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 Stochastic processes and  
 Markov chains (part I) 



Stochastic processes 

Example 1 
• The intensity of the sun. 
• Measured every day by 

the KNMI. 
• Stochastic variable Xt 

represents the sun’s 
intensity at day t, 0 ≤ t ≤ 
T. Hence, Xt assumes 
values in R+ (positive 
values only). 

Data from KNMI-website 



Example 2 
• DNA sequence of 11 bases long.  
• At each base position there is an 
A, C, G or T. 

• Stochastic variable Xi is the base 
at position i, i = 1,…,11. 

• In case the sequence has been 
observed, say:           
(x1, x2, …, x11) = ACCCGATAGCT, 

 then A is the realization of X1, C 
that of X2, et cetera. 

Stochastic processes 

Figure: http://ircamera.as.arizona.edu/ 
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Stochastic processes 

Example 3 
• A patient’s heart pulse during surgery. 
• Measured continuously during interval [0, T]. 
• Stochastic variable Xt represents the occurrence of 

a heartbeat at time t, 0 ≤ t ≤ T. Hence, Xt assumes 
only the values 0 (no heartbeat) and 1 (heartbeat). 

Figure: http://www.gnkaterini.gr/ 



Stochastic processes 

Example 4 
• Brain activity of a human 

under experimental 
conditions. 

• Measured continuously 
during interval [0, T]. 

• Stochastic variable Xt 
represents the magnetic 
field at time t, 0 ≤ t ≤ T. 
Hence, Xt assumes values 
on R. 

Data kindly provided by R. Hindriks 



The state space S is the collection of values that the 
random variables of the stochastic process may assume. 

If S = {E1, E2, …, Es}, then Xt is a discrete stochastic 
variable. 

If S = [0, ∞), then Xt is a 
continuous stochastic 
variable. 

Stochastic processes 

Time can also be 
either discrete or 
continuous. 

Example 2 Example 1 
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Stochastic process: 
• Discrete time: t = 0, 1, 2, 3, …. 
• S = {-3, -2, -1, 0, 1, 2, …..} 
• P(one step up) = ½ = P(one step down) 
• The process is locked in at -3 

Stochastic processes 



The first passage time of a certain state Ei in S is the 
time t at which Xt = Ei for the first time since the start 
of the process. 

Stochastic processes 

The absorbing state is a state Ei for which the 
following holds: if Xt = Ei than Xs = Ei for all s ≥ t.  
The process will never leave state Ei. 

The time of 
absorption of an 
absorbing state is 
the first passage 
time of that state. 0 
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A stochastic process is described by a collection of 
time points, the state space and the simultaneous 
distribution of the variables Xt, i.e., the distributions of 
all Xt and their dependency. 

There are two important types of processes: 
• Poisson process: all variables are identically and 

independently distributed. Examples: queues for 
counters, call centers, servers, et cetera. 

• Markov process: the variables are dependent in a 
simple manner. 

Stochastic processes 



Markov processes 

Axelson-Fisk (2010): 
Definition 2.1. 

book 



Markov processes 

A 1st order Markov process in discrete time is a sto-
chastic process {Xt}t=1,2, … for which the following holds: 
 

P(Xt+1=xt+1 | Xt=xt, …, X1=x1)  = P(Xt+1=xt+1 | Xt=xt). 
 

In other words, only the present determines the future, 
the past is irrelevant.  

From every 
state with 
probability 0.5 
one step up or 
down (except 
for state -3). 
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Markov processes 

The 1st order Markov property, i.e. 
P(Xt+1=xt+1 | Xt=xt, …, X1=x1)  = P(Xt+1=xt+1 | Xt=xt), 

does not imply independence between Xt-1 and Xt+1. 
 
Nor does it imply that P(Xt+1=xt+1 | Xt-1=xt-1) equals zero. 

