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Example 
---- 

evolution of cancer 



Example 

Knudson’s two-hit hypothesis 
The cell contains two copies of each gene. A single 
mutation (hit) in (one of the copies) of a gene is not 
sufficient for cancer to develop. A second hit to the non-
mutated copy in the gene pair may produce cancer.  

cancer cell 

Cancer is a genetic disease 
caused by abnormalities in 
the DNA of the cell. 
 
A cancer cell exhibits 
unproliferated growth. 



Example 

W M 

wild-type 
cell 

mutant 
cell 

• Wild-type cells have a probability of 1-u reproduce faithfully. 
• With probability u the reproduction is not faithfully, and a 

mutation in the genetic material of the cell is introduced.  
• Cells with a mutation are called mutant cells. 
• Mutant cells always reproduce faithfully. 

p=u 

One-hit model 



Example 

Let w = #W be the number of wild-type cells. 
Let m = #M be the number of mutant cells. 
Let N = w + m be the population size, considered fixed. 
 
 
The mutation may affect the cell’s reproductive rate. To 
accommodate this, denote the reproductive rates of the 
wild-type and mutant cell by rw and rm, respectively. 

W M 
p=u rm rw 



Example 

At each time step, one cell reproduces and one cell dies. 
 
The probability that a cell reproduces is proportional to its 
frequency and the reproductive rate, and is given by: 

Rescale to turn these into probabilities: 

and 

and 



Example 

The probabilities on the previous slide do not take into 
account that a wild-type cell may not reproduce faithfully. 
When doing so, we end up with: 

and 

Both cell types have probability to die proportional to their 
abundance. This leads to: 

and 



Example 

0 1 2 N N-1 3 … … … 

State diagram for m = #M 

Due to N = w + m, it is sufficient to study only one.  

Consider the random variable m = #M.  
Its dynamical behavior is described by a Markov process. 

The state space for this process S = {0, 1, 2, 3, …, N-1, N}. 



Example 

Probability of a decrease of m at any time step: 

Probability of an increase of m at any time step: 

Probability of no change in m at any time step: 

All other transition  
probabilities are zero. 

Right-hand side depends on i. 

0 

0 

transition matrix structure 

a banded matrix 



Example 

Five realizations of this Markov process (N=50) 

Note m = N is an 
absorbing state.  

Realization = 
random walk 



Example 

Effect of rm / rw, 10 realizations, N=50 



Example 

Conclusion 
Within the one-hit model mutations that affect the 
reproduction rate of the cell determine whether a cancer 
is benign or malignant. 
 
 
The discussed one-hit model can be extended to the 
two-hit model. Qualitative properties (like the expected 
time of absorption) of the one- and two-hit models may 
be derived. Comparison of these qualitative properties 
to empirical observations may distinguish between the 
two models. 



Stationary distribution 



Stationary distribution 

Question 
Consider random walks of cancer evolution example: 

What is the difference between the random walk at 
generations [0,100] and those at [400, 500]? 



Stationary distribution 

generations 1-100 generations 400-500 generations 5000-6000 generations 9000-10000 

# mutant cells # mutant cells # mutant cells # mutant cells 

The distribution of the # mutant cells 
changes in the beginning, but settles 
after a while. 



Stationary distribution 

Hence, after a while an “equilibrium” sets in. Not  
necessarily a fixed state or pattern, but: 

 the proportion of a time period that is spent in a 
particular state converges to a limit value. 

 

The limit values of all states, e.g.: 

 

form the stationary distribution of the Markov process,  
denoted by: 
 
 
 

Axelson-Fisk (2010): 
Page 34. 

book 

Ewens, Grant (2005): 
Section 4.8.1. 



Stationary distribution 

For a stationary process, it holds that  
   P(Xt=Ei) = φi  
for all t and i (follows from def. of stationary distribution.)  
 
In particular:  
   P(Xt=Ei) = φi = P(Xt+1=Ei). 
 
This does not imply: 
   P(Xt=Ei, Xt+1=Ei) = φi φi 

as this ignores the 1st order Markov dependency. 



Stationary distribution 

Theorem 
Irreducible, aperiodic Markov chains with a finite state 
space S have a stationary distribution to which the 
chain converges as t → ∞. 

A C 

G T 

φA=0.1, φC=0.2, φG=0.3, φT=0.4 

Axelson-Fisk (2010): 
Theorem 2.1. 

book 



Stationary distribution 

A Markov chain is aperiodic if there is no state that can 
only be reached at multiples of a certain period. E.g., 
state Ei only at t = 0, 3, 6, 9, et cetera. 

