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Consider (temporarily) a binary DNA sequence: 

Hidden Markov model 

… 
010101010100101010100100100010101001100
101010101111111111111111111111111111111
111111111111111111111111111110101010100
101010100101001010101001010101111111111
111111111111111111111111111111111111111
111111111111101010101010101010101001010
101010101010101010101010101001010100010
100110110101111111111111111111111111111 
… 

Question: anything striking? 



Consider (temporarily) a binary DNA sequence: 

Hidden Markov model 

… 
010101010100101010100100100010101001100
101010101111111111111111111111111111111
111111111111111111111111111110101010100
101010100101001010101001010101111111111
111111111111111111111111111111111111111
111111111111101010101010101010101001010
101010101010101010101010101001010100010
100110110101111111111111111111111111111 
… 

Question: can the sequence be modeled by a Markov chain? 



You would need two Markov chains to do this, e.g.: 
• one with a transition matrix like 

Hidden Markov model 

010101010100101010100100100010101001100 

111111111111111111111111111111111111111 

to generate something like 

• and one with a transition matrix like 

to generate something like 



Consider a charicature of the DNA that consists of 
introns and exons only. 

intron exon intron exon intron exon 

Introns and exons are characterized by other 
nucleotide distributions.  
 
In addition, assume that start and end base pair 
positions of introns and exons are unknown. 

Hidden Markov model 



What does this look like? 

Hidden Markov model 

intron intron exon 

transition transition transition transition 

This sequence: 
• is unobserved. 
• may be modelled by a 1st order Markov chain. 



A T G 

How to obtain the observed sequence of nucleotides? 
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Hidden Markov model 

intron intron exon 

… … 
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Given the state (intron / exon): 
• simply sample from (say) a multinomial. 



Exon 

P(A|I) =  0.10 
P(C|I) =  0.30 
P(G|I) =  0.40 
P(T|I) =  0.20 

P(A|E) =  0.50 
P(C|E) =  0.20 
P(G|E) =  0.20 
P(T|E) =  0.10 

P(E|I) =  0.20 

P(I|E) =  0.10 

P(E|E) =  0.90 P(I|I) =  0.80 Intron 

Hidden Markov model 

Intron-exon example 



Xt-1 Xt Xt+1 

Yt-1 Yt Yt+1 

Architecture of a hidden Markov model 

transition 

em
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observed sequence 

hidden state path 

Hidden Markov model 



Definition of a HMM 
The processes {Xt}t=1,2,... and  {Yt}t=1,2,... form a HMM if:  
1) {Xt}t=1,2,... is a discrete, time-homogeneous Markov chain 

with state space S = {E1, ...,ES}, transition matrix P = (pij) 
and initial distribution π=(π1, ..., πS)T. 

Hidden Markov model 

I 
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E with 

exon intron 

nucleotide nucleotide 

In the intron-exon 
example: 

Axelson-Fisk (2010): 
Section 2.1.2  

book 



Definition of a HMM (continued) 
The processes {Xt}t=1,2,... and  {Yt}t=1,2,... form a HMM if:  
2) {Yt}t=1,2,... is an observable stochastic process with state 

space V = {V1,...,Vm}. 

Hidden Markov model 

Exon Intron 

TCGATCGAATGC TGGTCGTAGTC 

In the intron-exon example: 
The DNA sequence is observable and V = {A, C, G, T} 

Axelson-Fisk (2010): 
Section 2.1.2  

book 



Definition of a HMM (continued) 
The processes {Xt}t=1,2,... and  {Yt}t=1,2,... form a HMM if:  
3) {Xt}t=1,2,... and {Yt}t=1,2,... are related through the 

conditional probabilities P(Yt=Vj | Xt = Ei) = bi(Vj) = bij. 
The matrix B = (bij) is called the emission matrix. 

Hidden Markov model 

exon intron 

nucleotide nucleotide 

In the intron-exon 
example: 

A C G T 
I 
E 

Axelson-Fisk (2010): 
Section 2.1.2  

book 



Definition of a HMM (continued) 
The processes {Xt}t=1,2,... and  {Yt}t=1,2,... form a HMM if:  
4) Given the states {Xt}t=1,2,... the observations {Yt}t=1,2,... are 

independent. 

Hidden Markov model 

exon intron 

nucleotide nucleotide 

In the intron-exon example, e.g.: 
 P(Yt=A, Yt+1=C | Xt, Xt+1) =  
  P(Yt=A | Xt) * P(Yt+1=C | Xt+1)  

Axelson-Fisk (2010): 
Section 2.1.2  

book 



Hidden Markov model 

Exon Intron 

Parametrization of the intron-exon sample 

I 

A C G T 
I 
E 

I 
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I E 
I 
E with 

TCGATCGAATGC TGGTCGTAGTC 



Sampling from this HMM: 
 
 t =  1 : P(I)=0.9, P(E)=0.1 
        --->  I 
    : P(A|I)=0.10, P(C|I)=0.30,  
      P(G|I)=0.40, P(T|I)=0.20 
         --->  C 
  
 t =  2 : P(I|I)=0.8, P(E|I)=0.2 
        --->  I 
    : P(A|I)=0.10, P(C|I)=0.30,  
      P(G|I)=0.40, P(T|I)=0.20 
         --->  G 
 ...  

