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Lasso regression

sum of squares lasso penalty

•             penalty parameter 
• Penalty deals (super)-collinearity

Instead of ridge why not use a different penalty? E.g.:



Lasso regression

Effect of the penalty on the loss function

unpenalized loss penalized loss

The red line / dot represents the optimum (minimum) of the loss function.



Lasso regression

Convexity
Both the sum of squares and the lasso penalty are 
convex, and so is the lasso loss function. Consequently, 
there exist a global minimum. However, the lasso loss 
function is not strictly convex. Consequently, there may be 
multiple β’s that minimize the lasso loss function.

Problem
In general, there is no explicit solution that optimizes the 
lasso loss function. 

Solution
Resort to numerical optimization procedures, e.g., 
gradient ascent.



Lasso regression

Non-uniqueness (example)
Consider the linear regression model: 
with perfectly collinear covariates. 

For sufficiently small            , the minimizer satisfies 
together with any           s.t.                                   .

The minimizer of the lasso loss is: 

where                       and 

        



Lasso regression

Predictor uniqueness
Suppose not. 
Then, there exists            and            s.t. 

By the convexity of the penalty and the strict convexity of the 
sum-of-squares (in the predictor!):

where              .

This contradicts the initial assumption. Q.E.D.



Lasso regression

Predictor uniqueness (example)
Consider the linear regression model: 
with perfectly collinear covariates. 

Let there be two minimizers of the lasso loss: 

and             defined similarly.

Then:                                   .



Lasso regression

Lasso regression fits the same linear regression model as 
ridge regression:

Theorem
The lasso loss function 
yields a piecewise 
linear (in λ1) solution 
path β(λ1).

The difference between ridge and lasso is in the estimators, 
confer the following theorem.



Lasso regression

In the orthonormal case, i.e.                                       :

That is, the lasso 
estimate is related to 
the OLS estimate via 
the so-called soft 
threshold function 
(depicted here for λ=1).



Lasso regression

For                            , 

The lasso estimator satisfies:

where if

if

Conclude by a case-by-case evaluation.

Then:



Constrained estimation 
and 

the selection property



Constrained estimation

Lasso regression as constrained estimation
The method of Lagrange multipliers enables the 
reformulation of the penalized least square problem:

Ridge constraint:

Lasso constraint:

as a constrained estimation problem:



Constrained estimation

residual sum of squares:

β2

β1

OLS estimate

2c1

lasso 
estimate



Selection

Ridge regularization path Lasso regularization path

Question
What are the qualitative differences?



Selection

Simple example
Data have been generated in accordance with:

where         .

Fit lasso and ridge both with a penalty equal to 3:

> # lasso
> coef(penalized(Y ~ X[,1] + X[,2], unpenalized=~0, lambda1=3), "all")
# nonzero coefficients: 1
     X[, 1]      X[, 2] 
0.02964444  0.00000000
 
> # ridge
> coef(penalized(Y ~ X[,1] + X[,2], unpenalized=~0, lambda2=3))

     X[, 1]      X[, 2] 
0.09712333 0.04480700 

http://www.r-project.org/index.html


Selection

In the 2-dim setting, for 
a point to lie on an 
axis, one coordinate 
needs to equal zero.

If the lasso estimate 
coincides with a corner 
of the diamond, one of 
the coordinates 
(estimated regression 
parameters)
equals zero.

Illustration of the sparsity of the lasso solution  



Selection

Suppose X is 
orthonormal.

Recall explicit 
expression for
lasso estimate.

Grey domains 
yield sparse 
solution, at least 
for large enough 
lambda.



Selection

In summary
Lasso regression has the advantage (for the purpose of 
interpretation) of yielding a sparse solution, in which 
many parameters (β’s) are equal to zero. 

The true model may not be sparse in terms of containing 
many zero elements. A regularization method that shrinks 
the parameters proportionally may then be preferred. 

Question
When is sparsity a reasonable assumption? Think 
about the gene expression data. How about astronomy 
data?



Picture: Goeman (2010).

Selection

Lasso fit
The number of non-
zero regression 
coefficients is not 
necessarily a 
monotone function 
of the penalty 
parameter.



