acid* 8_1 > T_E 90 203.444(20) —1.00(5) —1.00
8., — ThE 90 203.444(20) —1.00(5) -0.97
8 —> 7_1E 90 203.444(20) —1.00(5) —1.03
8 — ThE 90 203.444(20) —1.00(5) —1.00
8y — ToA™ 90 246.250(50) —1.00(5) —1.00
8y — 71AT 90 246.250(50) —1.00(5) —1.00
8 — TyA™ 90 246.250(50) —1.00(5) —1.00
8 — 7,A* 90 246.250(50) —1.00(5) —1.00

scaling all 119 constants. Sensitivity coefficients were et al. [31] are exactly identical to ours if only 7 constants
found to typically agree within 5% or 0.5% if 7 or 31 are scaled. Differences in calculated K, coefficients due
constants were scaled, respectively. The results of Levshakov to alternative scaling relations for some higher-order terms
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TABLE III. Rotational and torsional energy differences and associated sensitivity coefficients. Expressions for differences in rotational

energy are only valid in the limit of a symmetric top molecule.

AE K,
Rotation AJ =0 AK = +1 [A—1B+0O)](1£2K) -1
AJ = =1 AK =0 +(B+C)[J+3(1£1) -1
AJ =1 AK =+1 +B+O)[J+ 50+ D]+[A-3(B+O)](1£2K) -1
AJ =1 AK =71 +(B+O)[J+11£D]+[A- 2B +0O)](F2K) -1
Torsion AK =0 +V3Fasin (£ [pK ¥ 1)) (B —1)—1Ci/s
AK =1 F2Faysin (3p)sin{Z [p (K £ 3) — o]} (Bi — 1) — 3Ciy/s

“Note that the transitions involving different overall symmetry species of the torsional levels (A <> E) are forbidden; thus, transitions with

AK =0, AJ = 0 do not occur.

(vide supra) are therefore expected to be small. (iii) The third
source consists of errors due to neglecting the 1 dependence
of the torsional potential. Within the Born-Oppenheimer
approximation the torsional potential, V3, is independent of
the mass of the nuclei and hence of w. It is known, however,
that V3 does vary between isotopologues. For instance,
for '2CHI°OH the torsional potential V3~ 373 cm™!,
and for 12CD§6OD V3~ 362 cm™'. A reliable model
for this variation is not available. As a check, we have
assumed V3 to be a linear function of Ileq = I;11.0/1,;
V3 = V3(12CHIPOH) — 19.4[L,eq — Lea('*CHIOH)]. As Iieq
is directly proportional to u, this introduces a u dependence in
the potential. We found that the K, coefficients for 2CH}°OH
calculated by including the linear scaling for V3 are typically
3% smaller than those obtained when the potential is assumed
to be independent of w.

IV. “TOY” MODEL

Although the numerical calculations described in the
previous section yield the sensitivity coefficient for any desired
transition, they provide limited insight. In this section, we
devise a simple model which provides an intuitive picture of
the physics involved and aids in the identification of other
internal rotor molecules that possibly exhibit large sensitivity
coefficients. In this model, we neglect coupling between
vibrational, rotational, and torsional motion. In this case, the
w dependence of the energy of a certain state |v;,J, K, Ts) can
be written as

oF i
M (a—> = K;levib + K;OtEr()t + KltfrsEtorS’ (21)
/v 0.k Ts

where K;ib, K{f‘, and Kl‘f“ are the sensitivities to a possible
variation of the proton-to-electron mass ratio of a vibrational,
rotational, and torsional transition, respectively. We neglect
vibrational excitation and use Eq. (21) to rewrite Eq. (20) as

KM — K;OtAEl‘O[ + K,T)TSAElOrS , (22)
AEI’O[ + Al:"i.OI‘S

with AE;, and AE, being the difference in rotational and
torsional energy between the two energy levels involved,
respectively. From this equation it immediately follows that K,
diverges for AE;oy = —AEy and K;"‘ + Kl‘frs. This implies
that the highest sensitivities are expected for transitions that
convert overall rotation into internal rotation or vice versa.

