
Exam: high-dimensional data analysis

January 20, 2014

Instructions:
- Write clearly. Scribbles will not be deciphered.
- Answer each main question (not the subquestions) on a separate piece of paper.
- Finish in time!

Good luck!
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Question 1
A researcher is interested in the post-transcriptional regulation of an mRNA by two microRNAs.
The researcher has conducted a small experiment measuring the expression levels of these three
entities. The data are given in the following table:

Observation mRNA microRNA 1 microRNA 2

1 −1 1 1
2 2 −1 2
3 0 1 1
4 1 0 −2

Question 1a
Write down the linear regression model that explains the expression levels of the mRNA by those
of the two microRNAs. In this ignore the intercept and assume that the error has mean zero and
unit variance.

Question 1b
Give the loss function associated with ridge penalized maximum likelihood estimation of the re-
gression coefficients for the model of part a) of this question.

Question 1c
Optimize this loss function with respect to the regression coefficients. In this set the ridge penalty
parameter λ2 equal to 6.

Question 1d
Instead of the traditional ridge penalty, now augment the maximum likelihood loss function with
the following modified ridge penalty:

1

2
λ2(β − 12×1)

T(β − 12×1),

where β is the regression coefficient vector. What is the effect of this penalty? In particular,
explain how it differs from the traditional ridge penalty considered above.

Question 1e
Replace in the loss function of part b) of this equation the traditional ridge penalty by the mod-
ified one of part d) of this question. Now find the ‘modified ridge’ penalized maximum likelihood
estimate of β when λ2 = 6.

Question 1f
Write down lasso analogue of the loss function employed in part e) of this question, and find its
optimum for λ1 = 6.

Question 2
Consider a p-gene pathway. Gene expression data on each gene in the pathway are available from
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an observational study involving n samples. Assume these data from the pathway can be modeled
by a multivariate normal distribution.

Question 2a
When uncovering the conditional independence graph underlying the pathway, one may exploit
the link between regression coefficients and partial correlations. Hence, irrespective of whether
one directly estimates the (inverse of the) covariance matrix or uses a linear regression approach,
the same conclusion is reached. Discuss whether you think the two approaches still give identical
results in a high-dimensional setting (p > n).

Question 2b
The topology of the conditional independence graph is known: it is known which genes in the
pathway interact. For convenience, you may now assume n > p. Explain (in words) how you
would estimate the covariance matrix of the expression levels of the p genes, taking into account
the known structure of the conditional independence graph.

Question 3
A biologist detected 1000 significant genomic features in a 10 vs 10 comparison using a Benjamini-
Hochberg FDR threshold t = 0.1. Now she aims at validating those results. She uses a new type of
high-resolution microarray which measures 3 times as many genomic features as the the one used
for the original experiment, including all the genomic features of the original one. She selects 20
(10+10) new samples from exactly the same population as the 20 original ones, follows exactly the
same laboratory protocols and performs the same analysis as before. She is surprised to find only
300 significant features.

Question 3a
Argue what could have caused this apparent loss of power.

Question 3b
Assume now that the new experiment is only a partial confirmation experiment: she has means to
run a third, final validation experiment with larger sample sizes on all features that are significant
according to this 2nd experiment. Advise her on how to perform (p-value based) multiple testing
correction on this 2nd experiment.

Question 3c
Now assume that the 2nd experiment is really the final validation experiment. Advise her on how
to perform the (p-value based) multiple testing correction in this case.

Question 4
A researcher has performed an RNAseq experiment and now wishes to analyze the data. The
following factors have to be accounted for: I) the main comparison of interest is between 2 groups
of 5 individuals; II) the experiment contains four repeated measurements for 10 individuals; these
repeats are all within one group; III) the experiment is done in two batches, equally spread over
groups and individuals.

Question 4a
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Write down the full model that you would like to use to analyse this data.

Question 4b
For the parameter that codes for the group difference, say βg

i (i denotes genomic feature), the
researcher wishes to test H0i : |βig| ≤ 0.5. He decides to use a Gaussian mixture prior with three
components for this instead of a simple Gaussian. Why is this is a good choice?

Question 4c
With INLA/ShrinkBayes we obtain fits under each of the three Gaussian components separately,
and hence also posterior probabilities like: π(|βg

i | > 0.5|Yi, Ck) which denotes the posterior tail-
probability under the kth component of the mixture prior. Show how we can compute the posterior
probability of interest, π(|βg

i | > 0.5|Yi) from these probabilities, the prior and other results from
INLA.

Question 4d
It turns out that the RNAseq experiment contains a lot of noisy genomic features that are biolog-
ically not interesting and which can a priori be excluded. Is this a valid and wise approach and
what consequences would it have for the Gaussian mixture prior?