Hidden Markov model 
unobserved  

sequence of states 

observed sequence of 
nucleotides 

Axelson-Fisk (2010): 
Section 2.1.2  

book 



A HMM may generate something like: 

Hidden Markov model 

GTGGCACGGGTGCAGGTACGTCACCAACTCAGACTCAACG 
    ...       ...        ...      ... 
 

IIIIIIIIIIIIIIIIIIIIIEEEEEEEEEEEEEEEEEEE 

Practice 
Can the intron-exon sequence be recovered from that of the 
nucleotides? I.e.: 
GTGGCACGGGTGCAGGTACGTCACCAACTCAGACTCAACG 
    ???       ???        ???      ??? 
 

IIIIIIIIIIIIIIIIIIIIIEEEEEEEEEEEEEEEEEEE 



Likelihood 
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Likelihood 

Consider the following  
parametrization of the  
intron-exon example. 

Question 
What is the probability of CGA? I.e. P(CGA)? 
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Likelihood 

Consider the following  
parametrization of the  
intron-exon example. 

Question 
What is the probability of C on the 1st position?  
I.e. P(Y1 = C)? 
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nucleotide nucleotide 

I 
E with 

Likelihood 

Consider the following  
parametrization of the  
intron-exon example. 

How likely is the sequence: CGA?  



Using the conditional independence assumption: 

Likelihood 

We write down the likelihood of the observed sequence. 

Xt-1 Xt Xt+1 

Yt-1 Yt Yt+1 observed sequence 

hidden state path 

bXt-1(Yt-1) bXt (Yt) bXt+1(Yt+1) 



Likelihood 

Xt-1 Xt+1 

Yt-1 Yt Yt+1 observed sequence 

P(Xt | Xt-1) 
Xt 

P(Xt+1 | Xt) hidden state path 

We write down the likelihood of the observed sequence. 

Using the Markov property: 



Joint distribution {Xt}t=1,..,T and {Yt}t=1,..,T is given by: 

Likelihood 

Xt-1 Xt+1 

Yt-1 Yt Yt+1 observed sequence 

Xt 

hidden state path 



Likelihood 

After summing over all possible choices of {Xt}t=1,..,T, the 
likelihood of {Yt}t=1,..,T becomes: 

Xt-1 Xt+1 

Yt-1 Yt Yt+1 observed sequence 

Xt 

hidden state path 



Likelihood 

Hence, calculate:   P((Y0, Y1, Y2) = CGA)  

Using the formula on the previous slide: 



Likelihood 

Hence, calculate:   P((Y0, Y1, Y2) = CGA)  

Generate all intron-exon sequences of length 3: 
 III, IIE, IEI, IEE, EEE, EEI, EIE, EII 

For each sequence calculate its likelihood, e.g.: 
 P(III) = 0.9 * 0.8 * 0.8 = 0.576 
 ...    = ...             = ... 

For each sequence calculate the likelihood of CGA, e.g.: 
 P(CGA | III) = 0.3 * 0.4 * 0.1 = 0.012 
 ...          = ...             = ... 



Likelihood 

Combine these: 
 P(CGA | III) * P(III) = 0.006912 
 P(CGA | IIE) * P(IIE) = 0.008640 
 P(CGA | IEI) * P(IEI) = 0.000096 
 P(CGA | IEE) * P(IEE) = 0.004860 
 P(CGA | EEE) * P(EEE) = 0.001620 
 P(CGA | EEI) * P(EEI) = 0.000036 
 P(CGA | EIE) * P(EIE) = 0.000080 
 P(CGA | EII) * P(EII) = 0.000064 

Sum the above probabilities: 
 P(CGA) = 0.0223 



HMM vs. Markov chain 



HMM vs. Markov chain 

All nice these HMMs, but … 
… does it not overly complicate matters?  
… can we not make do with a regular Markov model? 
 
A HMM and 1st order Markov chain model the same data: 

Xt Xt+1 

Yt Yt+1 

Yt Yt+1 

1st order Markov chain HMM 

Do these models yield identical results?  



The Markov chain specifies the transition probabilities 
P(Yt+1 | Yt) for the observed sequence. 

HMM vs. Markov chain 

Xt Xt+1 

Yt Yt+1 observed sequence (of nucleotides) 

hidden state path (of introns/exons) 

Using the HMM we need to calculate (see next slide): 

conditional independence 



HMM vs. Markov chain 

Calculation details previous slide. 

where the definition of conditional probability and the 
Markov properties of the HMM have been used. 