Furthermore, Eq. (22) indicates that the K, coefficients are
proportional to the amount of energy that is canceled. We now
derive approximate analytical expressions for A E.q, A Ejos,
K;‘“, and K,‘frs using the results of Sec. II.

The rotational energy is given by Eq. (19), from which it is
straightforward to calculate the energy differences for different
transitions. The results are listed in Table III. Note that these
expressions are valid only for a nearly symmetric molecule.

K/rf‘ follows from the p dependence of the rotational
constants. From Egs. (6)-(8) A, B, and C are inversely
proportional to the moments of inertia that are proportional
to pu. Consequently, in first-order approximation K[ = —1.

The torsional energy is given by Eq. (15), from which the
splitting between the A (6 = 0) and E (o = %1) states can be
calculated:

2 2
AEASE = Fay |:cos {?n (pK £ 1)} — cos <?7T,0K):|
. 21 1
= ++/3Fa sin (T [pK + 5]) (23)

Analogously, the splitting between E1 (o0 = +1)and E2 (o =
—1) levels is given by

2
AEE'“F2 — \/3Fq, sin <?”p1<). (24)

Equations (23) and (24) are plotted in Fig. 6 as function
of s for K =0 and |K| = 1, respectively, using the A;, By,
and C, parameters obtained in Sec. II. Also shown are data
points for the various isotopologues of methanol derived from
experiments. Within the Born-Oppenheimer approximation s
is proportional to feq & 17 F '

As transitions between different symmetry states (A <> E)
are not allowed, we are interested in transitions within the same
torsional states that differ in K. The difference in torsional
energy for such transition with AK = %1 can be derived from
Eq. (15) to be

(T |2 1
= () 23) ]
(25)

Due to the a; coefficient appearing in Egs. (23)—(25) all
torsional splittings have the same dependence on s, and hence
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FIG. 6. (Color online) Torsional energy splitting between A and
E J =0,K =0 (solid line) and E1 and E2 J = 1,|K| =1 levels
(dashed line) as function of s from Eqs. (23) and (24). For the curve
representing the splitting between the E1 and E?2 states, p is fixed
at p = 0.8. Also shown are the torsional splittings for the different
isotopologues of methanol.

on . The sensitivity of a torsional transition, Kl‘f“, can be
obtained from Eq. (1) by writing

aAEtors s 1<
s 8“ AEtors
a(AElors/F) SF

= -1, 26
s AEtors ( )

tors __
K“ =

where we have used the fact that F scales with u~!. The —1
appearing in the second line is introduced by the substitution
of AEs With A Es/ F. By inserting Eq. (25) in Eq. (26) we
obtain

K™ = (B — 1) = 1C1/s > 0.111 — 1.060V/s,  (27)

where we have used the dimensionless fit values for B and C;
obtained in Sec. II. Hence, within our approximations, K ;f“ is

only a function of s. For "?’CH}®OH, with s = 6.01, this results
in K7™ = —2.5, in agreement with the value found in Jansen
etal [11].

With the help of Eq. (22) and the expressions for
AE.y, AEqs, K;f‘, and Kl‘frs as listed in Table III, we
can now determine which transitions are likely to have an
enhanced sensitivity and estimate the K, coefficients of
these transitions. From Eq. (22), we saw that the highest
sensitivities are expected when AE,, >~ —AFEy. In Fig. 7
the difference in rotational energy, A E;q, (solid curves) and
negated torsional energy, —A E, (dashed curves) are shown
for |J,K) — |J +1,K — 1) A" transitions in methanol. The
highest sensitivities are expected when the lines representing
the difference in rotational energy AE;, and the negated
difference in torsional energy —AEy, cross. For this to
happen at low J and K it requires that the rotational constants
A, B, and C are of the same order as the difference in
torsional energy. If the rotational constants are much smaller
or larger than A E\y, the crossings will only occur for high
J and/or K quantum numbers. With the help of Fig. 7, it is
straightforward to select transitions that are likely to have a
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FIG. 7. (Color online) Difference in rotational energy, AE,y
(solid lines), and negated difference in torsional energy, —A Eiys
(dashed lines), between levels connected by a [|J,K)—
|J+1,K —1) AT type transition in methanol. The curves are
obtained by the expressions in Table III and the molecular constants of
methanol [23]. The highest sensitivities are expected when torsional
energy is converted into rotational energy or vice versa, that is,
when the two curves cross. The shaded area represents the maximum
torsional energy that can be attained by the molecule. Note that the
amount of energy that is canceled is proportional to the K, coefficient.

