
Answers – Lecture 4

Hidden Markov models

Question 1
Question 1a)
The underlying sequence comprises three positions. As the state space of the underlying Markov
process has three states, the possible number of underlying sequences amounts to 33 = 27. How-
ever, the initial distribution of the Markov process rules out the possibility of starting in S2 and S3.
This leaves 32 sequences. Starting from S1 the transition matrix specifies the possible states of the
second position (e.g. exclusing S1). Et cetera. Eventually, two sequences are feasible (S1, S2, S1)
and (S1, S3, S2). Now using the emission matrix verify whether both can produce the observed
sequence. Only the latter sequence can. Hence, the state sequence that leads to observed series:
(S1, S3, S2). Further P ((S1, S3, S2)) =

1
2 and P ((a, b, c)|(S1, S3, S2)) = ( 12 )

3 = 1
8 . The probability

P ((a, b, c)) is now: P ((a, b, c)|(S1, S3, S2))P ((S1, S3, S2)) =
1
8
1
2 = 1

16 .

Question 1b)
Possible underlying sequences: (S1, S2, S1) en (S1, S3, S2), both have probability of 1

2 . Further:
P ((a, c, a)|(S1, S2, S1)) =

1
8 = P ((a, c, a)|(S1, S3, S2)). Hence, P ((a, c, a) = 1

8 .

Question 2
Question 2a)

P (Yt−1 = 0, Yt+1 = 1 |Xt = exon)

= P (Yt−1 = 0 |Xt = exon)P (Yt+1 = 1 |Xt = exon)

using the total probability law:

=

 ∑
xt−1∈{I,E}

P (Yt−1 = 0, Xt−1 = xt−1 |Xt = exon)


×

 ∑
xt−1∈{I,E}

P (Yt+1 = 1, Xt+1 = xt+1 |Xt = exon)


using P (A,B |C) = P (A,B,C)/P (C) = (P (A,B,C)/P (B,C))×(P (B,C)/P (C)) = P (A |B,C)×
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P (B |C) (that is, using the definition of conditional probability repetitively):

=

 ∑
xt+1∈{I,E}

P (Yt−1 = 0 |Xt−1 = xy−1)P (Xt−1 = xt−1 |Xt = exon)


×

 ∑
xt−1∈{I,E}

P (Yt+1 = 1 |Xt+1 = xt+1)P (Xt+1 = xt+1 |Xt = exon)


using the fact that an exon cannot emit a 1 and the reversibility of the Markov chain

=
∑

xt−1∈{I,E}

P (Yt−1 = 0 |Xt−1 = xy−1)P (Xt−1 = xt−1 |Xt = exon)

×P (Yt+1 = 1 |Xt+1 = intron)P (Xt+1 = intron |Xt = exon)

=
∑

xt−1∈{I,E}

P (Yt−1 = 0 |Xt−1 = xt−1)P (Xt = exon |Xt−1 = xt−1)

×P (Yt+1 = 1 |Xt+1 = intron)P (Xt+1 = intron |Xt = exon)

=
∑

xt−1∈{I,E}

P (Yt−1 = 0 |Xt−1 = xt−1) P (Xt = exon |Xt−1 = xt−1)
1

2
α

=
1

4
α2 +

1

2
α(1− α).

Question 2b)
The only possible intron-exon sequences that may yield 010 are: IIE en III. Then:

P (010 | IIE) =
1

4

P (010 | III) =
1

8

P (III) = (1− α)2

P (IIE) = α(1− α)

P (010 | IIE)P (IIE) =
1

4
α(1− α)

P (010 | III)P (III) =
1

8
(1− α)2

P (010) =
1

4
α(1− α) +

1

8
(1− α)2

And, thus (α = 1/4):

P (IIE | 010) =
2

5

P (III | 010) =
3

5

The required sequence is thus: III.
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Question 3
Question 3a
Define the state space for the latent Markov chain S = {I, II} and the emission alphabet {A, A2, A3, C, C2, C3}.
It remains to specify the transition matrix and the emission matrix:

P =

(
0 1
1 0

)
and B =

(
1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3

)
.

Question 3b
Many parametrizations are possible (in fact, a HMM is not even necessary). Hence, here only a
possible one is given. Define the state space for the latent Markov chain S = {I, II, III} and the
emission alphabet {AC3, A2C2, A3C}. It remains to specify the transition matrix and the emission
matrix:

P =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 and B =

 1 0 0
0 1 0
0 0 1

 .

