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Two-gene pathway

Two-gene pathways comprise two genes, and ignore the
possibility there may be more.

Cancer research example
Y, : gene expression measurements of a tumor

suppressor gene
Y, : gene expression of a methylation marker

Question
Does the methylation marker (MM) influence the
expression of the tumor suppressor gene (TSG)?
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Two-gene pathway

TSG suppresses tumorigenesis. ldeally, its expression
levels are high. If the expression levels of MM and TSG are
dependent, we may aim to control those of TSG via MM.

Independence Dependence
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Correlation

Two-gene system
Calculate correlation between any two genes. If the
correlation is large (in some sense), the two genes interact.
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Correlation

Cancer research example
Expression levels of the TSG vs. MM
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Question: is there dependence between TSG and MM?



Correlation

Cancer research example

> cov(cbind (MM, TSG))

MM TSG
MM 0.23897377 -0.09787409
TSG -0.09787409 0.25388099

> cor(cbind (MM, TSG))

MM
MM 1.000006-0.397354
TSG -0.397354 1.000000

> rho <- cor (MM, TSG)

> T <- log((l+rho)/(1-rho))/2
> sd <- sqgrt(l/(length(MM) -3))
> pvalue <- 2*pnorm(T, sd=sd)
>
[

pva
11 0.0006984108

Conclusion

Significant association
between of MM on TSG.
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Note: the edge is
undirected, the two
variates are (causally)
on a par.



Regression

Instead of using some measure to
assess the dependence between
two variables, one may explicitly
model their relationship.

Regression analysis Is a statistical method to estimate the
relation among variables. E.g.:

Yieg = f(Yim) + €rror

where () iIs some function deemed appropriate. Commonly,
f() I1s taken to be linear (as a first order approximation).



Two-gene pathway & regression

More formally, the simple
linear regression model:

Yi = Do+ 01X +e
TSG MM
Some nomenclature: ViV
:i — /80 + /8 1 X + &;
response regression :b‘ error
or parameter = part of Y not
dependent explanatory explained by

variable variable the model



Regression

More formally, the simple |
linear regression model: =t
ﬁ = o+ /ﬁ&-l—&:
TSG MM
MM
with & normally distributed with:
E(&;) — i)
2 . . 5
. | o o if 11 = 19
ConlGing&) = { 0 if 4y £y

In the above the unknown parameters are: 3,, 3,, 0.



Regression

Note
We write:

Yi — [30 -+ /31 X{i + &g

while it is equivalent to write:

Y; ‘ X; o~ N(IBO + BlX??$ 0-2)

The latter explicitly assumes that the explanatory variable
X. Is (temporarily) taken as non-random. It is to be read

as: Y; conditional on X. is distributed as ....



Regression

Conditional vs. marginal

The conditional The unconditional (marginal)
distribution of Y. on X distribution of Y,
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Regression

Tumor surpressor gene

(36U70€H’refxaarcf)e»«arnpﬂe?
> plot(TSG ~ MM, ...)

> lines (regressionResults$fitted.values ~ MM,
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Conclusion
Significant effect
of MM on TSG.

Thus, 3 #0.
Hence, gene

expression levels
of MM and TSG

are related.
@ TS



Correlation vs. regression

Cancer research example
In a two-gene pathway p=0 implies independence between
its genes. What does 3,=0 say about independence?

Independence Dependence
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Correlation vs. regression
Assume (Y, YTSG)T ~N(u, X)

Consider the regression equations:

Yise = Porse + LY + Ersa
Yaw = Boan + Birse Yrse + v
with:
Var(eyn) = Var(Yan | Yose ) = 02,
Var(erse) = Var(Yose | Yan) = 0240
Question

What is the relation between the ('s and p?



