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What?

Molecular biology aims to understand the molecular 
processes that occur in the cell. That is, e.g.:
→ which molecules present in the cell interact? 
→ how is this coordinated?

For many cellular processes, it is unknown which 
genes play what role. 

Goal 
Reconstruct the 
cellular regulatory 
network. 



Why?

Negative motivation
→ Differentially expressed genes: boring!
→ Yet another clustering?

Positive motivation
→ Fancy plot.
→ Different insight. 
→ Network medicine 
→ (e.g. biomarker:
→ gene-gene interaction)

controls cases



Pathway = network

Pathway = chain of chemical reactions (that processes 
Pathway = a signal)

Pathway ≈ a set of genes believed to carry out one function

Pathways are loosely defined 
using repositories, such as:
• KEGG
• BioCarta
• GennMapp
• Reactome
• GO
• String

BioCarta: p53 signalling pathway



Pathway = network

http://www.biocarta.com/pathfiles/h_p53Pathway.asp

BioCarta 
p53 signalling pathway

http://www.genome.jp/kegg/pathway/hsa/hsa04115.html

KEGG 
p53 signalling pathway



How?

Download from repository
→ Which? Reliable? 
→ Knowledge is incomplete and biased towards 
→ a few well-studied pathways.
→ Does it apply to the situation at hand? 

Reconstruct from data
→ Data is a rare and valuable commodity!

Synthesis
Reconstruct from data with the repository as a suggestion



Network

node or vertex, representing a gene.

edge or arrow, representing an interaction 
between two genes.

undirected and directed edges (≈ “association”)

undirected
(focus here)

directed

Pathways are represented by a graph or network.



Edge operationalization = direct relation
(Formally: conditional dependence)

Network

Direct relation
Relation between two 
nodes without mediation 
of other nodes.

Indirect relation
Relation between two 
nodes through mediating 
other nodes.

No relation
None of the above.

1

2

7

3 4

56

Relations
→ node 1 and 2: directly
→ node 3 and 6: indirectly 
→ node 4 and 7: none
→ ...



With?

cancer tissue bank random
sample

profiling

• in vivo

• cross-sectional

• time-course

mRNA



With?

Data
Available to reconstruct which molecular interact: 
→ molecular profiles of n samples, 
→ each profile comprises p features.

            molec. 1    molec. 2    molec. 3    molec. 4    molec. 5
sample 1 ­0.21968 ­0.42796  0.26441 ­5.74971 ­0.96908
sample 2 ­0.08376 ­7.21648 ­3.86460  0.77440 ­3.18557
sample 3 ­1.08336 ­1.14688 ­1.22544 ­2.36134  0.19293
sample 4  0.04333 ­0.46377  0.12756 ­0.39535 ­0.20215
sample 5  1.16542  0.86248  1.16049  1.23941  0.51927
sample 6 ­0.29687  0.28602 ­0.69624 ­1.19779  0.19546
sample 7  1.76249  1.07556  1.46201  1.16076  1.29921
sample 8  0.46387  0.21271  0.49455  0.58267 ­0.44349
sample 9 ­1.27492  3.95515 ­0.26441 ­2.95037 ­0.77896
...  ...  ...  ...  ... ...

Gaussian graphical model 

≈ activity 

Repository
Prior knowledge on network



         sample 1    sample 2    ...
gene 1   -0.21968    -0.42796    ...
gene 2   -0.08376    -7.21648    ...
gene 3   -1.08336    -1.14688    ...
gene 4    0.04333    -0.46377    ...
...   ...   ...    ...

 edge strength
measure

data

statistical
test

edge strength 
significantly different 

from zero: edge!

inferred 
network

Roadmap

How?



(Conditional)
independence

graph

Whittaker (1990), Chapter 3.



A p-variate random variable     is a vector of p univariate 
random variables. 

These univariate random variables are considered 
together when they may be related in some sense.

CIG

A joint density of a p-
variate random variable  
    specifies the (relative) 
probability of observing 
a particular realization 
of     . f(

Y
a,Y

b)
 

joint density of Ya and Yb



(Conditional) independence

Head

Head 1/4

Tail 1/4

coin 1

Tail

1/4

1/4co
in

 2

Joint density (example)
The joint density of 
tossing of two coins:

The joint density of the 
expression levels of two 
genes describes how their 
data are distributed in the 
2-dim plane:

Y2

Y1



Consider a p-variate random variable    . 