Xt Xt+1 

Yt Yt+1 



obtained using Bayes’ rule: 

HMM vs. Markov chain 

Transition probability: 

emission 
matrix of HMM 

transition 
matrix of HMM 



exon intron 

nucleotide nucleotide 

 A     C     G     T 
A  0.435 0.216 0.233 0.116 
C  0.340 0.240 0.280 0.140 
G  0.320 0.245 0.290 0.145 
T  0.320 0.245 0.290 0.145 

HMM vs. Markov chain 

Recall the parametrization of  
the intron-exon example. 

The transition probabilities between the nucleotides  
using the HMM are (in the form of a transition matrix P): 



Recall the parametrization of  
the intron-exon example. 

exon intron 

nucleotide nucleotide 

 A     C     G     T 
Pn =   0.367 0.233 0.267 0.133 

This is the same for the HMM, when we use: 

HMM vs. Markov chain 

The stationary distribution of this transition matrix 



Recall the parametrization of  
the intron-exon example. 

exon intron 

nucleotide nucleotide 

HMM vs. Markov chain 

The initial distribution is sobtained from: 

 A    C    G    T 
  π = 0.14 0.29 0.38 0.19 

which yields: 



Recall the parametrization of  
the intron-exon example. 

exon intron 

nucleotide nucleotide 

HMM vs. Markov chain 

The couple (π, P) specifies a Markov chain.  
However, this Markov chain and the HMM from which it has 
been derived do not (necessarily) yield the same likelihood: 
 
 PHMM(CGA)   = 0.02232 
   

  vs.  
 

 PMarkov chain(CGA) = 0.025984 
 



HMM vs. Markov chain 

Parsimony 

HMM 
The HMM has 2x2-2 (matrix P), 2x4-2 (matrix B) and 2-1 
(initial distribution) parameters. In total: 9.  

1st order Markov chain 
The transition matrix P has 4x4 - 4 free parameters, while 
for its initial distribution has 4 - 1 parameters. In total: 15 
parameters. 

The HMM is to be preferred from a parsimony perspective. 



HMM vs. Markov chain 

Question 
Which model does the parsimony comparison favor when 
the HMM has a larger latent state space? E.g.: 

II I 

nucleotide nucleotide 

exon 

nucleotide 

III 

nucleotide 

IV 

nucleotide 

XII … 

Could you name other reasons why one model is then 
preferred? 



Recall the parametrization of  
the intron-exon example. 

exon intron 

nucleotide nucleotide 

HMM vs. Markov chain 

Nonetheless, the HMM can be written as a Markov chain with 
the following state space: 
 S = {IA, IC, IG, IT, EA, EC, EG, ET} 

intron & 
nucleotide A 

exon & 
nucleotide T 

... 



Recall the parametrization of  
the intron-exon example. 

exon intron 

nucleotide nucleotide 

HMM vs. Markov chain 

This state space: 
 S = {IA, IC, IG, IT, EA, EC, EG, ET} 

has eight states. Consequently, the corresponding 1st Markov 
chain has in total: 63 parameters. 

In comparison, the HMM has 9 parameters (in total). 

Question 
Is this a fair comparison? 



Recall the parametrization of  
the intron-exon example. 

exon intron 

nucleotide nucleotide 

HMM vs. Markov chain 

The transition matrix of this Markov chain contains, e.g.: 
 P(Yt+1=IA | Yt=EG) 

 
To analyze a DNA sequence with Markov chain however 
requires that both the nucleotide and intron/exon sequence 
have been observed.  



Canonical  
HMM problems 



Three basic problems for HMMs 

1) For given parameters λ = (π, P, B), how do we 
calculate P({Yt}t=1,2,...,T | λ), the probability of an 
observation, efficiently? 

2) For given {Yt}t=1,2,...,T find the sequence {Xt}t=1,2,...,T that 
maximizes P ({Xt}t=1,2,...,T | {Yt}t=1,2,...,T, λ). Hence, which 
underlying state path is most probable? 

3) What is the λ = (π, P, B) that maximizes the probability 
of an observed sequence {Yt}t=1,2,...,T? How to maximize 
the likelihood? 

Canonical HMM problems 



Solutions for the basic problems for HMMs 

1) The forward algorithm. 

2) The Viterbi algorithm. 

3) The Baum-Welch algorithm (not discussed). 
Numbers corresponding to previous slide. 
 

The first two problems could have been solved by direct  
calculation. This becomes rather cumbersome as T, N and  
M grow. 

Canonical HMM problems 



exon intron 

nucleotide nucleotide 

The forward algorithm 

Consider the following  
parametrization of the  
intron-exon example. 

How likely is the sequence: CGA?  

I 

A C G T 
I 
E 

I 
E 

I E 
I 
E with 



The forward algorithm 

Hence, calculate:   P((Y0, Y1, Y2) = CGA)  
• Generate all intron-exon sequences of length 3. 
   III, IIE, IEI, IEE, EEE, EEI, EIE, EII 

• For each sequence calculate its likelihood, e.g.: 
 P(III) = 0.9 * 0.8 * 0.8 = 0.576 

• For each sequence calculate the likelihood of CGA, e.g.: 
 P(CGA | III) = 0.3 * 0.4 * 0.1 = 0.012 

• Combine these: 
 P(CGA | III) * P(III) = 0.006912 

• Sum the above probabilities: 
 P(CGA) = 0.0223 

Impractical for longer sequences: forward algorithm! 