Correlation vs. regression

Then:

\/V&r ( YT SG ‘ YM M )
Pa = P ( Yars Yorsa )
V' Var (Yo | Yesc)

and:

Var(Yuu | Yrsc
Bree = \/ ( MM ‘ T‘:C) ﬂ(m.-n\.{[g YTSG)
\/V&I‘ ( YT SG ‘ YM M )

Rewritten this gives:

Buyv = Orse O 3:1131 P (YM My Yrs G)
BTSG — Owmm UT_Slc; p(ﬂim YTSG)

Hence, if p=0 so will the 3’s equal zero.



Correlation vs. regression

To validate this claim, simply condition on either Yy, Or Yig In
the bivariate normal distribution:

—1
YTSGYMM/MX /EXZ )P
=  [lrsc T Orsc O'MM)O(YMM YTSC) O viv (Y;\JIM UMM)

— 60 + UT&CUMM)O KWM YTsC Yyum

N,




Correlation vs. regression

Note
The relation between p and the 8’s can also be reversed.

From:
Bav = ot P(Yans Yise)
MM — Orsc Oy P\ v L 1sc
_ —1
/BTSG — OmmMm Opge Q(H{MgYTSG)
we obtain

Sigﬂ(ﬁmm) \//BMM /BTSG
Sign(ﬁTSG) \/BMM Brsa

Thus, p and  are 1-1 related.

P(YMM ; YTSG)




Correlation vs. regression

TSG & MM independent TSG & MM dependent
Cond. indep. graph Cond. indep. graph
Data (p=0 < (,=0) Data (p#0 < [(,70)

TSG| TsG|

MM MM



Correlation vs. regression

Undirected edges only
A closer look at:

_ —1
Bum = Orse O vt P (YM My Yors G)
_ —1
/BTSG — OnM Opge ﬁ(ﬂ-—ih{[g YTSG)
MM

The correlation is symmetric:

P(Yumr Y1se) = P(Yiser Yum)
and the variances are both positive.

Hence, the signs of B,,,, and sG] <
B are identical.

TSG

MM



Correlation vs. regression

Undirected edges only
Due to the symmetry of p, it does not distinguish between:

@ & o @ &
Hence: @ @

In regression analysis the random variables Y, and Y.
are not on equal footing. The equation:

Yoo = f(Yy) + error
suggests MM — TSG. However, the (3's are one-to-one

related. Consequently, also regression does not provide a
clue about the direction of the relationship.



Eat chocolate, win the Nobel!

Interpretation pitfall
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Mobel

Laureates per 10 Million Population.

Messerli, 2012.



Interpretation pitfall

Even better: drink milk, win the Nobel!

fMobel Laureates per 10 Milllon Population
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Best: drink chocolate-milk, win the Nobel?

Linthwaite, Fuller, 2013.



Interpretation pitfall

Does the involvement
of more fireman result
In more damage?

»
>
¢ oo

damage (euro’s)

>

# fireman involved
Possible interpretations of these data:

X=—>Y More firemen result in more damage.

X+<—Y  More damage results in more firemen.

X Y . : : :
\/‘ A bigger fire (Z) results in more firemen
and more damage.
Z



Interpretation pitfall

What to conclude about the relation

between the activity levels of molecules
A and B?

L& . .
Yb - . ¢

Y'

a

Question
Could others be responsible for observed (in)dependence?

2 and 4 could be connected in many ways, e.g.:

o] 1 o1 7 o ]
0—O0 0—0O 00



Interpretation pitfall @

&
Cancer research example )
An alternative explanation by model: w — @
I'sG; = prsaMM1; +ersa.i o
MM?2; = [Baraa MM1; + earnra.i
with

TSG

MMI1, -~ N(O:Uifnﬂ)
ETSG,i N(O:UCQTSG)

enraros  ~ N(0,07070)

Simulate

MM2
Even though there is no direct (causal) relationship between
TSG and MM2 they may appear to be related.



Interpretation pitfall

Cancer research example

The (independence) An alternative graph
graph of the 3-gene that may explain the
pathway underlying the data equally well:

regression model:

X Y : X are Y cond. dependent

X====- Y : XandY are correlated






Regression

Cancer research example
Y : gene expression measurements of a tumor
suppressor gene

X, : gene expression of methylation marker 1 @
X, : gene expression of methylation marker 2

? ?
Question
Do the methylation markers (MMs) influence the
expression of the tumor suppressor gene (TSG)?