Number of non-zero parameters

“Every lasso estimated model has cardinality smaller or 
equal to min(n, p).” (B, vdG, 2011)
Proven in Osborne et al. (2000), and “obvious from the analysis of the LARS algorithm 
(Efron et al., 2004).” (Buhlmann, Van de Geer (2011). 

When p large and n small, this implies a large dimension 
reduction.

A simple numerical illustration
> library(penalized)
> X < matrix(rnorm(6), ncol=3)
> Y < matrix(rnorm(2), ncol=1)
> coef(penalized(Y ~ X[,1] + X[,2] + X[,3], 
unpenalized=~0, lambda1=0.0001), "all")
# nonzero coefficients: 2
    X[, 1]     X[, 2]     X[, 3] 
 0.0000000  0.7327322 1.0369745 

http://www.r-project.org/index.html


Number of non-zero parameters

Some intuition
Assume n < p and consider the lasso problem:

The canonical form of this 
quadratic problem has n 
nonzero, positive eigenvalues. 
This describes an ellipsoid in n 
dimensions. 

Contour plot of the quadratic 
form for p=2 and n=1:



Consistency

Consider the high-dimensional prediction problem:

Let 
→ S0 : set of “true” covariates that contribute to Y.
→ λcv : cross-validated lasso penalty parameter 
→ S(λcv) : set of selected covariates for λcv.

Then, 
→ with high probability S(λcv) contains S0, or at least the 
→ most relevant covariates of S0.

→ Under suitable assumption S(λoptimal) contains with 
→ probability one S0, asymptotically.



Parameter estimation



Parameter estimation - I

Quadratic programming
The constrained estimation problem of the lasso:

Question
Why not feasible for large p?

can be reformulated as a quadratic program (e.g. for p=2):



Parameter estimation - II

Source: Fan & Li (2001).

The loss function of the lasso regression: 

may be optimized by iteratively applying ridge regression. 

Key observation
Given some initial 
parameter value, 
the lasso penalty 
is approximated by:



Parameter estimation - II

Plug the approximation into the lasso loss function:

The loss function now contains a weighted ridge penalty.



Parameter estimation - II

Analogous to the derivation of the ridge estimator, the 
approximated lasso loss function is optimized by:

where

The solution above converges to the lasso estimator.



Parameter estimation  - II

Gradient ascent approach (explained next):
> coef(penalized(Y ~ X[,1] + X[,2], unpenalized=~0, 
lambda1=1), "all")
# nonzero coefficients: 1
     X[, 1]      X[, 2] 
 0.00000000 0.01405338 

Error in solve.default(...) : 
  system is computationally singular: reciprocal 
condition number = 2.15377e16

      X[, 1]      X[, 2] 
1.678667e18 0.01405338

Iterative ridge:

The latter requires a modification to accommodate 
estimates that get very close to zero.



Parameter estimation - III

Gradient ascent (hill climbing)
1) Choose a starting value.
2) Calculate the derivative of the loss function, and determine 

the direction in which the loss function increases most. This 
direction is the path of steepest ascent.

3) Proceed in this direction, until the loss function no longer 
increases.

4) At this point recalculate the gradient to determine a new 
path of steepest ascent.

5) Repeat the above until the region around the optimum is 
found (usually: when a linear model is no longer adequate).
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Parameter estimation

Gradient ascent
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Parameter estimation - III

Gradient ascent
Recall: f(x) = |x| is not differentiable at x=0. Consequently, 
so is the lasso loss function. Solution: employ the Gateaux 
derivative, which is properly defined at x=0.

The Gateaux derivative of f:Rp→R at x in Rp in the 
direction of v in Rp as:

To uniquely define this derivative the directional vectors v 
are limited to 
→ those with unit length, and 
→ the direction of steepest ascent.



Parameter estimation - IV

Coordinate descent
Due to the convexity of the loss function, parameter-by-
parameter optimization converges to the lasso estimate.
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Parameter estimation - IV

Coordinate descent
Thus, solve:

This is equivalent to:

which (assuming                      ) has an explicit solution:

Finally, run over the parameters until convergence to arrive 
at the lasso estimate.