Suppose the p variates can be divided into two 
exhaustive and mutually exclusive subsets A and B, i.e.:

Let       and       be random vectors 
obtained by restricting      to only 
those variates that correspond to the 
elements of subset A and B, resp..

(Conditional) independence

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

...

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

...



The random variables       and       are independent if and 
only if the joint probability density function              
satisfies:

for all values of       and      .

Independence between       and       is denoted by:

Hence, under independence the joint density factorizes 
into the product of the marginal densities, e.g.:

(Conditional) independence



Example
How about two genes? 
If knowledge of Ya, the 
expression level of gene A, 
does not affect the (distribution 
of the) expression levels of 
gene B, the two genes 
are said to be independent. 

(Conditional) independence

distribution of Yb when Ya = 2 distribution of Yb when Ya = -3

=

Y2

Y1



An equivalent definition
The random variables       and       are independent if and 
only if:

This follows from:

for all values of       and      . Hence, the conditional and 
marginal densities are identical.

(Conditional) independence



1 2

Consider a pathway comprising of two genes.

1 2

Expression levels 
of genes 1 and 2 
are independent:

Hence:

Graph:

Expression levels 
of genes 1 and 2 
are dependent:

Hence:

Graph:

(Conditional) independence



Consider a pathway comprising of two genes.

Question
The density of the expression levels of genes 1 and 2 is:

(Conditional) independence

with C a suitable constant. Are Y1 and Y2 in- or dependent?

Question
The density of the expression levels of genes 1 and 2 is:

with C a suitable constant. Are Y1 and Y2 in- or dependent?



Consider a pathway comprising of two genes.

1 2

Expression levels of genes 1 and 2 are dependent:

Graph:

(Conditional) independence

Y2

Y1

Data:

If a low value for 
Y1 is observed, it 
is more likely to 
observe a high 
value for Y2. 

And vice versa.



Recall (from the first 4 lectures)

DNA sequence modeled by a 1st order Markov chain: 

A C G T

to

A
C
G
T

f
r
o
m

(Conditional) independence

Question
Are Xt and Xt+1 independent? What about  Xt and Xt+2?

A C

G T



Consider a p-variate random variable    . 

Suppose the p variates can be divided into three ex-
haustive and mutually exclusive subsets A ,B, and C i.e.:

Denote by       ,       and        the random vectors that are 
obtained by restricting      to only those variates that 
correspond to the elements of subset A, B and C, 
respectively.

(Conditional) independence



The random variables       and       are conditional 
independent on       if and only if:

for all values of       ,       and      .

Or, more commonly:

This conditional independence is denoted as:

(Conditional) independence



Example
Consider: 

 Ya = -Yc + εa

 Yb = -Yc + εb

Conditional on Yc, the expression level of gene C, the 
expression levels of genes A and B are independent.

(Conditional) independence

Yb

Ya

Ya, Yb | YcYb

Ya

Ya, Yb

(marginal) dependence conditional independence



Equivalent definitions
The random variables       and       are conditional 
independent on       if and only if:

Thus, the conditional independence of        and        implies 
that       can be excluded from the conditioning set.

The random variables       and       are conditional 
independent on       if and only if:

CI can be expressed in terms of the marginal densities.

(Conditional) independence



Consider a pathway comprising of three genes.

Expr. levels of genes 1 
and 2 are independent 
conditional on those of 
gene 3:

Graph: Graph:

(Conditional) independence

Expr. levels of genes 1 
and 2 are dependent 
conditional on those of 
gene 3:

1 2

3

1 2

3



Recall (from the first 4 lectures)

DNA sequence modeled by a 1st order Markov chain: 

A C

G T

A C G T

to

A
C
G
T

f
r
o
m

(Conditional) independence

Question
Are Xt and Xt+1 conditional independent on Xt+2? 
What about  Xt and Xt+2 on Xt+1?



(Conditional) independence

Proposition (factorisation criterion)
Let      ,       and       be p-, q-, and r-dimensional random 
variables. Then,      and       are independent conditional 
on       , i.e.:

if and only if there exists functions g(∙) and h(∙) such that:

for all values of       ,       and all      with                      .

Note: functions g() and f() need not be densities.



(Conditional) independence

Once a conditional independence is known, others can be 
concluded to hold by application of the properties, e.g.:

i) implies

implies

implies

ii)

iii)

where      ,     ,     , and       random variables of arbitrary 
dimensions. 



Let      be a p-dimensional random variable and 
K = {1, …, p}           the corresponding set of nodes.

