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Example

DNA copy number of a DNA copy number of a 
genomic segment is simply 
the number of copies of 
that segment present in the 
cell under study.

Healthy normal cell:
chr 1 : 2
…
chr 22 : 2
chr X : 1 or 2
chr Y : 0 or 1



Example
Chromosomes of a tumor cell

Technique: SKY



Example

The DNA copy number is often categorized into:
L l 2 i• L : loss : < 2 copies

• N : normal :    2 copies
• G : gain : > 2 copies• G : gain : > 2 copies

In cancer:In cancer:
• The number of DNA copy number aberrations 

accumulates with the progression of the disease.p g
• DNA copy number aberrations are believed to be 

irreversible.

Let us model the accumulation process of DNA copy 
number aberrationsnumber aberrations.



Example

State diagram for the accumulation process of a locus.
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Example

The associated initial distribution:

and associated transition matrix:and, associated transition matrix:

with parameter constraints:



Example

Calculate the probability of a loss, normal and gain at 
this locus after p generations:this locus after p generations:

Using:

These probabilities simplify to, e.g.:



Example

In practice, a sample is only observed once the cancer 
has already developed Hence the number ofhas already developed. Hence, the number of 
generations p is unknown. This may be accommodated 
by modeling p as being Poisson distributed:by modeling p as being Poisson distributed:

This yields, e.g.:



Example

So far, we only considered one locus. Hence:

DNAiDNAi DNAiDNAi DNAiDNAiDNAiDNAi

t0 t1 t2 t3



Example

For multiple loci:

DNADNA DNADNA DNADNADNADNA
DNADNA DNADNA DNADNADNADNADNADNA DNADNA DNADNADNAiDNAi

DNADNA DNADNA DNADNADNADNA
DNADNA DNADNA DNADNADNADNA

DNADNA DNADNA DNADNADNADNA

DNADNA DNADNA DNADNADNADNADNADNA DNADNA DNADNADNADNA

DNADNA DNADNA DNADNADNADNA

t t t tt0 t1 t2 t3



Example

Multiple loci → multivariate problem.

Complications:
• p unknown,p unknown,
• loci not independent.

Solution:
• p random,
• assume particular dependence structure• assume particular dependence structure.

After likelihood formulation and parameter estimation:After likelihood formulation and parameter estimation: 
• identify most aberrated loci,
• reconstruct time of onset of cancer.



Stationary distribution



Stationary distribution

We generated a DNA sequence of 10.000.000 bases 
long in accordance with a 1st order Markov chainlong in accordance with a 1st order Markov chain.

For stretches DNA ever longer and ever farther away 
f th fi t b i l l t d th l tid %

bp bp %A %C %G %T

from the first base pair we calculated the nucleotide %.

bp bp    %A %C    %G    %T     
1001 5e+03 0.014 0.069 0.262 0.655
5001 2e+04 0.045 0.239 0.228 0.488

e20001 1e+05 0.144 0.319 0.211 0.327
100001 5e+05 0.158 0.295 0.205 0.342
500001 2e+06 0.142 0.284 0.216 0.357 rg

en
ce

500001 2e+06 0.142 0.284 0.216 0.357
.     .     .     .     .     .
.     .     .     .     .     . co

nv
e

.     .     .     .     .     .
0.150 0.280 0.220 0.350



Stationary distribution

Hence, after a while an “equilibrium” sets in. Not 
necessarily a fixed state or pattern but:necessarily a fixed state or pattern, but:

the proportion of a time period that is spent in a 
ti l t t t li it lparticular state converges to a limit value.

The limit values of all states form the stationaryThe limit values of all states form the stationary 
distribution of the Markov process, denoted by:



Stationary distribution

For a stationary process, it holds that 
P(Xt=Ei) = φi

for all t and i. 

In particular: 
P(X E ) P(X E )P(Xt=Ei) = φi = P(Xt+1=Ei).

Of course this does not imply:Of course, this does not imply:
P(Xt=Ei, Xt+1=Ei) = φi φi

thi i th 1 t d M k d das this ignores the 1st order Markov dependency.



Stationary distribution

The stationary distribution is associated with the first-
order Markov process parameterized by (π P)order Markov process, parameterized by (π, P).

Question
How do φ and (π, P) relate?