Parameter estimation - V

LARS
The LARS (Least Angular Regression) algorithm solves the 
lasso problem over the whole domain of the penalty 
parameter. 

This yields the full 
piecewise linear 
solution path of the 
regression coefficients.



Parameter estimation - V

LARS
Covariates with nonzero coefficients form the active set.

Algorithm
→ initiate with an empty 
→ active set (λ1 = ∞),

→ determine largest λ1 
→ for which active set 
→ is non-empty.
→ at this λ1 determine
→ for covariates in active
→ set the optimal direction 
→ direction of β.



Parameter estimation - V

LARS
Covariates with nonzero coefficients form the active set.

Algorithm (continued)
→ decrease λ1 and
→ determine when 
→ active set changes,
→ at this λ1 determine
→ for covariate in active
→ set the optimal direction 
→ direction of β.
→ iterate last 2 steps.



Picture: Goeman (2010).

Parameter estimation

Penalty parameter
The cross-validated 
(partial) likelihood 
has several local 
maxima. This is a 
typical feature of 
lasso fits. Hence, 
always check for 
global optimality.



Moments of the
lasso estimator



Moments of the lasso estimator

Summary
In contrast to ridge regression, there are no explicit 
expressions for the bias and variance of the lasso estimator. 

Approximations of the variance of the lasso estimates can be 
found in Tibshirani (1996) and in Osborne et al. (2000). 
Discussed on the next slides.

As with the ridge estimator: 
→ the bias of lasso estimator increases and
→ the variance of the lasso estimator decreases
 as the lasso penalty parameter increases.



Moment approximations
Approximate the lasso penalty quadratically around the lasso:

Moments of the lasso estimator

Optimization of this loss function gives a 'ridge 
approximation' to the lasso estimate:

where    diagonal with                                        if
                    and zero otherwise.



Moment approximations
Analogous to moment derivation of the ridge estimator, one 
obtains:

Moments of the lasso estimator

and

where σ2 is the residual variance. 

The design matrix X should be of full rank to warrant the 
existence of the variance matrix estimate.

Osborne et al (2000) improves on these approximations.



OLS and lasso 
estimates

Bias of lasso 
estimates

Moments of the lasso estimator

Variance of 
estimates

Questions
The (approximated) variance of the lasso estimates may 
equal zero. Interpretation? Realistic?

How about the MSE? Hint: Contrast a truly sparse model vs. 
a full model.



A Bayesian 
interpretation



A Bayesian interpretation

Similarly, the lasso regression 
estimator can be viewed as a 
Bayesian estimate when 
imposing a Laplacian (or 
double exponential) prior:

Recall, the ridge regression estimator can be viewed as a 
Bayesian estimate of      when imposing a Gaussian prior.

The lasso loss function 
suggests form of the prior.

The lasso prior puts more mass close to zero and in the tails 
than the ridge prior. Hence, the tendency of the lasso to 
produce either zero or large estimates.



A Bayesian interpretation

The lasso regression estimates then correspond to the 
posterior mode estimate of    . 

Posterior distribution Regularization path



A Bayesian interpretation

Cassella, Park (2008).
Castillo, Schmidt-Hieber,  & Van der Vaart, (2015).

Remarks
→ A “true Bayesian” also puts a prior on the penalty 
→ parameter (giving rise to Bayesian lasso regression, 
→ Casella, Park, 2004). 

→ In high-dimensions, the Bayesian posterior need not
 →concentrate on the “true” parameter (even though its
 →mode is a good estimator of the regression parameter).



Stability selection



Stability selection

Which penalty parameter to use?

Problem:
→ Scale of the penalty parameter is meaningless. 

Solution:
→ Map, by re-sampling, λ to a scale with a tangible
→ interpretation. 

Selection frequency
→ number of times a parameter is included in the model.
→ directly related to λ, 
→ used to determine the amount of penalization.