The conditional independence graph of      is 
an undirected graph G = (K, E)     s.t.
 

Example

1 2

3

(Conditional) independence



(Conditional) independence

Examples

1 2

3

e.g.

4

1 2

34
e.g.



(Conditional) independence

Question
Which conditional independence relationships do the 
conditional independence graphs below convey?

1

2

3

4

1

2

3

4



(Conditional) independence

Relevance
The pathway actually 
comprises two “sub-pathways”:

Chain graph (“signal processing”):

Star graph (“hub gene”):



Pairwise Markov property
Random variables of non-adjacent 
nodes j and j' are conditionally 
independent given the remaining 
random variables:

Local Markov property
A random variable of node j is 
conditionally independent of all 
other random variables given 
those of its neighboring nodes N(j):

(Conditional) independence



Global Markov property
Two mutually exclusive sub-
sets of random variables 
are conditionally indepen-
dent given those of a sepa-
rating subset:

Theorem
Under assumptions (that apply here) the pairwise, local and 
global Markov properties are equivalent.

Separating subset S: 
All paths in graph G between node sets V1 and V2 run through S.

(Conditional) independence



Covariance and 
correlation



Covariance and correlation

II IIII

V VIIV

Scatterplots of data on two random variables. 
Which show association? 



Covariance and correlation

Association between two random 
variables may be assessed 
graphically. This is not very exact 
and in boundary cases difficult to 
reach consensus. 

Ideally, a measure of interrelatedness of the two variables. 

Covariance is such a measure. It measures whether a 
positive deviation from the mean in one variable 
systemically coincides with a positive (or negative) deviation 
from the mean in another variable.  

?



Covariance and correlation

Covariance measures the linear dependence between two 
random variables.

The covariance between random variables Y1 and Y2 is:

estimation

E(Y2)

E(Y1)Y1

Y2
x- + =  - ….

x+ - =  - ….
+

=  - ….

x- + =  - ….
=  - ….….….

deviation from mean



Covariance and correlation

Question
Consider the expression levels of two genes.
What will be the estimated covariance between Y1 and Y2?

I II III



Covariance and correlation

Covariance properties (I)
Let Y1 and Y2 be two independent random variables and c a 
constant. Then:

Let Y1 and Y2 be two random variables. Then:

Question: proof! (Hint: use definition of covariance).



Covariance and correlation

Covariance properties (II)

Let Y1, Y2,Y3, and Y4, be two random variables and a and b 
constants. Then:

and



Example

Covariance and correlation

Y2

Y1

Y2

Y1



Example

Covariance and correlation

Covariance thus depends on variance of Y1, while linear 
relation (β) between Y1 and Y2 is unchanged.

Y2

Y1
100-100 0

-100

0

100
Y2

Y1
1-1 0

-1

0

1

unequal 
covariances!

Undesirable property for a measure of linear dependence.



Solution

Covariance and correlation

Y2

Y1100-100 0
-100

0

100
Y2

Y11-1 0
-1

0

1

rescale

Standardization of Y1 and Y2

with



Covariance and correlation

Pearson’s correlation coefficient
Normalized covariance between Y1 andY2:

It measures the degree of linear dependence between the 
two random variables Y1 and Y2.

ρ(Y1, Y2) in [-1, 1], with 

→ ρ =  1 :  perfect positive linear relationship. 
→ ρ =  0 :  absence of linear dependency. 
→ ρ = -1 :  perfect negative linear relationship. 

Closer |ρ| to one: stronger linear dependency. 



Question: r ≈ ??r = ­0.011r = ­0.785

r = 0.726r = 0.737r = ­0.030

Pearson’s correlation measures only linear dependence.

Covariance and correlation



Covariance and correlation

Clearly, a Pearson correlation coefficient equal to zero 
does not imply the absence of nonlinear relationships.

Question

Let X ~ N(0, 1). Define Y through:
Y = -X if |X| > c
Y = -X if |X| < c

with c ≥ 0.

What is Cor(X, Y) for c=0.01? For c=1.5? For c=10?



Covariance and correlation

Estimation
Pearson’s correlation coefficient is estimated by:

Denoted r and called the sample correlation coefficient.

where



Covariance and correlation

Distribution
Under the assumption of a multivariate normal distribution, 
the Fisher transformed sample correlation coefficient:

follows approximately a 
normal distribution:

Can now to test H0: ρ = 0.

p-value = P (X  x)



Covariance matrix
The definition of covariance extends to random vectors:

Covariance and correlation

No longer a scalar, covariance is now a pxp matrix:



Covariance matrix
The elements of a covariance matrix are the pairwise 
covariances of the elements of random vectors X and Y:

Covariance and correlation

E(Y2)

E(X1)X1

Y2



Covariance and correlation

Question
Consider the random vector  
with covariance matrix:

→ What is the meaning of the diagonal elements?
→ Why is the above matrix symmetric?
→ What does the value of (1,2) element imply?