Question 4
Question 4a
Define the state space for the latent Markov chain S = {¬CpG, CpG} and the emission alpha-
bet {hypo, normal, hyper}. It remains to specify the transition matrix and the emission matrix.
Given is the stationary distribution of the hidden Markov chain: φCpG = 0.10 and φ¬CpG = 0.90.
Furthermore, we know that the first row in the transition matrix of this Markov chain is given
by (0.95, 0.05). Also we now that the stationary distribution satisfies φTP = φT . Hence,
φ1 p11 + φ2 p21 = φ1. Or, 0.90 × 0.95 + 0.10 × p21 = 0.90. Ergo, p21 = 0.45. The transition
and emission matrix are thus:

P =

(
0.95 0.05
0.45 0.55

)
and B =

(
1/3 2/3 0
0 2/3 1/3

)
.

Question 4b

P (Xj = CpG |Yj = normal) = P (Xj = CpG, Yj = normal) /P (Yj = normal)

= P (Yj = normal |Xj = CpG)
P (Xj = CpG)

P (Yj = normal)

=
2

3

1

10
/P (Yj = normal)

It remains to determine P (Yj = normal). Hereto observe:

P (Yj = normal) = P (Yj = normal |Xj = CpG)P (Xj = CpG)

+ P (Yj = normal |Xj = ¬CpG)P (Xj = ¬CpG)

=
2

3
× 0.10 +

2

3
× 0.90 =

2

3
.
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Combining the above yields the desired probability: 1/10.

Question 4c Using the definition of conditional probability:

P (Xj = CpG |Yj = normal, Yj−1 = hyper)

= P (Xj = CpG, Yj = normal, Yj−1 = hyper) /P (Yj = normal, Yj−1 = hyper)

noting that only a CpG island can emit a ‘hyper’:

= P (Xj = CpG, Xj−1 = CpG, Yj = normal, Yj−1 = hyper) /P (Yj = normal, Yj−1 = hyper)

using the definition of conditional probability again:

= P (Yj = normal, Yj−1 = hyper |Xj = CpG, Xj−1 = CpG)

×P (Xj = CpG, Xj−1 = CpG)/P (Yj = normal, Yj−1 = hyper)

using the independence of elements of the observed sequence given the underlying sequence:

= P (Yj = normal |Xj = CpG)P (Yj−1 = hyper |Xj−1 = CpG)

×P (Xj = CpG |Xj−1 = CpG)P (Xj−1 = CpG))/P (Yj = normal, Yj−1 = hyper)

=
2

3

1

3
× 0.55× 1

10
/P (Yj = normal, Yj−1 = hyper).

It now remains to calculate P (Yj = normal, Yj−1 = hyper).

P (Yj = normal, Yj−1 = hyper)

= P (Yj = normal, Yj−1 = hyper |Xj = CpG, Xj−1 = CpG)P (Xj = CpG, Xj−1 = CpG)

+P (Yj = normal, Yj−1 = hyper |Xj = ¬CpG, Xj−1 = CpG)P (Xj = ¬CpG, Xj−1 = CpG).

Remaining probabilities have been calculated above.

Question 5
Question 5a
Generate a DNA sequence of 1000 nucleotides. Save the sequences of states and nucleotides. Report
the R-code and the nucleotide sequence. Hint: use the sample function and for-loop construction.

> iNeXtrons <- c("I", "E")

> nucleotides <- c("A", "C", "G", "T")

> p0 <- c(0.5, 0.5)

> a <- matrix(c(0.9, 0.1, 0.1, 0.9), ncol=2)

> b <- matrix(c(0.49, 0.01, 0.49, 0.01, 0.01, 0.49, 0.01, 0.49), ncol=4, byrow=TRUE)

> iNeXtronSeq <- sample(iNeXtrons, 1, replace=TRUE, prob=p0)

> if (iNeXtronSeq[1] == "I"){
+ nuclSeq <- sample(nucleotides, 1, prob=b[1,])

+ } else {
+ nuclSeq <- sample(nucleotides, 1, prob=b[2,])

+ }
> for (i in 2:10000){
+ iNeXtronSeq <- c(iNeXtronSeq, sample(iNeXtrons, 1,

+ prob=a[iNeXtrons==iNeXtronSeq[i-1], ]))
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+ if (iNeXtronSeq[i] == "I"){
+ nuclSeq <- c(nuclSeq, sample(nucleotides, 1, prob=b[1,]))

+ } else {
+ nuclSeq <- c(nuclSeq, sample(nucleotides, 1, prob=b[2,]))

+ }
+ }

Question 5b
> table(nuclSeq, iNeXtronSeq)

Yes, nucleotide distributions differ considerably between introns and exons.

Question 5c
No, nucleotide distributions (the observed information) are identical for introns and exons.

Question 5d

P =


0.35 0.15 0.15 0.35
0.35 0.15 0.15 0.35
0.35 0.15 0.15 0.35
0.35 0.15 0.15 0.35

 .

Question 6
Question 6a
Completely analogous to the example detailed in the lecture notes.

Question 6b
Completely analogous to the example detailed in the lecture notes.
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