For instance,  
P(Xt+1=2 | Xt-1=0) =       
  P(Xt+1=2 | Xt=1)   
  * P(Xt=1 | Xt-1=0) = ¼. 0 

-1 

-2 

-3 

-4 

1 

2 

3 

4 

5 

6 

7 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 



Markov processes 

The 0th order Markov property, i.e. 
 

P(Xt+1=xt+1 | Xt=xt, …, X1=x1)  = P(Xt+1=xt+1). 
 

Thus, Xt and Xt+1 are independent. So are Xt-1 and Xt+1, 
and Xt and Xt+100, and … 

Classic example: 
- Tossing a coin : P(Xt+1 = head | Xt = tail) = P(Xt+1= head) 
- Rolling dice     :  P(Xt+1 = 6 | Xt = 6) = P(Xt+1= 6) 

Or: 
            P(Xt+1=xt+1, Xt=xt) = P(Xt+1=xt+1) * P(Xt=xt) 



Markov processes 

  

Difference between 0th and 1st order Markov process 
→ DNA example 
→ state space: {A, C, G, T} 
→ sample in accordance with a 0th and 1st Markov chain 
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Recall: 1st order takes into account the previous state  
    visited, 0th order does not. 



Markov processes 
Question: what is the order of the processes? 



Markov processes 
Question: what is the order of the processes? 



Markov processes 

An m-order Markov process in discrete time is a stochastic 
process {Xt}t=1,2, … for which the following holds: 

 

P(Xt+1=xt+1 | Xt=xt, …, X1=x1)   
           = P(Xt+1=xt+1 | Xt=xt,…,Xt-m+1= xt-m+1). 

 

Loosely, the future depends on the most recent past.  

… CTTCCTCAAGATGCGTCCAATCCCTCAAAC … 

t+1 

Suppose m=9: 

9 preceeding 
bases 

Distribution of the t+1-th base 
depends on the 9 preceeding ones. 

Axelson-Fisk (2010): 
Formula 2.9. 

book 



Markov processes 

The transition probabilities are the P(Xt+1=xt+1 | Xt=xt), 
but also the  
 P(Xt+1=xt+1 | Xs=xs)  for  s < t, 
where xt+1, xt in {E1, …, Es} = S. 

0 

-1 

-2 

-3 

-4 

1 

2 

3 

4 

5 

6 

7 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

P(Xt+1=3 | Xt=2) = 0.5 

P(Xt+1=0 | Xt=1) = 0.5 

P(Xt+1=5 | Xt=7) = 0 

A Markov process is called a Markov chain if the state 
space is discrete, i.e., is finite or countable. We 
consider Markov chains in discrete time.  



Markov processes 

A Markov process is called time homogeneous if the  
transition probabilities are independent of t: 
 

  P(Xt+1=x1 | Xt=x2) = P(Xs+1=x1 | Xs=x2). 

For example: 
 P(X2=-1 | X1=2) = P(X6=-1 | X5=2) 

Axelson-Fisk (2010): 
Definition 2.3. 

book 
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t 

Infant mortality Random 
failures 

Wearout failures 

Bathtub 
curve 

Example of a time 
inhomogeneous 
process (not in 
lecture). 



A C 

G T 

Markov processes 

Consider a DNA sequence of 11 bases. Then, S={A, C, 
G, T}, Xt is the base of position t, and {Xt}t=1, …, 11 is a 
Markov chain if the base of position t only depends on the 
base of position t-1, and not on those before t-1.  

If this is plausible, a 1st Markov chain may be an 
acceptable model for base ordering in DNA sequences. 

state diagram 

Ewens, Grant (2005): 
Section 4.9. 
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Markov processes 

Denote the transition probabilities of a finite, time 
homogeneous Markov chain in discrete time {Xt}t=1,2,…  
with S={E1, …, Es} as: 
 

P(Xt+1=Ej | Xt=Ei) = pij  (does not depend on t). 
 

