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Partial correlation

Multi-gene pathways comprise of more than two
genes, and assume no gene “lives” outside the pathway.

(@
® ©) pathway =

“whole universe”

Network reconstruction:
— bivariate normal: no correlation — dependence.
— suggests study of correlations in multivariate normal.

But ... correlation ignores the other variables, and thus
assesses the marginal dependence between two variables.



Partial correlation

Example

Consider a 3-gene pathway.
Assume the genes' expression
levels follow a linear system:
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Multi-gene pathways

So far

CIG reconstruction based on correlation often fails as
correlation only looks at marginal independence.

Up ahead
Conditional independence — partial correlation.

Why?
A zero partial correlation — edge absent in the CIG.

part. corr.=0

>







Partial correlation

A partial correlation coefficient quantifies the correlation
between two variables when conditioning on other variables.

The partial correlation coefficient between Y, and Y,
conditional on variables Y. is defined as:

(Y " ‘Y ) o COV(YQ,Y(} ‘ Yc)
Ata ol Te) = \/Var(Ya\Yc)\/Var(Yb\Yc)

The number of variables conditioned on iIs the order.

The partial correlation above thus measures the linear
dependence between Y, and Y, conditional on Y.



Yy Y

Partial correlation

The partial correlation is normalized and thus:
p(Ya, Yy | Yc) € [—1,1]
with:

p(Yaal/b|Yc) =0 p(Yvab‘Yc) = 0.2

WY,
Y |Y,

p(YCLaYb‘YC) =1

Y, Y. YL Y.

Y, [Y.



Partial correlation

Interpretation
Let Y,, Y,, Y, be random variables. Then, p(Y,, Y,| Y,) =

amount of information in Y, on Y, after removal of alll
Information on either of them contained in Y.,.

p(YhY?‘Y?)):O p(YhYQ‘}/?))#O
Call: Call:
Im(formula = Y1 ~ 0 + Y2 + Y3) Im(formula = Y1 ~ 0 + Y2 + Y3)
Coefficients: Coefficients:
Estimate Pr(>|t]) Estimate Pr(>|t])
Y2 -0.01444 0.638 Y2 0.24869 2.95e-15 ***
Y3 1.01584 <2e-16 *** Y3 0.96542 < 2e-16 ***
Y, adds nothing to Y, in explaining Y, does add to Y, in explaining

variation in Y. variation in Y;.



Partial correlation

Y1

Consider three genes.
Let Y,, Y,, Y, be random variables

representing their expression levels.

Y1 = Ys+¢eg

Yo = €2

Y5 = Y +e3
Question

What about the partial correlations?
= p(Yy, Y,| Y3) =0 or p(Yy, Y,|Y,) #07?
= p(Yy, Y3 | Y) =0 or p(Y,, Y;|Y,)#07?

Y3




Partial correlation

Y1

Question

Consider p(Y,, Y, | Ya).
Wish to know e.g.:

COI‘(Yl, YQ ‘ }/3 — O)

COV(Yl, Y2 ‘ ng = O)
\/Var(Yl ‘ }/3 = O)\/Var(Yg ‘ ng = O) y

Effect of conditioning:

Y1 = Yo+ e
Y = €2 |
0 — Yg 5l o fix error, £3 = _Y2

Setting Y, = 0 does not affect relation between Y, and Y,!



Partial correlation

How to condition on another gene?
Condition gene 1 on gene 3
within a three-gene pathway.

Recall

Yi = X;«B+¢;
IS equivalent to:

Yi ‘ Xé,* ~ N(X?ﬁ,*ﬁg 0'2)
Regress gene 1 on gene 3:

Yii = Bo+1Yis+ecia

and “obtain”:

YiilYis ~ N(Bo+ B1Yis,0%)




Partial correlation

Example
Recall the pathway of 3 genes.
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Calculate partial correlation between Y, and Y.



Partial correlation

Example (continueq) " Ll |||‘“||. ........

residuals
regress Y, onY, obtain residuals ~ condition distribution

L Q joint distribution of residuals
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Partial correlation

The partial correlation between Y, and Y, conditional on Y,
IS the correlation between the residuals of Y, and Y, after

regressing themon Y..