Hereto, recall:
φi = P(Xt=Ei)



Stationary distribution

We then obtain the following relation:

definitiondefinition



Stationary distribution

We then obtain the following relation:

use the fact that
P(A B) + P(A BC) = P(A)P(A, B) + P(A, BC) = P(A)



Stationary distribution

We then obtain the following relation:

use the definition of conditional probability:
P(A B) P(A | B) P(B)P(A, B) = P(A | B) P(B)



Stationary distribution

We then obtain the following relation:



Stationary distribution

We then obtain the following relation:

Thus:
Ei t !Eigenvectors!



Stationary distribution

Theorem
I d ibl i di M k h i ith fi it t tIrreducible, aperiodic Markov chains with a finite state 
space S have a stationary distribution to which the 
chain converges as t → ∞chain converges as t → .

A C

G T

0 1 0 2 0 3 0 4φA=0.1, φC=0.2, φG=0.3, φT=0.4



Stationary distribution

A Markov chain is aperiodic if there is no state that 
can only be reached at multiples of a certain periodcan only be reached at multiples of a certain period. 
E.g., state Ei only at t = 0, 3, 6, 9, et cetera.

Example of an aperiodic Markov chain

A C G T
A A C

pCCpAA
pAC

A
C
G

A CpCA

pTC pCTpGA pAG

pGC
pGC

T

G T
pGT

pTG
…ATCGATCGATCGATCG… pTTpGG

pTG



Stationary distribution

Example of a periodic Markov chain

A C
A C G T

A
pAT=1

pTC=1p =1

pCG=1

A
C
G

G T

pTC 1pGA=1T

G T
…ATCGATCGATCGATCG…

The fraction of time spent in A (roughly φA):

P(Xt+1000 = A) = ¼ ( t+1000 )

whereas P(Xt+1000 = A | X4 = A) = 1.



Stationary distribution

A Markov chain is irreducible if every state can (in 
principle) be reached (after enough time has passed)principle) be reached (after enough time has passed) 
from every other state.

Examples of a reducible Markov chain

A CA C

G TG T

C is an absorbing state. A will not be reached.



Stationary distribution

How do we find the stationary distribution?

We know the stationary distribution satisfies:

and

(*)

We thus have S+1 equations for S unknowns: one of 
the equations in (*) can be dropped (which is q ( ) pp (
irrelevant), and the system of S remaining equations 
needs to be solved.



Stationary distribution

Consider the transition matrix:

In order to find the stationary distribution we need toIn order to find the stationary distribution we need to 
solve the following system of equations:

This yields: (φ1, φ2)T = (0.5547945, 0.4452055)T



Stationary distribution

On the other hand, for n large: 

P(Xt+n=Ej | Xt=Ei) = φj

is independent of i. Or, pij
(n) = φj.is independent of i. Or, pij  φj. 

Hence, the n-step transition matrix P(n) has identical 
rows:rows:

This motivates a numerical way to find the stationaryThis motivates a numerical way to find the stationary 
distribution. 



Stationary distribution

Same example as before:

Th

with stationary distribution: (φ1, φ2)T = (0.5547945, 0.4452055)T

Then:

matrix multiplication (“rows times columns”)



Stationary distribution

Thus:

In similar fashion we obtain:In similar fashion we obtain:



Convergence of theConvergence of the 
stationary distributionstationary distribution



Convergence to the stationary distribution

Define the vector 1 = (1,…,1)T.
W h l dWe have already seen: 

Pn = 1 φT for large n

Question
How fast does Pn go to 1 φT as n → ∞ ?

Answer
1) Use linear algebra
2) Calculate numerically



Convergence to the stationary distribution

Fact
Th t iti t i P f fi it i di i d iblThe transition matrix P of a finite, aperiodic, irreducible 
Markov chain has an eigenvalue equal to 1 (λ1=1), 
while all other eigenvalues are (in the absolute sense)while all other eigenvalues are (in the absolute sense) 
smaller than one: |λk| < 1, k=2,…,3.

Focus on λ1=11
We know φT P = φT for the stationary distribution. 
Hence, φ is the left eigenvector of eigenvalue λ=1.

Also, row sums of P equal 1: P 1 = 1. Hence, 1 is a 
right eigenvector of eigenvalue λ=1.



Convergence to the stationary distribution

The spectral decomposition of a square matrix P is 
given by:given by:

where:where:
diagonal matrix containing the eigenvalues,
columns contain the corresponding eigenvectorscolumns contain the corresponding eigenvectors.

