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ABSTRACT
Quasi-bound resonances of H2 are produced via two-photon photolysis of H2S molecules as reac-
tive intermediates or transition states and detected before decay of the parent molecule into three
separate atoms. As was previously reported [K. F. Lai et al., Phys. Rev. Lett. 127, 183001 (2021)] four
centrifugally bound quantum resonanceswith lifetimes ofmultipleμs, lying energetically above the
dissociation limit of the electronic ground state X1�+

g of H2, were observed as X(v, J) = (7, 21)∗,
(8, 19)∗, (9, 17)∗, and (10, 15)∗, while also the short-lived (∼1.5 ns) quasi-bound resonance X(11, 13)∗
was probed. The present paper gives a detailed account on the identification of the quasi-bound
or shape resonances, based on laser detection via F1�+

g -X
1�+

g two-photon transitions, and their
strongly enhanced Franck-Condon factors due to the shifting of the wave function density to large
internuclear separation. In addition, the assignment of the rotational quantum number is veri-
fied by subsequent multi-step laser excitation into autoionisation continuum resonances. Existing
frameworks of full-fledged ab initio computations for the bound region in H2, including Born-
Oppenheimer, adiabatic, non-adiabatic, relativistic and quantum-electrodynamic contributions, are
extended into the energetic range above the dissociation energy. These comprehensive calculations
are compared to the accurate measurements of energies of quasi-bound resonances, finding excel-
lent agreement. They show that the quasi-bound states are in particular sensitive to non-adiabatic
contributions to the potential energy. From the potential energy curve and the correction terms,
now tested at high accuracy over a wide range of energies and internuclear separations, the s-wave
scattering length for singlet H+H scattering is determined at a = 0.27353931a0. It is for the first time
that such an accurate value for a scattering length is determined based on fully ab initio methods
including effects of adiabatic, non-adiabatic, relativistic and QED with contributions up tomα6.

ARTICLE HISTORY
Received 26 October 2021
Accepted 1 December 2021

KEYWORDS
Molecular hydrogen; shape
resonance; scattering length;
nonadiabatic perturbation
theory; quantum
electrodynamics

1. Introduction

Chemically bonded diatomic molecules in their ground
electronic configuration typically support large but finite
numbers of quantum levels, which are assigned with
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vibrational and rotational quantum numbers (v, J).
These bound levels lie energetically below the dissoci-
ation threshold. Advanced calculations including non-
adiabatic, relativistic and quantum-electrodynamical
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(QED) contributions for H2 reveal that this simplest neu-
tral molecule has 302 such bound states in its ground
electronic configuration (X1�+

g ) [1]. All these bound
rovibrational states exhibit long lifetimes in excess of
105 s [2]. The computational methods for the determina-
tion ofH2 level energieswitnessed great progress, starting
with the wave-mechanical explanation that H2 is a bound
systembyHeitler and London [3]. This evolved further to
quantum-mechanical methods for the calculation of the
dissociation energy of H2, using two-centred wave func-
tions by James and Coolidge [4] and the computations by
Kolos and Roothaan [5], via the accurate computations
including relativistic effects by Wolniewicz [6,7], to the
state-of-the-art approaches involving four-particle vari-
ational calculations augmented with QED computations
[8–12].

Progress on the theoretical side was matched by
increasingly precise measurements of the dissociation
energy of the smallest neutral molecule [13–20], now
finding agreement between theory and experiment at the
level of 10−5 cm−1. The computations were verified via
comparison with measurements of high-rotational angu-
larmomentum states [21] and vibrational splittings inH2
[22–26]. These improvements both on the experimental
and theoretical side have made the hydrogen molecule
into a test ground for investigating the effect of fifth
forces [27], extra dimensions of space-time [28], and for
probing physics beyond the Standard Model [29].

In addition to the large set of bound quantum states
there exists a class of molecular resonances bound by a
positive centrifugal barrier of size �2J(J + 1)/2μR2 (with
μ the reduced mass of the molecule and R the inter-
nuclear distance) added to the potential energy of the
rotationless molecule. Such resonances lie energetically
above the dissociation threshold giving rise to quasi-
bound states that are prone to tunnelling through this
centrifugal barrier, a process known as rotational pre-
dissociation [30]. Such features were discussed in terms
of a “mechanical instability” of molecules after observa-
tion of the breaking off of a rotational progression in
the ground state of the HgH molecule as early as 1929,
at the dawn of molecular quantum spectroscopy [31].
In that study it was explained that there exist only a
limited number of such centrifugally bound states; for
increasing values of J the potential energy again becomes
repulsive. A similar phenomenon was observed in the
case of AlH [32]. Recently, the quasi-bound resonances
in the hydrogen molecular ion were probed and accu-
rately measured via multi-step laser spectroscopy, reveal-
ing the X+2�+

g (v+, J+) = (18, 4)∗ resonance in para-
H+

2 , and the X + (17, 7)∗ resonance in ortho-H+
2 [33,34].

These resonances in the three-particle quantum system

appeared to have lifetimes of 10–25 ps due to their rapid
tunnelling through the centrifugal barrier.

The quasi-bound states studied here have previously
been observed and assigned by Dabrowski [35] and by
Roncin and Launay [36] in emission spectra of the Lyman
and Werner bands with optical transitions terminating
on such resonances. Over the years computations were
performed for such resonances in the hydrogen neutral
molecule [37–39] and these indicate that some of the res-
onances are long-lived with lifetimes in excess ofμ s, and
even up to few 100 μ s. Thismakes these quasi-bound res-
onances amenable in precision experiments with lasers of
narrow bandwidth.

The ultraviolet photolysis of H2S has proven to be an
ideal target system for the production of highly energetic
rovibrational states in the electronic ground configura-
tion of H2. In an explorative study, Steadman and Baer
demonstrated the production of vibrationally excited
H2 as a product channel from H2S photodissocation
[40]. They assigned transitions between high-vibrational
states in H2 to both inner and outer well states in the
EF1�+

g double well potential. However, in the controlled
two and three-laser studies probing X(v′′ = 11 − 14)
[41–44] only transitions to the F1�+

g outer well could
be confirmed. In an alternative study, starting from the
photolysis of H2CO, therewith producing H2 vibrational
states of intermediate quantum numbers X(v′′ = 3 − 9),
two-photon transitions to both EF1�+

g inner and outer
well were found [45]. Precision spectroscopic measure-
ments probing the vibrational states just below the disso-
ciation threshold allowed for tests of molecular ab initio
calculations for these quantum states exhibiting wave
function density at large internuclear separation [44].

