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Pulse Compression to the Subphonon
Lifetime Region by Half-Cycle Gain in
Transient Stimulated Brillouin Scattering

Iavor Velchev, Dragomir Neshev, Wim Hogervorst, and Wim Ubachs

Abstract—A new approach to the transient pulse compres-
sion by stimulated Brillouin scattering (SBS) is presented. The
theoretical analysis involving the time-dependent SBS gain in
explicit form leads to a nonlinear system of partial differential
equations, solved numerically by a generalization of the split-step
method. It is shown theoretically and confirmed experimentally
that the phonon lifetime is not always an appropriate parameter
that determines the lower limit to the pulse duration in SBS
compressors. A half-cycle gain regime is found for pulses shorter
than the phonon lifetime. Hence, under proper conditions, pulses
as short as half the acoustic period can be produced.

Index Terms—Brillouin scattering, optical pulse compression,
optical pulses.

I. INTRODUCTION

T HE phenomenon of stimulated Brillouin scattering (SBS)
in liquid or gaseous media is nowadays widely used

as a tool to compress nanosecond laser pulses down to the
subnanosecond region with remarkable conversion efficiency,
theoretically reaching 100%. The first experimental result,
some 20 years ago [1], inspired many attempts to develop
a theory explaining the physical background of the process of
pulse compression. Although most of the theories available
are in good agreement with experimental results, they fail
in treating the problem in the fully transient regime, where
the compressed pulse is found to be shorter than the phonon
lifetime of the medium. In this paper, we present a new
analysis of the equations as well as a numerical method
for modeling the compression in transient regime. A double
compressor experiment is conducted in order to confirm the
theoretical and numerical results.

II. THEORY OF TRANSIENT SBS

We consider the SBS process involving two classical optical
fields (laser) and (Stokes) governed by Maxwell’s
equations, coupled through the process of electrostriction with
an acoustic field obeying the Navier–Stokes equation.
Since our model is dimensional, these three fields
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are represented as scalar plane waves, possessing time and
propagation coordinates only

(1a)

(1b)

(1c)

In (1a)–(1c), the frequencies and the wavevectors satisfy
energy and momentum
conservation laws. Under the assumption of small Stokes
shift , the acoustic frequency is given by

where is the speed of hypersound in
the medium. The slowly varying amplitude approximation
is applied for both laser and Stokes fields. For the acoustic
field, this approximation is not valid as long as its spectral
width is usually only an order of magnitude smaller than the
main frequency . Following these remarks, we write the
equations in the form

(2a)

(2b)

(2c)

retaining the second-order time derivative in the
Navier–Stokes equation (2c). The only restriction imposed
on the acoustic field is the approximation of nonmoving
phonons, which is well justified on a time scale of several
hundred picoseconds [2]. In (2a)–(2c), is the refractive
index of the medium, is the speed of light, is the
electrostrictive constant, is the unperturbed density,
and is the Brillouin linewidth [2]. This set of coupled
nonlinear differential equations is difficult to solve generally
and analytical solutions have been found in specific situations
only. The steady-state solution, for example, has been
extensively investigated [2], [3]. A solution in the case of
undepleted pump has also been found [4]. Despite all these
attempts, no general approach to the problem has been
proposed so far. In the following, we present an analysis
of the system (2a)–(2c) under no additional approximations,
revealing the physical background underlying the process of
transient pulse compression by SBS.

We solve (2c) in the frequency domain, thus obtaining the
spectrum of the acoustic field as a function of detuning
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from the Stokes resonance

(3a)

(3b)

The function is the spectral gain profile of the SBS
process possessing two resonances of widths

at and , corresponding to Stokes and
anti-Stokes scattering, respectively.

Inverse Fourier transformation of (3a) and (3b) gives the
exact solution of the Navier–Stokes equation

(4a)

(4b)

where denotes convolution. The fact that the gain function
(4b) is zero for removes the integration over thefuture

of the optical fields in (4a)

(5)

This expression is a direct consequence from both thelocality
(phonon is generated at a fixed coordinateonly if at a certain
moment both Stokes and laser fields are present) andinertia
of the phonons [the acoustic field exists even after the optical
fields have been removed and vanishes exponentially in time
(4b)]. The latter determines the time scale of the acoustooptical
interaction known as phonon lifetime It is
usually regarded as a limiting factor to the pulse duration in
SBS pulse compressors [6], [7]. It is important to note that (4a)
and (4b) give general solution of the Navier–Stokes equation
without any restriction to the time scale used. In the particular
case of CW interaction, (4a) is transformed into the well-
known steady-state solution where the convolution integral (5)
is easy to solve. This results in an expression for the acoustic
wave no longer dependent on time

