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Phylogenetics



Phylogenetics

“Acceptance of the theory of evolution as the 
means of explaining observed similarities andmeans of explaining observed similarities and 
differences among organisms invites the 
construction of trees of descent purporting to g
show evolutionary relationships”

C lli Sf Ed d (1967)-- Cavalli-Sforza, Edwards  (1967)
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Phylogenetics

Phylogenetics is the study of evolutionary relationships 
between organisms.

G lGoal
• Reconstruct correct genealogical ties among biogical 

entitiesentities.
• Estimate the time of divergence between organisms.
• Chronicle the sequence of events along evolutionary q g y

lineages.

St ti ti l ti li ti t ti f h l tiStatistical operationalization: reconstruction of phylogenetic 
trees on the basis of DNA sequences.

This can also be done on the basis of other characteristics.



Phylogenetics

Conceptually DNA is anConceptually, DNA is an 
information-carrier. 

At the molecular level DNA 
is a double-stranded  
polymer existing of four 
basic molecular units, 
called nucleotides andcalled nucleotides, and 
denoted by the letters: A, C, 
G and T.G and T. 

… ACCCGATAGCT …



Phylogenetics

DNA of each individual is unique, but differences are DNA of each individual is unique, but differences are 
small: 1 in 500 to 1000 nucleotides differ between two 
individuals. 

Within a population each position in the DNA has a ‘pre-
dominant’ nucleotidedominant  nucleotide. 

Over generations this ‘pre-dominant’-nucleotide of a g p
position can change by evolution. 

This process is called substitution, and takes place over 
1000s of generations. 



Phylogenetics

Molecular clock-hypothesis

Pair-wise DNA differences 
between 17 mamal species, 

l tt d i t th i ‘ti fplotted against their ‘time-of-
divergence’, determined from 
fossil recordsfossil records. 

The linear relation suggestsThe linear relation suggests 
that molecular differences 
between pairs of species arebetween pairs of species are 
proportional to their ‘time-of-
divergence’. 

(Wilson et al., 1977)



Phylogenetics

Reconstruction of molecular phylogenetic 
relations is a step-wise process:

1) Select sequences1) Select sequences.

2) Build a model that describes evolution over 
titime. 

3) Find the tree that best describes the )
phylogenetic relations between the sequences. 

4) Interpret the results4) Interpret the results.

contribution of the statistician



Phylogenetics
On-going effort

Picture: Tree of Life Web Project



Phylogenetics

The platypus: reptile or mamal?
Recently, the genome of the platypus / duck bill 
has been sequenced.

This revealed:
a) +/- 220 My ago separated from the reptiles,) y g p p ,
b) +/- 170 My ago separated from the mamals, 
and then evolved separately. 



Intermezzo onIntermezzo on
graphsgraphs



Intermezzo on graphs

A graph is a system of connected components. The 
connections are called edges, and components nodes.

Th t l f h i i (V E) h V th tThe topology of a graph is a pair (V, E), where V the set 
of edges and E a subset of V x V. 

V1

V2 V = { V1, V2, V3, V4 }V2

V4
V3

{ 1, 2, 3, 4 }

E = { (V2, V3), (V3, V4), (V3, V3) }



Intermezzo on graphs

A path in a graph is a set of connected edges. In case the 
begin and end point of a path coincide, the path is called a 
cycle.

V1

V2 Path: (V2, V3), (V3, V4)V2

V4
V3

( 2, 3), ( 3, 4)

Cycle: (V3, V3) 



Intermezzo on graphs

If a nodes of a graph are connected (i.e., there is a path 
between all nodes) the graph is called connectedbetween all nodes), the graph is called connected. 

A connected graph that contains no cycles is called a tree.A connected graph that contains no cycles is called a tree.