[10,]  -0.21968299  -0.4279651   0.2644103  -5.7497198  -0.96908672  -1.7355809  -2.232554784  -1.1486723  -1.75152890  -3.65072248  -2.27827012
[11,]  -0.08376162  -7.2164826  -3.8646045   0.7744070  -3.18557745  -0.8807509  -3.231808153  -1.0453582  -2.84251288  -3.43758030  -4.59190530
[12,]  -1.08336656  -1.1468886  -1.2254498  -2.3613409   0.19293828  -3.3237007  -4.535195432  -4.6944589  -0.93266901  -0.55561048  -1.79152391
[13,]   0.04333000  -0.4637700   0.1275600  -0.3953500  -0.20215000  -0.0784500  -0.556270000  -0.0242100   0.16172000  -0.46966000  -0.57163000
[14,]   1.16542000   0.8624800   1.1604900   1.2394100   0.51927000   1.0825400   1.437250000   1.3304900   0.70357000   0.83907000   0.94630000
[15,]  -0.29687000   0.2860200  -0.6962400  -1.1977900   0.19546000  -1.2171900   0.132900000   1.2014800  -0.02162000  -0.28167000  -0.98322000
[16,]   1.76249000   1.0755600   1.4620100   1.1607600   1.29921000   1.7220700   0.319450000   2.0086700   0.76309000   0.87675000   0.57842000
[17,]   0.46387000   0.2127100   0.4945500   0.5829000  -0.44349000   0.1769600   0.572750000   0.6968600   0.07154000   0.16814000   0.03714000
[18,] -17.27492074   3.9551562 -10.2644179  -2.9503713 -10.77896241 -12.0285402  -2.998205710  -1.0566138  -0.25583289 -10.35052138 -10.16008698
[19,]   0.25603000   1.3326000   0.9168600   0.2755000   1.44118000   0.6445200  -0.027010000  -0.3168000   0.89954000   1.27720000   1.58425000
[20,]   3.55160561 -13.6690025 -11.5670422  -5.4409270  -3.71877175  -1.8697248  -3.635858069   5.9623282 -12.31006506   0.89340328   0.44462681
[21,]  -2.63154208  -4.4759312  -4.1105241  -0.4633036  -2.21023673  -6.8825294  -4.718002217  -2.6607977  -1.13554017  -0.23483606  -1.04912615
[22,]   0.04514000   0.8242800   0.2397200  -0.8767500   0.41242000  -0.5737500  -0.646060000  -0.0179700   0.23077000   0.73032000   0.16671000
[23,]   0.04152000  -0.1026900  -0.7454100  -0.2534600  -0.39054000  -0.0921600  -0.072240000   0.5560500  -0.20265000  -0.32607000   0.07030000
[24,]   1.31159000   0.8857100   1.3603100   1.0907600   0.55596000   1.3635100   1.811450000   1.6174700   1.60153000   0.88335000   0.99594000
[25,]  -1.29186941   2.9366637  -2.0607812  -6.9160518   6.82540778  -6.8861316  -7.384511471  -2.5594320  -7.36637904   1.53987774  -6.55706133
[26,]  -0.10796000  -1.3942000  -0.5476700   0.0781600   0.16770000  -0.3160300  -0.382770000  -1.1084000  -0.29503000  -1.04043000  -1.28137000
[27,]   0.98840000   0.3561800   0.6850200   1.3725500   1.52144000   0.8687400   1.826430000   1.2760600   0.44761000   0.36772000   0.54291000
[28,]  -1.01269000  -0.9295900  -1.4622700  -0.7615200  -0.30942000  -1.0714500  -0.132050000   0.2195600  -1.47649000  -0.69566000  -0.98322000
[29,]  -8.86074531  -5.5049797   2.2156872 -18.0968544  -3.51475893  -3.1800043  -4.113883182  -2.4237267 -12.09824840   0.76152772  -4.90184417
[30,]  -1.16730000  -0.7804600  -1.4622700  -0.9373100  -1.03877000  -0.0077100   0.009790000   0.3747500  -1.02009000  -0.84890000  -0.64479000