Putting the pij in a matrix yields the transition matrix: 
 
 
 
 
 
 
The rows of this matrix sum to one. 
Coin: P(X=head) = ½ →  P(X=tail) = 1 - P(X=head) 

Ewens, Grant (2005): 
Section 4.6. 

book 



Markov processes 

A C 

G T 

pCC 

pTT 

pAA 

pGG 

pAC 

pCA 

pGT 

pTG 

pTC pCT pGA pAG 

pGC 
pCG 

DNA: 

where 

  pAA = P(Xt+1 = A | Xt = A) 

and: 
 pAA + pAC + pAG + pAT = 1 
 pCA + pCC + pCG + pCT = 1 
 et cetera 
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Markov processes 
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Question 
Which state diagram 
corresponds to the 
transition matrix P?  
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Markov processes 

The initial distribution π = (π1, …,πs)T gives the 
probabilities of the initial state:   

πi = P(X1 = Ei)  for i = 1, …, s, 
and π1 +  … + πs = 1. 

Together the initial distribution π and the transition 
matrix P determine the probability distribution of the 
process, the Markov chain {Xt}t=1,2, … 

Axelson-Fisk (2010): 
Definition 2.2. 

book 



Markov processes 

Question 
Consider the transition 
matrix P (to the right) 
and initial distribution 
π = (0, 0.5, 0.5, 0). 
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Calculate the probabilities: 
→ P(X1=A, X2=C), 
→ P(X1=C, X2=G), 
→ P(X1=C, X2=T). 
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Markov processes 

We now show how the couple (π, P) determines the 
probability distribution (transition probabilities) of time 
steps larger than one.  

Hereto define for 

 n = 2  : 
 

 general n : 

Now express pij
(2) in terms of (π, P).  

Ewens, Grant (2005): 
Section 4.6. 

book 



Markov processes 

For n = 2 : 

just the definition 



Markov processes 

For n = 2 : 

use the fact that 
P(A, B) + P(A, BC) = P(A) 

Ω 

A B 

Total probability law 



Markov processes 

For n = 2 : 

use the definition of conditional probability: 
P(A, B | C) = P(A, B, C) / P(C) 
 = P(A, B, C) / P(B, C) * P(B, C) / P(C) 
 



Markov processes 

For n = 2 : 

use the Markov property 



Markov processes 

For n = 2 : 



Markov processes 

In summary, we have shown that: 

 

 

In a similar fashion we can show that: 

 

 
 

In words: the transition matrix for n steps is the one-
step transition matrix raised to the power n. 

Ewens, Grant (2005): 
Section 4.6. 

book 



Markov processes 

The general case is proven (see SM) by induction to n. 
This requires the Kolmogorov-Chapman equations: 
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Markov processes 

A numerical example: 

Then: 

matrix multiplication (“rows times columns”) 



Markov processes 

Thus: 
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0.6490 = P(Xt+2 = I | Xt = I)  is composed of two probabilities: 

probability of this route         plus        probability of this route 



Markov processes 

In similar fashion we may obtain: 

Sum over probs. of all possible paths between 2 states: 
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Markov processes 

Question: consider the transition matrix: 

Then                corresponds to the probability over paths: 
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Markov processes 

Question: consider the transition matrix: 

A) 

C) 

B) 
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Markov process 

How to sample from a Markov process? 
Consider the DNA example. 
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Markov process 

Sample the first base from the initial distribution π: 
  P(X1=A) = 0.45, P(X1=C) = 0.10, et cetera 
Suppose we draw an A. Our DNA sequence now 
consists of one base, namely A. 

Sample the next base using P given the previous base. 
Here X1=A, thus we sample from: 
  P(X2=A | X1=A) = 0.1, P(X2=C | X1=A) = 0.1, et cetera. 

