
Information Retrieval Support for
Ontology Construction and Use

Willem Robert van Hage?, Maarten de Rijke, and Maarten Marx

Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam

wrvhage,mdr,marx@science.uva.nl

Abstract. Information retrieval can contribute towards the construction of on-
tologies and the effective usage of ontologies. We use collocation-based keyword
extraction to suggest new concepts, and study the generation of hyperlinks to
automate the population of ontologies with instances. We evaluate our methods
within the setting of digital library project, using information retrieval evaluation
methodology. Within the same setting we study retrieval methods that comple-
ment the navigational support offered by the semantic relations in most ontolo-
gies to help users explore the ontology.

1 Introduction

Today’s prevalent methods of searching, navigating, and organizing Internet informa-
tion builds on several decades of research in information retrieval (IR) [2]. Based, ul-
timately, on general statistical laws governing human language use, these methods are
being used not just in document retrieval but also in semantically richer tasks such as
question answering [28]. One vision of the Semantic Web is that it will be much like the
Web as we know it today, except that documents will be enriched with machine under-
standable markup [18]. These annotations will provide metadata about the documents
and machine interpretable statements capturing some of the semantics of documents’
content [7]. We discuss how the IR paradigm can contribute to this effort, by aiding the
architects of non-trivial ontologies. IR techniques can aid in defining, populating, and
checking the consistency of ontologies. Specifically, eight stages can be distinguished
in the ontology building process [1]:

1. Determine the scope of the ontology.
2. Consider reusing (parts of) existing ontologies.
3. Enumerate all the concepts you want to include.
4. Define the taxonomy of these concepts.
5. Define properties of the concepts.
6. Define facets of the concepts such as cardinality, required values etc.
7. Define instances.
8. Check the consistency of the ontology.

? Current affiliation: Department of Computer Science, Free University Amsterdam.

Of these stages, we address 3 and 7 with IR-based techniques as we believe that these
stages can be usefully tackled using retrieval technology available today. While equally
suitable for automation, stage 4 is far from being a solved problem [21], and stage 8 is
best left for purely symbolic reasoning methods as implemented in, e.g., the FACT and
RACER provers.

In addition to being used to assist ontology builders, IR techniques can also assist
users in searching, browsing, and providing serendipity. People will want to use the
Semantic Web to search not just for documents, but also for information about specific
semantic relationships, for instance in the setting of digital libraries [24]. Thus, we
explore approaches to “retrieval within a concept hierarchy,” where exact-match search
as provided by most navigation tools and ontology editors may not be adequate [25].

By making today’s document retrieval algoritms useful to building and exploiting
the Semantic Web infrastructure, improvements in the former lead directly to improve-
ments in the latter. But we have a more methodological reason for bringing IR and Se-
mantic Web efforts closer together. The IR community has long emphasized the impor-
tance of evaluation. With the advent of the Text REtrieval Conferences (TREC, [26]),
experimental evaluation of retrieval related tasks received a significant boost, which
led to rapid progress in the tasks evaluated. Similar benefits occur with other retrieval-
related evaluation exercises (CLEF [5], INEX [9], NTCIR [20]), and with efforts to
evaluate semantically richer language processing tasks (e.g., CoNLL [6] and Sense-
val [23]). The Semantic Web community would benefit from a stronger emphasis on
evaluation, and on tasks that can be evaluated, than it has so far had. Eating our own
dog food, we conduct experimental evaluations for all tasks addressed in this paper.

Section 2 discusses the setting in which our work takes place: the Logic and Lan-
guage Links (LoLaLi) project, aimed at providing ontology-based access to an elec-
tronic handbook on the interface of linguistics and logic. In Section 3 we discuss the
automation of stage 3 and its evaluation. In Section 4 we discuss the automation of
stage 7 and its evaluation. In Section 5 we discuss and evaluate search in the LoLaLi
concept hierarchy. We conclude in Section 6.

2 LoLaLi: Logic and Language Links

Our work, and the experiments on which we report below, take place in the setting of a
digital library project. Specifically, the Logic and Language Links (LoLaLi) project [4,15]
explores methods to extend the traditional format of scientific handbooks with elec-
tronic tools. These tools help readers explore the content of the handbook and make it
easier to locate relevant information.