[31,]   1.29401000   2.1756600  -0.2282000   0.5693100   0.80986000   0.8089600   0.814010000   1.0485800   0.69500000   0.96083000   0.37348000
[32,]  -2.47282664  -4.1457904  -9.0093500  -5.2021172  -3.02712122  -2.2859246 -16.021147514  -2.5443746  -3.71706901   2.46944413   2.85273452
[33,]  -0.10583000   0.7971200   0.5864200  -0.1159100   0.61404000   0.7417000  -0.326340000  -0.9572000   0.80544000   0.63325000   1.21005000
[34,] -15.17033400  -5.7929441  -5.2492469  -1.7173400  -8.08748532  -3.1660964 -13.906466777   2.9103923 -18.15936836 -19.38379581  12.71167007
[35,]  -2.39545623   0.8817244  -3.9999577  -2.8785429   0.21497029 -12.4237349   3.382160545  -9.5392159   1.48635110  -5.31031316  -8.28417839
[36,]  -9.79002539  -6.2150922   7.0833133 -23.1484993 -14.30620004 -12.9000765 -14.438330640  -2.3767196 -10.59520631   2.08115764  -7.52436333
[37,]  -0.55527000  -0.9295900  -0.5825200  -0.7336500  -0.38450000  -0.6767300  -0.556270000  -1.3683200  -1.08735000  -1.11981000  -0.60104000
[38,]  -1.13866058  -0.9545288  -0.9879789  -0.7486456  -1.55059438  -1.1119910  -0.609846679  -0.5773113  -1.09804120  -1.07038147  -0.66548883
[39,]  -4.31192770  -2.6357080  -5.2730756  -1.2860492  -3.50255805  -2.9157206  -3.089170656  -1.4861254  -3.18789106   3.04104876   1.37886654
[40,]   0.14612000   0.2806900   0.1115600   0.9573100   1.09138000  -0.2129600   0.368420000   0.0105800   0.53591000   0.79359000   0.50217000
[41,]  -3.65834077  -4.0428742  -3.5751380  -2.9586557  -1.17516836   3.0683915  -0.531091769   1.5020583  -1.36423855   1.35179282  -2.34094331
[42,]  -1.45769000  -0.6043900  -1.4622700  -0.2079400  -1.42668000  -0.5023100  -0.053890000  -1.3683200  -0.71418000  -1.21583000  -1.28137000
[43,]  -1.45769000  -0.7500000  -1.4622700  -1.0020400  -0.57041000  -0.0977000  -1.373860000  -1.3683200   0.47207000  -0.41411000  -0.93255000
[44,]   0.41067000  -0.3158500   0.2818300  -0.2184600  -1.42668000   0.5944700  -0.000890000   0.1148000   0.62386000  -0.28836000   0.43537000
[45,]  -0.92065000  -1.3942000  -0.1301900  -1.4071500   0.17595000  -0.5645100  -1.373860000  -1.3683200   0.20288000  -1.21583000   0.09439000
[46,]  -0.72622000  -0.5900000  -1.2590800  -0.6802700  -0.46950000  -1.0714500  -0.583920000  -0.9867000  -0.66036000  -1.21583000  -0.17337000
[47,]   1.19892200  -0.0614334   2.2158800   0.4342396  -1.08822474   2.1175700   0.035228775  -0.8142278   2.21227000   0.85683943   1.03042010
[48,]  -6.30569551  -3.0137140   1.6460885  -7.0379199 -15.13035310  -8.1522252   3.636102218  -5.0846871   2.47483148  -6.42108563  -7.71745619
[49,]  -1.73054083  -2.1564257   0.3578752  -5.9754669  -0.06199337  -4.2852430  -0.013441783  -2.0239560   0.03406096   1.25826898  -0.47371781
[50,]  -0.74307000  -0.9454500  -0.8099600  -0.8821000  -0.94055000  -0.4201100  -0.958570000  -0.5553400  -0.48433000  -1.21583000  -1.28137000
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Stability selection