K
S
Estimate partial correlation by:
P(Ya, Yo | Ye) = p(Ev, . €v,)
where Ya e
v, =Y, — E(Y,|Y,) =1

the residual obtained when \\

regressing Y,onY..




Partial correlation

Distribution
The Fisher transformed partial correlation coefficient:

F(r) = %log[(lJrfr)/(l—fr)] — arctanh(r)

follows asymptotically a
normal distribution:

F(r) ~ N[F(p), (n =k —2)7"]

where k is the number of 7
variables conditioned upon.

Can now to test H,: p(+|-) = 0. -

p-value = P (X £Xx)



Partial correlation

Question
Consider three random variable Y, Y,, and Y, representing

expression levels of the three genes.

The expression levels are not linearly dependent:
|)O(Y13 YQ)‘ # 13 ‘p(Yla Y3)| # 17 |p(Y27 Y3)| # 1

When regressing the first gene on the other two, i.e.:

Y1 = [B2Yo 4+ B3Y3 + ¢4

with coefficient of determination R?= 1.
BY,+ BY,

A
Yl

What is p(Yl, Y2 ‘ Yg )?




Partial correlation

Alternatively, partial correlation can be calculated by
covariance matrix inversion. Hereto we need:

Inverse variance lemma (wnitaker, 1991)

Let X and Y be p and g-dimensional random variables. The
Inverse of the partitioned variance Var(X, Y) Is given by:

{Var[(X, Y)]}

- (n® 0¥ - ez )

Take-away: inversion = (reciprocal of) conditioning!



Partial correlation

Corollary (wnitaker, 1991)
Each diagonal element of the inverse variance matrix is the

reciprocal of a partial variance:
(2) 71155 = 1/[Var(Y; | Yy ;)]

—— partial variance

Familiar quantity from Yi ¢
regression analysis. Let:

Y ~ N(XS3,0°)

Then: Var(Y | X) = ¢




Partial correlation

Example
Trivariate normally distributed data:

> H# prelimary
> get.seed(l); library (mvtnorm) ;
> Sigma <- matrix(0.4, 3, 3); diag(Sigma) <- 1;

> # draw and center data
> Y <- rmvnorm(100, sigma=Sigma)
> Y <- sweep (Y, 2, apply (Y, 2, mean))

> # residuals and their wvariance

> errorHat <- residuals(lm(Y[,1] ~ 0 + Y[,2] + Y[,3]))
> mean (errorHatA2)

[1] 0.915961

> # sample covariance and inverse reciprocal
> 8 <- t(Y) %*% Y / 100
> solve(S)
[,1] [2] [,3]
[1,1] 1.0917495 -0.3157168 -0.3764417
[2,] -0.3157168 1.6184612 -0.4741769
[3,] -0.3764417 -0.4741769 1.6385053



Partial correlation

Corollary (wnitiaker, 1991)

Each off-diagonal element of the inverse variance matrix
(scaled to have a unit diagonal) is the negative of the partial
correlation between the two corresponding variables,
conditioned on all remaining variables.

In formula, this gives:

-(Z7).,

\/(E—l)a,a \/(E_l)b,b

Partial correlation estimate by plugging covariance estimate.

[)(}/ayvb ‘ Yc) —



Partial correlation

From covariance to partial correlation

inversion
covariance matrix precision matrix
Y1l Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5
y1| 1.52 -0.61 -0.32 -0.07 -0.53 Yl1| 1.21 0.66 0.60 -0.03 0.43
Y2 * 1.35 -0.57 -0.64 0.39 Y2 * 1.40 0.62 0.13 -0.12
Y3 * * 1.39 1.08 -0.08 Y3 * * 1.71 -0.77 0.06
Y4 * * * 1.82 -0.20 Y4 * * * 1.06 0.08
Y5 * * * * 0.97 Y5 * * * * 1.34
off-diagonal minus one

partial correlation matrix standardized precision matrix
Y1 Y2 Y3 Y4 Y5 Y1 Y2 Y3 Y4 Y5
Y1 -0.51 -0.42 0.03 -0.34 Y1 0.51 0.42 -0.03 0.34
Y2 * -0.40 -0.11 0.09 Y2 * 0.40 0.11 -0.09
Y3 * 0.57 -0.04 ¥3 * * -0.57 0.04
Y4 * -0.07 Y4 * * 0.07