Question 4e
The INLA computations take a lot of time. The researcher has all the results from the original
prior. Show how to recalculate the posteriors without applying INLA again.
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Answer to question 1
Answer to question 1a
Let Yi, Xi,1 , Xi,1 and εi be random variables representing the expression levels of the mRNA,
microRNA 1, microRNA 2, and the error in sample i. The linear regression model is

Yi = β1Xi,1 + β2Xi,2 + εi for i = 1, . . . , n,

with εi ∼ N (0, σ2) and Cov(εi1 , εi2) = 0 if i1 6= i2.

Answer to question 1b
The ridge loss function is:

‖Y −Xβ‖22 −
1

2
λ‖β‖22 =

n∑

i=1

(Yi − β1Xi,1 − β2Xi,2)
2 − 1

2
λ(β2

1 + β2
2).

Answer to question 1c
Equate the derivative w.r.t. β to zero and obtain the estimating equation:

−XT(Y −Xβ) + λβ = 0,

which has the solution:

β(λ) = (XTX+ λI)−1XTY.

In this:

XTX =

(
3 0
0 10

)
and XTY =

( −3
1

)
.

Thus:

β̂(λ) =

(
9 0
0 16

)−1 ( −3
1

)
=

( −1/3
1/16

)
.

Answer to question 1d
It shrinks the regression coefficient to 1 as λ → ∞. The penalty now includes a target other than
zero.

Answer to question 1e
The estimating equation now changes to:

−XT(Y −Xβ) + λβ − λ12×1 = 02×1.

Solving for β yields:

β(λ) = (XTX+ λI)−1(XTY + λ12×1).

Answer to question 1f
First note ‖β−12×1‖1 = λ1|β1−1|+λ1|β2−1|. Apply the transformation-of-variables: γ1 = β1−1
and γ2 = β2 − 1. The loss function then becomes:

‖Ỹ −Xγ‖22 − λ1‖γ‖1,
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where Ỹ = Y−X12×1. As the design matrix X is orthogonal, the loss function may be optimized
w.r.t. γ1 and γ2 separately. The rest is analogous to the lecture notes.

Answer to question 2
Answer to question 2a
Both penalized estimates (regression coefficient and covariance) are baised. As loss functions and
penalties are different, their bias may also be rather different. It is thus unclear whether this will
uphold.

Answer to question 2b
Estimate the (inverse) covariance matrix by means of maximization of the log-likelihood aug-
mented with a lasso-type penalty. In this penalty each parameter of the precision matrix has its
own penalty parameter. This parameter equals zero is the corresponding edge is in the topology,
and infinity if it is not.

Answers to Question 3
Answer to Question 3a
The new features included may contain much less differential signal than the existing ones. When
using FDR, the significance of each single gene depends also on the signal of the others. Even when
the p-values of the 1000 would exactly reproduce the FDR in the new experiment at the threshold
used for the first experiment might be higher because V, the number of false discoveries increases
proportionally with the number of tests, whereas R, the total number of discoveries, increases much
less than proportionally. Hence, a smaller p-value threshold is required which potentially leads to
fewer findings.

Answer to Question 3b
It would suffice to only test the 1000 genes that were detected in the first experiment, and apply
BH-FDR, because further validation will be available.

Answer to Question 3c
Apply an FWER criterion. Either Bonferroni (or Holm) for simplicitly, or Westfall-Young permu-
tation when high correlations are expected.

Answers to Question 4
Answer to Question 4a

Yijk ∼ ZI-NB(µijk, φi, wi),

log(µijk) = αi0 + αi1X1j + αi2X2jk + βij ,

βij ∼ N(0, τ2i )

Here, i : gene, j: individual, k : repeat. Moreover, φi: overdispersion, wi: zero-inflation (optional).
Finally, X1j : group indicator, equals 0 if individual j belongs to group 1, and 1 otherwise. X2jk :
indicator for batch, 0 for batch 1, 1 for batch 2. Between individual random effect is modeled using
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βij and Gaussian prior.

Answer to Question 4b
Because such a mixture may better discern the negatively and positively expressed genes from the
non-expressed ones. Hence, power may increase. In addition, a mixture allows for asymmetry
between negatively and positively expressed genes (while maintaining the mean differential expres-
sion at 0), a simple Gaussian does not.

Answer to Question 4c
(Note that βg

i corresponds to αi1 in the model above)
First:

π(|βg
i | > 0.5|Yi) =

3∑

k=1

P (Ck|Yi)π(|βg
i | > 0.5|Yi, Ck).

Then:
P (Ck|Yi) = P (Yi|Ck)P (Ck)/

∑

k

P (Yi|Ck)P (Ck),

which are all available; P (Yi|Ck) as marginal likelihood from the fits under the separate model
components and P (Ck) from the prior.

Answer to Question 4d
Yes, as long as the removal is done a priori. It is wise because it may lead to a prior with better
separated mixture components (smaller standard deviations because the noisy features were re-
moved), which may improve power for the relevant features.

Answer to Question 4e
Compute it from the old posterior, the new prior and the old prior:

πnew(β
g
i |Yi) ∝ πold(β

g
i |Yi)πnew(β

g
i )/πold(β

g
i ).
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