large K, coefficient. For instance, the solid line representing
the difference in rotational energy for K = 1 (solid circles)
crosses the dashed line representing the negated difference
in torsional energy near J = 5. As the lines cross near the
maximum of torsional energy that may be attained, represented
by the border of the gray shaded area, we may expect a large
K, for the 5, — 69 A™ transition. Indeed, this transition has
K, = —42.

The sensitivity coefficients K, of the transitions can be
estimated using Eq. (22). Unfortunately, we found that the
agreement between the K, coefficients obtained from this
simple model and the values found from the full calculation
was unsatisfactory, mainly as a result of neglecting the
asymmetry of the molecules. Hence, we chose to use the
experimental energy difference between the levels, hv, rather
than (A E;ot + A Etors). In this case, Eq. (22) can be written as

KM = [K;Ot (hv — AE o) + K;[frsAEtors]/hv
— K;;ot + AEtors(K::)rs _ K;‘)t)/l’lv

. 1
—1F2FAsBe s (B1 — ECI\/E)

(o (s2t) o) o

—1 F Ff(s)sin (§p>g(p,1<,a>/hv, 28)

The calculated K, coefficients from this model for selected
transitions are listed in Table II and are seen to agree rather
well with the numerical calculations.

We are now ready for a qualitative discussion of the
sensitivity coefficients obtained for the different molecules.
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In the last line of Eq. (28), we have separated the expression
for the sensitivity coefficient in four different parts: the
molecular constant F'; a function f(s) that depends only on s;
a function that depends only on p; and a function g(p,K,0)
that depends on the rotational quantum number K, on the
torsional symmetry o, and on p. This last function takes on a
value between —1 and 1 for the different o, K levels. Although
this function determines the sensitivity of a specific level, it is
not important for comparing different molecules. The product
f(s)sin (5 p) can be used as a means to compare the sensitivity
for different molecules. In Fig. 8§ this product is plotted as a
function of s with p as indicated in the figure. The curves can
be regarded as the maximum sensitivity one may hope to find
in a molecule with a certain F and transition energy hv. The
maximum sensitivity peaks at s = 4 and p = 1. Recall that p
is defined as the moment of inertia of the top over the moment
of inertia of the whole molecule (p >~ 1,,/1,), and cannot be
greater than unity.

In Table IV the structure and lowest-order molecular
constants of the molecules investigated in this paper are listed
as well as the results from our analytical model. The last
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FIG. 8. (Color online) The product f(s)sin (5 p) (see text) in the
ground torsional state as a function of the effective barrier height, s,
using Eq. (28) with p as indicated in the figure. Also shown are data
points for each molecule investigated in this paper; values of s and p
can be found in Table IV.

TABLE IV. Structure and some lower-order constants of the molecules investigated in this paper. The A <+ E K = 0 torsional splitting
from Eq. (23) is listed for the vibrational ground state v, = 0 of these molecules. Note that the magnitude of the torsional splitting only depends
on the reduced barrier height s = 4V;/9F. The magnitude of K™ for each molecule follows from Eq. (26). The K& values given in the last
column of the table are hypothetical sensitivities that may be expected for transitions of 1 GHz and with g(p,K,0) = 1. Molecular constants

are taken from Refs. [23-25,29,30].