The forward algorithm 

Idea behind forward algorithm 

observed sequence 

hidden state path 

? 

G A 

E ? 

C 

? 

G A 

? ? 

C 

Likelihood of CGA: 

equals (recall: total probability law) 
? 

G A 

I ? 

C 

These two quantities are “easy” to calculate. 

+ 

Axelson-Fisk (2010): 
Section 2.1.4  

book 



The forward algorithm 

Here we illustrate the calculation of P(Y1, ...,YT | λ) using 
the forward algorithm. 
 
First define the forward variable: 

… Xt 

… Yt-1 Yt observed sequence 

Xt-1 
hidden state path 

X1 

Y1 

Axelson-Fisk (2010): 
Section 2.1.4  

book 



The forward algorithm 

This forward variable is of interest for: 

In order to compute P(Y1, ...,YT | λ) efficiently, we may derive 
(see SM) a recursive relationship for the forward variable: 

Axelson-Fisk (2010): 
Section 2.1.4  

book 

This uses total probability law, summing over all possible 
states of the unobserved hidden variable at a particular time. 



The forward algorithm 

… Xt 

… Yt-1 Yt observed sequence 

Xt-1 
hidden state path 

X1 

Y1 

The recursive relationship for the forward variable (graphically) 

The sum over j washes out Xt-1. 

Axelson-Fisk (2010): 
Section 2.1.4  

book 



The forward algorithm 

to the example: 

P((Y1,Y2,Y3)=(C, G, A), X3=E) = 
 
 
   P(Y3=A | X3=E) * [P((Y1,Y2)=(C, G), X2=E) * P(X3=E | X2=E) 
    
 
    + P((Y1,Y2)=(C, G), X2=I) * P(X3=E | X2=I)] 

Apply the recursive relationship: 

Axelson-Fisk (2010): 
Section 2.1.4  

book 



The forward algorithm 

The recursive relationship expresses the forward variable 
at time t in terms of those at time t-1. 

Axelson-Fisk (2010): 
Section 2.1.3  

book 

...
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.. 

S1 

S2 

SN 

Si 

t-1 t 
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.. Si 

t-1 t 

...
...

...
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.. 

S1 

S2 

SN 

...
...

...
...

.. 

...
...

...
...

.. 

………… 

1 2 3 

………… 

………… 

Walking forward in time, to calculate the probability of 
interest we only store the last probabilities.  
 

Dynamic programming! 



The forward algorithm 

The forward algorithm comprises of: 

1) Initialization: 
 

 
2) Induction: 

 
 
 

3) Termination: 

Axelson-Fisk (2010): 
Section 2.1.4  

book 



The forward algorithm 

The forward algorithm comprises of: 

1) Initialization: 
 

Reconsider the 
intron-exon example. 

exon intron 

nucleotide nucleotide 

How likely is the sequence: CGA? 

Initialization: 
 α1(I) = 0.9 * 0.3 = 0.27 
 α1(E) = 0.1 * 0.2 = 0.02 



The forward algorithm 

The forward algorithm comprises of: 

2) Induction: 
 

Induction: 
 α2(I) = 0.4 * (0.27 * 0.8 + 0.02 * 0.1) 
 α2(I) = 0.0872 
 α2(E) = 0.2 * (0.27 * 0.2 + 0.02 * 0.9) 
 α2(I) = 0.0144 

 α3(I) = 0.1 * (0.0872 * 0.8 + 0.0144 * 0.1) 
 α2(I) = 0.00712 
 α3(E) = 0.5 * (0.0872 * 0.2 + 0.0144 * 0.9) 
 α2(I) = 0.0152 



The forward algorithm 

The forward algorithm comprises of: 

3) Termination: 
 

Reconsider the 
intron-exon example. 

exon intron 

nucleotide nucleotide 

Termination: 
 α3(I) + α3(E) = 0.00712 + 0.0152 
 α3(I) + α3(E) = 0.0223  
As before: 
 P(CGA) = 0.0223    



The Viterbi 
algorithm 

Axelson-Fisk (2010): 
Section 2.1.6  

book 



Consider the following  
parametrization of the  
intron-exon sample. 

exon intron 

nucleotide nucleotide 

The Viterbi algorithm 

What is the most likely intron-exon sequence to have  
generated the nucleotide sequence: CGA?  

I 

A C G T 
I 
E 

I 
E 

I E 
I 
E with 



The Viterbi algorithm 

Question  
How would you proceed to answer the above? 
 
→ Would you base your decision on (e.g.): 
→ P(IIE | CGA), P(CGA | IIE), P(IIE), or P(CGA)? 
 
→ How do you distinguish between (say) IIE and EIE? 

What is the most likely intron-exon sequence to have  
generated the nucleotide sequence: CGA?  