In a binary tree every node has either one or three edges, 
except for the root node, if present, that has two edges.

leave node

root node



Intermezzo on graphs

Here we only consider binary trees. This rules out the 
possibility of one species evolving into three or more newpossibility of one species evolving into three or more new 
species at a particular instance

bifurcations multifurcationsbifurcations multifurcations



Intermezzo on graphs

In a phylogenetic tree:
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Intermezzo on graphs

In case of three observed sequences, there are three q
different trees that connect the sequences:

seq 1 seq 2 seq 3 seq 1 seq 2 seq 3 seq 1 seq 3 seq 2

seq 3 seq 2 seq 1
=

seq 3 seq 2 seq 1
=



Intermezzo on graphs

Hence, the following topologies are equivalent.

common 
ancestor

gibbon
orangutan ancestor
gorilla
human
bonobo
chimpansee

common 
t

gibbon
chimpanseeancestor

human
bonobo
chimpansee

orangutan 
gorilla



Intermezzo on graphs

If we have three observed sequences we have threeIf we have three observed sequences, we have three 
different rooted binary trees to connect the three 
sequences:

1 2 3 1 2 3 1 3 2seq 1 seq 2 seq 3 seq 1 seq 2 seq 3 seq 1 seq 3 seq 2



Intermezzo on graphs

The number of possible topologies is enormous. If the 
number of observed sequences equals n the number ofnumber of observed sequences equals n, the number of 
different rooted binary trees is:

(2n-3)! / 2n-2 (n-2)!

In case n = 2 : 1
n = 3 : 3
n = 4 : 15n = 4   : 15
n = 5   : 105
…. : ….…. : ….
n = 10 : 34459425

And we have not even considered the branch length!



Intermezzo on graphs

The number of possible topologies is enormous. If the 
number of observed sequences equals n the number ofnumber of observed sequences equals n, the number of 
different unrooted binary trees is:

(2n-5)! / 2n-3 (n-3)!

In case n = 2 : 1
n = 3 : 1
n = 4 : 3n = 4   : 3
n = 5   : 15
n = 6 : 105n  6   : 105
…. : ….
n = 10 : 2027025
n = 11 : 34459425



A model for DNAA model for DNA
evolutionevolution



Models for DNA evolution

For an individual position the substitution process is For an individual position the substitution process is 
modeled by a 1st order Markov process with the state 
space S={A, G, C, T}, now grouped by purines (A and G) 
and pyrimidines (C and T).

The considered models differ in their parametrization of P:



Models for DNA evolution (JC69)

The Jukes-Cantor model is a DNA substitution model The Jukes Cantor model is a DNA substitution model 
which assumes that:
- each base in the sequence has an equal probability of 

being substituted.
- if a nucleotide substitution occurs, all other nucleotides 

have the same probability to replace ithave the same probability to replace it.

(As a results we expect an equal frequency of the four ( p q q y
bases in the resulting DNA sequence.)



Models for DNA evolution (JC69)
We have:
- probability α of C to substitute by Aprobability    α of C to substitute by A,
- probability    α of C to substitute by G,
- probability    α of C to substitute by T,

A

- probability 1-3α of C not to substitute.

A

GG

C
C

C

TT

generation 0 generation 1



Models for DNA evolution (JC69)

A A1-3α

G G

α

α

α

α

C C
C 1-3α

α

α

T T

α

generation 0 generation 1 generation 2



Models for DNA evolution (JC69)

A A

G G

C C
C

T T

generation 0 generation 1 generation 2



Models for DNA evolution (JC69)

A A A AA

G

A

G

A

G

A

G

…

G

C

G

C
C

G

C

G

C

…

…C

T

C

T

C

T

C

T

…

…T T T T …

genera- genera- genera- genera- etc.
tion 1 tion 2 tion 3 tion 4



Models for DNA evolution (JC69)

Over 1000s of generations (time homogeneity):

1-3α1-3α

Over 1000s of generations (time homogeneity):

A C

1-3α1-3α
α

α

α αα α
α

α

G T
α

α
1-3α1-3α



Models for DNA evolution (JC69)

The Jukes-Cantor transition matrix:

A Gα

where
- α < ⅓,

d d A Gα- α depends on 
the step size.