Y5 * * Y5 * *

uoneziepuels



Partial correlation

Example

Verify the corollary. Consider a 3x3 correlation matrix:

> =

Its inverse Is given by:

1 I — )O%S
det(E) P13 P23 — P12
P12 P23 — P13

proportional to partial correlation

I p12 pis
pi2 1 pos
P13 p2s 1

P13 P23 — P12

I — 0%3
P12 P13 — P23

P12 P23 — P13
P12 P13 — P23
1 — p3,



Partial correlation

Example (continued)
The inverse is (up a factor) identical to:

V&l"(X‘Z) = Exx—zxzzglzzzx
_ L pi2] | Pis P13 P23
p12 1 P13 P23 | P33

proportional to p(Yy, Y, | Y))

The factor cancels out in the partial correlation:

_ (E_l) 12 P12 — P13P23

P12.3 = —
\/(2—1)11\/(2—1)22 V1 —pig\/1— p3s




Partial correlation

Let Y ~ N (u,X) be partitioned as:

Ya La Eaa Eab ZCLb

Y, | ~N Ho || 2aa 2 2pe

Yc 376 an Zch ch
Then:

Y, LYY, <= Qu=ZYu=0.

Simple criterion for (conditional) pairwise independence:

(2)12=0 <= (Z7')12=0 @ €)
< Y1J|_Y2‘Y3,...,Yp<:>
@



Partial correlation

Example (continued)

Assume: (2)13 = (X7 1)13 =0

Corollary: Y, and Y, independent, conditionally on Y.

Proposition: joint density function of Y, Y,, and Y, factorizes.

Question
Confirm factorization.



Partial correlation

Elements of P measure the direct relation between
two nodes while excluding effects of others.

W, : direct association between nodes 2 and 5:
oo 0o _0—0

o o o
o0 Too “os

direct indirect indirect
\ B

ignored

Standardization yields the partial correlations, e.q.:
Cov(Y,,Y, | Y,
p(Ya Yi Yo) = LALORE
v/ Var(Y, | Y.)y/Var(V; | Y,.)

= linear dependence between Y, and Y, conditional on Y.




Partial correlation

Roadmap
estimation
data
Y1l Y2 Y3 Y4 Y5
i=1(-0.34 -0.62 1.51 -2.07 -0.98
i=2| 1.78 1.53 -0.39 -0.47 0.28
i=3| 0.91 -1.33 1.39 1.07 -0.76
i=4| 0.03 0.84 -0.70 1.27 -0.18

cond. independence graph

covariance matrix

Y1l Y2 Y3 Y4 Y5

vl| 1.52 -0.61 -0.32 -0.07 -0.53
Y2 * 1.35 -0.57 -0.64 0.39
Y3 * * 1.39 1.08 -0.08
Y4 * * * 1.82 -0.20
Y5 * * * * 1.34

test for zeros

partial correlation matrix

Y1 Y2 Y3 Y4 Y5
Y1l -0.51 -0.42 0.03 -0.34
Y2 * -0.40 -0.11 o0.09
Y3 * * 0.57 -0.04
Y4 * * * -0.07
Y5 * * *

" + UOISIaNUI



Partial correlation R P %3

Example (continued) | R
Estimated partial correlation matrix: ,ﬁ{ R
Y1l Y2 Y3 2 e

Yl 1.000 0.952 0.549 ' ' v3

Y2 0.952 1.000 -0.576 TR e

Y3 0.549 -0.576 1.000 2

true network reconstructed reconstructed
(partial correlations) (marginal correlations)

OFN - ORN L ORN
(2 2 2
© © ©



Partial correlation

Cancer research example
Y : gene expression measurements of a tumor

suppressor gene

X, : gene expression of methylation marker 1 @.
X, : gene expression of methylation marker 2

e

Question
Do the methylation markers (MMs) influence the
expression of the tumor suppressor gene (TSG)?