1 

2 

3 

Our DNA sequence after the second step: AT 

The last step is iterated until the last base. 
DNA sequence: ATCCGATGC 



Andrey Markov 

In the famous first application of Markov chains,  
Andrey Markov studied the sequence of 20,000 letters in 
Pushkin’s poem “Eugeny Onegin”, discovering that  
- the stationary vowel probability is 0.432,  
- the probability of a vowel following a vowel is 0.128, and  
- the probability of a vowel following a consonant is 0.663.  
 
 
Markov also studied the sequence of 100,000 letters in 
Aksakov’s novel “The Childhood of Bagrov, the Grandson”.  
 
 
This was in 1913, long before the computer age! 

Basharinl et al. (2004); Picture: http://en.wikipedia.org/ 



Maximum likelihood 
estimation 



Maximum likelihood estimation 

Parameters Estimates 

Population Sample 
? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? 
? ? ? ? ? ? ? ? ? ? 

µ, σ2 

y1 y20 y30 y40 
y5 y60 y70 y80 
y9 y10 y11 y12 

Estimation (from a sample) 



Maximum likelihood estimation 
Likelihood 
The likelihood is a function from the model parameter space, 
where the parameter (say) θ lives, to the probability space:  

The likelihood yields the probability of the observed data 
X for any parameter choice:  

If the observations are independent, this factorizes to: 



Maximum likelihood estimation 
Likelihood (example) 
Let Xi be a random variable representing the outcome of 
tossing of a coin, either head (H) or tail (T).  The typical 
distributional assumption for Xi is: 

Assume four realizations of Xi are available: 

where            . 

Construct the likelihood of for these data. 



Maximum likelihood estimation 
Likelihood (example) 
The likelihood is: 



Maximum likelihood estimation 
Maximum likelihood  
The parameter value for which the likelihood attains its 
maximum is referred to as the maximum likelihood 
estimate: 

The maximum likelihood estimate is the parameter value 
that, given the model, is most likely to have given rise to 
the observed data.  

Or loosely, that explains the observations best.  



Maximum likelihood estimation 
Likelihood (example continued) 
Return to the ‘coin example’. Its likelihood: 

Question: How does one find its maximum? 



Maximum likelihood estimation 
Likelihood (example continued) 
Return to the ‘coin example’. The maximum likelihood 
estimate is found by maximizing the likelihood. Due to the 
concavity of the likelihood, this is equivalent to finding the 
maximum of the log-likelihood: 

Equate the derivative w.r.t. θ to zero: 

And solve for θ to arrive at: 



Maximum likelihood estimation 
Maximum likelihood estimation  
A general procedure, based on an appealing principle, to 
derive estimators.  
 
ML estimation comprises: 
→ specification of the distribution of the random variable. 
→ formulation of the likelihood. 
→ taking the logarithm of the likelihood (for convenience) 
→ search for the (location of the) maximum:  
 - take derivative with respect to parameters,  
 - equate derivative to zero, 
 - find zeros of this equation. 



Maximum likelihood estimation 
Likelihood (example 2) 
Let Yi be a continuous random variable following a normal 
distribution:  

Assuming the independence assumption, the likelihood for 
a collection of n samples is: 

Obtain the likelihood for continuous random variables, the 
density (instead of probability) is used. That of the normal 
distribution is well-known. 



Maximum likelihood estimation 
Likelihood (example 2) 
Take the logarithm and obtain the log-likelihood:  

The log-likelihood is maximized at: 

and  

average 
estimates the 

mean 

sum of squared 
deviations from the mean 

estimates the variance 



Parameter estimation 



Parameter estimation 
Likelihood: 
Given the 1st order Markov model, we may write down the 
likelihood of an observed sequence: 

 
 

The likelihood is a function from the model parameter 
space, where transition matrix P lives, to the probability 
space [0,1]. It yields the probability of the observed data 
for any parameter choice.  

Note 
The likelihood does not factorize as before as contiguous 
DNA bases are not independent.  