In case of P is symmetric, is orthogonal: 
Then:Then:



Convergence to the stationary distribution

The spectral decomposition of P, reformulated:

eigenvalues left eigenvectors

right eigenvectors

The eigenvectors are normalized:



Convergence to the stationary distribution

We now obtain the spectral decomposition of the n-
step transition matrix Pn Hereto observe that:step transition matrix Pn. Hereto observe that:

plug in the spectral decomposition of P



Convergence to the stationary distribution

We now obtain the spectral decomposition of the n-
step transition matrix Pn Hereto observe that:step transition matrix Pn. Hereto observe that:

bring the right eigenvector in the sum,
and use the properties of the transpose operatorand use the properties of the transpose operator



Convergence to the stationary distribution

We now obtain the spectral decomposition of the n-
step transition matrix Pn Hereto observe that:step transition matrix Pn. Hereto observe that:

the eigenvectors are normalized



Convergence to the stationary distribution

We now obtain the spectral decomposition of the n-
step transition matrix Pn Hereto observe that:step transition matrix Pn. Hereto observe that:



Convergence to the stationary distribution

Repeating this argument n times yields:

Hence,      and      are left and right eigenvector with 
i l f Theigenvalue       of         .  Thus:



Convergence to the stationary distribution

Verify the spectral decomposition for P2:



Convergence to the stationary distribution

Use the spectral decomposition of Pn to show how fast Pn

converges to 1 φT as n → ∞converges to 1 φT as n → ∞.

We know:We know:
λ1=1, |λk| < 1 for k=2, …,S, and 

Then:



Convergence to the stationary distribution

Expanding this:

as n → ∞

0 0

as n → ∞



Convergence to the stationary distribution

Clearly:

Furthermore, as:

It is the second largest (in absolute sense) eigenvalue that 
dominates, and thus determines the convergence speed to 
the stationary distribution.



Convergence to the stationary distribution

Fact
A M k h i ith t i P h ifA Markov chain with a symmetric P has a uniform 
stationary distribution.

Proof
• Symmetry of P implies that left- and right eigenvectors 

are identical (up to a constant). 
Fi t i ht i t d t f 1• First right eigenvector corresponds vector of ones, 1. 

• Hence, the left eigenvector equals c1.
Th l f i i h i di ib i d• The left eigenvector is the stationary distribution and 
should sum to one: c = 1 / (number of states).



Convergence to the stationary distribution

Question
S th DNA bl d ib d b fi tSuppose the DNA may reasonably described by a first 
order Markov model with transition matrix P:

and stationary distribution:

and eigenvalues:



Convergence to the stationary distribution

Question
What is the probability of a G at position 2 3 4 5 10?What is the probability of a G at position 2, 3, 4, 5, 10? 
And how does this depend on the starting nucleotide? 

In other words, give:
P(X G | X A)P(X2 = G | X1= A) = …
P(X2 = G | X1= C) = …
P(X2 = G | X1= G) =P(X2  G | X1  G)  …
P(X2 = G | X1= T) = …

But also:But also:
P(X3 = G | X1= A) = …
et ceteraet cetera.



Convergence to the stationary distribution

Thus, calculate P(Xt = G | X1 = x1) with t=2, 3, 4, 5, 10, 
and x = A C G T

1 1 C 1 G 1

and x1 = A, C, G, T.

x1=A x1=C      x1=G      x1=T
t= 2 0.3000000 0.4000000 0.2000000 0.1000000
t= 3 0 2600000 0 2800000 0 2400000 0 2200000t= 3 0.2600000 0.2800000 0.2400000 0.2200000
t= 4 0.2520000 0.2560000 0.2480000 0.2440000
t= 5 0.2504000 0.2512000 0.2496000 0.2488000
t=10 0.2500001 0.2500004 0.2499999 0.2499996

Study the influence of the first nucleotide on the 
calculated probability for increasing t.



Convergence to the stationary distribution

> # define π and P
> pi <- matrix(c(1, 0, 0, 0), ncol=1)> pi < matrix(c(1, 0, 0, 0), ncol 1)
> P <- matrix(c(2, 3, 3, 2, 1, 4, 4, 1, 3, 2, 2, 3, 

4, 1, 1, 4), ncol=4, byrow=TRUE)/10

> # define function that calculates the powers of a 
> # matrix (inefficiently though)
> matrixPower <- function(X power){> matrixPower < function(X, power){

Xpower <- X
for (i in 2:power){

Xpower <- Xpower %*% XXpower < Xpower %*% X
}
return(Xpower)

}}

> # calculate P to the power 100
> matrixPower(P 100)> matrixPower(P, 100)



Convergence to the stationary distribution

Question
S th DNA bl d ib d b fi tSuppose the DNA may reasonably described by a first 
order Markov model with transition matrix P:

and stationary distribution:

and eigenvalues:



