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How did we end up here?

Moore's law

The number of transistors in a dense integrated circuit

doubles approximately every two years.
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How did we end up here?

Data deluge

“... the quantity of information in the world is soaring.
According to one estimate, mankind created 150 exabytes
(billion gigabytes) of data in 2005. This year, it will create
1,200 exabytes. Merely

keeping up with this flood,

and storing the bits that | [ 0
m|ght be useful’ IS dl_ﬂ:lcult ?::;:;L:nformatloncreatedandavallablestorage
enough. Analysing it, to rorecast, %%
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How did we end up here?

Examples
- Brain image data (fMRI / EEG)

“-

— Movie database m

— (Google search data

— Microarrays




A minimum of biology

Organisms are made of cells. 0\

A cell is the smallest

Microtubube-—___

possible independent g

living unit. The cell -

contains a complete Chromosofes
. Ribosgmes —_— '

copy of the organisms e A

genome. e A ..

The genome is the total
genetic constitution of an
organism, the full

haploid set of

chromosomes with all its na" VL /
genes. %
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A minimum of biology

A chromosome Is one of a set of threadlike molecular structures
composed of compressed DNA, that carry the genes which
determine an individual’s heriditary traits.

Chromosome

Conceptually, DNA is an
iInformation carrier, infor-
mation necessary for the
functioning of cells and
encoded in molecular units
called genes.

On the molecular level
DNA 1s a double-stranded
polymer composed of four
basic molecular units called
nucleotides.



A minimum of biolo

A gene is the basic physical unit of heredity: a linear sequence of
nucleotides, as a segment of DNA located on a chromosome, that
provides the coded instruction for one polypeptide chain.

Goene 1

G £

Chromosome



A minimum of biolo

Central Dogma of

Molecular Biology

describes the information 4
transfer process that -y
leads from the informa- [,
tion encoded in DNAto
the proteins in the cell.

— Information
carrier

Three steps are
discerned:

1) Replication N\ pctve col
2) Transcription
3) Translation




A minimum of biology

Transcription i1s the synthesis
of MRNA (nucleic acid like
DNA, but single-stranded)
from the DNA In the nucleus.

Sense Strand
{Coding Strand)

The mRNA is transported to
the cytoplasm and used to
synthesize protein.

Antisensa Strand
(Mon-coding DNA)

RANA polymerase — B

Jargon

A gene is said to be expressed
If the product it encodes for has
been formed.



A minimum of biology

Molecular biology aims to understand the molecular
processes that occur in the cell. That is, which
molecules present in the cell interact, and how is this
coordinated?

For many cellular process, it is unknown which genes
play what role.

Solution
Simply measure (the expression of) all genes ...
... and later sort out which are relevant.



Microarrays

Microarray
* Conceptually: a measurement device.

Gene expression arrays measure the expression of
genes (which genes are expressed and to what extent).

In fact, it measures mMRNA which is related — through the
transcription process — to the expression of genes.

Other types of microarrays measure:
* SNPs

* DNA copy number

* methylation



Microarrays

Microarray
* Physically: a glass slide

Microarray
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Microarrays

Hybridization

The preferential binding of gene
sequences to complementary
sequences.

HYBRIDIZATION
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Microarrays

An image of the microarray is generated

hybridized array
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Microarrays

Output per hybridization:

* File of 44Mb

* ~44000 rows

* ~100 columns

* Annotation information

* Quality metrics

* Biological signal (in various forms)

* Background signal (in various forms)




Quality control

Plot the raw image of the array
> image(...)

Nothing special



Quality control

Plot image of fore- and background signal
> image(...)

Foreground signal Background signal



Generate boxplots of fore- and background signal
> boxplot(..)
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Preprocessing

Before the statistical analysis of interest, the gene
expression measurements (intensities) undergo several
preprocessing steps.