(6)

Then the system (2a) and (2b) for the optical fields, written
in terms of intensities , describes a pure
gain (loss) process

(7)

where is the steady-state Brillouin
gain. The system (7) is discussed widely in the literature,

Fig. 1. Imaginary part of the gain functiong(t) (solid line) and the acoustic
field ��(t) (dashed line) generated by a short�-like pulse in water for
� = 532 nm. Note that the ratio�p=�a is a material property.

taking into account the depletion of the pump wave. It is found
to describe the SBS process for CW interaction in optical fibers
[5] as well as in the pulsed regime on a time scale much larger
than the phonon lifetime in the medium.

Another important feature of the steady-state solution ap-
pears in (6). The fact that the convolution integral
is both imaginary and negativeleads to the pure gain (loss)
system (7). In the opposite case, when a short-like pulse
is propagating through a Brillouin medium, the convolution
integral is proportional to the gain function itself. The
analysis of its imaginary part shows (Fig. 1) that it is always
negative, reaching maximum absolute values when the density
deviation from has a maximum and vanishes exponentially
in time. This result is important in showing two time scales for
the interaction of light pulses with a Brillouin active medium:
first, the decay time of the acoustic field and
second, the duration of one oscillation of the gain function
equal to . For pulses longer than , the
interaction is limited by the decay time of the acoustic field.
This effect was observed in all attempts to compress pulses
with a duration of several nanoseconds in liquid media (with
phonon lifetimes on the order of several hundred picoseconds)
[6], [7]. However, if the incident pulse is shorter and its
duration is on the order of it cannot experience gain due
to a lack of time to build up an acoustic field. Consequently,
the real physical limit to the pulse duration in a compressor
setup is not the phonon lifetime but the acoustical half-
cycle duration . A conclusion along these lines was first
drawn by Hon [1] without any mathematical derivation. Later,
this problem was addressed in [8]–[10] on a qualitative level
as well.

The system (2a)–(2c) can be rewritten in the form

(8a)

(8b)

(8c)
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where is the coupling constant. It was discussed
in detail in [8] that under transient conditions the physically
important parameter is the product instead of the steady-
state gain coefficient alone. In a transient regime, the
integral (8c) plays an important role in the model described.
It can be considered as amemoryof the system, stored into
the acoustic field , which depends strongly on the past
values of the product for times .
In the nontransient regime, is much shorter than the pulse
durations and the acoustic field depends on the present values
of the product only, thus simplifying the
problem to a system which is easy to model without computing
the integral (8c) [7].

III. N UMERICAL MODEL

We solve the system (8a)–(8c) numerically by a general-
ization of the split-step method [5] usually used for modeling
pulse propagation in optical fibers. We extended the applica-
bility of this method to our case of two nonlinearly coupled
[through the integral (8c)] partial differential equations. As
long as the phonons do not propagate and their lifetime cannot
be neglected with respect to the pulse durations, it is obvious
that the fields evolve in time only, whereas in systems with a
short response time (Kerr nonlinearity) the evolution in time
can be replaced by evolution in space (along thecoordinate).
Consequently, the system (8a) and (8b) describes the evolution
of the spatial distribution (along the axis) of the fields in
time.

By introducing apropagation operator
and anonlinearity operator (8a) and (8b)
can be rewritten in vector form

(9)

The split-step method gives an approximate solution of (9) by
assuming that, for a small time increment, the propagation
and the nonlinearity act independently. Under this assumption,
the evolution of the optical fields in time is given by

(10)

In (10), the propagation exponent operator acts first, fol-
lowed by the nonlinearity exponent operator. The fact that
the operators and are noncommuting is the predominant
error source in the split-step method, limiting the accuracy
to second-order in step size [5]. It is easy to prove that
the propagation exponent operator causes a shift
in the spatial part of the fields, where “” is for the Stokes
field and “ ” is for the laser field. The nonlinearity exponent
operator can be presented in explicit form using trigonometric

Fig. 2. Calculated compressed pulse durationversusenergy in the incident
pulse for a 10-mm beam diameter. Circles: input pulse of 5 ns; diamonds:
input pulse of 600-ps duration.

functions. Inserted into (10), this results in

(11)

where . The implementation of (11) gives
the time evolution of both pump and Stokes fields in each
step. The method is applicable only if the spatial grid spacing

is equal to allowing for the introduction the spatial
shifts without additional calculations. Reducing the
step size, the memory consumption increases, thus limiting the
speed and accuracy of the calculation. This constraint could
be eliminated by using fast Fourier transformations [5] for cal-
culation of the action of the propagation exponent operator in
(10). In our case, the computer memory available was enough
to obtain good accuracy by lowering the step size. We used
(11) directly to model the process of SBS pulse compression.
In each step, the accuracy was monitored by the conservation
of the number of photons. Another accuracy check necessary
when using the split-step method is recalculation with two-
fold reduced step size. Both checks showed good accuracy
with moderate memory consumption and speed of calculation.