The present study, of which a preliminary report was
published previously [46], explores the energy range
just above the dissociation threshold of H2 upon two-
photon UV-photolysis of hydrogen sulphide molecules.
This results in the detection of quasi-bound states in
H2, using 2+1’ resonance-enhanced multi-photon ion-
isation, and in the accurate determination of the exci-
tation energies of the long-lived resonances. State-of-
the-art quantum calculations developed for the bound
region are extended to the region above threshold and
compared with measured resonance energies. Hence, the
experiments on quasi-bound resonances allow for test-
ing the potential energy curve of the H2 molecule for a
wide range of internuclear separations, that had not been
explored before. The well-tested H2 potential may then
be applied to re-examine the H+H scattering dynamics
and for the first time determine a value of the scatter-
ing length including effects of adiabatic, non-adiabatic,
relativistic and QED with contributions up to mα6.
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Via this way the precision measurement of the quasi-
bound resonances provides detailed quantitative infor-
mation on atomic scattering that uniquely bridges the
gap between the ultracold physics of atomic hydrogen
towards the chemical formation of molecular hydrogen.

2. Experimental

The experimental setup, displayed in some detail in
Figure 1, is essentially similar to the one used previously
for the detection of bound resonances below the dis-
sociation threshold [42–44]. Two-photon UV-photolysis
proceeds via the path:

H2S
2hν−−→ S(1D2) + H∗

2 → S(1D2) + H(1s) + H(1s),

where H∗
2 signifies a quasi-bound resonance existing as

an intermediate reaction product before tunnelling and
disintegrating in two H(1s) atoms. To illustrate the effi-
ciency of this excitation scheme regarding the production
of the shape resonances, the potential energy surface
of the electronic ground state of H2S is displayed in
Figure 2, as a function of the S − −H2 and H–H dis-
tance. The minimum of the potential is located around
RS−H2 ≈ 1.7 a0 andRH−H ≈ 3.6 a0. Comparing this with
the potential energy curve of the electronic ground state
of H2 (see lower part of Figure 2), it can be seen that the
second classical turning point is located at a similar value
of RH−H, with the corresponding maximal amplitude
of the radial wave function. This minute change of the
proton-proton distance explains the efficient production
of the shape resonances, in line with the Franck-Condon
principle.

An excitation spectrum of the H2S molecule, probed
via 2+1UVresonance-enhancedmulti-photon ionisation

Figure 1. Layout of the experimental setup involving three inde-
pendently tunable UV-lasers, and a molecular beam apparatus.
For details see text.

Figure 2. Potential energy surface for the electronic ground
states of H2S [47] as a function of the H-H (R) and S − H2 distance.

is shown in Figure 3. Two relatively strong and broad
resonances, at excitation wavelengths between 276 and
292 nm, are observed in the H2S+ ion channel, and
are therefore associated with excited states in H2S. The
sharp resonances, labelled with asterisks, are identified
as strong S+ ion signals from two-photon excitation of
the S-atom, (4S) 6p 5P1, (2D) 4p 1P1, (2D) 4p 3D1 and
(2D) 4p 1F3 – 3p4 1D2 [48]. Production and precision
spectroscopy of S atoms resulting from H2S photolysis
was investigated previously in our setup under similar
conditions [49]. The strongest two resonances peaking
at excitation energies of 68,700 and 70,900 cm−1 are
assigned as two-photon excitation to 4p 1B1 (100) and
3d 1B2, respectively. Processes related to the first level
have been discussed extensively by Steadman et al. [48].
The latter level is based on assignments in the absorp-
tion spectrum of Masuko et al. [50]. The selection rule
for two-photon transitions from the 1A1 ground state
in H2S allows to observe 1A1, 1A2, 1B1 and 1B2, which
cover all possible one-photon transitions. Masuko et al.
proposed that the broad features peaking at wavelengths
of 140.7 nm belong to two overlapping transitions, to
3d 1A1 and 3d 1B2 at 140.73 and 140.90 nm, respectively.
However, Mayhew et al. assigned this feature to 3d 1B2
with a maximum at 140.72 nm based on the pattern
of n = 4 in the same Rydberg series [51]. The ab ini-
tio calculations on H2S excited state level energies and
oscillator strengths have shown that the higher energy
3d 1A1 state has a stronger one-photon absorption com-
pared to 3d 1B2 [52], in agreement with the assignment
in Ref. [50]. The resonance peaking at 281.8 nm in the
presentwork, equivalent to 140.9 nm in one-photon tran-
sition, shows a nearly symmetric profile, in contrast with
the doublet structure observed in the absorption spec-
trum. Based on the limited information available, we
follow the assignment of Ref. [50]. In addition, a pair of
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Figure 3. Two-photon excitation spectrumof the H2Smoleculewith probing of H2S+ ion species. The three narrow signals labelledwith
asterisk corresponding to two-photon transitions in the sulphur atom. See text for details.

weak doublet structures observed at excitation at wave-
lengths of 286.0 and 276.5 nm are interpreted as part of
a vibrational progression 3d 1B1 (000) and (100). Further
study is needed to support the assignments.

The photolysis resonance at 291 nm was used for
the production and investigation of H2 molecules in
v = 11 vibrational states [43]. For the production of H2
in v = 13, 14 levels photolysis on the two-photon res-
onance at 281.8 nm was employed [44]. In the present
experiment the wavelength of the dissociation laser is
tuned to this two-photon absorption resonance in H2S at
281.8 nm, providing sufficient energy to overcome the
dissociation energy, at 69,935(25) cm−1, for a complete
three particle dissociation [53,54] with an excess of
1000 cm−1 above threshold. Here it is noted that by
spin selection rules, photolysis of H2S only produces
H2 molecules in combination with sulphur atoms in the
1D2 electronically excited state. During all measurements
this first photolysis laser is fixed at this wavelength of
281.8 nm, at the peak of the two-photon dissociation res-
onance of H2S, for yielding an optimal amount of H∗

2.
The excess energy is then released as kinetic energy in
the product, giving H∗

2 an additional momentum which
makes them rapidly escape from the interaction zone. A
fly-out time of 20 ns was measured from the interaction
zone of the three overlapping UV-lasers.

The H∗
2 short-lived resonances are probed in a three

laser scheme, where two-photon UV photolysis of H2S is
followed by excitation ofH∗

2 via two-photonDoppler-free
excitation into the F1�+

g , v = 0 electronically excited

outer well state, denoted as F0 in the following. In the
potential energy diagram of the H2 molecule, depicted in
Figure 4, the wave functions of bound and a quasi-bound
levels are plotted as a function of internuclear separation
and at their respective excitation energies. It illustrates
the binding and tunnelling of these states, while it also
shows the favourable Franck-Condon overlap of their
wave functions with the F0 level in the excited outer well.
A third UV laser then further excites the F0 population
into the autoionisation continuum, preferably on a strong
autoionisation resonance, after which H+

2 species can be
detected for signal recording.