As a case study the project focuses on the Handbook of Logic and Language [27],
a 20 chapter, 1200 page publication; for our experiments we used the LATEX sources
(about 4.5MB of text). The LoLaLi project uses a WordNet-like concept hierarchy to
provide access to (an electronic version of) the handbook. Concept hierarchies are often
used for navigating through large collections of documents [29,16]. They are useful for
the organization, display and exploration of a large amount of information, and users
carrying out a hypertext search task who have hierarchical browsing patterns perform
better than users with sequential browsing paths [19]. Hence, architectures for elec-

Fig. 1. An excerpt from the LoLaLi concept hierarchy.

artificial
intelligence knowledge

representation

modal logic

logic
temporal

logic

modal
operator

mathematics

computer
science

top

tronic handbooks should allow for, or even enforce, hierarchical patterns: a concept
hierarchy is a good way of doing this. The LoLaLi concept hierarchy is being built by
hand, by domain experts, who have currently collected, organized, and related close to
600 concepts. At the back-end, a Sesame-based server stores the hierarchy information,
which is edited and updated through a collection of purpose-built scripts and Protege.
In Section 3 we discuss how basic IR techniques can help concept authors determine
which concepts to consider for inclusion in the hierarchy.

Each concept in the LoLaLi hierarchy is annotated with a gloss, which briefly de-
scribes it. Moreover, concepts come with a longer description, also provided by the au-
thors of the concept. The hierarchy consists of a TOP concept, with four main branches
underneath it: computer science, mathematics, linguistics, and philosophy, organized
by relations of subtopic-supertopic. The latter relations are typed, and the types include
‘is-a’ and ‘part-of.’ The LoLaLi hierarchy is a graph rather than a strict tree, as mul-
tiple parenthood is allowed; see Figure 1. Non-hierarchical relations are also allowed,
and are used for navigational purposes; these include ‘sibling,’ ‘other meanings,’ and
‘associated concepts.’ Concepts in the LoLaLi hierarchy are also connected to external
resources. Chief among these is the Handbook of Logic and Language; other examples
include links to highly relevant online tools and demos. The (hypertext) links to the
Handbook take a concept in the hierarchy as source and highly relevant segments in
the Handbook as targets. In Section 4 we describe how IR techniques help address this
task.

At present, users can access an early ‘alpha’ version of the hierarchy. Following
the outcomes of an early user study, navigation along the semantic relations mentioned
above has been complemented with search facilities that allow users to locate concepts
in the hierarchy in an arbitrary manner. In Section 5 we describe and assess the under-
lying IR techniques.

3 Assisting Ontology Builders

When building an ontology for an established scientific domain, as in the LoLaLi project,
there is a wealth of literature whose content should be “covered” by the ontology. We
report on IR support for addressing the following question: Which concepts should
be included in the ontology? Rather than manually mining the literature, we describe
methods to identify candidate concepts from domain specific text using term extraction.
Concept names are usually noun phrases. Hence, recognizing noun phrases is likely to
be a good first step for detecting candidate concepts. We distinguish between two cases,
as they exploit different techniques: single word candidates and multi-word candidates.

Table 1. Precision at different ranks in the result lists.

rank 10 25 50 100 250 750
precision at rank (Handbook) 1.00 0.96 0.9 0.85 0.79 0.55

precision at rank (relative to the CLEF corpus) 1.00 1.00 0.98 0.99 0.94 0.80

3.1 Single Noun Concepts

To discover interesting nouns, we first POS-tag the Handbook text, and then select all
nouns. We used two ways to rank them: by raw frequency, and by relative frequency,
that is, by the number of occurrences divided by the number of occurrences in a general
purpose document collection (we used the English CLEF collection [5]). The result-
ing lists were assessed by three assessors who were asked, for each noun in the result
lists whether they would include it in a comprehensive list of important or useful no-
tions in the domain, aimed at novices and experts. For our “gold standard”, a noun was
considered relevant if the majority of assessors deemed it relevant.

With this gold standard, we computed precision @ n scores (what fraction of the
top n results is relevant?), for increasing values of n; see Table 1, where the second row
concerns the result list ordered by raw frequency, and the third the result list ordered by
relative frequency. Surprisingly, even the raw frequency result list, is of very high qual-
ity, with now non-relevant high-frequency nouns in the top. And by taking into account
domain specificity (as in the list ordered by relative frequency), very high precision
scores can be obtained. What about recall? It is hard, if not impossible, to compile an
exhaustive list of important or useful nouns in the domain of the Handbook. Instead, we
decided to approximate recall by using concept recall (CR): what fraction of the sin-
gle noun concepts in the LoLaLi hierarchy did we identify, and what were their ranks
in the result lists? Of the 522 concepts in the version of the concept hierarchy used,
158 are single nouns; hence, CR was measured against those 158. The noun extraction
algorithm identified 77% (121) of the single noun concepts in the LoLaLi hierarchy;
70% of these are in the top 750. While this is not a perfect recall score, our ontology
builders found the suggestions to be very helpful in further development of the hierar-
chy, telling us that the suggestions often inspired them to think of additional concepts,
hence indirectly addressing the recall problem.