Partial correlation

Cancer research example
Finally, the partial correlation
method clearly indicates there is
no conditional correlation
between MM1 and MM2,.

> Sigma <- var(cbind(TSG, MM1l, MM2))
> invSigma <- solve(Sigma)
> partCorMat <- cov2cor (invSigma)
> round (partCorMat, d=3)
[,1] [,2] [,3]
[1,] 1.000 0.342 0.441
[2,] 0.342 1.000 -0.032
[3,] 0.441 -0.032 1.000

- A .
PN
e , &

Methylation marker 1

T e tes
A

T

by L

-.‘1" . ®
-

Methylation marker2 [ ¥




Partial correlation
Conclusion
— Partial correlation measures correlation between two

variables while taking others into account.

— Partial correlations are readily obtained from the
standardized inverse of the covariance matrix.

— Zero partial correlations indicate conditional independence.

— The conditional independence graph can be reconstructed
using partial correlations.



Partial correlation
VS. regression



Multi-gene pathway & regression

Regression analysis
Regress the expression data of each gene on that of
all other genes.

>

Y, = b01 + bzle + b31Y3 t e

Y, = boz + b12Y1 + b32Y3 t e f
—®

Y, = bo3 + b13Y1 + b23Y2 t &



Partial corr. vs. regression

So far

— Partial correlation is closely related to regression:
confer its calculation.

- Recall the two-gene pathway. In this bivariate case p
and ( are 1-1 related. In particular, p=0 « =0.
Independence between the two genes of the pathway
can be assessed by either p and L.

Question
Does a similar relation between p and 3 hold in the multi-
gene pathways?



Partial correlation vs. regression

Example
A pathway comprising of five genes

Expression data distributed as:

Y,
with:

E—l

™~

(

\

N(0,X)

1.00
—0.50
—0.50

0.00

0.50

—0.50
1.00
0.50
0.00
0.00

—0.50
0.50
1.00
0.50
0.00

0.00
0.00
0.50
1.00
0.00

0.50
0.00 \
0.00
0.00

1.00 /



Partial correlation vs. regression

Example (continued)
The partial correlation matrix suggests that

Y, and Y, are conditionally independent.

Confirmed by the regression approach?

> summary (lm(Y[,1] ~ 0 + Y[,2]+ Y[,3] + Y[,4] + Y[,5]))

Estimate Std. Error

Coefficients:
Y[, 2] 0.45838
Y[, 3] 0.50208
Y[, 4] 0.03506
Y[, 5] -0.47669
Signif. codes:

.02781
.02698
.03065
.02805

o O O O

t value P
16.482
18.611

1.144

-16.995

(>1tl)

<2e-16
<2e-16

0.253
<2e-16

* %%
* k%

* %%

0 ’*%*x’ (0,001 “**’ 0.01 ‘*’

0.05 *.” 0.1 * " 1



Partial correlation vs. regression

Example (continued)
The estimated regression coefficients
are closely related to the partial

correlation coefficients.

> summary (lm(Y[,1] ~ 0 + Y[,2]+ Y[,3] + Y[,4] + Y[,5]))

Coefficients:

Y[,
Y[,
Y[,

Y[,

Signif.

2]
3]
4]
5]

Estimate

0.45838
0.50208
0.03506
-0.47669

codes:

1.00

—0.50
—0.50
0.00
0.50

—0.50
1.00
0.50
0.00
0.00

—0.50
0.50
1.00
0.50
0.00

0.00
0.00
0.50
1.00
0.00

0.50
0.00 \
0.00
0.00
1.00 /




Partial correlation vs. regression

From p(:|) to
An explicit relationship between the regression and partial
correlation coefficients exists.

Hereto formulate the simultaneous-regression model.