The frequency calibration of the spectroscopy laser,
probing the excitation of quasi-bound resonances to the
F0-outer well state, is crucial because it determines the
accuracy at which the energy of those resonances are
determined. This laser is a travelling-wave Pulsed-Dye-
Amplifier (PDA) amplifying the output of a continuous-
wave (CW) ring-dye-laser, upon-frequency doubling
delivering a pulsed output with a frequency bandwidth
of ∼100MHz [55]. The absolute frequency calibration
relies on saturated absorption spectroscopy of hyperfine-
resolved I2 using the CW-output of the ring laser as well
as a wavemeter (Toptica High-Finesse WSU-30) [56].
Effects of frequency chirp in the pulsed output of the
PDA is analysed and corrected for, following established
methods [55]. Excitation of the two-photon transitions
is established in a Doppler-free geometry with counter-
propagating beams aligned in a Sagnac interferometric
scheme [57].
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Figure 4. Potential energy curves for the X1�+
g ground state

and the EF1�+
g excited states, drawn for the J = 0 rotationless

energies and for higher odd J values, including the centrifugal
energy. Also wave functions for a bound X(7,19) and quasi-bound
X(8, 19)∗ level are displayed. Thewave function for the F0(J = 19)
excited level (upper panel) indicates overlap at large internuclear
separation (4–5 a.u.).

The pulse sequences of the UV-lasers, all three with
pulse durations∼5 ns, are such that delays of at least 10 ns
are imposed to avoid possible AC-Stark effects induced
by the photolysis and ionisation lasers and to obtain
the highest accuracy on the determination of level ener-
gies of the quasi-bound resonances. The AC-Stark effects
of the spectroscopy laser are systematically investigated
with extrapolation to zero-power densities. These pro-
cedures lead to measurement of two-photon transition
frequencies upon averaging over multiple measurement
sequences. The resulting accuracies of the X-EF spectro-
scopic measurements are discussed in Section 4.

For most of the measurements the ion optics are
triggered at least 80 ns delayed from the spectroscopy
laser, therewith creating a DC-field-free environment.
For the weak transitions prompt H+

2 ions produced from
H2S photolysis are separated by applying a DC-field of
1.3 kV/cm of opposite polarity during excitation. It was
experimentally verified that such DC-fields do not cause
a Stark shift at the present precision level. This finding is
in agreement with calculations based on polarisabilities
for the EF state [58] and X state [59], predicting a less
than 1MHz shift for the DC-field used.

3. Theory

In support of the experimental studies several calcula-
tions are performed. For testing the level structure, and
the combination differences between the X1�+

g (v, J)∗
quasi-bound resonances, highly accurate computations
are carried out for these levels. For assigning the quantum
numbers of the quasi-bound resonances by their F1�+

g –
X1�+

g transitions, computations are performed of the F0
levels, at a lower level of precision.

3.1. The X1�+
g state

Level energies for the quasi-bound states are calcu-
lated using the nonrelativistic quantum electrodynamics
(NRQED) approach, in which relativistic, leading-order
radiative and higher order QED corrections are added to
a nonrelativistic Hamiltonian. The nonrelativistic energy
is traditionally evaluated within the Born-Oppenheimer
(BO) approximation by keeping the position of the nuclei
fixed. Because of the light mass of the nuclei with respect
to the mass of the electron, the adiabatic correction,
scaling with me/mp, and the nonadiabatic correction
to the BO approximation are substantial in case of the
hydrogen molecule. Nonrelativistic level energies can
also be obtained directly by a variational solution of
the full four-body Schrödinger equation, without invok-
ing the BO approximation [8–11]. Such beyond-BO cal-
culations allow to reach an accuracy limited by the
uncertainties of the fundamental constants, but are com-
putationally expensive, because a separate variational
calculation is needed for every single ro-vibrational
level.

Nonadiabatic perturbation theory (NAPT) [60] main-
tains the computational efficiency of the BO approach
through separating the electronic and nuclear
Schrödinger equation, while preserving accuracy. This
is achieved by including R-dependent corrections to the
potential energy curve and by employing R-dependent
reduced masses in the nuclear Schrödinger equation,
accounting for leading-order nonadiabatic interactions
on the order (me/mp)

2. These methods were previ-
ously explored by Kutzelnigg and coworker [61,62].
Because no full four-body nonrelativistic energies are
available for the quasi-bound states reported here, level
energies were obtained using NAPT as presented in
Ref. [63].

The radial nuclear Schrödinger equation (in atomic
units) within NAPT is given by [63]

[
− 1
R2

∂

∂R
R2

2μ‖(R)

∂

∂R
+ J(J + 1)

2μ⊥(R)R2
+ V(R)

]
φi(R)

= Eiφi(R), (1)



6 K.-F. LAI ET AL.

with the R-dependent vibrational (μ‖) and rotational
(μ⊥) reduced masses

1
2μ‖(R)

= 1
2μa

+ W‖(R), and (2)

1
2μ⊥(R)

= 1
2μa

+ W⊥(R), (3)

with μa = (mp + 1)/2 being the reduced atomic mass.
The functionsW‖(R) andW⊥(R) are defined in Ref. [63]
and vanish for R → ∞. The potential V(R) is given by

V(R) = EBO + Ead + δEna, (4)

representing the adiabatic [64] and nonadiabatic [65]
corrections to the BO potential energy curve [66].

Commonly, a new radial function is defined as fi(R) =
Rφi(R) to remove terms involving the first derivative
∂/∂R in (1), leading to a simplified equation involving
only the second derivative and some multiplicative fac-
tors. However, because of the R-dependence of μ‖(R), a
term W′

‖(R)(∂/∂R) remains, where W′
‖(R) indicates the

first derivative of W‖(R) with respect to R. Using the
ansatz χi(R) = Rφi(R) exp (−Z(R)) in (1) [38,67], the
first derivative term vanishes for Z(R) fulfilling

dZ(R)

dR
= μ‖W′

‖(R). (5)

The radial Schrödinger equation, Equation (1), can then
be written as:[

− 1
2μ‖(R)

d2

d R2
− μ‖(R)

2

(
W′

‖(R)
)2 + 1

2
W′′

‖ (R)

+ 1
R
W′

‖(R) + J(J + 1)
2μ⊥(R)R2

+ V(R)

]
χi(R) = Eiχi(R),

(6)

which can be solved using the renormalised Numerov
method introduced by Johnson [68].

Relativistic (mα4) and QED (mα5, mα6) corrections
were evaluated as described in Ref. [63] using the BO
nuclear wavefunction, obtained by solving (6) using
the nuclear reduced mass μn = mp/2, V(R) = EBO and
Z(R) = 0. The nonadiabatic part of the relativistic cor-
rection is known to be important and was also included
[63], whereas we ignored higher order QED and finite
size corrections, which are below 1 MHz for the states
considered here.