Revisited later.



Regression

The simple linear regression model:
Y, = Bo + 81X + &

IS linear in the regression parameters.
Hence, the following extensions are linear too:

Y; = Bo + F1X; + B2 X7 + g
Y, = Bo + B1Xi1 + B2Xio + 83X, 3 + &5

Examples of linear models
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Regression: parameter estimation

Question

Can a quadratic Can Y =3, + B, sin(B, X) be

relationship fitted by linear regression?
be modelled by linear

regression?
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Regression

In general, the linear regression model is:

Yi = P+ Xa+BXeo+. . +0-1Xi 1 +5;
€.g..
}/Ti-,TSG — BO + 51\.—-11\--11Xfi,1\f-11w11 + 61\.41w-12Xi,1\--11\.42 + &g
with the distribution assumptions:
&g ™ N(O 0'2)
E(E?;) = W
2 : # E
o B g~ 8 91=15
Lo Gy ) = { 0 if 45 # i

In the above the unknown parameters are: 3, B,, ..., 5., 0%



Regression

In matrix notation (simplifying notation):
Y = X3+ ¢

with
g N(O?’LX1J UQIan)

The (nx 1)-, (p x 1)-, (n x 1)-dimensional vectors with
observations, parameters, and errors:

(Y1\ /50\ (21\

Yo 51

U A U




Regression

The (n x p) design matrix:.

X

sample
sample
sample
sample

(1 X1 X Xip-1
I Xo1 Xoo X2 -1
\ 1 an X’RQ X*n,,p—l /
E.g. in the tumor suppressor example:

_intercept MM1 MM2
1 -0.42796 0.26441
1 4.21648 -3.86460
1 -1.14688 -1.22544
1 -0.46377 0.12756
1 0.86248 1.16049

sample

Uk WNPR




Regression

Question
Consider simple model for length in terms of sex:
Y = [o+ 51 xSEX; +¢;

Two design matrices:

intercept sex intercept
sample 1 1 1 sample 1 3
sample 2 1 1 sample 2 3
sample 3 1 1 sample 3 3
sample 4 1 1 sample 4 3
sample 5 1 1 sample 5 3

What are the differences between resulting models?

sex

. | I | 1
e DD DMNMDDMDDN



Regression

The specifics of the design matrix depend on the model

employed. E.g. consider the two equivalent models:

Bo + B1 x SEX,; + &5
— 3, x FEMALE,; + 85 x MALE; + ¢,

Y;
Y

with corresponding design matrices:

sample
sample
sample
sample
sample

u kb W N R

female

! Proopro

male

c OR R OB

sample
sample
sample
sample
sample

u kb W

intercept

TR RPRPRR

sex

. | I | 1
c R R R R R



Regression

The regression model thus is:
Y =X3+¢

To illustrate the notation simplification:
Yi = XiufB+e

Yi = Lo+ Xa+PeXo+ ..o+ 0p1Xip1+&

where X, denotes the i-th row of the design matrix.

The distributional assumptions become:
E(e) = [E(e1),E(ea),...,E(e,)] "
= (0,0,...,0)" =0,x1



Regression

and (independence of samples):
Cov(e,e) = X =01, xn
as
Cov(ej, ) =0
COV(éil,é‘iQ) =0 it il # ?;2

2

The expectation of the vector of observations:
E(Y) =X
as:
E(Y2) — E(ﬁo + /61X2',1 T+ .. T ﬁp—1X@,p—1 + 8@)
=E(6y) +E(51Xi1) + ... + E(Bp_1Xip-1) + E(&))
=Po+ L1 X1+ ...+ Bp_1Xip_1



Regression

Model
We write:

Yti — Xa*ﬁ )

while it is equivalent to write:

Y; ‘ X?:.::-k ~ N(X?ﬁ,*/@v 0-2)

The latter explicitly assumes v 4
that the explanatory variable X =
IS (temporarily) taken as non-

20 4

random. It is to be read as: Y
conditional on X is distributed
as .... 5




Regression

Parameter estimation



Regression: parameter estimation

Question
What is now the best model? Best in what sense?