…ATGGTACGCTCCCGTA… 

A C G T 
A 
C 
G 
T 

Example of an aperiodic Markov chain 

A C 

G T 

pCC 

pTT 

pAA 

pGG 

pAC 

pCA 

pGT 

pTG 

pTC pCT pGA pAG 

pGC 
pCG 

Axelson-Fisk (2010): 
Definition 2.7. 

book 



Stationary distribution 

A C 

G T 

pAT=1 

pTC=1 pGA=1 

pCG=1 

…ATCGATCGATCGATCG… 

A C G T 
A 
C 
G 
T 

Example of a periodic Markov chain 

The fraction of time spent in A (roughly φA): 

  P(Xt+1000 = A) = ¼  

whereas P(X4+1000 = A | X4 = A) = 1. 



Stationary distribution 

A Markov chain is irreducible if every state can (in 
principle) be reached (after enough time has passed) 
from every other state. 

Examples of a reducible Markov chain 

A C 

G T 

A C 

G T 

C is an absorbing state. A will not be reached. 

Axelson-Fisk (2010): 
Definition 2.4. 

book 



Stationary distribution 

Question 
→ Which is (a)periodic? 
→ Which is (ir)reducible? 

A C 

G T 

A C 

G T 

A C 

G T 



Stationary distribution 

The stationary distribution is associated with the first-
order Markov process, parameterized by (π, P). 

 

Question 
How do φ and (π, P) relate? 
 
Hereto, recall: 
  φi = P(Xt=Ei) 
(due to stationarity). 

 

 



Stationary distribution 

We then obtain the following relation: 

definition 



Stationary distribution 

We then obtain the following relation: 

use the fact that 
P(A, B) + P(A, BC) = P(A) 
(total probability law) 

Ω 

A B 



Stationary distribution 

We then obtain the following relation: 

use the definition of conditional probability: 
P(A | B) = P(A, B) / P(B) 
Or: P(A, B)  = P(A | B) P(B) 
 



Stationary distribution 

We then obtain the following relation: 



Stationary distribution 

We then obtain the following relation: 

Thus: 
Eigenvectors! 



Stationary distribution 

How to find the stationary distribution? 
We know the stationary distribution satisfies: 

 
and 

We thus have S+1 equations for S unknowns: one of 
the equations in (*) can be dropped (which is 
irrelevant), and the system of S remaining equations 
needs to be solved. 

(*) 



Stationary distribution 

Example 
Consider the transition matrix: 

In order to find the stationary distribution we need to 
solve the following system of equations: 



Stationary distribution 

Example (continued) 
Rewritten: 

This yields: (φ1, φ2)T = (0.5547945, 0.4452055)T 

This system of equations is overdetermined (3 
equations, only 2 variables). Solution: skip one of the 
first two equations. Now solve: 



Stationary distribution 

For very large transition steps (in an irreducible and 
aperiodic 1st order Markov chain) the effect of the 
previous state vanishes:  

 (P(n))ij = P(Xt+n=Ej | Xt=Ei) ≈ P(Xt+n=Ej)  

for large enough n.  

The (P(n))ij are thus independent of i (for large n) 

On the other hand, stationarity: φj = P(Xt+n=Ej). 

Together this yields:  

 (P(n))ij ≈ P(Xt+n=Ej) = φj, 

for large n. 

How do we find the stationary distribution?   (II) 



Stationary distribution 

Hence, the n-step transition matrix P(n) has identical 
rows: 

How to find the stationary distribution?   (II) 

This motivates a numerical way to find the stationary 
distribution:  

→ Study powers of P:  P x P x P x P x P x P x ….  



Then: 

matrix multiplication (“rows times columns”) 

Stationary distribution 

with stationary distribution: (φ1, φ2)T = (0.5547945, 0.4452055)T 

Example (continued) 
The transition matrix: 

Ewens, Grant (2005): 
Section 4.8.2. 

book 



Thus: 

In similar fashion we obtain: 

Stationary distribution 

Example (continued) 

Ewens, Grant (2005): 
Section 4.8.2. 



Consider an irreducible, aperiodic Markov chain. 
Define the random variable Ti by: 

 

The recurrence time of state Ei after visiting it at time t.  

The mean recurrence time of state Ei , the expectation 
of Ti, is then (proof omitted): 

Stationary distribution 

The stationary distribution, the “proportion of time spent 
in each state”, of a Markov chain is related to the 
“waiting time” to observe another instance of each state. 