Parameter estimation 

The likelihood for the sequence AG: 

The likelihood for the sequence AGT: 



Parameter estimation 

More general, using the definition of conditional 
probability, the likelihood can be decomposed as follows: 

where x1, …, xT in S = {E1, …, ES}. 



Parameter estimation 

Using the Markov property, we obtain: 



Parameter estimation 
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Express the likelihood of the sequence:  
  GCATA 
in terms of the parameters of the 1st order Markov chain. 
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P = 

Question 
Consider the 1st order Markov model with initial distribution 
π = (0, 0.5, 0.5, 0) and transition matrix: 



Parameter estimation 

The indicator function: 

Recall: 



Parameter estimation 

Furthermore, e.g.: 

where only one transition probability at the time enters the 
likelihood, due to the indicator function. 



Parameter estimation 

The likelihood then becomes: 

where, e.g., 



Parameter estimation 

Recall that, e.g.,  

pAA + pAC + pAG + pAT = 1. 

Or,  

pAT  = 1 - pAA - pAC - pAG. 

Substitute this in the likelihood, and take the logarithm 
to arrive at the log-likelihood. 

Note: it is irrelevant which transition probability is 
substituted.  



Parameter estimation 

The log-likelihood: 



Parameter estimation 

Differentiation the log-likelihood yields, e.g.: 

Equate the derivatives to zero. This yields four systems of 
equations to solve, e.g.: 



Parameter estimation 
The transition probabilities are then estimated by: 

Verify 2nd order part. derivatives of log-likehood are negative!  



Parameter estimation 

Thus, for the following sequence: ATCGATCGCA,   
tabulation yields 

The maximum likelihood estimates thus become: 

Axelson-Fisk (2010): 
Example 2.1. 

book 



Parameter estimation 

> DNAseq <- c("A", "T", "C", "G", "A", 
   "T", "C", "G", "C" "A") 
 
> table(DNAseq) 
DNAseq 
A C G T  
3 3 2 2  
 
> table(DNAseq[1:9], DNAseq[2:10]) 
    A C G T 
  A 0 0 0 2 
  C 1 0 2 0 
  G 1 1 0 0 
  T 0 2 0 0 



Parameter estimation 

If one may assume the observed data is a realization of a 
stationary Markov chain, the initial distribution is estimated 
by the stationary distribution (discussed next time). 

If only one realization of a stationary Markov chain is 
available and stationarity cannot be assumed, the initial 
distribution is estimated by: 



Testing the order of  
the Markov chain 



Testing the order of a Markov chain 
Often the order of the Markov chain is unknown and 
needs to be determined from the data. This is done using 
a Chi-square test for independence. 

Idea : assess validity of a 0th order Markov chain using data. 
→ Under a 0th order Markov chain, e.g.: P(G, T) = P(G) P(T) 

→ All quantities, P(G, T), P(G) and P(T), can be estimated     
     from the data by their frequencies. 

→ Comparison of these frequencies measures the fit of a 0th  
     order Markov chain: 
 obs. #  dinucl. (G, T)- exp #  dinucl. (G, T). 

→ Large difference indicate poor fit of 0th order Markov chain. 



Testing the order of a Markov chain 
Consider a DNA-sequence. To assess the order, one first 
tests whether the sequence consists of independent 
letters. Hereto count the nucleotides, di-nucleotides and 
tri-nucleotides in the sequence: 

E.g. for {x1, x2, x3, x4} = {T, G, A, G}: 
→ N(xt = G) = 2, N(xt = A) = 1, …. 
→ N(xt = G, xt+1 = A) = 1, N(xt = T, xt+1 = A) = 0, …. 
→ N(xt = A, xt+1 = A, xt+2 = A) = 0, …. 