‘ Background correction |
‘ Within-array normalization |

‘ Between-array normalization |

‘ EXxpression measure I




Background correction 7
Background intensity AN
The background of the microarray may §B\
have a non-zero intensity. §§
\5
o | \:
Hence, a feature’s intensity may include a §§ \
contribution not specifically due to the N
hybrization of the target to the probe. Sp background
spot spot surrounding signal
nonzero intensity: not necessary contains non-zero
representative of background noise intensity background

inside feature area. noise



Backaround correction

Many signal-noise models view the observed log-intensities

ssssssssssssssssss

N

Signal + Noise = Observed

darsily
L L L

The ‘signal + background’ model for the intensities:
Y;j = Si+ BGy;

Y ; is the intensity of sample / and feature j.

S.; and BG;; are independent random variables.

BGi; ~ N(u;,07)

Si; ~ exp(a;)

L4 i d



Background correction

Estimation of . :
- Fit a density to the Y, using a kernel density estimator.

« Estimate u. by the mode of the density.

Estimation of a;, and o;:
p

Qi = j=1 (Yij — ﬂi)I{Yz‘j Eﬂi}/ Z;):l L=y

6,? = 2 Zle(Y%j — ﬂi)zl{yfajzﬁi}/(zﬁzl I{Y’Uz‘ai} B 1)
The background corrected intensity is B(Y;;) = E(S;; | Yi;)
with

E(S;; |Yi;) = fooo sP(Yij| S =s)P(S =s)/P(Yi;)ds
and

fy (Vi) = [C f(Yi; — 2) fBa(z)dz



Background correction

Important
There Is no a priori justification for the presented ‘signal +
background’ model (or any of its competitors):

its usefulness must prove itself in application!

gg-plot

For instance,
check distributional
assumptions.




Normalization

Motivation for normalization

Normalization is required to correct for experimental
artifacts while preserving the true biological signal.

Normalization balances intensities
- between dyes, and
— pbetween hybridizations

In order to allow comparison of gene expression across
hybridizations.

- Dyes: within-array normalization.
- Hybridizations: between-array normalization.



Normalization

Conceptually, normalization adjusts intensities relative to
Intensities of reference genes whose levels are assumed to
be constants between samples.

A set of genes that are to function as reference genes in the
normalization must be chosen.

Genes for normalization

All genes on the array

Constantly expressed genes

Rank invariant genes




Normalization

1. All genes on the array
All genes on the array are used in normalization.

This Is sensible when:

a) only a relatively small proportion of the genes will vary
significantly in expression between mRNA-samples, or

b) there is symmetry in the expression levels of the
up/down-regulated genes.



Normalization

3. Controls
Spiked-in controls are synthetic DNA seguences

(complementary to oligonucleotides on the array) and
Included in the mRNA samples at equal amount and
should have equal intensities across hybridization.

10

array 1 7 array 2

. \ o | /
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5 10 1 10 15
A A

spiked-in controls




Normalization

Within-array normalization aims
— to balance intensities of the two dyes, as well as

— to elimate other systematic differences due to unequal
experimental conditions.

(4)60]

Systematic deviations
from the line
log(G)=log(R) indicate a
dye-effect that is to be &
eliminated by

normalization.




Normalization

MA plot

Within-array normalization
uses the MA-plot to identify
artifacts and detect
Intensity-dependent
patterns in log-ratio’s M..

Statistically, within-array
normalization subtracts a
function g(e) from the
iIndividual intensity log-ratio’s
M;. The function g(e) is
computed per array.

=N

92 BHo| — Y 6o

=N
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before

after

A= (log, R + log, G)/2



Normalization

Operationalization of between-array normalization

A transformation of the individual intensities values (or
log-ratio’s) such that the intensities are comparable
across arrays.

- A transformation is constructed for each hybridization.

— The functional form of the normalizing transformation
IS determined by the type of normalization.