Yii = Bi1oYio+ ...+ B1pYip +ein
Yio = [a1Yia .o+ BopYip +€i2
Ytzﬁ,p — Bply’vi:l + 61)2)/;3,2 + ...+ Ei.p

Each Y;; Is regressed on all other Y;/s.



Partial correlation vs. regression

From p(:|-) to 3
It turns out that:

12 = p(Y1,Y2 | Vs, .. )/ ()11 /()2
and its reverse;:

/O(Yla Y2 ‘ YS) . ) — Sign(b)lQ)\/612521

Conclusion
Thus:

}O(Ylj Y2 | Yg, .. ) <1_:1> 512
In particular:

Bia =0 <= Y, L Ys5|Y5,....Y,






All nice ...

Example
Reconstruct the topology of the TP53 signaling pathway.

Available

— (Genes that comprise the
TP53 pathway (from Biocarta)

- (Gene expression data of
breast cancer samples (from
Bioconductor)

BioCarta: p53 signalling pathway

Goal
— identify gene-gene interaction



All nice ...

Extract pathway data

# packages and Sources
library (Biobase)

library (rags2ridges)
library (graphite)
library (breastCancerUNT)

Replace UN
by e.g. VD

Replace 150
by e.g. 190 for ErbB2
signalling pathway

# load biocarta pathway

biocaPathway <- biocartal[[150]]

biocaPathway <- convertIdentifiers (biocaPathway, "entrez")
entrezIDs <- nodes (biocaPathway)

# load expression data of pathway genes

data (unt)

unt <- unt[match(entrezIDs, as.character(levels (fData(unt) [,5])
[fData (unt) [,511)),]

unt <- unt|[, which(pData(unt) [,8] == 1)]

gNames <- fData (unt) [, 3]
Y <- t(exprs (unt))



All nice ...

Pathway reconstruction

# specify number edges to select
#H probabilistic selection only for large pathways
top <- 14

# reconstruct netwerk

lambdaOpt <- optPenaltyLOOCVauto(Y, 0.001, 100)

estP <- ridgeS (covML(Y), lambdaOpt)

sparseP <- sparsify(estP, "top", top=top,
output="heavy") $sparsePrecision

colnames (sparseP) <- rownames (sparseP) <- gNames

# plot inferred pathway

Ugraph (sparseP, lay=layout.circle, type="fancy")

Try
type="weighted",
type="plain"

Try
lay=layout.random,
lay=layout.auto




All nice ...

Pathway reconstruction

Visualization is
Important!

Question

Which genes
Interact? E.g. do
genes RB1 and
E2F1 interact?

solid edge: >0
dashed edge: <0



All nice ...

Pathway reconstruction

Visualization is important!
Two Instances of same network:



All nice ...

Comparison with Biocarta
Comparison is not visual, but via the adjacency matrix.

Pathway topology Adjacency matrix
to

@ a b cd e

al0 1 100

e c;; bl 0 110

3 ¢|1 1 010

e @ dlo 1 10 1

el0 0 01O

This adjacency matrix is
symmetric, as the pathway
topology is undirected.



All nice ...

Comparison with Biocarta

# inferred adjancency matrix
inferAdj <- adjacentMat (sparseP)

# biocarta adjacency matrix

biocaEdges <- edges (biocaPathway) [,1:2]

biocaEdges <- matrix(unlist(lapply(c(biocaEdges|[, 1],
biocaEdges|[,2]), function(X, Y) {
which(X == Y) }, Y=entrezIDs)), ncol=2,
byrow=FALSE)

biocaAdj <- 0 * inferAdj

biocaAdj [biocaEdges] <- 1

biocaAdj [cbind (biocaEdges|[,2], biocaEdges|[,1])] <- 1

# compare adjacency matrix
table (biocaAdj [upper.tri (biocaaAdj)],
inferAdj [upper.tri(inferaAdj)])



All nice ...

Comparison with Biocarta

Contingency table of
nonredundant elements of
both adjacency matrices:

UNT

Biocarta

E.g. ten overlapping edges.

Biocarta



All nice ...