Axelson-Fisk (2010): 
Theorem 2.1. 

book 



Stationary distribution 

Question 
Recall the DNA example with  
stationary distribution: 
→ φA=0.1, φC=0.2,  
→ φG=0.3, φT=0.4. 

A C 

G T 

The mean recurrence time for the 
nucleotides then is: 
→ E(TA) = … 
→ E(TC) = … 



Stationary distribution 

Question 
What is the mean recurrence time of each state of  
the 1st order Markov process (describing the DNA  
sequence) corresponding to the state diagram below? 

A C 

G T 



Convergence to the  
stationary distribution 



Convergence 

Motivation  
Recall the one-hit model for cancer evolution. After how many 
generations are the cell types in “equilibrium”? 

convergence 



Convergence 

Motivation  
Due to (say) radiation, not part of the 1st order Markov 
process, the number  of mutant cells suddenly increases. 
How fast does its effect in the cell population vanish?  



Convergence 

Define the vector 1 = (1,…,1)T. 
We have already seen:  
   Pn = 1 φT   for large n 
 
 
Question 
How fast does Pn go to 1 φT as n → ∞ ? 
 
Answer 
1) Use linear algebra 
2) Calculate numerically 



Fact 
The transition matrix P of a finite, aperiodic, irreducible 
Markov chain has an eigenvalue equal to 1 (λ1=1), 
while all other eigenvalues are (in the absolute sense) 
smaller than one: |λk| < 1, k=2,…,3. 

Focus on λ1=1 
We know φT P = φT for the stationary distribution. 
Hence, φ is the left eigenvector of eigenvalue λ=1. 

Also, row sums of P equal 1: P 1 = 1. Hence, 1 is a 
right eigenvector of eigenvalue λ=1. 

Convergence 



Example (continued) 
The transition matrix: 

> # Verify in R 
> P <- matrix(c(0.35, 0.81, 0.65, 0.19), 2, 2) 
> D <- diag(eigen(P)$value) 
> Vl <- eigen(P)$vectors 
> # reconstruct P 
> Vl %*% D %*% solve(Vl)   

has eigenvalues λ1 = 1 and λ2 = -0.46. 

Convergence 



The spectral decomposition of a square matrix P is given 
by: 

Convergence 

where: 
diagonal matrix containing the eigenvalues, 
columns contain the corresponding eigenvectors. 

In case of P is symmetric,    is orthogonal:  
Then: 



The spectral decomposition of P can be reformulated as: 

The eigenvectors are normalized: 

eigenvalues left eigenvectors 

right eigenvectors 

Convergence 



Then (see SM) ,      and      are left and right eigenvector 
with eigenvalue       of       .  Thus: 

Convergence 

Suppose spectral decomposition of one-step transition 
matrix known, i.e.: 



Convergence 

Example (continued) 
The transition matrix: 

has eigenvalues λ1 = 1 and λ2 = 0.2116; 

has eigenvalues λ1 = 1 and λ2 = -0.0205963; 

has eigenvalues λ1 = 1 and λ2 =  1.79952e-07. 



Use the spectral decomposition of Pn to show how fast Pn 
converges to 1 φT as n → ∞. 
 
We know: 
λ1=1, |λk| < 1 for k=2, …,S,   and  
 
Then: 

Convergence 



0 0 

as n → ∞ 

Convergence 

Expanding this: 



Clearly: 

Furthermore, as: 

It is the second largest (in absolute sense) eigenvalue that 
dominates, and thus determines the convergence speed to 
the stationary distribution. 

Convergence 



Fact (used in exercises) 
A Markov chain with a symmetric P has a uniform 
stationary distribution. 

Proof 
• Symmetry of P implies that left- and right eigenvectors 

are identical (up to a constant).  
• First right eigenvector corresponds to vector of ones, 1.  
• Hence, the left eigenvector equals c1. 
• The left eigenvector is the stationary distribution and 

should sum to one: c = 1 / (number of states). 

Convergence 



and stationary distribution: 

Convergence 

and eigenvalues: 

Question 
Suppose the DNA may reasonably be described by a 
first order Markov model with transition matrix P: 



Convergence 

Question 
What is the probability of a G at position 2, 3, 4, 5, 10? 
And how does this depend on the starting nucleotide?  
 

In other words, give: 
 P(X2 = G | X1= A) = … 
 P(X2 = G | X1= C) = … 
 P(X2 = G | X1= G) = … 
 P(X2 = G | X1= T) = … 

But also: 
 P(X3 = G | X1= A) = … 
 et cetera. 