Stability selection (Meinshausen, Bühlman, 2009)

→ Given a selection frequency cut-off: upperbound on 
→ the expected number of falsely selected parameters. 

→ The upperbound further only depends on the average 
→ number of selected parameters, a quantity directly
→ determined by λ. 

→ Having specied the selection frequency cut-off, the
→ desired error rate is achieved by chosen the
→ appropriate penalty parameter.



Ridge vs. lasso I
---

shrinkage



Ridge vs. lasso I

Ridge scales and whereas lasso translates:

Recall in the orthonormal case the ridge estimator equals:

and the lasso estimator:

lassoridge

small coefficient, little shrinkage

large coefficient, 
substantial shrinkage

irrespective of coefficient size
≈ equal shrinkage



Ridge vs. lasso I

Ridge estimator is linear in the response, while lasso is not. 
Compar fit of Y = Xβ + ε (solid) and Y/2 = Xβ + ε (dashed).

dashed / solid

dashed / solid

ridge

lasso

regularization 
paths



Ridge vs. lasso II
---

Simulations



Simulation I

Ridge vs. lasso estimation
Consider a set of 50 genes. Their expression levels follow a 
standard multivariate normal law.

Together they regulate a 51th gene through:
with                        and regression coefficients               .
Hence, the 50 genes contribute equally.

→ Fit a linear regression model with ridge and lasso. 
→ Penalty parameters chosen through cross-validation.
→ With these penalty parameters, penalized regression 
→ parameters and linear predictors are obtained.
→ The linear predictor is compared to the observations.



Simulation II

Ridge (r = 0.979) Lasso (r = 0.990)

Ridge vs. lasso estimation (n=100, p=50)
Spearman's correlations of observation vs. model prediction



Simulation II

Ridge vs. lasso estimation (n=50, p=100)
Spearman's correlations of observation vs. model prediction



Simulation II

Ridge vs. lasso estimation
Consider a set of 50 genes. Their expression levels follow a 
standard multivariate normal law.

Together they regulate a 51th gene, in accordance with the 
following relationship:

with

The regression coefficients are

Hence, only five genes contribute.



Simulation II

Ridge vs. lasso estimation (n=100, p=50)
Spearman's correlations of observation vs. model prediction



Simulation II

Ridge vs. lasso estimation (n=50, p=100)
Spearman's correlations of observation vs. model prediction



Simulations

Simulations
Simulation I and II suggest:
→In the presence of many small or medium effect sizes ridge 
→is to be preferred. 
→In only a few variables have a medium to large effect, the 
→lasso is the method of choice.

However, simulations do not take into account collinearity. 
A second run of these simulations, incorporating
collinearities, indicates that ridge regression appear to profit 
more from collinearity. 



Simulation III

Effect of lasso estimation
Consider a set of 50 genes. Their expression levels followa 
multivariate normal law with mean zero and covariance:

where                                                        .

Together they regulate a 51th gene through:
with                        and regression coefficients               .
Hence, the 50 genes contribute equally.



Simulation III

Whereas ridge regression shrinks coefficients of
collinear covariates towards each other, lasso regression is 
somewhat indifferent to very correlated predictors and tends 
to pick one covariate and ignore the rest.

Effect of lasso estimation



Example
---

Regulation of mRNA 
by microRNA 



microRNAs
Recently, a new class of RNA was discovered:
MicroRNA (mir). Mirs are non-coding RNAs of approx. 22 
nucleotides. Like mRNAs, mirs are encoded in and 
transcribed from the DNA. 

Mirs down-regulate gene expression by either of two 
post-transcriptional mechanisms: mRNA cleavage or 
transcriptional repression. Both depend on the degree of 
complementarity between the mir and the target. 

A single mir can bind to and regulate many different 
mRNA targets and, conversely, several mirs can bind to 
and cooperatively control a single mRNA target.

Example: microRNA-mRNA regulation



Aim
Model microRNA regulation of mRNA expression levels.

Example: mir-mRNA regulation

Data
→ 90 prostate cancers
→ expression of 735 mirs
→ mRNA expression of the MCM7 gene

Motivation
→ MCM7 involved in prostate cancer.
→ mRNA levels of MCM7 reportedly affected by mirs.

Not part of the objective: feature selection ≈ understanding 
the basis of this prediction by identifying features (mirs) that 
characterize the mRNA expression.