The potential energy functions, relativistic and QED
corrections, as well as the R-dependent reduced masses
and its derivatives were interpolated on a grid with
0.001 a0 stepsize in the range 0.1a0 to Rmax = 25a0 using
the H2SPECTRE program [63]. The CODATA2018 [69]
values were used for the fundamental constants: Eh =

219, 474.63136320(43) cm−1 , mp = 1836.15267343(11)
and α = 7.2973525693(11) × 10−3.

When comparing the nonadiabatic level energies, rela-
tivistic andQED corrections of the bound states obtained
by solving (6) with the renormalised Numerov method,
we found exact agreement with the results obtained by
using H2SPECTRE, which is based on a discrete-variable
representation [70]. The current version of H2SPECTRE
does however not allow the calculation of quasi-bound
states and resonances.

As for the quasi-bound states, resonance positions
and widths are determined by calculating the phase shift
for a given J by propagating the wave function to large
internuclear distance, where

lim
R→∞Z(R) = 0 (7)

and

lim
R→∞ χ(R; k) ∝ kR(jJ(kR) cos ηJ − nJ(kR) sin ηJ), (8)

where jJ and nJ are the spherical Bessel functions and k =√
2μa(E − V(∞)). The phase shift for a given energy

ηJ(E) was derived from the values of the wave function
at the two outermost grid points Ra and Rb = Rmax using

tan ηJ = KjJ(kRa) − jJ(kRb)
KnJ(kRa) − nJ(kRb)

; K = RaχJ(Rb)
RbχJ(Ra)

. (9)

The energy grid in the vicinity of a resonance was made
adaptive by requiring a certain number of points per
phase jump π .

Resonance parameters are determined within the
collision-time-delay approach developed by Smith [71].
For a single channel, the scattering matrix is S =
exp[2iηJ] and the time-delay matrix Q is given by

Q = −iS∗ dS
dE

= 2
dηJ
dE

= Γ

(E − Eres)2 + (Γ/2)2
, (10)

where the energy-dependence of the background phase
shift has been neglected. The resonance position corre-
sponds to the position of the maximum of Q, i.e. the
energy at which dηJ

dE is maximal (point of inflexion of the
phase-shift curve). The level width is given by

Γ (Q) = 4
Q(Eres)

= 2
dηJ
dE

∣∣E=Eres

. (11)

The quasi-bound states in ortho-H2 are known to have
narrow width [39] and a very fine energy grid would be
required to locate an increase of π in the phase shift. To
obtain a first estimate of the level positions we choose
to extend the effective potential in (4): the maximum
height of the centrifugal barrierVbar atRbar is determined



MOLECULAR PHYSICS 7

Table 1. Contributions to the dissociation energies of the observed shape resonances of H2 in cm−1.

Contribution/X(v, J)∗ (11,13)∗ (10,15)∗ (9,17)∗ (8,19)∗ (7,21)∗

mα2 −192.2683(29) −186.1598(36) −224.5890(40) −327.0262(43) −505.4818(45)
Adiabatic 3.1895 4.2857 5.3013 6.2827 7.2555
Nonadiabatic 2.6847 3.2666 3.6583 3.9268 4.1120

mα4 −0.2254 −0.2945 −0.3540 −0.4076 −0.4570
BO −0.2261 −0.2952 −0.3546 −0.4081 −0.4575
Nonadiabatic 0.0007 0.0006 0.0006 0.0005 0.0004

mα5 −0.0008 0.0002 0.0021 0.0047 0.0079
mα6 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001
Total −192.4945(29) −186.4542(36) −224.9410(40) −327.4291(43) −505.9310(45)
Comparison [39] −192.50 −186.46 −224.95 −327.43 −505.93
�FWHM (kHz) 1 × 105 70 1 0.5 1
Lifetime (s) 2 × 10−9 2 × 10−6 2 × 10−4 3 × 10−4 2 × 10−4

Notes: A negative dissociation energy indicates that these levels lie above the dissociation threshold. A comparison is made with results from Selg [39].

and we set V(R > Rext) = 0.5 · Vbar for Rext being deter-
mined when V(Rext > Rbar) = 0.5 · Vbar. Under these
conditions the quasi-bound states will appear as bound
states and can be easily located. Nonadiabatic level ener-
gies found using the modified potential agree within
4MHz for X(11,13)∗ and to better than 200 kHz for
X(7,21)∗, X(8,19)∗, X(9,17)∗ and X(10,15)∗ with the
energies found using (10). The nonadiabatic level ener-
gies for the five resonances in ortho-H2 experimentally
observed are given in Table 1.

The relativistic and QED corrections summarised in
Table 1 are calculated using the BO nuclear wave func-
tions obtained using themodified potential, which allows
to circumvent the use of energy-normalised continuum
wave function in the NAPT approach. This is expected
to be an excellent approximation for the aimed precision
and was verified by a scattering calculation that included
the relativistic and QED corrections in (4). Deviations
of level positions between 10 and 22MHz were found,
which we attribute to the fact that the nonadiabatic con-
tributions to the relativistic correction (∼20MHz) are
taken into account at a different level of approximation.
The full-width-at-half-maximum (FWHM) is obtained
using (11) and is given together with the natural lifetime
at the bottom of Table 1.

The theoretical uncertainties are determined by the
leading order terms neglected in the NAPT approach,
which are estimated by scaling the second-order nonadi-
abatic mα2 corrections with 1/μn [63] and are found to
be between 87 and 135MHz for the quasi-bound states.
The computation of binding energies for the H∗

2 quasi-
bound resonances by Selg [39], at a claimed accuracy
of 0.01 cm−1, are found to agree with the present values
within 0.01 cm−1 (or 300MHz).

3.2. The F1�+
g state

To predict transition frequencies for the F0-X transi-
tions, term values of the EF1�+

g electronic state were

calculated using Born-Oppenheimer [72], adiabatic [73]
and relativistic [74] potential energy curves. Leading
order radiative corrections were taken into account by
using the corresponding curves of the hydrogen molecu-
lar ion [75]. Nonadiabatic energies for the F0 states are
reported for J = 0−5 in Ref. [76] and were obtained
from a coupled-equations calculation including several
gerade states. In the spirit of Ref. [77] the energy dif-
ference between the reported nonadiabatic and the cur-
rent adiabatic term values are parametrised as TNA =
a + bJ(J + 1), relating a to homogeneous and b to
heterogeneous interactions. The found parameters a =
0.67 cm−1 and b = −0.009 cm−1 are expected to predict
F0 term values with an accuracy of around 1 cm−1. These
renewed computations for the F0(J) levels energies were
performed since values for the highest J-levels were lack-
ing in [78]. Based on a comparison with experimental
values for F0(J) at low J [79] the present computations
are shown to be more accurate. Values for F0(J), for the
J-values relevant to the present study, are listed in Table 2.