Structure Isotopologue F s o AESSE KPS KEM 41
(cm™)  (em™) (em™")
12CH!OH 373.555  27.647 6.01  0.810 9.07 —2.5 +398
- H BCHI*OH 373.777  27.642 6.01 0.810 9.06 —25 +397
Methanol H\—' / 2CHi®OH 374.067  27.428 6.06  0.809 8.88 -25 +392
c—O
/ 12CDIOH 370.055  24.994 6.58  0.895 7.12 —-2.6 +363
H
2CHI%0OD 366.340 17.428 9.34  0.699 2.58 -3.1 +145
12CD*0D 362.122 14758 1091  0.822 1.54 3.4 +110
H H
Acetaldehyde H\"C — c/ 12CH!*C'SOH 407.716 7.600  23.84 0.332 0.065 =5.1 £3.6
<N
(0]
H
H \N —H
Acetamide s/ 2CHICOMNH, 25044 5617 198 0068 485  —14 452
Cc——2cC
<N
O
A\
7 \C —n
Methyl formate H\"C o o/ 2CHI*O!2C'°OH 370.924 5490  30.03  0.084 0.017 —=5.7 +0.3
/
H
I—i O — H
Acetic acid H\-'C _ c/ 2CHI*C'50'°OH 170.174 5.622 1345 0.072 0.34 —-3.8 2.8
7N
(¢]
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column lists the generic maximum sensitivity K" that may
be expected for a hypothetical transition with a frequency of
1 GHz. For methanol, this number is 10-100 times larger than
for the other investigated molecules, following from the fact
that methanol has a large F, an effective barrier close to the
optimal value of 4, and a relatively large p.

Application of the toy model to excited torsional states

So far, we have limited the discussion to transitions in
the ground torsional state (v, = 0). In this paragraph we
discuss the application of the model to excited torsional
states. Transitions within excited torsional states are both
unlikely to be observed in the interstellar medium and of
less interest for laboratory tests due to the added complexity
of the experiment; hence, the following discussion is merely
intended for providing a more complete picture. In excited
torsional states the splitting between the different torsional
symmetry levels becomes larger as tunneling through the
torsional potential becomes more likely. This implies that
the energy that can be canceled also becomes larger, but, at
the same time, the sensitivity coefficient of a pure torsional
transition, K}f“, becomes smaller. As we will see, the first
effect is more important.

In Fig. 3 the solid squares represent a; coefficients for
the v, = 1 state obtained by fitting the second eigenvalues
of the torsional Hamiltonian as function of K to the Fourier
expansion of Eq. (15). The dashed line in Fig. 3 represents a
fit using an expression similar to Eq. (17) with an additional
term, that is,

ay=" = AysBremCrvsthus (29)

with A; =10.388, B; =0.829, C; =1.108, and D; =
—0.058. The open squares, also shown in Fig. 3, are a;
coefficients for the first excited torsional state of the five
molecules investigated in this paper. The additional term
modifies Eq. (28) only slightly. With the known coefficients,
Ay, By, Cy, and Dj, we can again plot the parts that depend
only on s and p, as was done for v, = 0 shown in Fig. 8.
As compared to the v, = 0, the curves for the v, =1 are
broadened and the center of the peak is shifted from s = 4
to s = 7. Moreover, the generic sensitivity is 5 times larger at
the peak. As a consequence, the generic sensitivity, that is, the
sensitivity for a transition with v = 1 GHz and g(p,K,0) =
1, of molecules with unfavorable s and p in the ground
torsional state, can be large in the v, = 1 state. For instance,
acetaldehyde in the v, = 1 state has a generic sensitivity
Ki"+1 =282 as compared to K" +1==3.6 in the
torsional ground state. For methanol, the generic sensitivity
will also increase; however, as the torsional splitting in the
v; = 1 state is much larger than the rotational splittings,
resonances are expected to occur only at high J and K values.
Note that the sensitivities for transitions from the v; = 0 to the
v, = 1 state will not be significantly enhanced as compared to
ordinary vibrational transitions; that is, K, ~ —0.5.

V. CONCLUSION AND OUTLOOK

In the present study we have demonstrated that transitions
in internal rotor molecules that convert internal rotation
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energy into overall rotation energy of the molecule exhibit
an enhanced sensitivity to a possible variation of the proton-
to-electron mass ratio. We have calculated the K, coefficients
for five, relatively small, internal rotor molecules that are of
astrophysical relevance: methanol, acetaldehyde, acetamide,
methyl formate, and acetic acid. In addition to full calculations
using advanced codes, such as the BELGI program, that
achieve spectroscopic accuracy on the level energies, we have
developed an approximate model, dubbed as the “toy” model,
in which the molecular structure is described by the six most
relevant of the molecular parameters. Based on this model we
produce insight in the question as to why certain molecules
of C3, symmetry with hindered internal rotation are sensitive
to w variation. In particular, molecules in the torsional ground
state are expected to have large K, coefficients if they have (i)
an effective barrier height, s, around 4, (ii) a ratio between the
moment of inertia of the top and the whole molecule, p, close to
unity, and (iii) a large value for the molecular constant that re-
lates to the internal rotation, F. If the torsional splittings are of
the same order as the rotational constants, sensitive transitions
will occur between levels with low J and K quantum numbers.