3.2 Multi-word Noun Phrases

Let us turn to the extraction of multi-word noun phrases now. We present a simple
yet useful method that is based on collocations and that can be subdivided into three
steps: (1) Shallow parse the text. (2) Filter out word sequences with interesting POS-
tag patterns for closer examination. (3) Decide for each word sequence if it is a noun
collocation. Step 1 is done with Schmid’s TreeTagger POS-tagger [22]. Step 2 is accom-
plished by a method due to Justeson and Katz [11,17], which uses the POS-tag patterns
shown in Table 2. We scan the tagged text and discard everything that does not match
one of the listed POS-tag patterns. Step 3 is done by testing whether the words in the
sequence occur together significantly more often than is to be expected if all the words
in the text would be ordered randomly. Following Krenn and Evert [14], who addressed
the related task of detecting PP-Verb collocations, we use the the t-test for addressing

Table 2. Part-of-speech tag patterns for collocation filtering.

POS-tag pattern example collocation
Adjective Noun logical study
Noun Noun computer science
Adjective Adjective Noun floating decimal point
Adjective Noun Noun recursive enumerable set
Noun Adjective Noun card programmed calculator
Noun Noun Noun program storage unit
Noun Preposition Noun theory of computation

Step 3. Our null hypothesis will be that, in the text, the words that make up the sequence
appear completely independently of each other.

When we apply our multi-word method to the Handbook of Logic and Language,
we get promising results. As an example, the 10 noun collocations with the highest t-
scores are shown in Table 3. Exactly how well did we do? As in the single noun case, we

Table 3. The top 10 collocations extracted from the Handbook (left) and our web collection
(right), with “usefulness” assessments by all three assessors, together with the “gold standard"
(last column).

noun-collocation useful?
natural language yes yes yes yes
computer science yes yes yes yes
modal logic yes yes yes yes
lambda calculus yes yes yes yes
situation theory yes yes yes yes
discourse representation no yes yes yes
artificial intelligence yes yes yes yes
phrase structure yes yes yes yes
other hand no no no no
proof theory yes yes yes yes

noun-collocation useful?
computer science yes yes yes yes
other hand no no no no
natural language yes yes yes yes
university press no no no no
modal logic yes yes yes yes
induction hypothesis yes yes yes yes
first order yes yes yes yes
district page no no no no
description post no no no no
post manual ref no no no no

use concept recall (CR) and precision (P) to answer this question. Of the 522 concepts
in the version of the concept hierarchy used, 364 are multi-word expressions; hence,
CR was measured against those 364. Working on the Handbook our algorithm yielded
3896 collocations, 99 of which are concepts from the hierarchy. I.e., we found 28% of
the multi-word concepts; 73% of these are in the top 750. Concerning P, we asked our
three assessors to assess the candidate concepts returned (as in the earlier single noun
case). Table 3 contains a sample of results produced, together with human assessments.
Table 4 contains the resulting precision scores, at different ranks; the precision drops
sharply as we move down the result list.

Table 4. Precision at different ranks in the result list.

rank 10 25 50 100 250 750
precision at rank 0.90 0.76 0.74 0.65 0.67 0.63

While precision, and especially early precision, is at an acceptable level, concept
recall leaves something to be desired. There are several ways to improve recall: develop

more extraction patterns, make the patterns less strict, or increase the amount of data
they work on. The second option might hurt precision too much, and the first likely
yields highly specific patterns, making little or no difference in terms of concept recall.
We go for the third option: many interesting noun phrases only occur once in the Hand-
book, and since our detection method essentially works through redundancy we will not
be able to find those words.