Convergence 

Study the influence of the first nucleotide on the 
calculated probability for increasing t. 

Thus, calculate P(Xt = G | X1 = x1) with t=2, 3, 4, et cetera 
for x1 = A, C, G, T. 



> # define π and P 
> pi <- matrix(c(1, 0, 0, 0), ncol=1) 
> P <- matrix(c(2, 3, 3, 2, 1, 4, 4, 1, 3, 2, 2, 3, 
 4, 1, 1, 4), ncol=4, byrow=TRUE)/10 
 
> # define function that calculates the powers of a 
> # matrix (inefficiently though) 
> matrixPower <- function(X, power){ 
 Xpower <- X 
 for (i in 2:power){ 
  Xpower <- Xpower %*% X 
 } 
 return(Xpower) 
  } 
 
> # calculate P to the power 100 
> matrixPower(P, 100) 

Convergence 

http://www.r-project.org/index.html


and stationary distribution: 

Convergence 

and eigenvalues: 

Question 
Suppose the DNA may reasonably be described by a 
first order Markov model with transition matrix P: 



Convergence 

Now the influence of the first nucleotide fades slowly. 
This can be explained by the large 2nd eigenvalue. 

Again calculate P(Xt = G | X1 = x1) with t=2, 3, 4, 5, et 
cetera for x1 = A, C, G, T. 



Convergence 

Question 
Is the difference in convergence speed surprising? 
Think of them generating DNA sequences, while a 
perturbation replaces an A by T. 

Recall: 

and 



Processes  
back in time 



Processes back in time 

So far, we have studied Markov chains forward in time. In 
practice, we may wish to study processes back in time. 
 
Example 
Evolutionary models that describe occurrence of SNPs in 
DNA sequences. We aim to attribute two DNA sequences 
to a common ancestor. 

human chimp 

common 
ancestor 

A 
A 
T 

T 
T 

G 
G 

G 
G 

human chimp 



Processes back in time 

Example  
In the original time direction the sequence is: 

  … CGATACGATGC … 

In the reverse direction  

  … CGATACGATGC … 

Or, 

  … CGTAGCATAGC … 

Estimated transition probability from both sequences: 

 P(A | G) = 0     and        P(A | G) = ¼. 



Processes back in time 

Consider a Markov chain {Xt}t=1,2,…. The reverse Markov 
chain {Xr*}r=1,2,… is then defined by: 

Xr* = Xt-r 

Xt-2 Xt-1 Xt Xt+1 

X2* X1* X0* X-1* 

With transition probabilities: 
 pij  = P(Xt* =Ej | Xt-1*=Ei) 

 pij* = P(Xr*=Ej | Xr-1*=Ei) 



Processes back in time 

Hence, we now have two Markov processes defined on the 
same random variables.  
 
These two Markov processes:  
• model the dependency between the variables in different 

directions, and  
• have different parameters.  
 
Example  
Evolution occurs as time marches on. Phylogenetics looks 
in the opposite direction.  
 
Question  
How are the two related? Do they give the same “results”?  



Processes back in time 

Question 
How to relate the transition probabilities in the forward and 
backward direction?  

Show how the transition probabilities pji* relate to pij: 

just the definition 

Axelson-Fisk (2010): 
Formula 2.24. 

book 



Processes back in time 

Show how the transition probabilities pji* relate to pij: 

express this in terms of the original Markov chain 
using that Xr* = Xt-r 

Axelson-Fisk (2010): 
Formula 2.24. 

book 



Processes back in time 

Show how the transition probabilities pji* relate to pij: 

apply definition of conditional probability: 
P(A | B) = P(B | A) P(A) / P(B) 

Axelson-Fisk (2010): 
Formula 2.24. 

book 



Processes back in time 

Show how the transition probabilities pji* relate to pij: 

Hence: 

Axelson-Fisk (2010): 
Formula 2.24. 

book 



Processes back in time 

Check that rows of the transition matrix P* sum to one, i.e.:  

pi1* + pi2* + … + pjS* = 1 

Hereto: 

use the fact that 



Processes back in time 

The two Markov chains defined by P and P* have the 
same stationary distribution. Indeed, as: 

we have: 

Question 
Why is this no surprise? Consider a “stationary DNA sequence”. 



Processes back in time 

Definition 
A Markov chain is called reversible if the forward and 
backward process are 1-1 related.  
More precisely, if pij* = pij.  
In that case: 
   pij* = pij = pji φj / φi 
Or, 
    φi pij = φj pji  for all i and j. 
 