The Viterbi algorithm 

Hence, we need to calculate:  

Bayes’ rule 

Intron/exon example, for any choice of (X0, X1, X2) evaluate:    
 P((X0, X1, X2) | (Y0, Y1, Y2) = CGA)  



The Viterbi algorithm 

Let us calculate, e.g:    
 P((X0, X1, X2) = III | (Y0, Y1, Y2) = CGA)  

The likelihood of the latent intron-exon sequence is: 
 P(III) = 0.9 * 0.8 * 0.8 = 0.576 

Given the intron-exon sequence calculate the likelihood  
of the observed nucleotide sequence CGA: 
 P(CGA | III) = 0.3 * 0.4 * 0.1 = 0.012 

Also, calculate the likelihood of the observed nucleotide  
sequence CGA using the forward algorithm: 
 P(CGA) = 0.0223 



The Viterbi algorithm 

Calculate all conditional probabilities: 
P(III | CGA) = P(CGA | III) * P(III) / P(CGA) 
      = 0.006912 / 0.0223 = 0.310 
P(IIE | CGA) = ...               = 0.387 
P(IEI | CGA) = ...               = 0.004 
P(IEE | CGA) = ...               = 0.218 
P(EEE | CGA) = ...               = 0.073 
P(EEI | CGA) = ...               = 0.002 
P(EIE | CGA) = ...               = 0.004 
P(EII | CGA) = ...               = 0.003 

Select the one with the highest probability: 
 IIE 

Q: Necessary to calculate the likelihood? 



likelihood 

The Viterbi algorithm 

The Viterbi algorithm efficiently calculates: 
 P(X1, ..., XT | Y1, ..., YT, λ).  
 
First, define the variable: 

• The maximum is over all paths of length t ending in state Si. 
• The likelihood of this path together with the t associated 

observations is maximized. 

The preceeding calculation is impractical for long sequences. 

Note:  
 P(X1, ..., XT | Y1, ..., YT, λ) = δt(i) / P(Y1, ..., YT, λ) 
 



The Viterbi algorithm 

… Xt=Si 

… Yt-1 Yt observed sequence 

Xt-1 
hidden state path 

X1 

Y1 



The Viterbi algorithm 

… Xt 

… Yt-1 Yt observed sequence 

Xt-1 
hidden state path 

X1 

Y1 

δt-1(i)  aij 

bj(Yt)  

The recursive relationship: 



The Viterbi algorithm 
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………… 

1 2 3 

………… 

………… 

As with the forward variable, the recursive relationship 
expresses the ‘Viterbi’ variable at time t in terms of those 
at time t-1. Hence, we do not need to keep track of 
probabilities at all time points. 



exon intron 

nucleotide nucleotide 

The Viterbi algorithm 

The Viterbi algorithm comprises of: 
1) Initialization: 

 

 
 

Initiation of Viterbi: 
 log[δ1(I)] = log[P(X1=I)] + log[P(Y1=C | X1=I)]  
  = log(0.9) + log(0.3) 
  = -1.309333 
 
 log[δ1(E)] = -3.912023 

The log-scale is used for efficiency and accuracy. 



The Viterbi algorithm 

The Viterbi algorithm comprises of: 
2) Induction: 

keeps track of which argument maximized  

… Xt = Sj 

… Yt-1 Yt 

Xt-1 X1 

Y1 

δt-1(i)  aij 



Induction (first step only): 
log[δ2(I)] 
  = log[P(Y2=G | X2=I)]  
    + max { [log[δ1(X1)] + log[P(X2=I | X1)] } 
  = log(0.4)  
    + max {-1.309333 + log(0.8), -3.912023 + log(0.1)} 
  = -0.9162907 + max {-1.532477, -6.214608} 
  = -2.448768 
 

Similarly: 
log[δ2(E)] = -4.528209 

log[δ3(I)] = -4.974497 

log[δ3(E)] = -4.751353 

The Viterbi algorithm exon intron 

nucleotide nucleotide 



The Viterbi algorithm 

Parallel we get:  
 Ψ1(I) = 0, Ψ1(E) = 0 

 Ψ2(I) = arg max {δ1(X1=I) * P(X2=I | X1=I,  
    δ1(X1=E) * P(X2=I | X1=E)} 
  = arg max {exp(-1.309333) * 0.80,  
    exp(-3.912023) * 0.10 } 
  = I 

 Ψ2(E) = arg max {δ1(X1=I) * P(X2=E | X1=I),  
    δ1(X1=E) * P(X2=E | X1=E)} 
  = arg max {exp(-1.309333) * 0.20,  
    exp(-3.912023) * 0.90 } 
  = I 

X1 

X1 

X1 

X1 



The Viterbi algorithm 

Parallel we get:  
 Ψ3(I) = arg max {δ2(X1=I) * P(X3=I | X2=I),  
    δ2(X1=E) * P(X3=I | X2=E)} 
  = arg max {exp(-2.448768) * 0.80,  
    exp(-4.528209) * 0.10 } 
  = I 