To create a larger corpus of relevant data, we proceeded as follows. Each of the
522 concepts in the LoLaLi hierarchy was fed to a web search engine (as a separate
query), while restricting the output to PDF files (assuming that this restriction would
increase the chance of retrieving scientific papers in our domain, rather than arbitrary
documents). Per query, the top 20 results were kept; text was extracted using pstotext,
producing 358MB of usable text. We extracted 206,475 collocations; a total of 197
(out of 364) concepts were found, and more importantly, 44% of those were found
amongst the top 750 results. So, CR has certainly gone up, when compared against the
results of running our algorithm against the Handbook text. The top 10 results (Table 3,
right) reveal that early precision is seriously hurt by moving to our Web collection.
The precision at various ranks in the result list for the Web collection does not drop as
dramatically as for the Handbook; in fact, it goes up (Table 5, row 3). In Table 5 we also
list the precision figures for the Web collection, relative to the CLEF corpus (bringing
in domain specifity, as in the earlier single noun case). Domain specificity helps to get
rid of expressions such as ‘other hand’, but it pushes expressions such as ‘next section’
to the top of the ranking, which explains the low p@10 score in row 3.

Table 5. Precision at different ranks in the result list, Handbook vs. Web collection.

rank 10 25 50 100 250 750
precision at rank (Handbook) 0.90 0.76 0.74 0.65 0.67 0.63

precision at rank (Web collection) 0.50 0.40 0.56 0.53 0.56 0.47
precision at rank (Web collection, rel. to CLEF corpus) 0.20 0.52 0.54 0.60 0.62 0.55

To examine the interplay between precision and recall, we looked at the concept
precision (in addition to concept recall, both in terms of concepts from the LoLaLi
hierarchy), and compiled plots for concept precision and concept recall. In Figure 2 we
plotted concept recall (Left) and concept precision (Right) of collocations found, in the
Handbook, in our Web collection, and in the latter, relative to the CLEF collection; the
rank (plotted on the X-axis) is obtained by sorting by t-test score. As is to be expected,
for the larger Web collection, concept recall is highest, followed by the Web collection-
relative-to-CLEF, followed by the Handbook. For concept precision, the relative order
is reversed.

3.3 Conclusions and Further Steps

A simple single noun method and a simple collocation-based method can both yield
valuable suggestions for concepts to be included in a concept hierarchy, thus address-
ing step 3 from Antoniou and Van Harmelen’s list (see Section 1). For extracting multi-
word expressions, more data proves useful to improve recall. Our results were further
improved by filtering out the generic English expressions. Our scores are far from per-

Fig. 2. (Left) The percentage of concepts present in the LoLaLi hierarchy identified at different
points in the ranking. (Right) The fraction of concepts present in the LoLaLi hierarchy at different
points in the ranking.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700

co
nc

ep
t r

ec
al

l

rank

Handbook
Web collection

Web collection, freq. relative to CLEF

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700

co
nc

ep
t p

re
ci

si
on

rank

Handbook
Web collection

Web collection, freq. relative to CLEF

fect, but as a source of suggestions, our ontology builders found the output of our meth-
ods extremely valuable. It may help to make our Web collection more focussed; if some
concepts are available before collocation detection takes place, they could be used to
constrain the text: new interesting concepts can be expected to occur in the proximity
of the old ones.

4 Automatically Defining Instances

Ontologies rarely exist for their own sake, and their envisaged usage determines how
ontologies should be populated. In settings where ontology-like structures are being
used as navigational aids, an important group of instances are hypertext links to (frag-
ments of) documents. In this section we describe and evaluate methods for automati-
cally defining such instances, again within the setting of the LoLaLi project. The task
we are addressing is to link concepts in the LoLaLi hierarchy to highly relevant text
fragments in the Handbook. We view this task as a high-precision information retrieval
task by treating every concept as a topic and every text fragment as a document: to de-
fine the required instances, we need to identify highly relevant text fragments for every
concept in the LoLaLi hierarchy. How much of the specific digital library and ontology
aspects that we have access to, can usefully exploited to address the task at hand. Our
strategy is an incremental one: starting from a simple baseline we determine the impact
of exploiting document structure, text markup cues, and collocations.