Testing the order of a Markov chain 

Assumping independence, we can calculate the expected 
frequency of a di-nucleotide for a sequence of length n: 

To test the order of a Markov chain, we now compare the 
observed and expected of (say) di-nucleotides. 

goes to one as n → ∞ 



Testing the order of a Markov chain 

      A   C   G   T 
  A  98 103 109  65 
  C  95 216  37 185 
  G  81 128  62  13 
  T 100  87  76  44 

      A     C     G     T 
A  93.8 133.6  71.0  76.8 
C 133.6 190.2 101.2 109.4 
G  71.0 101.2  53.8  58.2 
T  76.8 109.4  58.2  62.9 

Observed dimer frequency Expected dimer frequency 

According the 0th order Markov model the CG-dimer 
ought to be observed ≈3x more than is done. 

Compare data from a 1st order Markov chain with what is 
expected on the basis of a 0th order Markov chain. 



Testing the order of a Markov chain 

The null hypothesis of independence between the letters 
of the DNA sequence evaluated by the χ2 statistic: 

which has (4-1) x (4-1) = 9 degrees of freedom.  

If the null hypothesis 
cannot be rejected, one 
would fit a Markov model 
of order m=0. However, if 
H0 can be rejected one 
would test for higher 
order dependence. 

The right tail 
contains the values 
that correspond to 

low p-value. 



Testing the order of a Markov chain 

To test for 1st order dependence, consider to implications 
of the 1st order Markov chain model. E.g.: 

   P(Xt=G, Xt+1=T, Xt+2=A) =  

 P(Xt=G) x P(Xt+1=T | Xt=G) x P(Xt+2=A | Xt+1=T) 

Using the definition of conditional probability: 

   P(Xt=G, Xt+1=T, Xt+2=A) = 

  P(Xt+1=T, Xt=G) x P(Xt+2=A, Xt+1=T) / P(Xt=T). 

All these probabilities can be estimated directly from the 
data. 



Testing the order of a Markov chain 

The 1st order dependence hypothesis is evaluated by: 

where 

This is χ2 distributed with (16-1) x (4-1) = 45 d.o.f.. 



Testing the order of a Markov chain 

A 1st order Markov chain provides a reasonable description of the 
sequence of the hlyE gene of the E.coli bacteria. 

Independence test: 
  Chi-sq stat: 22.45717, p-value: 0.00754 

1st order dependence test:  
  Chi-sq stat: 55.27470, p-value: 0.14025 

The sequence of the prrA gene of the E.coli bacteria requires a higher 
order Markov chain model. 

Independence test: 
  Chi-sq stat:  33.51356, p-value: 1.266532e-04 

1st order dependence test:  
  Chi-sq stat: 114.56290, p-value: 5.506452e-08 



Testing the order of a Markov chain 
The independence case, assuming the DNAseq-object is 
a character-object containing the sequence:  
> # calculate nucleotide and dimer frequencies 
> nuclFreq <- matrix(table(DNAseq), ncol=1) 
> dimerFreq <- table(DNAseq[1:(length(DNAseq)-1)], 
DNAseq[2:length(DNAseq)]) 
 
> # calculate expected dimer frequencies 
> dimerExp <- nuclFreq %*% t(nuclFreq)/(length(DNAseq)-1) 
 
> # calculate test statistic and p-value 
> teststat <- sum((dimerFreq - dimerExp)^2 / dimerExp) 
> pval <- exp(pchisq(teststat, 9, lower.tail=FALSE, 
 log.p=TRUE)) 
 

Exercise: modify the code above for the 1st order test. 



Example 
----  

sequence discrimination 

Axelson-Fisk (2010): 
Example 2.2. 

book 



Example: sequence discrimination 

We have fitted 1st order Markov chain models to a 
representative coding and noncoding sequence of the 
E.coli bacteria. 

    A     C     G     T 
A  0.321 0.257 0.211 0.211 
C  0.319 0.207 0.266 0.208 
G  0.259 0.284 0.237 0.219 
T  0.223 0.243 0.309 0.225 

Pcoding 
      A     C     G     T 
A  0.320 0.278 0.231 0.172 
C  0.295 0.205 0.286 0.214 
G  0.241 0.261 0.233 0.265 
T  0.283 0.238 0.256 0.223 

Pnoncoding 

These models can be used to discriminate between 
coding and noncoding sequences. 