4. Detection, identification and precision
measurement of the quasi-bound resonances

The product distribution of rovibrationally excited states
in H2, upon two-photon photolysis of H2S, was first
measured in an overview scan in the wavelength
range 300–310 nm and displayed in Figure 5. The
overview spectrum shows many lines in (v′, v′′) vibra-
tional bands in the F1�+

g -X1�+
g system, detected via

2+1 resonance-enhanced multiphoton ionisation. Pro-
gressions of O(J = −2), Q(J = 0) and S(J = 2)
rotational branches are overlaid, thus forming a dense
spectrum.

The assignment of the F0-X transitions originating
in quasi-bound resonances is based on a comparison
with computed level separations between X1�+

g and
F1�+

g levels as presented in Section 3. To obtain the
excitation energies of H∗

2 above X1�+
g (v = 0, J = 0)
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Table 2. Measured frequencies for the two-photon F0-X transitions probing the quasi-bound levels H∗
2 , with uncertainties indicated in

parentheses. Also some transitions for bound H2 levels are included, relevant for comparison. Computed values from the present work
for the F0(J) levels are listed. Term values of the quasi-bound resonances X(v, J)∗ are obtained from the dissociation energies given in
Table 1 and adding the most recent theoretical values for the dissociation energy D0 = 36, 118.069605(31) cm−1 [19]. For the bound
states values from H2SPECTRE [60,80] are taken. From a combination of these a calculation of two-photon transitions frequencies F0-
X can be made. Finally, in the last column the deviations between experimental and predicted frequencies are listed as Exp.−Calc.. All
values in cm−1.

X(v, J) Transition Exp. F0(J)calc X(v, J)∗calc Calculated Exp.−Calc.

(7,21)∗ Q(21) 65,441.3575 (9) 102,064.12 36,624.0006 65,440.12 1.24
(7,21)∗ O(21) 64,979.430 (10) 101,602.55 36,624.0006 64,978.55 0.88
(8,19)∗ Q(19) 65,157.9413 (21) 101,602.55 36,445.4988 65,157.05 0.89
(8,19)∗ S(19) 65,619.8599 (8) 102,064.12 36,445.4988 65,618.62 1.24
(8,19)∗ O(19) 64,734.8098 (9)a 101,179.70 36,445.4988 64,734.20 0.61
(9,17)∗ Q(17) 64,837.2974 (19) 101,179.70 36,343.0107 64,836.69 0.61
(9,17)∗ O(17) 64,454.775 (10) 100,797.40 36,343.0107 64,454.39 0.39
(10,15)∗ O(15) 64,152.970 (20)b 100,457.32 36,304.5238 64,152.80 0.17
(10,15)∗ Q(15) 64,493.2404 (9) 100,797.40 36,304.5238 64,492.88 0.36
(11,13)∗ Q(13) 64,146.930 (20)b 100,457.32 36,310.5641 64,146.76 0.17
(8,17) Q(17) 66,044.7046 (9) 101,179.70 35,135.6038 66,044.10 0.61
(9,15) Q(15) 65,571.9063 (19) 100,797.40 35,225.8567 65,571.54 0.36
(9,15) S(15) 65,954.4505 (10) 101,179.70 35,225.8567 65,953.84 0.61
aMeasured both in DC-field free and in DC-field for prompt ion removal.
bMeasured with 3 ns delay, hence temporal overlap, between dissociation laser and spectroscopy laser.

Figure 5. (Left): Overview spectra recorded in a two-laser scheme with two-photon UV-photolysis of H2S, followed by 2+1 REMPI on
F-X(v′, v′′) bandswith aUV-tunable frequency-doubleddye laser. Transitions are labelledwithquantumnumbersof theground level. Exci-
tations from quasi bound resonances are indicatedwith asterisk (∗). The dashed arrows represent the calculated positions of unobserved
transitions. (Right): Calculated Franck-Condon factors for the bands F-X(0,v′′) as a function of J.

the values for the binding energies of X(v, J) are aug-
mented with the value for the dissociation energy of
H2, for which the most recent experimental value was
taken, D0 = 36, 118.069605(31) cm−1 [19], which is in
excellent agreement with the theoretical value of D0 =
36, 118.069632 (26) cm−1 [12]. From a combination of
these values, included in Table 2, a prediction can be
made for the F0-X transitions probing the quasi-bound
resonances. Although the predictions are systematically
off by ∼1 cm−1 from measurement, they can be con-
sidered proof for the assignment of the H2(v, J)∗ levels.

It is noted that the found deviations from experiment
simply reflect the inaccuracy in the ab initio calculations
for F0(J) levels, which is by itself considered very good
for electronically excited states in H2. The transitions are
assigned in Figure 5, where the transitions originating in
quasi-bound resonances are marked with an asterisk (∗).

The overview spectrum of Figure 5 shows that the
two-photon excitations originating in the H∗

2 quasi-
bound resonances are markedly more intense than the
excitations for the bound resonances at lower rota-
tional quantum number. This apparent deviation of the
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Figure 6. Excitation spectra of two photon transitions in the F-X system probing a number of quasi-bound resonances H∗
2 , including

from the X(11,13)∗ short-lived one, and from the bound state X(9,15). The insets show the AC-Stark extrapolation frommeasurements at
varying pulse energies to zero power levels.

Franck-Condon principle is a direct consequence of the
shift of wave function density of the quasi-bound lev-
els to large internuclear separation (see also Figure 4).
A computation of J-dependent Franck-Condon factors
for the F0-X transitions, results of which are displayed
in Figure 5, show this exquisite behaviour. The Franck-
Condon factors were calculated using the adiabatic wave
functions and using box-normalisation for the quasi-
bound states. This provides further proof for an unam-
biguous assignment of the quasi-bound states detected
experimentally.

In the experimental configuration with three UV-
lasers non-overlapping in time, four quasi-bound reso-
nances, X(7,21)∗, X(8,19)∗, X(9,17)∗ and X(10,15)∗, are
probed in a precision scheme, with the narrowband
PDA-laser detecting the Doppler-free F1�+

g -X1�+
g two-

photon transition. In Figure 6 several examples of the
precision frequency measurements are presented, excit-
ing quasi-bound resonances, further referred to as H∗

2,
into the electronically excited F0 state, with a subsequent
UV pulse for H+

2 formation and detection. An excitation
spectrum from the bound state X(9,15) is also shown.
The short-lived X(11,13)∗ quasi-bound resonance, with a
lifetime of 1.6 ns, was probed in an experimental configu-
ration with a 3 ns separation (and thus in part temporally
overlapping) between dissociation laser and the (PDA)-
probe laser, yielding a spectrum at low signal-to-noise
ratio (see Figure 6).

The spectroscopic measurements are performed for
varying intensities allowing for the assessment of the AC-
Stark effect in extrapolation to zero field as shown in the

insets. All five quasi-bound states have been excited via
a Q-transition (J = 0), while some are also probed via
S- or O-transitions. The extrapolated zero-intensity val-
ues of the highly accurate transition frequencies are com-
piled in Table 2.