From the approximate toy model we learn that of the five
molecules studied, methanol has by far the largest sensitivity,
due to its favorable value of the effective barrier s and the
fact that in methanol p is near unity. Moreover, methanol has
a fairly large value of F. The other investigated molecules
either have too large a barrier (acetaldehyde), have too heavy
a frame attached to the methyl group and consequently a
very small p (acetamide and acetic acid), or have both a
high barrier and a small p (methyl formate). Based on these
criteria, other interesting molecules containing a C3, symmetry
group include mercaptan, CH3SH, (F =15 cm™!, V3 =
439 cm~!, and p = 0.65 [32], resulting in Kﬁe" + 1 = 167)
and methylamine (which will be topic of a separate publication
[15]). Other interesting candidate molecules, although of C,
symmetry, are H,O, (recently treated by Kozlov [33]) and
H;S,. These molecules require a modification in the definition
of s and will have different A, By, and C; coefficients.

The high sensitivities of internal rotor molecules, particu-
larly methanol, make them excellent target species to search
for a variation of the proton-to-electron mass ratio over cosmo-
logical time scales. It is important to note that the sensitivity
coefficients of the transitions in these molecules have both
large positive and large negative values, that is, if @ varies,
some transitions will shift to higher frequencies while others
shift to lower frequencies. This makes it possible to perform a
test of the variation of p using transitions pertaining to a single
species, thus avoiding the many systematic effects that plague
tests based on comparing transitions in different molecules.

Currently, the most stringent bounds on a cosmological
variation of p is set by observations of hydrogen molecules
in high (z = 2-3) redshift objects [34,35] and a comparison
between the ammonia tunneling frequencies and rotational
transitions in anchor molecules at intermediate redshift
(z = 0.5-1) objects [36-38]. Methanol provides a system
that should result in more stringent bounds for p variation.
Recently, methanol, as well as methylamine and acetaldehyde
have been observed in the gravitationally lensed system, PKS
1830-211 at z = 0.89 [14,39]. The 1y — 2_; E transition in
methanol reported by Muller et al. was calculated to have
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K, = —7.4. We have also calculated the K, coefficients for
the nine observed transitions in acetaldehyde and found that
all lines have sensitivities of K, > —1. Sensitivity coefficients
for methylamine, for which three lines were observed in the
same survey, will be calculated in a separate paper [15].

The high-sensitivity coefficients in methanol are also ben-
eficial for probing variation of u as a result of chameleonlike
scalar fields. These fields predict a dependence of © on the
local matter density. Note that the physical origin of these
chameleonlike theories is very different from theories describ-
ing temporal p variation. Levshakov et al. [40] compared
ammonia spectra taken at high (terrestrial) and low (interstel-
lar) densities of baryonic matter and observed a statistically
significant variation of u. Recently, a preliminary test using
methanol was performed by Levshakov et al. [31]. This test
obtained similar results as for ammonia but can be further
improved if more accurate laboratory data become available.

Methanol is also a promising candidate for laboratory tests
on a possible variation of w. Laboratory experiments can
make use of rare isotopologues (in contrast to cosmological

PHYSICAL REVIEW A 84, 062505 (2011)

searches). Hence, the most sensitive transitions deriving from
the present calculations can be targeted; a combined mea-
surement of the 2; — 1; E and 39 — 4_; E lines in CD;OH
exhibit a sensitivity spread AK, that is more than 400 times
larger than a pure rotational transition [11]. Measurements of
these transitions in slow (Stark decelerated [41,42]) molecular
beams may result in more stringent bounds on the variation of
the proton-to-electron mass ratio in the current epoch.
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