Example: sequence discrimination 

For a new sequence with unknown function calculate the 
likelihood under the coding and noncoding model, e.g.: 

These likelihoods are compared by means of their log ratio: 

 

the log-likelihood ratio. 



Example: sequence discrimination 

If the log likelihood LR(X) of a new sequence exceeds a 
certain threshold, the sequence is classified as coding 
and non-coding otherwise. 

Back to E.coli 
To illustrate the potential of the discrimination approach, 
we calculate the log likelihood ratio for large set of known 
coding and noncoding sequences. The distribution of the 
two sets of LR(X)’s are compared. 



Example: sequence discrimination 

log likelihood ratio 

fre
qu

en
cy

 

noncoding 
sequences 

coding 
sequences 



Example: sequence discrimination 

Conclusion E.coli example 
Comparison of the distributions indicate that one could 
discriminate reasonably between coding and noncoding 
sequences on the basis of simple 1st order Markov. 
 
 
Improvements: 
- Higher order Markov model. 
- Incorporate more structure information of the DNA. 



Example 
----  

evolution of aberrations 



DNA copy number of a 
genomic segment is simply 
the number of copies of 
that segment present in the 
cell under study. 
 
Healthy normal cell: 
chr 1 : 2 
… 
chr 22 : 2 
chr X : 1 or 2 
chr Y : 0 or 1 

Example 



Chromosomes of a tumor cell 

Technique: SKY 

Example 



Example 

The DNA copy number is often categorized into: 
•L : loss   : < 2 copies 
•N : normal :    2 copies 
•G : gain  : > 2 copies 
 
In cancer: 
•The number of DNA copy number aberrations 
accumulates with the progression of the disease. 
•DNA copy number aberrations are believed to be 
irreversible. 
 
Let us model the accumulation process of DNA copy  
number aberrations. 



Example 

DNAi DNAi DNAi DNAi 

t0 t1 t2 t3 

So far, we only considered one locus. Hence: 

State diagram for the accumulation process of a locus. 

G 

N 

L 

N 

t0 

G 

N 

L 
t1 

G 

N 

L 
t2 

G 

N 

L 
t3 … 

time 



Example 

The associated initial distribution: 

and, associated transition matrix: 

with parameter constraints: 



Example 

Calculate the probability of a loss, normal and gain at 
this locus after p generations: 

Using: 

These probabilities simplify to, e.g.: 



Example 

α > β α < β 

Parameters α and β determine which aberration type is 
most prevalent. 



Example 

In practice, a sample is only observed once the cancer 
has already developed. Hence, the number of 
generations p is unknown. This may be accommodated 
by modeling p as being Poisson distributed: 

This yields, e.g.: 



DNA DNA DNA DNA 
DNA DNA DNA DNAi 

DNA DNA DNA DNA 
DNA DNA DNA DNA 

DNA DNA DNA DNA 

DNA DNA DNA DNA 

DNA DNA DNA DNA 

t0 t1 t2 t3 

Example 

For multiple loci: 



Example 

Multiple loci  
→ multivariate problem. 
 
Complications: 
• p unknown, 
• loci not independent. 
 
Solution: 
• p random, 
• assume particular dependence structure. 
 
After likelihood formulation and parameter estimation:  
• identify most aberrated loci, 
• reconstruct time of onset of cancer. 

Cervical cancer 



Supplementary material:  
Proof of  

Kolmogorov-Chapman 
 equations 



SM: Markov processes 
Proof of the Kolmogorov-Chapman equations: 



SM: Markov processes 
Induction proof of 

Assume 

Then: 



References &  
further reading 
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This material is provided under the Creative Commons  
Attribution/Share-Alike/Non-Commercial License.  
 
See http://www.creativecommons.org for details. 
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