 Ψ3(E) = arg max {δ2(X2=I) * P(X3=E | X2=I),  
    δ2(X2=E) * P(X3=E | X2=E)} 
 Ψ2(E) = I       
Similarly: 
 Ψ4(I) = I 

 Ψ4(E) = E 

X2 

X2 

X2 



The Viterbi algorithm 

Results from induction step: 

Y2 = G 

-2.448768 Intron 
-4.528209 Exon 

Y3 = A 

-4.974497 

-4.751353 

Y1 = C 

-1.309333 

-3.912023 

ψ3 

I Intron 
I Exon 

ψ4 
I 

E 

ψ2 
I 

I 

δ2 δ3 δ1 



The Viterbi algorithm 

The Viterbi algorithm finalized with: 

3) Termination: 
 

 
 

 
This yields: 

Y2 = G 

-2.448768 Intron 
-4.528209 Exon 

Y3 = A 

-4.974497 

-4.751353 

Y1 = C 

-1.309333 

-3.912023 

Thus: q3* = E 

p* 



The Viterbi algorithm 

The Viterbi algorithm finalized with: 
4) Backtracking: 

 
 

 

Intron 

Exon 

Backtracking: 
an underlying sequence with an exon at t=3 is most likely. 



The Viterbi algorithm 

Continue backtracking: 

Y2 = G 

-2.448768 Intron 
-4.528209 Exon 

Y3 = A 

-4.974497 

-4.751353 

Y1 = C 

-1.309333 

-3.912023 

Intron 

Exon 

The most likely underlying sequence is: IIE 

Thus: ψ3(E) = I and ψ2(I) = I 



I 

A C G T 
I 
E 

I 
E 

I E 

exon intron 

nucleotide nucleotide 

The forward algorithm 

I 
E with 

Sample from the following  
parametrization of the  
intron-exon example. 

Illustration 

Data: 
 T C G C G C T G T T T G T C C T A A G T G T A T A C A  

I 

A C G T 
I 
E 

I 
E 

I E 
I 
E with 



The Viterbi algorithm 

Most likely underlying state sequence?   →   Viterbi! 
Illustration 

        exon  intron (true) 
  exon  5655    1633 
intron   776    1936 

True states (1st 100 positions) 
IIIIIIEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIIIIIIIIIIIIIIIIEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 
 

Inferred states (1st 100 positions) 
IIIIIIIEEEEEEEEEEEIIIIIEEEEEEEEEEEEEEEEEEEEIIIIIIIIIIIIEEEEEEEEEEIIIEEEEIIEEEEEEEEEEEEEEEIIIEEEEEEEEE 

True vs. inferred (10000 positions): 



The Viterbi algorithm 

Related is the posterior probability of states:  
     P(Xt | Y1, ..., YT, λ)  = P(Xt,Y1, ..., YT, λ)  / P(Y1, ..., YT, λ). 

Illustration 

Distribution of  
  P(E | Y1, ..., YT, λ)  
for intron bases 

forward variable likelihood 



The Viterbi algorithm 

# load library 
library(HMM) 
 
# specify HMM 
hmm <- initHMM(c("I","E"),c("A","C","G", "T"),  
 transProbs=matrix(c(0.8, 0.2, 0.1, 0.9), 2, 2, byrow=TRUE),  
 emissionProbs=matrix(c(0.1, 0.3, 0.4, 0.2, 0.5, 0.2, 0.2, 0.1), 
 2, 4, byrow=TRUE)) 
 
# simulate from the HMM 
seqLength <- 10000 
DNAseq <- simHMM(hmm, seqLength) 
 
# apply viterbi and compare to true underlying sequence 
table(viterbi(hmm, DNAseq$observation), DNAseq$states) 
 
# obtain posterior probabilities of latent states (given the sequence) 
posterior(hmm, DNAseq$observation) 
 
# histogram of post. probabilities for exons. 
hist(posterior(hmm, obsSequence$observation)[1,obsSequence$states=="E"]) 

http://www.r-project.org/index.html


The Viterbi algorithm 

Note 
Apart from the backtracking step, the Viterbi algorithm is 
similar to the forward algorithm. The key difference is the 
maximization in the former instead of summation in the 
latter.  



The Baum-Welch 
algorithm  

(maximum likelihood) 
(sketch only) 



The Baum-Welch algorithm 

Intuitively, one may combine: 
→ efficient likelihood evaluation, 
→ (probabilistic) recovery of underlying state, and 
→ ML estimation of Markov chain (lecture 1), 
to conceive an algorithm along the following lines: 
0) Initiate parameters P, B and π.  
1) Apply Viterbi: most likely underlying sequence. 
2) Given sequence, update estimates of P, B and π.  
3) Iterate between 1) and 2) until convergence. 

Baum-Welch does something similar, but formalized to 
ensure convergence to the maximum likelihood estimator. 



Example 
--- 

Sequence alignment 



Example: sequence alignment 

An alignment can be thought of as the result of sequential 
executions of the following operations:  
• match, 
• substitution, 
• insertion, and 
• deletion. 