These are the so-called detailed balance equations. 

Theorem 
A Markov chain is reversible if and only if the detailed 
balance equations hold. 



Processes back in time 

A closer look at the detailed balance equations: 

Rewritten: 

Or: 

Interpretation 
It is irrelevant whether one goes from state Ej to state Ei or 
vice versa. 



Processes back in time 

Example 1 
The 1st order Markov chain with transition matrix: 

is irreversible. Check that this (deterministic) Markov chain 
does not satisfy the detailed balance equations. 
 
Irreversibility can be seen from a sample of this chain: 

… ABCABCABCABCABCABC… 
In the reverse direction transitions from B to C do not occur! 



Processes back in time 

Question 
Consider a “stationary DNA sequence”, which may be 
modelled by a 1st order Markov process with transition 
matrix: 

The process has a uniform stationary distribution. 

A C 

G T 

½ ½ ½ ½ 

½ 

½ 

½ 

½ 

Is this Markov process reversible? 



Processes back in time 

Example 2 
The 1st order Markov chain with transition matrix: 

is irreversible. Again, a uniform stationary distribution: 
 
 
As P is not symmetric, the detailed balance equations are 
not satisfied: 
   pij / 3  ≠  pji / 3    for all i and j.  



Processes back in time 

Example 2 (continued) 
The irreversibility of this chain implies: 
 P(Xt=A,Xt+1=B,Xt+2=C, Xt+3=A)  
 = P(A) P(B|A) P(C|B) P(A|C) 
 = 1/3 * 0.8 * 0.8 * 0.8 
 ≠ 1/3 * 0.1 * 0.1 * 0.1  
 = P(A) P(C|A) P(B|C) P(A|B) 
 = P(Xt=A,Xt+1=C,Xt+2=B, Xt+3=A). 

It matters how one walks from A to A. 

Or, it matters whether one walks forward or backward. 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 



Processes back in time 

Kolmogorov condition for reversibility 
A stationary Markov chain is reversible if and only if any path 
from state Ei to state Ei has the same probability as the path in 
the opposite direction.  
Or, the Markov chain is reversible if and only if: 

 

for all i, i1, i2, …, ik. 
 
E.g.: P(Xt=A,Xt+1=B,Xt+2=C, Xt+3=A)  
  = P(Xt=A,Xt+1=C,Xt+2=B, Xt+3=A). 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 

A 

B 

C 



Processes back in time 

Question (revisited) 
Consider a “stationary DNA sequence”, which may be 
modelled by a 1st order Markov process with transition 
matrix: 

The process has a uniform stationary distribution. 

A C 

G T 

½ ½ ½ ½ 

½ 

½ 

½ 

½ 

Is this Markov process reversible? Use Kolmogorov condition. 



Processes back in time 

Interpretation of Kolmogorov condition 
For a reversible Markov chain it is impossible to determine 
the direction of the process from the observed state 
sequence alone. 

• Molecular phylogenetics reconstructs evolutionary 
relationships among present day species from DNA 
sequences. Reversibility is an essential assumption.  

• Genes are transcribed in one direction only (from the 3’ 
end to the 5’ end). The promoter is on the 3’ end, which 
suggests irreversibility.  
Codons CAG and GAC encode for an Glutamine and  
Aspartic amino acid, respectively. 



Processes back in time 

E. Coli 
For a gene in the E. Coli genome, we estimate: 

Transition matrix 
  [,1]      [,2]      [,3]      [,4] 
[1,] 0.2296984 0.3155452 0.2273782 0.2273782 
[2,] 0.1929134 0.2421260 0.2933071 0.2716535 
[3,] 0.1979167 0.2854167 0.2166667 0.3000000 
[4,] 0.2522686 0.2032668 0.2341198 0.3103448 
 
Stationary distribution 
[1] 0.2187817 0.2578680 0.2436548 0.2796954 

Then, the detailed balance equation do not hold, e.g.: 
 π1 p12 ≠ π2 p21. 



Example 
--- 

motif discovery 



Example: motif discovery 

DNA gene 

upstream promotor region 

A gene’s promotor region contains binding sites for the 
transcription factors that regulate its transcription. 

These binding sites (that may regulate multiple genes) share 
certain sequence patterns, motifs. 

Not all transcription factors and motifs are known. A high 
occurrence of a particular sequence pattern in a gene’s  
upstream regions may indicate that it has a regulatory function.  
Question 
When does a motif occurs exceptionally frequent?  