Covariance matrix properties (I)
Let X and Y be two independent multivariate random 
variables. Then:

Let X be a multivariate random variable and c a vector with 
constants. Then:

Let Y be a multivariate random variable. Then:

Covariance and correlation



Covariance matrix properties (II)
Let W, X, Y and Z be multivariate random variables. Then:

Let X and Y be two multivariate random variables and A 
and B coefficient matrices. Then:

Covariance and correlation



Correlation matrix
Similarly, the correlation between two random vectors is:

Covariance and correlation

with e.g.:

The correlation matrix contains the pairwise correlations.



Covariance and correlation

Question
Consider the random vector  
with covariance matrix:

Consider the related correlation matrix. What is on the 
diagonal of this correlation matrix?



Multivariate 
normal distribution



Multivariate normal distribution

Denote a p-dimensional Yi = (Yi1, …, Yip)T        random 
variable following a multivariate normal distribution by:

with a mean parameter:

and a covariance parameter                  :



Multivariate normal distribution

The p-variate normal distribution has density f(Yi) equal to:

Recall the univariate normal distribution density:

Density



Multivariate normal distribution

The density of a bivariate (p=2) normal distribution.

Density represented by level 
sets: {Y : f(Y) = c}. Observations 
with equal likelihood.



Multivariate normal distribution

Data distribution of trivariate (p=3) normal distributions.



Multivariate normal distribution

Standard multivariate normal
The random variable Y=(Y1, Y2, Y3)T    is standard normally 
distributed if:

Thus:

Put differently:

and



Multivariate normal distribution

Standard bivariate normal

↔ 
 



Multivariate normal distribution

Any multivariate normal random variable can be derived from 
the standard normal one.

Now define:

Then:

Let

such that
, ,

and

i.e:



Multivariate normal distribution

Question
Let the random variable     be defined as on the previous 
slide. Verify:

Hint (for part 2)
Use the singular value decomposition of      :

and



Multivariate normal distribution

Bivariate normal distribution.

Recall model:

Then:

joint density

f(Y1,Y2) 

Y1

Y2

Y1

Y2with:



Multivariate normal distribution

Question
Let Y be a bivariate 
normally distributed, 
random variable.

How would you calculate:

   P(Y1 ≥ 0)

   P(Y1 + Y2 ≥ 0)



Multivariate normal distribution

The marginal distribution of a subset of random variables 
Y1, …, Yp is the distribution of random variables in the subset.

joint distribution of 
Y1 and Y2

marginal of Y1 

m
ar

gi
na

l o
f Y

2
 

joint distribution of 
Y1 and Y2

marginal of Y1 

m
ar

gi
na

l o
f Y

2
 



Multivariate normal distribution

For the bivariate normal the marginal of Y1 is:

Thus:                            , where, e.g.:

This result (normality) also holds for p > 2.

Consequence
As the marginal distribution of a multivariate normal is itself 
(multivariate) normal, we can interpret the parameters of the 
multivariate normal in terms of the marginal means, variances 
and (bivariate) covariances, e.g.:                                 .



Multivariate normal distribution

The matrix     is often parameterized as:

where:

The latter is the correlation between Yij1
 and Yij2

. 



Multivariate normal distribution

The parameterization in matrix form:

where:

correlation matrix



Multivariate normal distribution

where:

From covariance to correlation matrix:

Question
→ Verify for p=2.
→ How to go from correlation to covariance matrix?



Multivariate normal distribution

σ1=1, σ2=1, ρ=0 σ1=1, σ2=1, ρ=3/4

Effect of σ1, σ2, ρ in the bivariate normal distribution.

σ1=2, σ2=1, ρ=0



Multivariate normal distribution

Independence
Suppose ρ = 0. Then:

Hence, the genes in a two-gene pathway are 
independent if ρ = 0.



Multivariate normal distribution

condition distribution
of Y2 on Y1=-1

joint distribution of Y1 and Y2

condition distribution
of Y2 on Y1=1.5

Y1=1.5Y1=-1

Partition a p-variate normal random variable into two exhaustive, 
exclusive subsets. The conditional distribution of a subset of 
variates conditioned on the other is then normally distributed.