4.1 Under the Hood

The document collection in which we have to identify link targets consists of LATEX doc-
uments: semi-structured data with explicit markup of segments: \chapter, \section,
\subsection, etc. These annotations provide a segmentation of the entire Handbook
into (we assume) topically coherent text fragments. As hyperlink targets (that is, as units
to be returned by the retrieval engine), we allow any segment at any level, from chapter
down to paragraph. While it is sensible to allow this (as some topics are discussed in a
single paragraph only, while others may exhaustively cover bigger units), it does raise

Fig. 3. Eliminating overlapping units of retrieval

Lambek calculus

section

chapter

book

subsection

paragraph

chapter

section

Categorial Type Logics

Grammatical composition
Recursion theory

a problem. If a subsection contains a relevant piece of text, then so does the section
it belongs to and so does any larger surrounding annotation. How do you decide how
small or large the unit of retrieval should be? Following our experience with XML re-
trieval [12], we decided not to allow returning overlapping pieces of text. In cases where
we have to decide between two overlapping units of retrieval we choose the one ranked
highest by the retrieval system. This is illustrated in Figure 3: if we choose to return the
section then we are not allowed to return anything contained in that section or anything
that contains the section [13].

To simplify the evaluation of the hyperlink generation task, we made use of the
entries from the back-of-the-book index of the Handbook. Specifically, we used all en-
tries in the back-of-the-book index that also occur in the LoLaLi hierarchy; there are
141 such entries. Each entry is explicitly marked up in the LATEX source of the Hand-
book (with the \index{<entry>} command); on average, an entry comes with three
occurrences of the corresponding \index{..} tag. Our “gold standard” used for as-
sessment consists of the 141 concepts mentioned as our “topics” (in IR parlance). A
text segment is considered relevant for a topic if it is marked up with the corresponding
\index{..} command. Clearly, the quality of our results depends on the quality of
the back-of-the-book index.

We use Incremental R-Precision as our metric; it returns 0 when none of the relevant
documents have been found for a given topic, and 1 when all have been found. It has a
higher value when a returned document appears high in the ranking than when it appears
further down in the ranking. Given a topic, p@n (precision at n) is jfd 2 Relevant j
rank(d)� ngj=n, and

Incremental R-Precision = ∑
jRelevantj
n=1

p@n
jRelevantj ;

where Relevant is the set of relevant documents for the given topic. The score for a run
or experiment is obtained by averaging over all topics.

If the distribution of the performance differences is not skewed and if there are
few outliers then it is safe to use the paired t-test for the evaluation of information
retrieval [8]. These two conditions can be tested with quantile plots. The points in such
a plot are supposed to be balanced around the identity line. We checked that this is the
case for all our data; an example is shown in Figure 4. Hence, we test how significant the
differences between two methods are by comparing the results per query with the paired
t-test. Significant differences (95% confidence, t � 1:645) are marked with M,O and

Fig. 4. An example quantile plot of the baseline compared to a run that exploits emphasis anno-
tations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 6. Link generation experiments. (Top) Runs that exploit layout cues. (Bottom) Runs that
exploit collocations.

Experiment Inc. R-Precision
baseline :35
title bonuses :41 N
emphasis bonuses :33
title and emphasis bonuses :39 M
collocation bonus :35
title and collocation bonus :46 N (relative to :41)
emphasis and collocation bonus :33

material differences (99% confidence, t � 2:346) with N,H. Insignificant differences
are not marked.

4.2 Experiments

Our baseline uses a standard tf.idf weighting scheme [2], and we reduce all words to
their stem using the TreeTagger lemmatizer [22]. On top of that we experimented with
additional layout cues, and with collocations. First, words that appear inside the titles
of units (such as sections) are likely to be good indicators of the main topic covered
by those units. Word sequences that are emphasized (the Handbook convention is to
use \emph{..} and {\em ..}) seem more important than others. We implement
the preference for terms with a certain annotation, or occurring in a certain context,
fairly naively, by increasing the score of the text segment at hand. If a segment starts
with a title and that title contains the query words we double the segment’s score. If
the segment’s title contains nothing else, i.e., it coincides with the query, we double
the segment’s score again. If a document contains \em or \emph environments that
literally contain the query we double the score; and if the emphasis is on nothing but
the query we double it again. The experimental outcomes are shown in Table 6 (Top).
There is a material difference for runs that prefer titles, but no significant difference
between runs that prefer emphasized text and those that do not: even though emphasis
is frequently used to stress key phrases, there appear to be more cases where it is used
to stress unimportant words.