For the higher intensities used, the AC-Stark effect is
the determining factor in the spectral linewidth, while for
the lowest intensities the laser bandwidth of the PDA sig-
nificantly contributes. The narrowest spectrum obtained
is about 200MHz FWHM, close to the PDA linewidth
(including effects of frequency doubling and two-photon
excitation). No broadening effect on the spectral line
shape as a result of tunnelling through the centrifugal
barrier was found. Resonances with X(v, J)∗ = (7,21),
(8,19) and (9,17) are predicted to have lifetimes in excess
of 100 μ s, while X(10,15)∗ lives for 2 μ s (see Table 1).
These lifetimes (short with respect to the bound states)
lead to increased natural linewidths, but this is still below
the frequency resolution under the present experimen-
tal conditions. In fact not even the short-lived X(11,13)∗
resonance exhibits a significant line broadening at the
present resolution.

The error budget for the frequency calibrations, pre-
sented in Table 3, contains a variety of contributions.
Minor contributions relate to the calibration uncertainty
of the cw-laser seeding the PDA, of some 2MHz, while a
residual Doppler shift frommisalignment of the counter-
propagating beams is reduced by Sagnac interferometry
to below 3MHz uncertainty. The chirp-induced fre-
quency correction accounts for another 4.5MHz uncer-
tainty. The AC-Stark effect yields the largest contribution
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Table 3. Uncertainty budget for the measurements of two-
photon F0-X transitions.

Contribution Uncertainty (MHz)

Lineshape fitting 15
Frequency calibration 9
CW-pulse offset (chirp) 18
Residual Doppler effect 3
DC-Stark effect < 1
Subtotal (exl. AC-Stark) 25
AC-Stark effect 3–60

Note: The uncertainty for the AC-Stark extrapolations is estimated for individ-
ual transitions, where the total uncertainties are listed in Table 2.

to the error budget. It is addressed by performing sys-
tematic measurements resulting in the AC-Stark slopes
as indicated in Figure 6. The uncertainty associated with
AC-Stark results from the extrapolation to zero-power
levels and depends on the obtained signal-to-noise ratio
for individual lines. In order to reduce the contributions
of the AC-Stark effect various campaigns of remeasure-
ment of the Stark-slopes were carried out, thus turn-
ing the systematic effect into a statistical distribution of
results. For some weak transitions, for example F0-X11
Q(13) and F0-X10 O(15), this could not be done effec-
tively, and only measurements at high laser power were
performed leading to larger uncertainties. For each res-
onance targeted and listed in Table 2 the resulting final
experimental uncertainty was deduced from the statisti-
cal and systematic contributions and by taking them in
quadrature. This leads to a variety of resulting uncertain-
ties, mainly associated with the number of measurement
campaigns for each line and the obtainable signal-to-
noise ratio. For the Q-branch lines an optimum accuracy
was obtained at the level of 0.001 cm−1, corresponding to
30MHz. It is noted that the overall measurement uncer-
tainty has been improved in comparison with previous
work [44]; this is related to increased statistical averag-
ing and stronger signal strength resulting from larger
FC-factors for the measured transitions.

During the recording of the F0-X two-photon transi-
tions by tuning the narrowband PDA-laser (see Figure 6)
the third UV-laser is parked on an arbitrary autoion-
isation resonance for optimum H+

2 signal generation.
Alternatively, when signal is found, either on bound
states or on quasi-bound resonances, the wavelength of
the third laser may be scanned while keeping the spec-
troscopy laser fixed. By this means the energy range in
H2 above 130, 000 cm−1 is probed relying on autoion-
isation. In Figure 7 autoionisation spectra are displayed
that were recorded after setting the spectroscopy laser
on the two-photon transitions from X(v = 9, J = 15)
bound and X(v = 10, J = 15)∗ quasi-bound states. The
autoionisation spectra are plotted against the term value
corresponding to the total excitation energy in the H2

molecule. The one-to-one correspondence between the
autoionisation resonances proofs that these spectra are
taken from an intermediate state with the same angular
momentum J, thus proving that the quasi-bound res-
onance has J = 15. Note that the small differences in
the intensities are caused by the differences in (vibra-
tional) wave function overlap for v = 9 and v = 10 lev-
els and the ionic states. The fact that an autoionising
Rydberg series is observed converging to the H+

2 (v
+ =

1,N+ = 15) provides further evidence that the interme-
diate state is J = 15. Such autoionisation spectra were
recorded for all quasi-bound resonances, therewith ver-
ifying their J-quantum numbers. Apart from providing
additional proof on the assignment of resonances, this
method gives access to H2 Rydberg states with unprece-
dentedly high rotational angular momentum of the H+

2
ion core, to be explored in future.

5. Discussion

Five quasi-bound resonances were detected in a preci-
sion experiment. These resonances had previously been
observed as terminal levels in emission via the Lyman
and Werner bands in studies by Dabrowski [35] and by
Roncin and Launay [36] at an accuracy of 0.05 cm−1.
The precision of the present Doppler-free laser excita-
tion study is much improved, by more than an order of
magnitude. The novelty of the present work derives not
only from the improved accuracy, but also on the fact
that the centrifugally boundH∗

2 resonances could be pro-
duced as a transition state in a photolysis process and
thereupon detected via 2+1’ resonance-enhanced multi-
photon ionisation before tunnelling and separating into
two H(1s) atoms.

5.1. Test of theH2 potential

Although the quasi-bound resonances were probed in
a precision experiment the detection pathway via the
F1�+

g outer well state does not provide a means to
determine the (negative) binding energy of the reso-
nances in a direct manner. Hence, the accurate first
principles computations of H∗

2(X), at an accuracy of
0.003–0.004 cm−1 (cf. Table 1), cannot directly be com-
pared with observation. In order to make a comparison
possible, combination differences between resonances of
bound and quasi-bound nature all lying near threshold,
have been determined via the level diagram plotted in
Figure 8. The energy of all resonances is deduced relative
to the X(10,15)∗ level and the experimental uncertainties
are included via error propagation. Theoretical values for
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Figure 7. Two recordings of autoionisation spectra after probing different two-photon transitions in the F-X system, one from the bound
X(9,15) state and one from the quasi-bound X(10,15)∗ resonance. The similarity of the resonances in both spectra and the observation of
a Rydberg series converging to the X+(v+ = 1,N+ = 15) limit in H+

2 proves that a J = 15 state is probed at the intermediate level.

Table 4. Combination differences between H∗
2 quasi-bound res-

onances, and some bound resonances.