Consider two DNA sequences of two mammals: 
 human : CTATACG 
 mouse : CGATCG 
 
In order to reconstruct the sequence in their common 
ancestor, the two sequences are aligned. 



m0 m1 m2 m3 m4 m5 m6 m7 

Example: sequence alignment 

Hidden Markov models aid in alignment.  
 
Formulate the alignment process in terms of a HMM. The 
operations match, deletion, and insertion are hidden states. 
 
Suppose the two sequences match perfectly: 
 human : CTATACG 
 mouse : CTATACG (really: CGATCG) 
 
Only one hidden state is needed: 



Example: sequence alignment 

m0 m1 m2 m3 m4 m5 m6 m7 

i0 i6 i5 i4 i3 i2 i1 

As the two sequences do not match perfectly, the HMM is 
extended with the insertion state: 
 
 human : CTATACG 
 mouse : CGATCG -> CGTATACG 
 



m0 m1 m2 m3 m4 m5 m6 m7 

i0 i6 i5 i4 i3 i2 i1 

d1 d2 d3 d4 d5 d6 

m i 

d 
Example: sequence alignment 

Now add the deletion state: 
  human : CTATACG 
  mouse : CGTATACG 
         -> CGTATACG 
 



         t: 1 2 3 4 5 6 7 8 
 human : C   T A T A C G 
underlying: m d i m m i m m 
 mouse : C G   A T   C G 
 

m i 

d 
Example: sequence alignment 

Remarks: 
1) Deletion state does not emit: 
1) affects the dimension of the 
1) emission matrix. 
 
2) Consequently, the underlying 
2) sequence may be longer  
2) than the observed.  
 
 
 
 
 

3) First hidden state is defined 
3) as observed start state.   



Example 
--- 

Array CGH 



Example: array CGH 

DNA copy number of a 
genomic segment is 
simply the number of 
copies of that segment 
present in the cell  
under study. 
 
Healthy normal cell: 
chr 1 : 2 
… 
chr 22 : 2 
chr X : 1 or 2 
chr Y : 0 or 1 



Chromosomes of a tumor cell 

Technique: SKY 

Example: array CGH 



DNA copy number may be measured genome-wide in high-
throughput fashion using microarrays.  

 

 

• Test and reference (assumed to have DNA copy number 2) 
samples are labeled differently and hybridized together. 

• Under ideal circumstances, the intensity of an array element is 
linearly proportional to the abundance of the corresponding 
DNA sequence. 

• Log2 ratios of test and reference intensities reflect the relative 
copy number in the test sample compared to that in the 
reference sample. 

Example: array CGH 



tumor cell normal cell 

hybridization 

after hybridization 

Example: array CGH 

Principle of array CGH. 

Down-syndrome: 
extra copy of chr. 21 

Copy numbers of each genomic 
segment are assessed simultaneously.  



Example: array CGH 

DNA copy number profile of a cancer sample 



Example: array CGH 

Problem: determine the aberrated genomic segments 
from the observed log2 ratios. 

 
Solution: model the DNA copy number profile by a HMM. 

Ingredients for the HMM: three hidden states: 
• L : loss  : < 2 copies 
• N : normal :    2 copies 
• G : gain  : > 2 copies 

 
Given the hidden states, a continuous value is emitted. 



Gain Loss 

Normal 

Example: array CGH 

HMM architecture for array CGH 



Example: array CGH 

Sampling from this HMM: 
 
 t =  1 : normal   --->  -0.0426311 
 t =  2 :   gain   --->  0.3347448 
 t=   3 : normal   --->   0.0878275 
 t =  4 : normal   --->  -0.0531646 
 t =  5 : normal   --->   0.0097196 
 t =  6 : normal   --->   0.0943059 
 t =  7 :   gain   --->   0.3187921 
 t =  8 :   gain   --->   0.2113104 
 t =  9 : normal   --->  -0.0973389 
 t = 10 : normal   --->  -0.1631614 
 ...  

unobserved 
sequence 
 of states 

observed 
sequence of 
log2 ratios 



Example: array CGH 

DNA copy number profiles of two cervix cancer samples. 



Example: array CGH 

Analysis flow 
• Fit HMM to data by means of ML (Baum-Welch). 
 
 > summary(hmmFit) 
 $delta 
 [1] 1.000000e+00 1.801274e-45 2.257732e-58 
  
 $Pi 
             [,1]       [,2]        [,3] 
 [1,] 0.979794054 0.01695689 0.003249055 
 [2,] 0.011131489 0.98481411 0.004054398 
 [3,] 0.005139211 0.01587148 0.978989311 
 
 $pm 
 $pm$mean 
 [1] -0.32802689  0.04630948  0.53721098 
  
 $pm$sd 
 [1] 0.1850411 0.1335572 0.3447424 

 
• Given ML estimates, calculate hidden states (Viterbi) 

http://www.r-project.org/index.html


Example: array CGH 

HMM result with three states. 



Example: array CGH 

HMM result with five states. 