α αα

C Tα



Models for DNA evolution (JC69)

Always substitute if α=1/3: A G1/3

1/4 1/31/3

C T1/3

No Markov property if α=1/4:No Markov property if α=1/4:
A G1/4

1/4 1/41/4

C T1/4



Models for DNA evolution (JC69)

Properties of the Jukes-Cantor model

The eigenvalues of P:

λ = 1, 1-4α, 1-4α, 1-4α., , ,

The stationary distribution corresponding to λ=1:

φ = (¼, ¼, ¼, ¼)T

Indeed, after enough generations all four states are equallyIndeed, after enough generations all four states are equally 
likely. That is, all four nucleotides are equally likely to be 
the predominant nucleotide at the position under 
consideration.



Models for DNA evolution (JC69)

Properties of the Jukes-Cantor model

Its spectral decomposition:



Models for DNA evolution (JC69)

Properties of the Jukes-Cantor model

Consider a stationary 1st order Markov chain with a Jukes-
Cantor transition matrix. The probability of no substitution 
i i bis given by:

P(Xt=A, Xt-1=A, …, X0=A) = P(A | A)t P(A)
= (1-3α)t φ= (1-3α) φA
= (1-3α)t / 4

Given that X0=A, the probability that A will be the pre-
dominant nucleotide at time t is given by:

¼ ¾ (1 4 )t¼ + ¾ (1-4α)t



Models for DNA evolution (JC69)

Properties of the Jukes-Cantor model

Now we know P and φ, and, hence, we can assess the 
reversibility of the Jukes-Cantor model by means of 
h ki th d t il d b l tichecking the detailed balance equations:

φi pij = φj pji for all i and j.

Recall
In order for the Jukes-Cantor model to link one species to 
another (via a common ancestor) the transition matrix Panother (via a common ancestor), the transition matrix P
needs to be reversible.



Models for DNA evolution (JC69)

Proportion of site differences between two sequences in 
th J k C t d l l tt d i t tithe Jukes-Canter model plotted against time 
(# generations), starting from the common ancestor.

α = 0.001 α = 0.0001



Models for DNA evolution (K80)

The Kimura model is a generalization of the Jukes-Cantor The Kimura model is a generalization of the Jukes Cantor 
model. It allows for different transition and transversion 
probabilities. 

Similar to the Jukes-Cantor model, the Kimura is 
symmetrical Therefore after enough time it is equallysymmetrical. Therefore, after enough time it is equally 
likely for a base to be a purine or a pyrimidine.

Within the purine and pyrimidine categories there is 
complete symmetry between the nucleotides.



Models for DNA evolution (K80)

The Kimura transition matrix:

A Gα

where
- α + 2β < 1,

β d d A Gα- α, β depend on 
the step size.

β ββ

Take α = β:
J k C t C TαJukes-Cantor.



Models for DNA evolution (K80)

Properties of the Kimura model

The eigenvalues of P:

λ = 1, 1-4β, 1-2(α+β), 1-2(α+β)., β, ( β), ( β)

The stationary distribution corresponding to λ 1:The stationary distribution corresponding to λ=1:

φ = (¼, ¼, ¼, ¼)T

The Kimura model is reversible (P is symmetric and φ( y φ
uniform).



Models for DNA evolution (K80)

Proportion of site differences between two sequences in 
th Ki d l l tt d i t ti (# ti )the Kimura model plotted against time (# generations), 
starting from the common ancestor.

α = 0.0001, β = 0.0005 α = 0.0001, β = 0.00005

transversions transversionstransversions

transitions

transversions

transitions



Models for DNA evolution (K80)

The Kimura model has been generalized to allow, e.g.:
Th t iti b bilit t diff f th t i- The transition probability to differ from the transversion 
probability.