Regression: parameter estimation

We search a linear (= straight line) relation:
Y =B, + B, X
How to choose 3, and 3,?

30 ,
25 |
20 -

15 - ® ) ()




Regression: parameter estimation

B, and 3, are chosen such that the total quadratic distance
of the observations to the regression line is minimal.

30 4

25 -

i: ll,ﬂq s
A Ill




Regression: parameter estimation

Estimation
Use maximum likelihood. Hereto, note that:
Y, = X8+ ¢;
EY;)) = X.p0

with g; ~ N(0,0%) and €;,, £;, independent if i, # i-.

One may thus reformulate the model as:

}/fi ‘ X?Z::k e N(Xz*ﬁ 02)

Normality gives:
P(Y; =vyi) =

1 2, o
exp|—(y; — Xy B)/207]
2T O



Regression: parameter estimation

Estimation
Using the independence of the samples, the likelihood is:

H — exp[~(yi ~ X..8)?/(20°)

with log-likelihood:

log[P(Y = y)] = —nlog(v2m0) — 535 > (yi — X +0)?

This Is quadratic in the parameters (a parabola):
co+ c1 Bo + ca B+ e3 35 + ca B7 + 5 o B

where the ¢, depend on X and Y.



R

tged)

egression: parameter estimation

Plots of loss function vs. parameters (2d and 3d)
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Regression: parameter estimation

Effect of sample size
Larger sample sizes yield better located (= less biased)
and clearer (= lower variance) optima.

Few samples Many samples

L(Bo, B L(Bo B,)

2.5
2.0 [
B 1.5
l 1.0
0.5
0.0
-0.5
-0.5




Regression: parameter estimation

Equate the loglikelihood's 1t order derivative to zero:
X'xpg = X'y
Solving for 3 yields:
B = X'X)"'x'y
For the ML estimation of ¢?, solve:
n 1 n 2
o | o3 Zi:l(n o X%*/B) =0
This yields:
~2 1 n , _ 2
UMt — o Zi:l(yl o X%,*IB)

This estimator is however biased! For an unbiased estimator
divide by n-p instead of n.




Regression: parameter estimation

Example (numerical)

Consider an experiment in which expression levels of a 3-
gene pathway have been measured. The resulting data are:

gene 1 gene 2 gene 3
sample 1 0.622 0.934 -1.915
sample 2 1.001 1.341 -2.140
sample 3 -0.468 -1.180 -0.088
sample 4 1.752 0.058 0.478

Wish to fit: Y = X B + € with Y gene 1. Then:

gene 1 intercept gene 2 gene 3
0.622 1 0.934 -1.915
1.001 1 1.341 -2.140

-0.468 1 -1.180 -0.088

. 1.752 " 0.058 0.478

1 I

Y X



Regression: parameter estimation

Example (numerical)
Toevaluate 3 = (X'X) 'X'Y
calculate its constituents:

4.000  1.153 —3.665 2.907
XX = 1.153  4.066 —4.527 X'Y = 2.577
—3.665 —4.527  8.483 —2.455

0.494 0.240 0.341

(X'X)"' =1 0.240 0.722 0.489

0.341 0.489 0.526

and obtain:

1.215
(X'X) "' XY = | 1.359

0.961



Regression: parameter estimation

Example (numerical)
For 02 evaluate:

51%11, — %Z?:l(y; _ Xi,*/é)z

,\ 1.215
X1.8 = (1 0934 —1.915 ) 1.359
0.961

E.g.:

This yields s? = 2.292 * 104
The fitted model thus is:
Y, = fo+ B1Xz',1 + Bzsz;,z + &4
= 1.215+ 1.359X,; 1 + 0.961X; 2 + ¢;
with e; ~ N(0,2.292 x 10™%)



Regression: parameter estimation

Fits
From the fitted model obtain the fits (the observation as
expected by the model, i.e. the regression line):

Y = X,B
as the error is best predicted by its mean, which is zero.