Discuss: scale and quantile normalization



Normalization

Scale normalization
Assume log-ratios from array i follow N (0, a? 02)

The scale factors a; are robustly estimated by:
mad;

@i T
V1T, mad,

where mad. is the median absolute deviation of array I

mad = median;{|X; — median;(X;)|}

P

Scale normalization is then achieved by dividing the log-
ratios by the estimate of a;.



Normalization

Quantile normalization aims to make the distribution of
probe intensities the same across arrays. This
operationalization is motivated by the assumption that the
amount of mMRNA in each sample is roughly the same.

It transforms the data from all arrays such that the
transformed data follow the n-dimensional identity line in
the n-dimensional gg-plot.

Rationale

The quantiles of two identical distribution line up on the
diagonal of a qg-plot. This suggests that two datasets could
be given the same distribution by equalling their quantiles.



Normalization

Different distributions ...

aaaaaa




EXpression measure

Operationalization of expression
An expression measure is a number reflecting the amount
of RNA in the sample.

For dual channel arrays:
» the expression measure is simply the log-ratio’s M..

For the Affymetrix single channel array:

* an expression measure Is determined by summarizing the
probe level data of a probe set (set of features
Interrogating the same gene) into one number.

(not discussed)



EXpression measure

Covariate information for samples

EXxpression
matrix

Sample 1 Sample 2 Sample n

Probe 1
Probe 2

Expression signature=—

®|———+0 =T

5 0O —w;m|nm O|=T X M

Probe m

‘ sago.d 1o} uonewiolul ayeeAoD ‘




Rubbish?

“Microarrays are the closest thing to fraud we
accept in science.”

. PPPP PPP?

* Inherently noisy.
* Many sources of variation.

* Many preprocessing steps, with lots of arbitrary
choices.



Rubbish?

Affymetrix spike-in experiment

— 14 gene groups are spiked-in at varies concentrations
In accordance with a latin square design.

— Each hybridization has been replicated at least three
times.

- In total 59 hybridization.
- Array type: HG-U95.

A proof of principle?



gene expression

12

10

Rubbish?

37777_at

gene expression

log(concentration)

14

13

12

11

10

36085_at

lag(concentration)




Other data have similar issues

Twitter data
E.g. can one identify one's political
preference on the basis of his/her

tweets?

Sometimes easy:

Donald J. Trump & T
@realDonaldTrump J

Democrats are the problem. They don’t care

but meaning not always obvious:

Donald J. Trump @
c 2 Follow
@realDonaldTrump

Despite the constant negative press covfefe




Other data have similar issues

Twitter data
Harvesting. which tweets to select?

Decide upon:

— Time period of tweets.

- Qriginal tweet only?

- Include retweets?

- Include replies?

- Which language?

— Users' geographical location.

- Include meta-data like user profile?



Other data have similar issues

Twitter data
Preprocessing iISSUes:
- URLSs, @, #, emoticons, and other symbols,
- Spelling:
- 1000, 1,000, 1000.00, 1,000.00, or thousand, or
— colour or color,
- Synonyms:
— loud or noisy (in e.g. a Tripadvisor review),
- Acronyms:
- POTUS, LOL, BFF.
- Remove low frequency words?
- Remove stop words like “and”?
- Combine tweets?



An example:
the big promise



An exam

Gene expression patterns of breast carcinomas
distinguish tumor subclasses with
clinical implications

Therese Sorlie>?<, Charles M. Perou®d, Robert Tibshiranie, Turid Aasf, Stephanie Geisler9, Hilde Johnsen®, Trevor Hastie®,
Michael B. Eisen®, Matt van de Rijni, Stefanie S. Jeffreyl, Thor Thorsenk, Hanne Quist!, John C. Matesec,
Patrick O. Brown™, David Botstein¢, Per Eystein Lonning?, and Anne-Lise Borresen-DaleP™

Using 78 breast cancer
profiles, five subtypes
are distinguished:

* Basal

ERBB2

* Luminal A

* Luminal B

* Normal
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An example

Traditional medicine

i
i ii

All treated **
with the same
drug *

Standard treatment may not be beneficial to everyone.