- Different within-transition and within-transversionDifferent within transition and within transversion 
substitution probabilities. 

A Gα A G
α

A G

δ γδ γ

A G

δ γδ γ

β

C Tα

δ γδ γ

C T

δ γδ γ

α
C Tα C T

β



Models for DNA evolution (F81)

The Felsenstein model is also a generalization of the The Felsenstein model is also a generalization of the 
Jukes-Cantor model. It relaxes the (implicit) assumption of 
the JC and Kimura model, both having a uniform stationary 
distribution.

In the Felsenstein model the probability of substitution ofIn the Felsenstein model the probability of substitution of 
any nucleotide by another is proportional to the stationary 
probability of the substituting nucleotide.p y g

The Felsenstein model does not distinguish between 
purines and pyrimidines.



Models for DNA evolution (F81)

The Felsenstein transition matrix:

where
- φA + φG + φC + 

1 A G
uφG

φT = 1.
- u a model  

parameter

A G
uφA

parameter.

Take φA=φG=φC=φT=¼:
J k C tJukes-Cantor. C T



The likelihood:The likelihood:
a simple examplea simple example



The likelihood: an example
Consider two homologous sequences sampled from two 
different species (with a common ancestor):p ( )

species 1 : AATTGCGTAGCTAGATCGCTCGCTA

2species 2 : AATTGCGTAGCTAGGTCGCTCGCTA

15th base15 base 

sequence species 1TT AA GGT T
TT GG GGT T sequence species 2

TT CC AA

pos. 14 pos. 15 pos. 16… …

T T sequence common 
ancestor

pos pos 5 pos 6

What is the likelihood of observing these two sequences?



The likelihood: an example

Let
X denote the sequence data of both species, and
Xij denote the nucleotide at position j=1, …,25 of species i.

The likelihood for the Jukes-Cantor model is then:The likelihood for the Jukes Cantor model is then:

which, assuming sites evolve independently, factorizes to 



The likelihood: an example

Assuming (X1j, X2j) = (Ek1, Ek2) and that the species have 
l d t l t ti i th tevolved separately t generations since the common ancestor, 

then:
Ek1 Ek2

t generations

Ek0



The likelihood: an example

Note
The life time of a generation may 
differ between the two present day 
organisms In particular if an Ek1 Ek2organisms. In particular, if an 
evolutionary long time has passed 
since the common ancestor. t generations

The solution is to use the actual time Ek0

passed since the common ancestor. 
Modeling this requires continuous 
ti M k h i N t t t d htime Markov chains. Not treated here.



The likelihood: an example

In order to write down the likelihood, recall
Th Ch K l ti- The Chapman-Kolmogorov equations:

- The reversibility of the Jukes-Cantor model:y

- The symmetry of the JC transition matrix P. 

- Combining the last two yields:



The likelihood: an example



The likelihood: an example

1) substitute previously derived expression for1) substitute previously derived expression for 
probability of individual observation

2) substitution rates are the same for all sites2) substitution rates are the same for all sites



The likelihood: an example

use the time reversibility of the JC model



The likelihood: an example

By using the time reversibility of the JC model, we 
have reversed one arrow of the phylogenetic tree:have reversed one arrow of the phylogenetic tree:

Ek1 Ek2 Ek1 Ek2

Ek0 Ek0

In the formulea:



The likelihood: an example

bringing πk1 outside the sum



The likelihood: an example

use the Chapman-Kolmogorov equations



The likelihood: an example

By using the Chapman-Kolmogorov equations, we 
removed the common ancestor from the phylogenetic tree:removed the common ancestor from the phylogenetic tree:

Ek1 Ek2

Ek1 Ek2t t 2t

Ek0

In the formulea:



The likelihood: an example

The likelihood can be further simplified, when exploiting the 
t l d iti th JC t t t iti t ispectral decomposition the JC t-step transition matrix:



The likelihood: an example

Finally, we have:

where we have used that the stationary distribution of the JC 
model is uniform.