Node analysis

ORIGINAL PAPER

Systems biology

Global topological features of cancer proteins
interactome
Pall F. Jonsson and Paul A. Bates™

“The most striking property of cancer proteins is the
Increased frequency of interactions they participate in.
This observation indicates an underlying evolutionary
pressure to which cancer genes, as genes of central

Importance, are subjected.”




All nice ...

Node analysis

Hub = many connections.

gene with
high degree
@
®
[
® ®
gene with
low degree

Question: role of the hub?

Hypothesis
Hubs are disease genes.

Infer network and compare
to census of human cancer
genes* from:

wellcome trust

SJsanger

INstitute

Hypothesis not confirmed.

*Futreal et al. (2004), Nature Reviews Cancer.



All nice ...

Node analysis

Measure influence between Hypothesis

gene and rest by mutual Hubs are influential
information : Influence vs. centrality
I(Y\;:Yj) :

= H(Y\;) —H(Y\;|Y))

= log{[Var(Y\;)|}
— log {|Var(Y\; | Y})|}

-2

]

Influence

-6

-8

Measure of information shared
between two random variables.

0 5 10 15

Node degree



All nice ...

Node analysis

# calculate network statistics per gene
nodeStats <- GGMnetworkStats (sparseP, as.table=TRUE)
nodeStats[1:2,]

degree betweenness closeness nNeg nPos mutualInfo
CDK2 2 0.0 0.01785714 2 0 0.2524956
CDK4 2 3.5 0.01785714 2 0 0.2348174

0.8
|

# degree vs. MI
plot (nodeStats|[,1],
nodeStats|[,6]))

0.6

mutual information
0.4
|

0 1 2 3 4 5 6 i

node degree




All nice ...

Path analysis

Understand the covariance between genes 3 and 4
by decomposition into the paths that propagate
sighals between these genes.

path 1 path 2 path 3

S s \ o)<“’

Which path contributes most to covariance?




All nice ...

Path analysis
The covariance between two nodes can be decomposed
Into the contributions of the paths connecting these nodes.

The covariance between nodes j; and j, equals:

.rw

., det(£2 )
r—+1 \P,\P
(E)ijg — Z (=) det(€2) SHQ(Q)EJSLJJS

where P;, ;, the set of all paths from jito j> and
P = A{(p1=J1.p2). (p2.p3),-- - (r—1.pr = J2)}

a path of length 1 from j1 to js.



All nice ...

Also try e.g.
TP53 (node 6) and
MDM2 (node 9)

Path analysis

# E2F1 and RB1
nodel <- 5
node2 <- 11

pathStats <- GGMpathStats (sparseP, nodel, node2, prune=FALSE,
nodecol="red", VBcolor="orange")

Covariance between node pair : -0.0103

path length contribution

1 5--11 1 -0.02735
2 5--7--11 2 0.01243
3 5--10--7--11 3 0.00392
4 5--10--1--7--11 4 0.00071

Sum path contributions : -0.0103



All nice ...

Path analysis

. GADD45A

Top mediating and
moderating paths are
plotted.

CDEK4

FPCNA

Mediating path:
contribution has same cDK2
sign as observed
covariance

CCNDT

TIMP3

Moderating path:
contribution has opposite
sign as observed covariance

TP53

BCL2

CCNET1
. —— mediating path

—— moderating path







Causality

Causal relation
A causes B if a change in A may lead to one in B.

A causal graph depicts the causal relations among variables.
Some classic examples:

NO cause cause cause
mutual cause common cause common effect

. a direct causal relationship



DAG

Directed acyclic graph (DAG)

Agraph G = (V, £) that contains:

— directed edges only: if (j,5) € £ then (4/,5) € £.
— no directed cycles.

The graph G contains a directed cycle if (ji,jk+1) € €
fork=1,..., K —1 with 71 = Jk.

Aoeo—e N

The phylogenetic tree is another example.




Bayesian network

A Bayesian network is a graphical model that describes
the behaviour of a random variable Y through a DAG and
accompanying density:

frWis-- ) = I15=1 f(ylall g st. j € pa(y))
where pa(j) denotes the parents of | (according to the DAG).