Subgrouping of breast cancers suggest patients from
different subgroups may need different therapy.



An example

Personalized medicine
Individualized treatment based on i

patient’'s genetic characteristics.




An example

Why do people believe these breast cancer subtypes?
1) Subtypes exhibit different clinical outcome.

A 5 tumor subtypes (based upon Fig 1)

1

B 5 tumor subtypes (based upon Fig 1)
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survival months RFS

X Censored, mmmm | ym A, Lum B+C, s NorB-like, mmmm Basal. === ERBB2+

C 6 tumor subtypes (based upon Fig 1) D 5 tumor subtypes (based upon Fig 5)

1
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An example

Why do people believe these breast cancer subtypes?
2) Exhibit different morphology.




An example

Why do people believe these breast cancer subtypes?
3) Subtypes have been confirmed.

Repeated observation of breast tumor subtypes in
independent gene expression data sets

Therese Sorlie*, Robert Tibshiranit, Joel Parker*, Trevor Hastie$, J. S. Marron", Andrew Nobel", Shibing Deng|,
Hilde Johnsen**, Robert Pesich*, Stephanie Geislert?, Janos Demeter*, Charles M. Perou***, Per E. Lanning'?,
Patrick O. Brown$8, Anne-Lise Barresen-Dale**, and David Botstein*T1
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An example

Medio 2012, the story continues ...

ARTICLE

doi:10.1038/nature10983

The genomic and transcriptomic
architecture of 2,000 breast tumours

= Logrank P = 1.2 x 1014
=

reveals novel subgroups o

Christina Curtis"?+*, Sohrab P. Shah®**, Suet-Feung Chin"?*, Gulisa Turashv:
Doug Speed®>}, Andy G. Lynch?, Shamith Samarajiwa?, Yinyin Yuan"?, Ste
Ali Bashashati®, Roslin Russell?, Steven McKinney**, METABRIC Groupf, Anit
Gordon Wishart®, Sarah Pinder’, Peter Watson®*!°, Florian Markowetz"?, Lei
Anne-Lise Borresen-Dale®!?, James D. Brenton®'?, Simon Tavaréb>>4 Carlo.

0.8
1

0.6
1

0.4

@ |ntClusti: 74(18)

IntClust2: 45(20)
e IntClust3: 150(19)
& |ntClustd: 164(32)

Inclusion of more molecular
iInformation suggests the = e
existence of 10 subgroups. = = =

IntClust9: 67(24)
@ IntClust10: 96(30)

Disease-specific survival probability

0.2

0.0
|

I I T
0 50 100 150

Months



An example

How many subgroups really exist?

Genetically, everybody is unique. Thus ...

to the max?



The curse of
dimensionality

Giraud (2015)



Curse of dimensionality

I) The high-dimensional space is enormous and
data points are isolated.

Unit cubes

p=1 p=2 p=3

Maximum distances

V12 =1 V12 412 =2 V12 +124+12=+3




Curse of dimensionality

Histograms of Euclidean distances between random vectors
from the p-dimensional unit cube.
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Distances grow with p and (relatively) more homogeneous.

Question
What does this do to the “nearest neighbor” concept?



Curse of dimensionality

I1) Volume of unit balls vanishes as p increases.

The volume of a sphere with
radius r in a p-dimensions:

Vo(r) = [D(p/2 + D))"t a?/2p oi7
For p = 20, V(1) = 1.73 x 10, e

r=1

Question
What are the consequences for the sample size?




Curse of dimensionality

A well-designed experiment provides good coverage of
the design space.

— Design space: unit cube [0,1]".
— Distribute n points s.t. union of

N
unit balls around the points 20 39

encompass the unit cube. 30 43630
— Calculate required n for varying 50 5 7 % 1012

dimensions p.
4.2 X 10

1.28 x 1072




Curse of dimensionalit

i) Volume of unit balls concentrates around the crust.