The likelihood: an example

From the likelihood, it is clear 
Contour plot of u vs t and α.

either t or α is identifiable not 
both. Many combinations (α, t) 
i ld th lik lih dyield the same likelihood. t

In the absence of external 
evidence of α, we replace: 

and obtain:and obtain:



The likelihood: an example

To estimate u, maximize the log-likehood:

This yields:

Check that this is indeed a maximumCheck that this is indeed a maximum.



The likelihood: an example
For our two-species example, with sequences:

i 1 AATTGCGTAGCTAGATCGCTCGCTAspecies 1 : AATTGCGTAGCTAGATCGCTCGCTA

species 2 : AATTGCGTAGCTAGGTCGCTCGCTA

the ML estimate equals:

Assuming the substitution rate (α) is 1 in a million, we get:

This estimates suggests that the two species shared a 
common ancestor 219233 generations agocommon ancestor 219233 generations ago.



The pulley principle



The pulley principle

Due to reversibility, likelihood of trees below are equivalent:

s1 s2 s1 s2 s1 s2

tt tt tttt tt tt

s0 s0 s0

But even to:
s1 s2 s1 s2 s1 s2

2t 2t 2t

Pulley principle
The root node may be moved to any of the nodes without 
changing the likelihood.



The pulley principle

Due to the pulley principle, the likelihood of the followingDue to the pulley principle, the likelihood of the following 
trees is equivalent:

s0

t2t1 21

t3

s8
t0t3

s8

s1 s2 s3 s4 s5

s7s6

t4t5 t7 t8

s s s s s

s7s6

t4t5 t7 t8

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5



The likelihood:The likelihood:
another exampleanother example



The likelihood: another example
Consider the case where:

DNA sequences from (say) 5 species are available- DNA sequences from (say) 5 species are available.
- the sequences consist of (say) 25 bases.
- we assume the followingwe assume the following 

topology: s0

t2t1

s

t3

s8

s7s6

t4t5 t6 t7 t8
f

s1 s2 s3 s4 s5

sequences of 
5 observed 
species



The likelihood: another example
Step 1
Assume the 25 sites evolve independently The probabilityAssume the 25 sites evolve independently. The probability 
of evolution from (say) node / species s7 to s5 then 
becomes:becomes:

where

denotes the (conditional) probability of X7j evolving to X5j
i t tiin t8 generations.



The likelihood: another example
Step 1
Recall: the probability of the nucleotide at site j changingRecall: the probability of the nucleotide at site j changing 
from X7j in sequence 7 to X5j in sequence 5 in t8
generations, denoted by:generations, denoted by:

is given by a multiple of the transition matrix of the 
evolutionary model of choice Henceevolutionary model of choice. Hence,



The likelihood: another example
Step 2
If the sequence of all nodes / species (s s ) areIf the sequence of all nodes / species (s0, …, s8) are 
known, the likelihood is given by:



The likelihood: another example
Step 3
Since only the sequences of nodes n n areSince only the sequences of nodes n1, …, n5 are 
observed, the likelihood has to be summed over all 
possible sequences for the unobserved nodes:possible sequences for the unobserved nodes:



The likelihood: another example
Step 3 (computational efficiency)
This likelihood can be calculated by exploiting theThis likelihood can be calculated by exploiting the 
conditional likelihoods, e.g.:

which yields:



The likelihood: another example
Step 3 (computational efficiency)

Without the exploitation of the conditional likelihood, 
calculation of the likelihood required the evaluation of 
44=256 combinations (4 hidden nodes 4 nucleotides)44=256 combinations (4 hidden nodes, 4 nucleotides). 