For instance, In:

9 o fy (i, y10)
= fly2|y1)f(ys|y1)
9_’@ \ faly2) f(ys | y2, y3, ya)
/'® X .

\9/6 —»e\ <&



Markov again

A Bayesian network satisfies the local Markov property:
Yi L Ynag) | Ypa(y)

where nd(j) denotes the non-decendants of j (i.e. there is no
directed path from | to these nodes with the DAG).

For instance, In:

@,
J0—0 |\
o\e | ] |®

Yo LY, Y5|Y5

—/




Learning a Bavesian network

Would the causal graph be known and be a DAG,
It can be fitted by a system of regression equations.

For instance, to fit:
2 S
/SN0—0 |\
@ \1 | |

— \/

- Regression Y; on Y,

—

— Regresson Y,,on Y-, Ygand Y,



Directionality

Assume causal structure has directed tree structure, e.g.:

P e °
o o o
o o o
but not, e.q.:
o o o
a( 1 o_| e( T
o o o

(contain loops: forbidden by assumption)



Directionalit

Causal structure induces factorization and graph:

? Fy1,92,y3) ?
@ — = [y 2| y) — O
\9 = fys)f (1 [ys) f(y2 [ ya) \e
whereas:

0 f(ylay27y3) /e

o l—> = fly) f(2)flys Ly y2) —> @
\e # 9(y1,93)h(y2, y3) \é



Directionality

Observed

undirected

networks Possible underlying directed networks
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Interpretation pitfall
revisited

(or: the case for integration)

Van Wieringen (2014)



Interpretation pitfall revisited

Reconstruct the ErbB signalling pathway

Avalilable

Off the shelf from Bioconductor
4 breast cancer data sets

Reconstruction
(Fit GGM with ridge el S
penalty to pathway [
data. Post-hoc L%
sparsification by AN\,
local FDR procedure.) L g




Interpretation pitfall revisited

ErbB2 - GRBY7 edge

- Top ranking edge

- ErbB2 often amplified
- GRB7 maps to ErbB2 amplicon
- ErbB2 and GRB7 co-expressed

Breast cancer Marginal Partial
data set correlation  correlation

VDX 0.733 0.624
MAINZ 0.772 0.668
TRANSBIG 0.795 0.767
UPP 0.866 0.815

ERBB2

GRBE7

GRB7




Interpretation pitfall revisited

ErbB2 - GRB7 edge
TCGA breast cancer data: copy number vs. expression

gene expression

ERBB2

gene expression

DNA copy number

GRB7

DNA copy number




Interpretation pitfall revisited .

ErbB2 - GRB7 edge

- Remove “amplified samples”
— Reconstruct CIG of pathway
- Amplification contributes to

edge strength

ERBB2

Breast cancer Marginal Fartial Marg. cor. Part. cor.
data set correlation  correlation ampl. rem. | ampl. rem. Rank
VDX 0.733 0.624 0.340 0.238 69 (out of 9453)
MAINZ 0.772 0.668 0.357 0.293 521 (out of 9453)
TRANSBIG 0.795 0.767 0.428 0.314 457 (out of 94353)
UPP 0.866 0.815 0.370 0.305 237 (outof 11628)




Interpretation pitfall revisited ml

Reconstruction
with copy number

Reconstruction
without copy number
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Interpretation pitfall revisited

Simple case: two genes

®
|
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MRNA

?)\A.
A

DNA

co-expression # co-regulated

co-occurrent aberrations
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co-expressed genes
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Further topics

Effect of changes in the regulatory system.

knock-out:
model predicts effect




Network differences between two conditions

Further topics

cancer

/)

Py Y.
¢ A =

L .. .,.,\

NN /. I
X & &
-



Further topics

Dynamic networks

Feedforward loop Feedforward loop (unrolled)

t-1 t t+1 - time
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This material is provided under the Creative Commons
Attribution/Share-Alike/Non-Commercial License.
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