X(v, J) Texprel Tcalcrel T

(7,21)∗ 319.4772 (28) 319.4768 (9) 0.0004 (29)
(8,17) −1168.9200 (25) −1168.9200 (12) 0.0000 (28)
(8,19)∗ 140.9748 (25) 140.9750 (7) −0.0002 (26)
(9,15) −1078.6659 (21) −1078.6671 (11) 0.0012 (24)
(9,17)∗ 38.4872 (30) 38.4869 (4) 0.0003 (30)
(10,15)∗ 0 0 0
(11,13)∗ 6.041 (28) 6.0404 (6) 0.001 (28)

Notes: Level energies are plotted with respect to the X(10, 15)∗ resonance. A
comparison is made between experimental determination and computed
values,while in the last columndeviations aregiven.Note that thesediscrep-
ancies relate to the inaccuracy in the calculation of F0(J) levels, and not to
inaccuracies in the bound and quasi-bound resonances on the ground state
potential. All values in cm−1.

these combination differences are computed and a com-
parison with experiment is made in Table 4. The uncer-
tainty of the higher order terms in the NAPT approach
are related to an interaction with distant electronically
excited states. For this reason, the uncertainties for the
individual X(v,J) levels are not independent of each other,
so that we estimated the accuracy of the calculated inter-
vals by multiplying the non-adiabatic correction of the
interval with 1/μn. Its outcome demonstrates that the
deviations between experimental and computed combi-
nation differences are well within 0.001 cm−1 (30MHz).

This excellent agreement constitutes a test of the
high accuracy of the calculated potential energy curve

of H2, including all adiabatic, non-adiabatic, relativistic
and QED contributions as discussed in Section 3. The
unprecedented experimental accuracy for highly excited
vibrational states verifies the computations in the NAPT-
framework [60] for the H2 potential specifically at large
internuclear distances.

This comes in addition to the tests of the theoretical
framework near the bottom part of the H2 potential. The
rotationless fundamental vibrational splitting (v′ =
1 − 0) in H2 was measured to an accuracy of 5MHz in
a molecular beam experiment [25]. This experimental
value is in agreement within a single standard deviation,
both with NAPT (uncertainty of 27MHz) and with the
more precise 4-particle non-Born-Oppenheimer calcula-
tion (at 9MHz uncertainty). The S(3) line in the second
overtone (v′ = 3 − 0) was measured to high accuracy
in Doppler-broadened cavity-ring down spectroscopy
[22,23]. A reanalysis of its collisional line shape, yield-
ing an accuracy of 6MHz [81], is again found in agree-
ment with theory. The measurement of the first overtone
(v′ = 2 − 0) reached a lower accuracy of 30MHz [82],
also in agreement with theory. The Q(J = 1, 3, 5, 7)
level splittings for v′ = 11 − 13 were determined with
an accuracy between 84 and 93MHz by using combi-
nation differences of F-X transitions, also agreeing with
NAPT calculations [44]. Measurements of the dissocia-
tion energy (D0) of H2 also probe the bottom part of the
potential. The most recent experimental determinations
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Figure 8. Level diagramof X(v, J) and F0(J) rotational levelswith theH2(X1�+
g ) dissociation limit given as a dashed line.Measured transi-

tions, plotted as (black) arrows, connect all the observed quasi-bound resonance including measurements of weak S- and O- transitions.
The energy splittings are determined from the combination differences and listed in Table 4.

of D0(H2) [18–20] are found to be in agreement with
theory [12] at the level of 1MHz.

The combination of these experimental data allows
the first specific test of the H2 potential energy curves
and the R-dependent reduced masses at the 90MHz
level over the entire relevant range of internuclear dis-
tances, as illustrated in Figure 9. The upper panel of
Figure 9 displays the BO, adiabatic, non-adiabatic, rela-
tivistic and QED potential energy curves normalised to
±1 around R ≈ 2.5 a0 for better comparison. The abso-
lute values of the displayed BO, adiabatic and mα4 rela-
tivistic potential energy curves normalised to±1 amount
to ∼38, 293 cm−1, ∼18 cm−1 and ∼0.9 cm−1, respec-
tively. Similarly, one finds 1.6GHz, 8MHz and 0.66GHz
for the mα5, mα6 and the non-adiabatic correction. The
middle panel shows the R-dependent reduced vibra-
tional and rotational masses, μ‖(R) and μ⊥(R), varying
smoothly from the nuclear reducedmass atR → 0, to the
atomic reduced mass for R → ∞. The lower panel dis-
plays the squared vibrational wavefunctions of the bound
states for v = 0 and 3 (black solid line), and the observed
X(11,13) quasi-bound state (coloured solid line). It can
be seen that the previous experimental studies with v<3
tested the potential mainly for R below 2.5 a0. For the
observed state X(3,2), 99% of the radial probability den-
sity is within the interval [0.9, 2.5]a0, whereas the inter-
val [1, 6.6]a0 is presently probed by the X(11, 13) state.
At 6.6a0 the R-dependent reduced rotational and vibra-
tional masses only deviate by 0.0003% and 0.002% from
the asymptotic atomic reduced mass, respectively. The

various parts of the potential reached their respective
asymptotic value to within 2% or less, which amounts
to 76, 0.09 and 0.01 cm−1 for the BO, adiabatic and rela-
tivistic potential and less than 42MHz for the remaining
contributions.

In view of confronting experimental values for test-
ing theoretical approaches it is illustrative to consider
the numerical contributions of the nonadiabatic, rela-
tivistic and orders of QED corrections as included in the
computations of Section 3. In Figure 10 the various con-
tributions to the total energy are graphically displayed
in a (v, J) colour plot. While mαn (n = 4−6) for rela-
tivistic and QED-contributions is smallest for the highest
v-levels, the non-adiabatic correction has the largest con-
tribution for vibrational levels v = 7−11, hence for the
quasi-bound states probed in the current experiment. In
the same manner Figure 10 illustrates that the mα4 rela-
tivistic term is best tested through precision experiments
on levels with low-v and high-J as was done previously
[21].

It was long understood that the magnitude of the
nonadiabatic corrections is related to the vibrational
kinetic energy, which reaches its maximum for v = 9.
That turns the present precision measurement of quasi-
bound resonances into a specific test of computations of
the non-adiabatic correction term in the computation of
H2 level energies. It should be noted that in Figure 10
the values for the energy contributions are plotted, and
that their uncertainties scale with the absolute values [63]
(1/μn, < 2 × 10−4, 5 × 10−4, 3 × 10−3, respectively).
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Figure 9. Upper panel: Range of the BO potential energy curve and the various corrections normalised to +1 or −1 around the mean
internuclear distance for better comparison. Middle panel: R-dependent vibrational and rotational reduced masses, μ‖(R) and μ⊥(R),
used to take non-adiabatic effects into account within the framework of NAPT. Lower panel: Radial probability density of the v = 0, 3
bound states (black solid line) and the X(11,13) quasi-bound state (coloured solid line). The squared s-wave zero-energy wave function
is shown for comparison (dotted line, not to scale).