With the resources developed in the previous section, we tried to boost the perfor-
mance of our link generation method. Using the collocations obtained from our Web
collection, we increased a segment’s score for a topic whenever it contained a collo-
cation from the topic. Using a similar naive scoring mechanism as before, whenever
a segment contains one or more collocations its score is doubled. (A segment’s score
can only be doubled once.) The idea is to bring some word order to the topic-segment
matching process, which should increase precision whenever we know that word order
may matter (as is the case for our collocations: e.g., proof theory is likely to be more
informative than theory proof). Table 6 (Bottom) shows the results of the experiments
with collocation bonuses. There is no significant difference between the baseline and
runs that only exploit collocations, but when we combine title and collocation prefer-
ence there is a material difference with the baseline and even with the title preference
only run: the literal occurrence of the query in a segment’s body or emphasized text
does not say more about a segment’s probability of being relevant to the query than its
tf.idf score. However, the (literal) occurrence of query terms in both a segment’s title
and body is overwhelming evidence of relevancy.

4.3 Conclusions and Further Steps

We showed that exploiting title fields and collocations can improve the performance of
automatic hyperlinking. The methods we used are quite crude and it is very likely that
further improvements can be realized by optimization. A more careful method to com-
bine the evidence provided by tf.idf, title markup and collocations could be beneficial
to the results, thus leading us to consider more sophisticated weighting schemes that
standard ones used here.

5 Searching in Ontologies

After Sections 3 and 4, which were aimed at IR support for ontology construction, we
change tack and address support for end users that access ontologies for navigational
purposes. The process of browsing through the ontology to find a concept can give
the user a good impression about how the ontology (and the underlying domain) is
organized and how the concepts are related, but it can also be a difficult and laborious
process. Examples where browsing frustrates the information access process are well-
known, and include such things as not knowing were in the hierarchy a concept might
be located, using a different vocabulary, or simply getting lost because of the sheer size
of the ontology. In such cases IR techniques can help address these information needs.
Instead of following the semantic relations hard-wired in an ontology, IR offers random
access to an ontology and a flexible interpretation of a user’s information need.

The task we want to address in the remainder of this section is the following: given a
query, find relevant concepts in a concept hierarchy. In other words, users’ information
needs are formulated using arbitrary keywords, while the “documents” to be returned
are concepts, in the LoLaLi hierarchy.

5.1 Under the Hood

When trying to retrieve relevant concepts from an ontology, we have to deal with a num-
ber of issues. (1) The queries tend to be very short. The number of keywords per topic
can be expected to be roughly equal to that of web search engine queries, on average
two keywords per topic [10,3]. (2) The documents are very short too. Even if we have an
extended description of the concepts (as many of the concepts in the LoLaLi hierarchy
do), the documents to be retrieved are short compared to standard test collections. (On
average, the descriptions are 23.3 words long, and the concept names 1.8 words; so the
average document is about 26 words long.) (3) The document collection is small. This
means that recall may be an issue. Summing up, retrieval against the LoLaLi hierarchy
is a high precision task, but, potentially, with high recall requirements.

Our topics, of which there are 26, have been made by four different authors and are
based on what first-year artificial intelligence students of the University of Amsterdam
typed into a prototype search engine in a user test of the LoLaLi user interface. A “gold
standard” was established using three assessors, in the same manner as for the link
generation task addressed in Section 4. The metric used is also the same as in Section 4:
incremental R-precision.

All documents and topics are stripped of all non-word characters except hyphens
and, as with the hyperlinking task described in Section 4, lemmatized using TreeTag-
ger [22]. Each topic is then compared to documents in the inverted index, producing a
ranked list of documents, which is presented to the user.

5.2 Experiments

As a baseline we choose a simple tf.idf based retrieval model. As in the previous section,
we are interested in finding out to which extent the structure of the concepts and concept
hierarchy can help improve retrieval effectiveness. Specifically, we tried the following
ideas on top of the baseline, all aimed at high precision without hurting recall: (1) Give
concepts of which the name exactly matches the topic a bonus over other concepts.
e.g. If the user types in ‘logic’ then the concept ‘logic’ would be preferred over ‘modal
logic’. (2) Give concepts that share a collocation with the topic a bonus over concepts
that share the constituents in some other order. (3) Group concepts that are related to
each other together, allowing concepts that are related to concepts in the top of the
ranking to benefit.

The first thing we try to improve over the baseline is to exploit characteristics of
the syntax of the documents. The results from our automatic hyperlinking experiments
suggests that we should prefer words in titles to words in the body of a section. Simi-
larly, we will prefer occurrences of query terms in a concept’s name to cases where it
appears only in its description; in the former case the scores are simply doubled. Since
the concept hierarchy is filled with very specific terms, the influence of word order can
be expected to be even greater in this experiment than with the automatic hyperlinking.
So we will try applying the same method as with that experiment too. When a con-
cept contains a collocation that also appears in the query, we double its score. When a
concept’s name is exactly equal to the topic it is unlikely that the user desires another
concept. So we apply the same technique as before: we double the concept’s score.