Denote p-dimensional ball
with radius r by: B (0, r).

Define the “crust” by:
C.()=B,0,n\B,0,0.997).

ball‘ Ocrust

Then, the crust-to-ball
volume Is:

Vol[C, (1] / VoI[B,(0, )]

imension




Curse of dimensionalit

The univariate normal distribution concentrates
most mass around its mean and has thin tails.

This Is reversed for large p:
Plexp(—3[X][3) = 8] < (527/%)7!

Consequence
Rare events may not be so rare.






Issues: multiplicity

A comparison of the expression levels of gene A between
two groups:

Welch Two Sample t-test

data: group 1 and group 2

t = -8.6449, df = 17.284, p-value 1.099e-07

alternative hypothesis: true difference 1n means is not equal to 0

* This is a rather small p-value.
* Getting such a small p-value is unlikely.

* Is it still unlikely if we acknowledge that the gene is one
of 40000 on the microarray?

Slide courtesy of Jelle Goeman



Issues: multiplicity

The multiplicity problem
Each individual test has a specified type | error probability.

This probability of committing a type | error increases with
the number of tests.

1-(1-P(~H, | Hp))m

The probability of at least

one false positive finding 0.0500
IN M tests is given by: 0.0975
1-(A-P(~H,[H))m 0.2262

= 0.4013

1-(1-a)m

0.9941



Issues: multiplicity

Decreasing the rejection level reduces the
probability of a false positive.

2 - a—
#
4
© /
d — 4
/
!
g /
= !
8 /
Q o
W ]
] ]
@ 1
‘5 I
> ]
=2 <
& S 7 '
0] !
8 [
a !
1
o™ L
s ] |t
J-
' —— alpha=0.05
) - = alpha=0.01
v .-+ alpha=0.005
S 4! alpha=0.001
| | | | | [
0 200 400 600 800 1000

number of tests



Issues: multiplicity

Problem
— many traits, many tests,
- large number of false positives.

Multiple testing

— generalization of type | error,

— control of this generalized type | error,
— control of number of false positives.

Techniques (in lecture series)
- FWER,
- FDR.



Issues: shrinkage

Estimation of the variance of expression levels of gene A,
with only few samples available.

wy
—

sample size vs. confidence

10

sample size

Few samples — large uncertainty.



Issues: shrinkage

Additional information available:
variance estimates of 40000 other genes.

histogram of variance estimates

variance estimates

frequency
200 300 400 500 600
| | \ | |

100
|

o -

Confidence interval of overall pooled variance estimate:
very, very small.



Issues: shrinkage

Individual variance estimate:
— unbiased, but large uncertainly

Overall pooled variance estimate:
— biased, but very low uncertainty

Why not exploit the strengths of boths?
E.g. by combined estimator:

(1-0) sz + 0 s2

|nd|V|duaI overall

The individual estimator is “shrunken” towards the overall.



Issues: shrinkage

Problem
- low sample: highly variable estimates,
— low-reproducibility

Shrinkage

— traits are “comparable’,

— pborrow information across traits,

— stabilizes estimation and improve inference.

Techniques (in lecture series)
- Stein estimator,
- Empirical Bayes.



Issues: penalized estimation

A common objective
predict clinical outcome from gene expression levels.

Data available:
- a few hundred samples at best,
— # covariates = 40000.

Harrell (2001) gives the following rule-of-thumb:
For each continuous covariate in the model 10-20
observations are needed to detect reasonably sized
effects with reasonable power.

Where does this put us? A model with 20 genes?



Issues: penalized estimation

Identifiability
A statistical model is identifiable if for any two choices of
the parameter 6, and 6., such that 6, # 6, the resulting

probability distributions differ: Py, # P,.

Fact
The linear regression is identifiable.