In the reformulation on the previous slide, the likelihood is 
l t d i f 4 * (4+4+4) 48 tevaluated in for 4 * (4+4+4) = 48 steps. 

This is (approximately) a factor 5!!!



The likelihood: another example

Pruning: calculate the likelihood by proceeding from the 
leaves towards the rootleaves towards the root. 

step 1 step 2 step 3
s0

t2t1

s8

s0

t2t1

s8

s0

t2t1

s8

s1 s2 s3 s4 s5

s7s6

t3

t4t5 t7 t8

s1 s2 s3 s4 s5

s7s6

t3

t4t5 t7 t8

s1 s2 s3 s4 s5

s7s6

t3

t4t5 t7 t8

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5 s1 s2 s3 s4 s5



The likelihood: another example
Step 4
As also the topology is in fact unobserved we need toAs also the topology is in fact unobserved, we need to 
sum the likelihood from the previous step over all possible 
topologies.topologies.

The pulley principle comes to the rescue, partially. 
• With 5 leave nodes the number of possible rooted binary• With 5 leave nodes, the number of possible rooted binary 

trees equals 105.
• The pulley principle tells us only to consider the unrooted• The pulley principle tells us only to consider the unrooted

binary trees, a total of 15.



LikelihoodLikelihood 
maximizationmaximization



Likelihood maximization

To maximize the log-likelihood:
St 1 S l t t t l• Step 1: Select a tree topology. 

• Step 2: Choose initial values for each edge.
• Step 3: Maximize edges individually given the other edges• Step 3: Maximize edges individually, given the other edges.
• Step 4: Iterate step 3, until values no longer change.
• Step 5: Do this for all possible topologies.Step 5: Do this for all possible topologies.

The particular form of this algorithm described below may g y
converge to local maxima!

With respect to step 3:
How to maximize the log-likelihood with respect to an edge? 



The likelihood

Denote the conditional likelihood of subtree rooted at node i
with nucleotide X by

s

with nucleotide Xij by           . 

s0

t2t1

The likelihood of site j

s7s6

t3

s8The likelihood of site j
for our tree, now 
assumed to be rooted

s1 s2 s3 s4 s5

t4t5 t7 t8
assumed to be rooted 
at s8, is given by:



Likelihood maximization

Using:

reformulate this to:



Likelihood maximization

This holds for all sites, thus:

The log-likelihood and its derivative are given by:The log-likelihood and its derivative are given by:



Likelihood maximization

The p maximizing the log-likelihood is found iteratively.
Ch t i h > 0• Choose a step size h > 0.

• Let          be the value of p from the k-th iteration.

• Then, define:

This choice of       I       implies the majorization:



Likelihood maximization

The majorization can be seen from:

which has the same sign at the derivative of the log-likelihood, c as e sa e s g a e de a e o e og e ood,
evaluated in the current estimate of p!



Why theWhy the 
likelihood approach?likelihood approach?



Why the likelihood approach?

Why use the likelihood approach when also the 
methodologically simpler distance matrix and 

i i th d il bl ?maximum parsimony methods are available?

• The likelihood approach makes assumptions 
explicit. This enables us to assess their validity.

• Within the likelihood framework we may compare 
nested models using a likelihood ratio test. 



Example



Example

Laurasiatheria is a group of mammals originating from the 
f i L iformer continent Laurasia.

The phylogenetic relationships 
between the Laurasiatherians 
are still uncertainare still uncertain.

Available:
• RNA sequence data of 47 Laurasiatherians.
• Sequence is 3179 bases long.

Reconstruct their phylogenetic treeReconstruct their phylogenetic tree.