Table 7. (Top) Results of collocation and exact match bonuses. (Bottom) Results of concept
relation based reranking.

Inc. R-Precision
baseline :53
only collocations :55
only exact match :56
coll. and exact match :58
grouping :65 N
grouping adding context :68 N
grouping with coll. and exact match :67 N
grouping adding context with coll. and exact match :74 N

Fig. 5. Sometimes related concepts are better than concepts that match the query well.

meaning relation
relation

synonymy
semantic relationantonymy

semantic relation

hyponymy
semantic relation

semantic paradox
semantic

child
child child

semantic network
semantic

The results of these techniques are shown in Table 7 (Top). Given the small number
of topics we can not conclude that the improvement is significant. We can only say with
about 90% confidence that there is a difference.

We now turn to further improvements over the baseline, ones that try to exploit the
semantics that are encoded by the relations in the concept hierarchy. For brevity we
only report on the use of the subsumption relations is-a and subclass-of for this pur-
pose. Concepts inherit information from their parents and specify them in some way;
the converse holds for parent concepts in relation to their children. Queries have to
be answered as precisely as possible: not too general, and not too specific. Often, the
concept that gets the highest score from a weighting scheme is the right concept, but
sometimes things are more complicated, as in Figure 5. Here, the query is ‘semantic
relation’ and the desired concept is ‘meaning relation,’ but the only concepts that con-
tain ‘semantic relation’ literally are the children of ‘meaning relation.’ To address this
problem we propose to rerank the list of concepts produced by the weighting scheme in
such a way that related concepts appear close to each other. This allows concepts that
are related to a concept that gets a high score to benefit from this relation and move up
the ranking. The rules we use to group related concepts together are listed below:

1. Every matching concept should be clustered under its parent; this parent concept
shows the context of the concept.

2. Matching concepts with the same parent should be put together under that common
parent, ordered by their own score.

3. Every chain of parent-child related matching concepts should end in a non-matching
concept that shows the context of the chain.

4. Unrelated clusters are joined together as a forest, ordered by the maximum score of
the cluster.

5. When parents have the same children they are joined together and get the highest
of the two scores.

These rules let parents benefit from their children and vice versa, and they let siblings
benefit from higher scoring siblings.

To constrain the size of the groups, and, hence, to allow more than one group to fill
the top of the ranking, we discard everything after a certain discrete cut-off point and
apply grouping on the concepts that are left. After some experimentation, we chose 10
as the cut-off point, based on the average number of relevant documents per topic. An
overview of the retrieval-plus-reranking process is shown in Figure 6. The results of the
grouping rules are shown in Table 7 (Bottom). Even with the small number of queries
we can conclude that there is a material improvement of the scores when we exploit
concept relations, and that the combination of all techniques discussed so far improves
most, suggesting that distinct techniques have distinct effects.

5.3 Conclusion and Further Steps

While search in a concept hierarchy has special features that may require special IR
approaches, we have seen that standard retrieval techniques offer acceptable levels of
performance, but that material improvements can be achieved by exploiting the struc-
ture of the concept hierarchy. This, we believe, is a very interesting combination of
IR and Semantic Web techniques. Obvious further steps worth exploring to improve
ontology search include using additional relations from the hierarchy, as well as using
different retrieval models.

6 Conclusion

We used collocation-based keyword extraction to suggest new concepts, and we studied
the automatic generation of hyperlinks to automate the population of ontologies with
instances. We evaluated our methods within the setting of an ontology-based digital
library project. Within the same setting we explored retrieval methods aimed at helping
users search an ontology, and found that a mixture of IR techniques and result reranking
based on the underlying concept hierarchy was the most effective method.

Fig. 6. Overview of the concept grouping process.

tf.idf
exact match &

collocation bonusses

pick top-n
generate
groups

flatten
groups

final ranking

intermediate
ranking

We should point out that, except for the grouping methods deployed in the previous
section, the IR methods that we used are mostly standard ones; however, their appli-
cations in the Semantic Web setting are novel. The methods and results on which we
reported in this paper should be interpreted as providing baselines for their respective
tasks. There is a wealth of IR methods that, we believe, can make further contributions
to ontology construction, and to the effective usage of ontologies.