Convergence to the stationary distribution

Again calculate P(Xt = G | X1 = x1) with t=2, 3, 4, 5, 10, 
and x = A C G T

x1=A x1=C x1=G x1=T

and x1 = A, C, G, T.

x1 A x1 C      x1 G      x1 T
t= 2 0.0002500 0.0002500 0.7745000 0.2250000
t= 3 0.0004998 0.0004998 0.6504754 0.3485251
t= 4 0.0007493 0.0007493 0.5822116 0.4162899
t= 5 0.0009985 0.0009985 0.5445885 0.4534145
t 10 0 0022410 0 0022410 0 5000429 0 4954751t=10 0.0022410 0.0022410 0.5000429 0.4954751
...  ...       ...       ...       ...
t=∞ 0.2500000 0.2500000 0.2500000 0.2500000

Now the influence of the first nucleotide fades slowly. 
Thi b l i d b th l 2 d i l

t   0.2500000 0.2500000 0.2500000 0.2500000

This can be explained by the large 2nd eigenvalue.



ProcessesProcesses 
back in timeback in time



Processes back in time

So far, we have studied Markov chains forward in time. In 
practice, we may wish to study processes back in time.

Example
Evolutionary models that describe occurrence of SNPs inEvolutionary models that describe occurrence of SNPs in 
DNA sequences. We aim to attribute two DNA sequences 
to a common ancestor.

human chimp

common ancestor



Processes back in time

Consider a Markov chain {Xt}t=1,2,…. The reverse Markov t t , ,
chain {Xr*}r=1,2,… is then defined by:

Xr* = Xt-rr t-r

X * X * X * X *

Xt-2 Xt-1 Xt Xt+1

X2 X1 X0 X-1

t 2 t 1 t t 1

With transition probabilities:With transition probabilities:
pij = P(Xt=Ej | Xt-1=Ei)

p * = P(X *=E | X *=E )pij* = P(Xr*=Ej | Xr-1*=Ei)



Processes back in time

Show how the transition probabilities pji* relate to pij:

just the definition



Processes back in time

Show how the transition probabilities pji* relate to pij:

express this in terms of the original Markov chainexpress this in terms of the original Markov chain 
using that Xr* = Xt-r



Processes back in time

Show how the transition probabilities pji* relate to pij:

apply definition of conditional probability twice (Bayes):apply definition of conditional probability twice (Bayes):
P(A | B) = P(B | A) P(A) / P(B)



Processes back in time

Show how the transition probabilities pji* relate to pij:

Hence:Hence:



Processes back in time

Check that rows of the transition matrix P* sum to one, i.e.: 

pi1* + pi2* + … + pjS* = 1

Hereto:

use the fact that



Processes back in time

The two Markov chains defined by P and P* have the 
same stationary distribution. Indeed, as:

we have:we have:



Processes back in time

Definition
A Markov chain is called reversible if pij* = pij. 
In that case:

* /pij* = pij = pji φj / φi
Or,

φ p = φ p for all i and jφi pij = φj pji for all i and j.

These are the so-called detailed balance equations.q

TheoremTheorem
A Markov chain is reversible if and only if the detailed 
balance equations hold.q



Processes back in time

Example 1
The 1st order Markov chain with transition matrix:

is irreversible. Check that this (deterministic) Markov chain 
does not satisfy the detailed balance equationsdoes not satisfy the detailed balance equations.

Irreversibility can be seen from a sample of this chain:Irreversibility can be seen from a sample of this chain:
… ABCABCABCABCABCABC…

In the reverse direction transitions from B to C do not occur!In the reverse direction transitions from B to C do not occur!



Processes back in time

Example 2
The 1st order Markov chain with transition matrix:

is irreversible. Again, a uniform stationary distribution:

As P is not symmetric the detailed balance equations areAs P is not symmetric, the detailed balance equations are 
not satisfies:

pij / 3 ≠ pji / 3 for all i and jpij / 3  ≠  pji / 3    for all i and j. 



Processes back in time

Example 2 (continued)
The irreversibility of this chain implies:

P(A→B→C→A) A A A AP(A B C A) 
= P(A→B) P(B→C) P(C→A)
= 0 8 * 0 8 * 0 8

A

B

C

A

B

C

A

B

C

A

B

C 0.8  0.8  0.8
≠ 0.1 * 0.1 * 0.1
= P(A→C) P(C→B) P(B→A)

A

B

A

B

A

B

A

B P(A→C) P(C→B) P(B→A) 
= P(A→C→B→A).