The dissociation energy sets the most stringent test of
the potential energy curves, because it probes the inter-
nuclear distances where the corrections are largest, as can
be seen by comparing the top and lower panel of Figure 9.
The quasi-bound states, however, allow to test the poten-
tials over a much wider range, while being particularly
sensitive to the non-adiabatic effects. By scaling the indi-
vidual potential energy surfaces and repeating the calcu-
lation of the dissociation energy D0 (and quasi-bound
intervals, given in brackets), upper limits are found to
be: BO: 10−9 (5 × 10−7), AD: 5 × 10−6 (8 × 10−4),mα4:
6 × 10−4 (2 × 10−2), mα5: 2 × 10−4 (4 × 10−1), mα6:

2 × 10−2 (3 × 101) and NA: 1 × 10−3 (1), respectively.
Using the quasi-bound intervals we also constrained
a relative error of W‖ and W⊥ to 0.05 and 0.002,
respectively.

5.2. H+H scattering

The H + H scattering process is of fundamental interest
in physics, playing a role in the formation of molecu-
lar hydrogen in the universe [83], frequency shifts in the
hydrogen maser [84], the magnitude of pressure shifts
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Figure 10. Nonadiabatic, mα4, mα5 and mα6 corrections for the bound states and the long-living quasi-bound states of H2 for
J = 0−21. Note that the uncertainties for the separate contributions scale with the actual values plotted here (see text).

in the 1S-2S transition of atomic hydrogen for a deter-
mination of the Rydberg constant [85,86], and for the
formation of a Bose-Einstein condensate in hydrogen
[87]. Because of the light atomic mass, non-adiabatic
effects are especially important in this collision process
and the question about the correct treatment of these was
vividly discussed in the literature [88] (and references
therein).

The scattering process can be described by a single
parameter at low temperature, the scattering length a
given by

a = − lim
k→0

tan ηJ=0

k
. (12)

Whereas previously reported scattering lengths obtained
by different authors within the BO and adiabatic approx-
imations were found to agree, the values for the non-
adiabatic scattering length varied between 0.3006 a0
and 0.564 a0 (see Table 3 in Ref. [88] and references
therein), depending on the used reduced masses and
effective correction potentials employed to account for
the non-adiabatic interactions. Moreover, Wolniewicz
attempted a direct solution of the coupled equations [89]
but encountered elementary difficulties because of spu-
rious nonadiabatic couplings for R → ∞ related to the
choice of coordinates used to describe molecular states,
not suited for the description of the free atoms in the
asymptotic region [90].

We choose here the NAPT approach that was exper-
imentally verified with MHz precision up to R ∼ 6.6 a0,
noting that at this distance the R-dependent masses and
all potentials but the BO, adiabatic and relativistic poten-
tials reached their asymptotic value (see Section 5.1). The
squared s-wave scattering wave function is displayed for
comparison in the lower panel of Figure 9. A comparison
with the radial densities for the bound and quasi-bound
states indicates that the whole range of internuclear

distances with a significant potential energy term are
probed. In addition, as can be seen from themiddle panel
of Figure 9, the hump in the vibrational reduced mass
μ‖(R) is completely located within the interval probed by
the resonances, which allows a verification of the main
part of the non-adiabatic correction to the scattering
length. This allows for the first time to calculate scattering
lengths employing an experimentally verified approach
for taking the non-adiabatic interactions into account.
Using the techniques presented in Section 3.1 we inte-
grate the wavefunction outwards at k0 = 1 × 10−7 a.u. to
Rmax = 500a0 and obtain a scattering length for various
level of approximation:

a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.5699a0 BO
0.4160a0 AD
0.2572a0 NA
0.2735a0 NA, mα4,mα5,mα6.

(13)

Using the dispersion coefficients for the BO [91] and
adiabatic potentials [92] (the exchange interaction is neg-
ligible at this distance) we confirm that the asymptotic
scattering length is obtained by using the extrapola-
tion procedure given in [93]. The value obtained for the
adiabatic scattering length agrees with the value given
by Wolniewicz [89]. It is also interesting to note, that
the approximate nonadiabatic scattering length obtained
using the atomic reduced mass is 0.2651a0, deviating by
only 3% from the value obtained using NAPT. The devi-
ation to previously reported values obtained using the
same approximation is related to the improved BO and
adiabatic potential energy curves [94].

The obtained scattering lengths are verified by com-
paring to [95]

a = 2μn

k2

∫ ∞

0
sin(kR)V(R)χ(R; k = k0) dR, (14)
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and we find agreement at the 0.02% level for the BO
and adiabatic level of approximation. As was found in
Ref. [94], (14) can also be used to estimate changes
of the scattering length δa caused by a change of
the potential δV(R), by replacing V(R) → δV(R) and
sin(kR) → χ(R; k = k0). We find δamα4 = 0.0156a0,
δamα5 = −0.0007a0 and δamα6 = 0.0014a0, respectively.

The experimental verification of the NAPT approach
for the shape resonances can be used to determine an
uncertainty of the scattering length. We studied the
change of the scattering length when using the above-
mentioned relative uncertainties for the individual parts
of the potential or the R-dependent reducedmasses. This
allows to attribute the experimental uncertainty of the
shape-resonance intervals (∼90MHz) to only one part
of the nuclear Schrödinger equation. It is found that a
change of the vibrational reduced massμ‖ has the largest
effect, resulting in an experimentally verified singlet scat-
tering length of

a = 0.27353931a0. (15)

6. Conclusion

In the present study five quasi-bound resonances of the
H2 molecule are produced in the two-photon UV pho-
tolysis of H2S, where four of those persist as long-lived
transition states. Proof of their production and detection
is provided by comparing experimental two-photon tran-
sition frequencies to computed level splittings between
F1�+

g and X1�+
g levels. Computation of rotational-

state dependent Franck-Condon factors, compared with
the observation of enhanced intensities, provides fur-
ther verification of the assignments. Also the step-wise
excitation from quasi-bound states into the continuum
provides an angular momentum label as supporting
evidence.

Highly accurate calculations of X1�+
g (v,J) level ener-

gies are performed, for which an existing framework
of non-adiabatic perturbation theory (NAPT) [60,80] is
extended into the region above the dissociation thresh-
old. The present precision measurement allows for a
test of the H2 potential energy curve, comprising a
Born-Oppenheimer potential, adiabatic, non-adiabatic
and relativistic corrections, as well as QED-corrections
up to order mα6. The H2 potential is tested now over
a wide range of internuclear separations and energies,
by comparison of computed level energies to a set of
data on infrared transitions, dissociation energy and
quasi-bound resonances at MHz accuracy. The precision
measurement of the quasi-bound resonances specifically
probes and tests the non-adiabatic correction to the H2
potential. This well-tested H2 potential can be applied

in a computation of the scattering length, resolving a
decade old disagreement in the determination of the non-
adiabatic singlet s-wave scattering length of the H(1s) +
H(1s) collision.
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