IV. RESULTS AND DISCUSSION

The experimental situation modeled is a generator-amplifier
setup [7], where the laser beam is focused by a lens in water
as a Brillouin active medium. The Stokes signal generated in
the focal region propagates backward, depleting the remainder
of the pump pulse on its way [1], [7], [8]. As a result of this
interaction, the front edge of the Stokes pulse is amplified
only, leading to pulse compression. In our model, a Gaussian
beam/pulse at 532 nm of 5-ns (FWHM) duration with up
to 300 mJ/pulse is focused by a 10-cm lens in water. The
Brillouin shift is GHz and the Brillouin
linewidth is MHz extracted from [2] after
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Fig. 3. Experimental setup of double compressor. SHG: second-harmonic
generation stage; PBS: polarizing beam splitter; QWP: quarter-wave plate;
A: attenuator; C: Brillouin compressor; SC: streak camera; PC: personal
computer.

Fig. 4. Streak camera trace of the secondary compressed pulse in water.
The measured pulse duration (FWHM) is 160(10) ps much shorter than the
phonon lifetime�p.

wavelength correction for nm. In Fig. 2, a graph
of the calculated compressed pulse durationversusenergy in
the input pulse is presented. Circles and diamonds correspond
to input pulse durations of 5 ns and 600 ps, respectively. It is
clearly seen that, in the case of a 5-ns input pulse, the limit to
the pulse compression is set by the phonon lifetime. This
result is in agreement with all available experimental results
on compression of long pulses [6], [7]. The situation
is different for a 600-ps input pulse, which enters directly the
transient regime. In this case, our model predicts compressed
pulses much shorter than. As discussed above, the duration

of one oscillation of the gain function is assumed to
be the limit to transient pulse compression. It can be seen
from Fig. 2 that, increasing the energy in the input pulse, the
compressed pulse duration is indeed limited by.

The behavior of the conversion efficiency in a fully transient
regime is difficult to predict on a time scale shorter than

. Equations (4a) and (4b) suggest that pulses shorter than
experience reduced gain, and, therefore, the conversion

efficiency is considerably lower. Between the two limits, our
numerical experiment showed no significant deviation from
98% maximum efficiency.

V. EXPERIMENT

To compress a pulse shorter than the phonon lifetime, we
performed a double compression experiment. The setup is
shown in Fig. 3. The output of the injection-seeded Nd:YAG

laser was frequency-doubled ( nm) and compressed
to 300 ps (FWHM) with 5 mJ energy in the pulse. Water
was used as a Brillouin medium in a second compressor
stage (C2), where the pulse was further compressed. The
output pulse duration was measured with a streak camera
read by computer. The uncertainty in this single-shot mea-
surement is determined by the statistical error in the fitting
procedure. In Fig. 4, a streak camera trace of the two-fold
compressed pulse is presented, measured to be 160(10) ps
(FWHM). This value is much shorter than the phonon lifetime
in water ps [2], thus experimentally proving our
prediction that the limit to the pulse compression in this
case is not set by the phonon lifetime. Even shorter pulses
could, in principle, be achieved at higher pulse energies
down to the theoretical limit ps for water at
532 nm. The true experimental limit, however, is deter-
mined by the competition with Raman scattering and optical
breakdown. The first one could be eliminated by choosing
a low Raman gain liquid or an atomic gas as a Brillouin
medium. The optical breakdown limitation we overcome by
filtering the liquid down to 200-nm particle size, using pulses
with smooth temporal profile and limiting (by the attenuator
A) the energy in the second compressor stage (C2) to 5
mJ/pulse.

VI. CONCLUSIONS

We have theoretically analyzed and numerically modeled
the pulse compression by stimulated Brillouin scattering in
the fully transient regime. By introducing a time-dependent
gain, explicitly presented by (4b), we found a regime where
the pulses are compressed in a half-cycle time. In a double
compression experiment, we demonstrated the accessibility of
the time region below when the initial pulse duration is on
the order of the phonon lifetime.
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