It tt h lk f A t A

B

C

B

C

B

C

B

C

It matters how one walks from A to A.

Or, it matters whether one walks forward or backward.



Processes back in time

Kolmogorov condition for reversibility
A stationary Markov chain is reversible if and only if any 
path from state Ei to state Ei has the same probability as 
the path in the opposite direction. Or, the Markov chain is 
reversible if and only if:

for all i, i1, i2, …, ik.1 2 k

E g : P(A→B→C→A) = P(A→C→B→A)E.g.: P(A→B→C→A) =  P(A→C→B→A).

A A A A A A A A

B

C

B

C

B

C

B

C

B

C

B

C

B

C

B

C



Processes back in time

Interpretation
For a reversible Markov chain it is not possible to 
determine the direction of the process from the observed 
state sequence alone.

M l l h l ti i t t t• Molecular phylogenetics aims to reconstruct 
evolutionary relationships between present day species 
from their DNA sequences Reversibility is then anfrom their DNA sequences. Reversibility is then an 
essential assumption. 

• Genes are transcribed in one direction only (from the 3’• Genes are transcribed in one direction only (from the 3  
end to the 5’ end). The promoter is only on the 3’ end. 
This suggests irreversibility. s suggests e e s b ty



Processes back in time

E. Coli
For a gene in the E. Coli genome, we estimate:

Transition matrix
[,1]      [,2]      [,3]      [,4]

[1,] 0.2296984 0.3155452 0.2273782 0.2273782
[2,] 0.1929134 0.2421260 0.2933071 0.2716535[ ,]
[3,] 0.1979167 0.2854167 0.2166667 0.3000000
[4,] 0.2522686 0.2032668 0.2341198 0.3103448

Stationary distribution
[1] 0.2187817 0.2578680 0.2436548 0.2796954

Then, the detailed balance equation do not hold, e.g.:
π p ≠ π pπ1 p12 ≠ π2 p21.



Processes back in time

Note
Within evolution theory the notion of irreversibility 
refers to the presumption that complex organisms 
once lost evolution will not appear in the same form.

Indeed, the likelihood of reconstructing a particular 
phylogenic system is infinitesimal small.



Application:Application:
motifsmotifs



Application: motifs

Study the sequence of the promotor region up-stream of a 
gene. 

DNADNAgene

upstream promotor regionp p g

This region contains binding sites for the transcription 
factors that regulate the transcription of the gene.

DNAgene



Application: motifs

The binding sites of a transciption factor (that may regulate 
multiple genes) share certain sequence patterns, motifs.

Not all transcription factors and motifs are known. Hence, a p ,
high occurrence of a particular sequence pattern in the 
upstream regions of a gene may indicate that it has a 

f ( )regulatory function (e.g., binding site). 

Problem
Determine the probability of observing m motifs in a 
background generated by a 1st order stationary Markov 
chainchain.



Application: motifs

An h-letter word W = w1 w2 … wh is a map from {1, …, h} to
, where      some non-empty set, called the alphabet. 

In the DNA example:In the DNA example:

and, e.g.:



Application: motifs

A word W is p-periodic if 

The lag between two overlapping occurrences of the wordThe lag between two overlapping occurrences of the word.

The set of all periods of W (less than h) is the period set, p ( ) p ,
denoted by            . In other words, the set of integers 0 < p
< h such that a new occurrence of W can start p letters after 
an occurrence of W.



Application: motifs

If W1 = CGATCGATCG, then 
For:

123456789
CGATCGATC
CGATCGATCGATC
CGATCGATCGATCGATCCGATCGATCGATCGATC

If W2 = CGAACTG, then 



Application: motifs

Let N(W) be the number of (overlapping) occurrences of an 
h-letter word W in a random sequence n on A.

If Yt is the random variable defined by:

then



Application: motifs

Also, denote the number of occurences in W by:

andand

If W = CATGA, then:
n(A)  = 2 and n(A•) = 1



Application: motifs

Assume a stationary 1st order Markov model for the random 
sequence of length n. The probability of an occurrence of W
in the random sequence is given by:



Application: motifs

In the 1st order Markov model, the expected number of 
occurrences of W is approximated by:

and its variance by:



Application: motifs

To find words with exceptionally frequency in the DNA, the 
following (asymptotically) standard normal statistic is used:

The p-value of word W is then given by:



Application: motifs

Note
Robin, Daudon (1999) provide exact probabilities of word 
occurences in random sequences. 

However, Robin, Schbath (2001) point out that calculation of 
the exact probabilities is computationally intensive. Hence, 
the use of an approximation here.
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