Yi=1+2X; +e5,6 ~N(0,1) Y; = +




Issues: penalized estimation

Identifiability

Empirically, when p > n, the parameters cannot uniquely
be identified from the data. That is, multiple parameter
choices yield the same model.

Data available:
- 100 samples,
— 10000 covariates,

Then:

— Let the first 100 covariates be linearly independent.

— The same holds for the second 100 covariates.

— Both sets of covariates produce a linear regression
model with a perfect fit.

How do we distinguish between the two?



Issues: penalized estimation

Additional information may help.

In extremis
Would one know which (max) 20 covariates to include,
Harrell (by his rule-of-thumb) would not object.

< -

A natural way to include
such information is e.g. °
through the specification of
a prior. & =

A prior with a point mass at o ’
zero omits the covariate 5

from the model. o -




Issues: penalized estimation

Often no knowledge on relevant covariates. Data may

help in the selection of the prior. E.g., very large sample

size: no informative prior needed.

informative

vague




Issues: penalized estimation

n=10000 n=1000
Problem:

Correlation
estimates
inflate

Freque
Frequ
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| |
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Issues: penalized estimation

Problem
- few samples, many parameters,
— estimation is frustated by p > n.

Penalized estimation

— estimation procedures for p > n,

— |ess variable but biased estimates,

— |llustrated on reconstruction of networks.

Techniques (in lecture series)

— ridge regression,

— |lasso regression,

— ridge and lasso (inverse) covariance estimation.



Issues: asymptotics (not treated)

Problem:
- when p grows, parameters no longer fixed, e.q.:

Np(upv Ep)

Various asymptotic limits discerned:
- n > p: n— oo and p fixed .
> n>=p:n—oo and d = 0O(n),
> pr=n: p—oo and n = o(p),
- p>n: p— 00 and n fixed .



Big data vs.
high-dimensional
data



Big vs. high

Big data:
- large n: many individuals, large sample size.
- large p: information on many traits of these individuals.

Google:
- n large: many people use Google software.

— p large: Google registers everything these n do.
Similarly, Facebook, ING, et cetera.

Why:
- many individuals available.
— Information is cheap to gain.




Big vs. high

High-dimensional data:
- small n: few individuals, small sample size.
- large p: information on many traits of these individuals.

vumc:
- n small: few cancer patients.

- p large: many traits.

Why:
— Individuals with particular disease not abound.

- Information Is expensive.
vUmc (KK/



Big vs. high

n

7
“traditional” big (\/9

data data

high-dim. insanely high-
data dim. data



Big vs. high

Nonlinear function:
f(x) = sin(x) + sin(x?) + cos(exp(x4/100)).

Estimate f(x) from: True function

- big data (n=1000),
- high-dim. data (n=10).

f(x)

Approximate f(x) by

spline with p degrees of
freedom. Use p <7, while -
f(x) requires p >> 7.




f(x)

f(x)

Bi

VS. hi

Big data

f(x)

f(x)
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Big vs. high

Big and high-dimensional data often differ in the
experimental design underlying the data.

Big data

Practice

Google collects
virtually anything it can
gets its hands on.

Design
Observational at best

High-dim. data

Practice

VUmc financial sources
limited: careful planning
of experiments.

Design
Observational, but
often well-controlled
experiments.



Big vs. high

Big and high-dimensional data often used for different

purposes.

Big data High-dim. data
Practice Practice

Google optimizes VUmc tries to cure
advertisement revenue. patients.

Aim Aim

Predict behaviour of Understanding of the

the internet user. disease mechanism.



Big vs. high

Both big and high-dimensional data sometimes originate
from diffuse sources.

Big data High-dim. data
Google measures all, VUmc measures

but may also acquire molecular and clinical
third-party data. traits of patients.

The data thus comes from various sources, possibly in
different formats and with varying quality. To benefit from this
multitude of sources is challenging.
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