Picture: Wikipedia



Example

In R:
> # activate library> # activate library
> library(phangorn)

> # l d d t> # load data
> data(Laurasiatherian)

Platypus  ttaaaggtttggtcctagccttactgttagatttgattagatttatacatgcagtatcc...
Wallaroo ccaaaggtttggtcctggccttactgttaattgtagttagacctacacatgcagtttccWallaroo  ccaaaggtttggtcctggccttactgttaattgtagttagacctacacatgcagtttcc...
Possum    ccaaaggtttggtcctagccttactgttaattataattaaacctacacatgcagtttcc...
Bandicoot ccaaaggtttggtcctagcctttctattaattttaattaaacctacacatgcagtctcc...
Opposum   ccataggtttggtcctagccttattattagttctaattagacctacacatgcagtttcc...pp gg gg g g g g g
Armadillo ccacaggtctggtcctagccttactattaattcataacaaaattacacatgcagtatca...
Elephant  ccaaaggtttggtcccggccttcttattggttactaggaaacttatacatgcagtatcc...
Aardvark  ttaaaggtttggtcctagcctttctattagttgacagtaaatttatacatgcagtatct...
Tenrec ttaaaggtttggttctagcctttttattagttcttaataaaattatacatgcagtatccTenrec    ttaaaggtttggttctagcctttttattagttcttaataaaattatacatgcagtatcc...
Hedghog   aataaggtctggtcccagccttcctattttctattagtagaattacacatgcagtatca...
...       ...



Example

Now fit the model:
> # construct a starting tree> # construct a starting tree
> distMat <- dist.logDet(Laurasiatherian)
> tree <- NJ(distMat)

> # fit Jukes-Cantor model
> fitJC <- pml(tree, Laurasiatherian, model="JC")  
> fitJC <- optim.pml(fitJC, optNni=TRUE, 

optEdge=TRUE, model="JC")
> plot(fitJC$tree)

Note: this fits a model with continuous time, instead of 
discrete time as treated in the lecture.



Example



Example

The Jukes-Cantor model is just one evolutionary model. 
Many more exist

Fit different model:

Many more exist.

Fit different model:
> # construct a starting tree
> distMat <- dist.logDet(Laurasiatherian)
> tree <- NJ(distMat)

> # fit Felsenstein model
> fitF81 <- pml(tree, Laurasiatherian, model="F81")  
> fitF81 <- optim.pml(fitF81, optNni=TRUE, 

optBf=TRUE, optEdge=TRUE, p , p g ,
model="F81")

> plot(fitF81$tree)



Example



Assumptions



Assumptions

Transition-substitution: Transversion-substitution:
A, G → A, G
C, T → C, T

A, G → C, T
C, T → A, G

Transition and transversion probabilities differ:Transition- and transversion probabilities differ:

A GαA Gα

β ββα αα

C TαC Tα

More complicated models than Jukes-Cantor available.



Assumptions

Positions do not evolve independently (covarion):

A G G T A G C TA G G T A G C T… …

B t lBut also … 
… three contiguous bases code for one amino acid:

A G G T A G C T… …

i id i idamino acid amino acid



Assumptions

Heterotachy is a general term for within-site rate 
variation over time. Under heterotachy, evolutionary 
rates at different sites may vary in different ways over 

btsubtrees.

Hence, under heterotachy, the time-homogeneity 
assumption may be invalid. That is, the rate of 
nucleotide substution (the transition probability) may 
not be constant of time.

The molecular hypothesis should be applied with care.



Assumptions

The Cambrian explosion refers to the period around 530 
My ago in which the evolutionary pace seems accelaratedMy ago in which the evolutionary pace seems accelarated.

→ substitution-rate varies over time.

Ti
m

e
T

Pre-Cambrian
Cambrian



Assumptions

The Permian quiescence refers to the period after the 
Permian extinction (250 My ago) where the evolutionary pacePermian extinction (250 My ago), where the evolutionary pace 
seemed to have slowed down.

b tit ti t i ti

m
e

→ substitution-rate varies over time.

Ti
m

Permian 
quiescence

Permian extinction



Assumptions

Implicitly, it has been assumed that organism evolve 
independently. 

However, often there is co-evolution:
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