In the DNA example: 
 

and, e.g.: 

 

are, respectively, 10- and 18-letter words. 

An h-letter word W = w1 w2 … wh is a map from {1, …, h} to 
    , where      some non-empty set, called the alphabet.  

Example: motif discovery 



Let N(W) be the number of occurrences of an h-letter word 
W in a random sequence of length n. 
 
If Yt(W) is the random variable defined by: 
 

then 

For W = GTA and sequence GCTCGTAAACTGCT, 
Yt(W)=0 for all t, except for t = 5: Y5(W)=1. 

Example: motif discovery 



Problem 
Determine the probability of observing m motifs in a 
background generated by a 1st order stationary Markov chain. 

Example: motif discovery 

p-value = P (T ≤ t) 

Compare the observed frequency to the expected one through 
hypothesis testing:  
→ Summarize evidence  
→ in test statistics 
→ Compare test statistics  
→ to reference distribution. 
→ Calculate p-value. 

       
       

       



The random variable Yt(W) is Bernouilli distributed with 
parameter μ(W) =  P(Yt(W) = 1). 

Assume a stationary 1st order Markov model for the random 
sequence of length n. The probability of an occurrence of W 
in the random sequence is given by: 

Furthermore, the variance of Yt(W) is: 

Example: motif discovery 



The expectation and variance of the word count N(W) are 
then: 

and: 

Example: motif discovery 



To find words with exceptionally frequency in the DNA, the 
following (asymptotically) standard normal statistic is used: 
 
 

The p-value of word W is then given by: 

Example: motif discovery 



E. Coli sequence 
In a non-coding region, length 557 bases, of the E. Coli 
genome the motif TTAA has been found 12 times. 

For this region, the nucleotide percentage is estimated as 
A      C      G      T  
0.3196 0.1364 0.1993 0.3447  

    A      C      G      T 
  A 0.3427 0.0899 0.1742 0.3933 
  C 0.3816 0.1316 0.1711 0.3158 
  G 0.3333 0.2072 0.2162 0.2432 
  T 0.2670 0.1414 0.2199 0.3717 

and the transition matrix as: 

Example: motif discovery 



E. Coli sequence 
Then: 
  P(TTAA) = 0.3447 * 0.3717 * 0.2670 * 0.3427 
          = 0.0117 

Consequently,  
 E[N(TTAA)] = 6.496,  Var[N(TTAA)] = 6.420,  
and the test statistic equals Z(TTAA) = 2.172.  
 
Using the standard normal approximation we find: 
 p-value = 0.0149 

Example: motif discovery 



E. Coli sequence 
Compare the observed and expected word count for non-
coding regions larger than 250 bases. 
 

Example: motif discovery 



Notes 
Words are assumed non-periodic, i.e. “they do not repeat 
themselves”. For instance, W1 = CGATCGATCG is periodic: 
 123456789 
 CGATCGATC 
 CGATCGATCGATC 
 CGATCGATCGATCGATC 

Periodic motif: variance of its test statistic needs modification. 
 
Robin, Daudon (1999) provide exact probabilities of word 
occurrences in random sequences. However, calculation of 
the exact probabilities is computationally intensive (Robin, 
Schbath, 2001). Hence, the use of an approximation here. 
 

Example: motif discovery 



Supplementary material: 
Spectral decomposition  

of the n-step  
transition matrix  

 



We now obtain the spectral decomposition of the n-
step transition matrix Pn. Hereto observe that: 

plug in the spectral decomposition of P 

Convergence to the stationary distribution 



We now obtain the spectral decomposition of the n-
step transition matrix Pn. Hereto observe that: 

bring the right eigenvector in the sum, 
and use the properties of the transpose operator 

Convergence to the stationary distribution 



We now obtain the spectral decomposition of the n-
step transition matrix Pn. Hereto observe that: 

the eigenvectors are normalized 

Convergence to the stationary distribution 



We now obtain the spectral decomposition of the n-
step transition matrix Pn. Hereto observe that: 

Convergence to the stationary distribution 



Convergence to the stationary distribution 

Verify the spectral decomposition for P2: 



Supplementary material: 
Irreversibility in  

evolutionary theory 
 



Processes back in time 

Note 
Within evolution theory the notion of irreversibility 
refers to the presumption that complex organisms 
once lost evolution will not appear in the same form. 
  
Indeed, the likelihood of reconstructing a particular 
phylogenic system is infinitesimal small. 



References &  
further reading 
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