Example: array CGH 

In R: 
 
> # activate libraries 
> library(CGHcall) 
> library(HiddenMarkov) 
 
> # load data 
> data(Wilting) 
 
> # specify profile to analyze 
> profNo <- 3 
 
> # put in particular format 
> cgh <- make_cghRaw(Wilting)  
 
> # first preprocess the data  
> rawCGH <- preprocess(cgh)  
 
> # normalize the data (global median normalization) 
> normCGH <- normalize(rawCGH)  
> plot(copynumber(normCGH)[,profNo], pch=".", cex=2) 

http://www.r-project.org/index.html


Example: array CGH 

R code (continued) 
 
> # create object for HMM-fitting 
> x <- dthmm(copynumber(normCGH)[,profNo], 
 Pi=matrix(c(.8,.1,.1,.1,.8,.1,.1,.1,.8),3),  
 delta=c(0.1, 0.8, 0.1), "norm",  
 pm=list(mean=c(-0.2, 0, 0.2), sd=c(0.1, 0.1, 0.1)))  
 
> # fit HMM 
> hmmFit <- BaumWelch(x) 
 
> # estimate hidden states 
> states <- Viterbi(hmmFit) 
 
> # overlay data with estimated hidden states 
> stateValues <- hmmFit$pm$mean 
> plot(copynumber(normCGH)[, profNo], pch=".", cex=2) 
> lines(stateValues[states], col="red", lwd=2) 

http://www.r-project.org/index.html


Example: array CGH 

Note 
The HMM is fitted to data from the whole genome. 
Effectively, this assumes the chromosomes are glued 
together (ordered by their numbers). This is of course 
nonsense. 
 
 
Exercise 
• Modify the code to fit the HMM to each chromosome 

separate, and overlay the data with the resulting fit. 
• Moreover, also investigate the number of states to be 

used. 



Hidden semi-Markov 
model 



Hidden semi-Markov model 
The HMM analysis suggest that within only a few steps 
multiple hidden states have been visited. This may be 
unrealistic biologically. 



intron exon intron exon intron exon 

Hidden semi-Markov model 
Consider the intron-exon charicature of the DNA again. 

How long do we spend in a particular state: 

Short durations more 
likely than long durations. 



Exon 
• • • • • • • • • 

PE(d) 

P(A I I) =  0.10 
P(C | I) =  0.30 
P(G | I) =  0.40 
P(T | I) =  0.20 

P(A | E) =  0.50 
P(C | E) =  0.20 
P(G | E) =  0.20 
P(T | E) =  0.10 

P(E | I) 

P(I | E) 

P(E | E) P(I | I) 
Intron 

• • • • • • • • • 
PI(d) 

Hidden semi-Markov model 
Modify the HMM to allow more realistic duration times.  

where PI(d) and PE(d) are, e.g. Poisson distributions 
describing the duration time. 



Hidden semi-Markov model 



Sampling from this modified HMM: 
 
 1 : intron --->  6 --->   CGATCA 
 2 :   exon ---> 28 --->   AAGTCAGACGAT... 
 3 : intron  --->  9 --->   TAGACGGCA 
 4 :   exon  ---> 17 --->   GAGACTGCGATC... 
 5 : intron  ---> 11 --->   TAGTACGACTG 
 6 :   exon  ---> 26 --->   CAGCGACTACGA... 
 7 : intron  --->  9 --->   GAGTGTCAG 
 8 :   exon  --->  9 --->   CAGTGCTGC 
 9 : intron  ---> 14 --->   ATAGATGTAGAA... 
10 :   exon  ---> 24  --->   GCTCGATCGACT... 
...  

unobserved 
states and 

their duration 

observed 
sequence 

Hidden semi-Markov model 



Hidden semi-Markov model 

Note:  with two states, the unobserved sequence of states is 
 deterministic, alternating between the two states. 

 IIIIII EEE IIIIIIII EEEEEEE III EEEEE IIIIIIII … 

intron exon intron exon intr. intron exon 

The modified HMM is called a hidden semi-Markov model. 
 
Within this model the Markov property holds for state 
transitions, but no longer for sequential observations. 

• within intron or exon: not Markov,  
• at transitions: Markov. 



Example: array CGH  
(revisited) 



Example: array CGH (revisited) 
Recall: array CGH measures DNA copy number in high -
throughput fashion. Below two cervix cancer profiles. 



Example: array CGH (revisited) 
HSMM result with three states. 



Example: array CGH (revisited) 
HSMM result with five states. 



Example: array CGH (revisited) 
The HSMM analysis yields longer duration times than the 
HMM for the DNA copy number profile of the cervix cancer 
samples. 



Supplementary Material: 
Proofs of recursive  

relations of the 
forward and Viterbi variable 



The forward algorithm 



The Viterbi algorithm 

For this variable too there exists a recursive relationship: 



References &  
further reading 
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This material is provided under the Creative Commons  
Attribution/Share-Alike/Non-Commercial License.  
 
See http://www.creativecommons.org for details. 
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