The fit of an individual observation Is:

~

Y; = BO"—BlXi,l + (X

30a
257

207

For novel data (X's) this |
formula may be used for i

] °
107

prediction. g .

10



Regression: parameter estimation

Estimate behaviour

The estimates are unbiased:
E@B) = B
with variance (derivation in SM):

Var(B) = o (X' X)™!

In particular:

e

B ~ N(B.o[X'X]™

Note
Variance of the estimate mainly depends on design matrix.

In controlled experiments X is chosen s.t. the variance of the
estimates is minimal.



Regression: parameter estimation

Estimate behaviour vs. design
Consider two experimental designs:

Orthogonal design Non-orthogonal design
(1 1) (1 1)
1 -1 1 0
X — X — j
1 | 1 1
\ 1 -1 \ 1 -1 )
Covariance matrix of Covariance matrix of esti-

estimates of g is diagonal. mates of g is not diagonal.



Reqgression: parameter estimation

Estimate behaviour vs. design
The orthogonality of the covariates determines the shape of
the parabola.

Orthogonal Non-orthogonal

L(Bo B.) L(Bo B.)




Regression: parameter estimation

Residuals
Residual is the deviation between observation and model.

30 4
L
25 - ° o
L L
observed value a(, ? . °
20 -
([ ]
([ ]

15 - ° °
A Al — — e e e e ° °
fitted value Q- )

10 - . ® ° °

° L
5 4 °
([ ] ([ ]
0

0 2 4 6 8

Residual = observed value — fitted value:
& =Y = Y=Y, - X;.03



Regression: parameter estimation

Residual variance
Simply the variance of the residuals:

A2 _ 122_ (Y Xz*ﬁ)
\

residuals

It is thus the variance of Y corrected for X. Or, the variance in
Y not attributable to X. It is also denoted as: Var(Y | X).

Ideally, this is small compared to Var(Y) as that would imply
that the model is a good description of the data.



Regression: hypothesis testing

Testing
The variance of the estimate of 8 can now directly be

obtained from:
Var(8) = o*(X'X)™!

Its constituents are on previous slides.

This variance Is used for testing (H, : 8, = 0), and
the construction of confidence intervals, e.g.:

P € Bi +1.96 \/32[(XTX)—1}1,1} ~ 0.95




Regression: hypothesis testing

Testing
For each parameter we test the null hypothesis:
Ho . 5 —
To evaluate this hypothesis we note that:
b —ilo
~ b tn—'p
Crﬁj
where:




Regression: hypothesis testing

Example (numerical)

R output of regression
Coefficients:

Estimate Std. Error
(Intercept) 1.21544 0.02126
X[, 2] 1.35873 0.02572
X[, 31 0.96082 0.02195

value Pr(>|t])
57.18 0.0111 +*
52.83 0.0120 *
43.77 0.0145 %

Signif. codes: 0 ‘***’ (0,001 ‘¥’ 0.01 “*’ 0.05 *.” 0.1 * " 1

Residual standard error: 0.63026 on 1 degrees of freedom

Multiple R-squared: 0.9994, Adjusted R-squared: 0.9989
F-statistic: 1400 on and 1 DF, p-value: 0.01889

T-statistics and p-values.

Note this uses the unbiased (rather than the ML)
estimate of the error variance.



Regression: coefficient of determination

Define the coefficient of determination:
R*(Y.X) = p(Y.Y)
= p° (Y, XB)

the squared correlation coefficient between Y and the
columns of X. Note: R? in [0,1].

An alternative interpretation of the R? comes from the sum of
sguares of the observation:

T

SYY = > (Vi-Y)

1=1



Regression: coefficient of determination

We may then write:

P2 _ SYY — RSS
SYY
sy — s
— =z
where: . .
Sg - on—1 Z(Ei B

SYY/(n—1)— RSS/(n — 1)

SYY/(n—1)

n—1 ZC?