Multivariate normal distribution

Formally, assume the partitioned random variable:

Theorem 6.5 of Bickel & Doksum (2001) then states:

Note: 
→ The theorem saves nasty integrals. 
→ Joint, marginal and conditional distributions are normal.
→ The condition variance does not depend on   Z.



Multivariate normal distribution

Example

Consider the trivariate normal distribution:

Calculate the distribution of (Y2, Y3) conditional on Y1.

Set                  and                and apply the Theorem from the 
previous slide. For the conditional mean, we obtain:



Multivariate normal distribution

Example (continued)

The conditional variance is:

The distribution of (Y2, Y3) conditional on Y1 is thus:

Hence, conditional on Y1, variables Y2 and Y3 are uncorrelated.

Compare this to the marginal distribution:



Multivariate normal distribution

Example (continued)



Multivariate normal distribution

Example
Suppose the expression levels of gene B are determined 
by that of gene A and some noise. That is, Yb is the sum of 
two random variables:

Furthermore, Ya and ε are independent and both normally 
distributed with mean zero and unit variance: 

Question
What are the mean and variance of Yb? 
And, the mean and variance of Yb conditional on Ya?



Multivariate normal distribution

Example
With respect to the mean:

where the independence between Ya and ε has been used.

Alternatively (using the zero mean of Ya and ε):

joint density



Multivariate normal distribution

Example
With respect to the variance:

again using the independence between Ya and ε.

Alternatively (using the zero mean of Ya and ε):



Multivariate normal distribution

Example
With respect to the conditional mean, conditioning on Ya 
means that Ya is no longer random but fixed at some 
value ya. This propagates through the calculation:



Multivariate normal distribution

Example
With respect to the conditional variance:



Let Y1, …, Yn be p-dimensional, normally distributed, 
random variables with parameters     and     :

Estimation

Parameter estimation

where

The ML parameter estimates are then:

and



These estimates are the standard univariate estimators 
aggregated into vector and matrix:

and similarly for the off-diagonal elements of the 
covariance matrix.

Estimation

Parameter estimation



Why the multivariate 
normal distribution?

(supplementary material)



Why multivariate normal?

Motivation from rate equations

The transcriptional process is often modeled by rate 
equations, a system of ordinary differential equations. 

The rate equations model the regulatory process by linking a 
change (over time) in one gene’s transcripts to the mRNA 
concentrations of the other genes in the pathway:

change 
over time

degradationtranscription



Motivation from rate equations

Why multivariate normal?



Assumption 1: steady state

Motivation from rate equations

Why multivariate normal?



Assumption 2: linearize

Assumption 1: steady state

Finally, assume the Y’s random and add error term.

Motivation from rate equations

Why multivariate normal?



Y1 = β Y1 + γ Y2 + S + e3

Y2 = α Y1 + γ Y2 + S + e3

Y3 = β Y1 + γ Y2 + S + e3

Original

New

01 = α Y1 + β Y1 – Y1

02 = α Y1 + β Y1 – Y2

03 = β Y1 + γ Y2 – Y3

Motivation from rate equations

1

2

3

S
α

β

γ

Why multivariate normal?



Why the multivariate normal?

Consider a pathway of 3 genes.

Assuming the expression of the genes in the 
pathway follows a linear system:

1

2

3

As the sum of normally distributed variables is also 
normally distributed, all genes are normally distributed! 

S

with the signal and errors independent and normal.

Why multivariate normal?



Calculate mean and variance of resulting trivariate normal 
distribution by means of expectation and variance rules. E.g.:

This is generalized in the next theorem.

Why multivariate normal?



Then,        with:

and

Theorem (Koller, Friedman, 2009)

Suppose                ,                ,  and define:

Why multivariate normal?



Illustration of theorem
The last theorem enables the calculation of the joint 
distribution of Y1, Y2, and Y3. It is a multivariate normal:

The theorem tells us how to fill the gaps:

1

2

3

S
α

β

γ

Why multivariate normal?



Illustration of theorem
So far, we thus have:

1

2

3

S
α

β

γ

The rest goes in a similar fashion, e.g.:

Why multivariate normal?



Illustration of theorem
Finally, this gives:

and =

where

1

2

3

S
α

β

γ

Why multivariate normal?



This material is provided under the Creative Commons 
Attribution/Share-Alike/Non-Commercial License. 

See http://www.creativecommons.org for details.
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