Acknowledgments

Maarten de Rijke was supported by the Netherlands Organization for Scientific Re-
search (NWO), under project numbers 612-13-001, 365-20-005, 612.069.006, 612.000.106,
220-80-001, 612.000.207, 612.066.302, and 264-70-050. Maarten Marx was supported
by a grant from NWO under project number 612.000.106.

References

1. G. Antoniou and F. van Harmelen. A Semantic Web Primer. MIT Press, 2004.
2. R. Baeza-Yates and N. Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999.
3. N.J. Belkin, C. Cool, D. Kelly, G. Kim, J.-Y. Kim, H.-J. Lee, G. Muresan, M.-C Tang, and

X.-J Yuan. Query length in interactive information retrieval. In Proc. of SIGIR, 2003.
4. C. Caracciolo. Towards modular access to electronic handbooks. Journal of Digital Infor-

mation, 3(4), 2003. Article No. 157, 2003-02-19.
5. CLEF. Cross-Language Evaluation Forum, 2003. URL: http://www.clef-campaign.org/.
6. CoNLL. Conference on Natural Language Learning, 2003. URL:

http://cnts.uia.ac.be/signll/conll.html.
7. J. Heflin, J. Hendler, and S. Luke. Shoe: A prototype language for the semantic web.

Linköping Electronic Articles in Computer and Information Science, 6, 2001. URL:
http://www.ep.liu.se/ea/cis/2001/003/.

8. D. Hull. Evaluating evaluation measure stability. In Proc. of SIGIR 2000, 2000.
9. INEX. INitiative for the Evaluation of XML Retrieval, 2004. URL:

http://inex.is.informatik.uni-duisburg.de:2004/.
10. B.J. Jansen. An investigation into the use of simple queries on web ir systems. Information

Research: An Electronic Journal, 6(1), 2000.
11. J.S. Justeson and S.M. Katz. Technical terminology: some linguistic properties and an algo-

rithm for identification in text., 1995.
12. J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. XML retrieval: What to retrieve?

In Proc. of SIGIR, 2003.
13. G. Kazai, M. Lalmas, and A. de Vries. The overlap problem in content-oriented XML re-

trieval evaluation. In Proc. of SIGIR, 2004.
14. B. Krenn and S. Evert. Can we do better than frequency? A case study on extracting PP-verb

collocations. In Proc. ACL Workshop on Collocations, 2001.
15. LoLaLi. Logic and Language Links, 2003. URL: http://lolali.net/.
16. M. Dewey. Dewey Decimal Classification, 1870. URL: http://www.oclc.org/dewey.
17. C.D. Manning and H. Schütze. Foundations of statistical language processing. The MIT

Press, 1999.
18. J. Mayfield and T. Finin. Information retrieval on the Semantic Web: Integrating inference

and retrieval. In Proc. SIGIR 2003 Semantic Web Workshop, 2003.

19. J.E. McEneaney. Visualizing and assessing navigation in hypertext. In Proc. ACM Confer-
ence on Hypertext and Hypermedia, pages 61–70, 1999.

20. NTCIR. NII-NACSIS Test Collection for IR Systems, 2003. URL:
http://research.nii.ac.jp/ntcir/.

21. M. Sanderson and B. Croft. Deriving concept hierarchies from text. In Pro. SIGIR 1999,
pages 206–213, 1999.

22. H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc. of Interna-
tional Conference on New Methods in Language Processing, 1994.

23. Senseval. Evaluation of Systems for the Semantic Analysis of Text, 2003. URL:
http://www.senseval.org/.

24. U. Shah, T. Finin, A. Joshi, R.S. Cost, and J. Mayfield. Information retrieval on the semantic
web. In Proc. CIKM 2002, 2002.

25. H. Stuckenschmidt and F. van Harmelen. Approximating terminological queries. In Proc.
FQAS’02, 2002.

26. TREC. Text REtrieval Conference, 2003. URL: http://trec.nist.gov/.
27. J. van Benthem and A. Ter Meulen, editors. Handbook of Logic and Language. Elsevier,

1997.
28. E.M. Voorhees. Overview of the TREC 2003 Question Answering Track. In NIST Special

Publication 500-255: TREC 2003, 2004.
29. Yahoo! Yahoo!, 1995. URL: http://www.yahoo.com/.