1—=1

= RSS/(n—1)

The “percentage of explained variation” in Y by X.



Regression: coefficient of determination

Example (numerical)

R output of regression

Estimate Std. Error t value Pr(>|t])

Coefficients:
(Intercept) 1.21544 0.02126
X[, 21 1.35873 0.02572

X[, 31 0.96082 0.02195

57.18
52.83
43.77

0.0111
0.0120
0.0145

Signif. codes: 0 “***’ (0,001 “**’ 0.01 “*’ 0.05

Residual standard_error: ©
Multiple R-squared: 0.9996,

F-statistic: 14000

DF,

R2: coefficient of determination.

Indicates the explanatory power of the model.

*

*

0.01889

./ 0.1 ¢

63026 on 1 degrees of freedom
Adjusted R-squared:
p-value:

0.9989

/4

1



Regression: coefficient of determination

R? is the percentage of the variation in the measurements
that is explained by the regression model.

R?2=76.3% R2 = 98.7%

| L L D e e I O L D e |
15 25 3 45 55 65 75 8 9B 15 25 35 45 55 65 75 8 95

Large R? (> 80%): almost all variation in Y is explained
by X. Hence, we can make precise predictions.

Small R?: a substantial part of the variation in Y is
explained by other factors.



Multi-gene pathway
& regression



Multi-gene pathway & regression

Multi-gene pathways comprise of more than two
genes, and assume no gene “lives” outside the pathway.

pathway =
“whole universe”

Two methods:
* Regression
e Correlation



Multi-gene pathway & regression

Regression method
Regress the expression data of each gene on that of

all other genes. 1)
Yl = bOl + b21Y2 + b31Y3 + el 9 e
Y2 = b02 + b12Y1 + b32Y3 + e2 9 e
@
Y3 = b03 + b13Y1 + b23Y2 + e3



Multi-gene pathway & regression

Cancer research example
Y : gene expression measurements of a tumor
suppressor gene

X, : gene expression of methylation marker 1 @
X, : gene expression of methylation marker 2

2 2

2 ©

Question
Do the methylation markers (MMs) influence the
expression of the tumor suppressor gene (TSG)?



Multi-gene pathway & regression

# generate all pairwise scatterplots
> pairs(cbind (TSG, MM1, MM2))
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Multi-gene pathway & regression '

#H perform multiple regression analysis @
> regressionResults <- 1m(TSG ~ MM1 + MM2)
> summary (regressionResults)

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) 0.51023 0.18969
MM1 -0.31679 0.10784
MM2 -0.27524 0.06941

Signif. codes: 0 “***/ (0_.001 ‘**’ Q0.01 “*’ 0.05 *.” 0.1 * * 1

Residual standard error: 0.4212 on 65 degrees of freedom
Multiple R-squared: 0.3219, Adjusted R-squared: 0.3011
F-statistic: 15.43 on 2 and 65 DF, p-value: 3.286e-06



Multi-gene pathway & regression

Check distributional assumption

NNNNNN Q-Q Plot Histogram of residuals
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Multi-gene pathway & regression

Check for other irregularities

sjenpisal

methylation marker 1 methylation marker 2 fitted values



Regression: parameter estimation
Model: A A
Yise = BMMlXMMl + BMMQXMMQ + error

The change in the response due to one in a covariate:
8YTSG/8XMM1 — BMMl

Put differently:
AYTSG — YTSG,Q_YTSG,l

— /éMMlAXMMl — /éMMl(XTSG,Q — XTSG,l)

Suppose there is an optimal response value Y. ... Then, set:
XTSG,neW — (YTSG,ideal T YTSG,current)//BMMl —|_ XTSG,current

SUbStltUte In the mOdeI YTSG,neW — TSG,ideal —|_ CIrror



Regression: parameter estimation

Hence, we can steer response to ideal value. But:
— error causes deviations from Y. iaeal,
— other methylation marker will not be constant.

Repeated application may yield cellular control:

ittt |deal value
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