Analysis

Find:
       mrna expr. = f(mir expression) 

                  = β0 + β1*mir1 + β2*mir2 + … + βp*mirp + error

However, p > n: lasso regression. Having found the optimal λ, 
we obtain the lasso estimates for the coefficients: bj( )λ .  

With these estimates we calculate the linear predictor:
Survival b0 + b1( )*mirλ 1 + … + bp( )*mirλ p

Finally, we obtain the predicted survival:
pred. mrna expr. = f(linear predictor) 

pred. survival = b0 + b1( )*mirλ 1 + … + bp( )*mirλ p

Compare observed and predicted mRNA expression.

Example: microRNA-mRNA regulation



Example: microRNA-mRNA regulation

Penalty 
parameter choice

ρsp = 0.626
R2 = 0.372

Obs. vs. pred. 
mRNA expression

Beta hat 
distribution

#(  β != 0) = 
8 (out of 735)

#(  < β 0) = 
3 (out of 735)



Example: microRNA-mRNA regulation

Biological dogma

MicroRNAs down-regulate mRNA levels: negative 
regression coefficients prevail. Re-analyze the data with 
sign parameter constraints.

Are the microRNAs identified to down-regulate MCM7 
expression levels also reported by prediction tools?

Contingency table
             prediction tool
ridge regression    nomir2MCM7  mir2MCM7

 = 0               705        22β
 < 0                 8         0β

Chi-square test
Pearson's Chisquared test with Yates' continuity correction

data:  table(nonzeroBetas, nonzeroPred) 
Xsquared = 0, df = 1, pvalue = 1



Example: microRNA-mRNA regulation

Observed vs. predicted mRNA expression for both analyses.

ρsp = 0.580
R2 = 0.348 

ρsp = 0.626
R2 = 0.372 



Example
---

Clinical outcome 
prediction



Example: clinical outcome prediction

Breast cancer data of Van ‘t Veer et al. (2004)

Study involves:

• 291 (after preprocessing) breast cancer samples,

• expression profile of 24158 genes for each sample, and

• survival data for each sample.

Question
Can we predict the survival time of a breast cancer 
patient on the basis of its gene expression data?

Now: lasso for the Cox model.



Example: clinical outcome prediction

Observed vs. predicted survival



Example: clinical outcome prediction

median survival 
-> group 0: 1937
-> group 1: 2726

Analysis (continued)
Compare groups by means of violinplots.

mammaprint



Example: clinical outcome prediction

Analysis (continued)
Can we say anything about the underlying biology? 
E.g., which genes contribute most to survival? 

Solution
Look for non-zero regression coefficients. 

Lasso finds 8 genes with non-zero coefficients:

NM_000909 NM_002411      AL117406    
NM_006115  Contig48328_RC NM_020974 
Contig14284_RC        AF067420 



Example: clinical outcome prediction

Ein-Dor et al. 
(Bioinformatics, 
2005) showed that 
predictor with non-
overlapping gene 
sets may perform 
equally well.

Famous example in 
breast cancer:
Amsterdam 
signature vs. 
Rotterdam 
signature



Example: clinical outcome prediction

Question

Explain the above title.
Note: size of signatures p ≈ 100

Note
Ein-Dor et al. (PNAS, 2006) showed that a training set of 
thousands of samples is needed to produce a predictor 
with a stable gene set. That does not imply the predictor 
is any good.



Lasso variants



Lasso variants - I

The fused lasso estimator, using                                , 
penalizes differences instead of individual coefficients.

Fused lasso

Application to the 
DNA copy number 
trans-effect of the 
fused ridge.

See exercises for 
its computation.



Lasso variants - II

Lasso regression shrinks coefficients to zero.
Adaptive lasso

Correction for shrinkage:
→ use lasso regression for 
→ variable selection, and
→ re-estimate parameters 
→ of selected variables by 
→ means of OLS.  
This is referred to as the 
Gauss-Lasso estimator.



Lasso variants - II

As before but replace OLS estimator by lasso estimator 
with modified penalty:

Adaptive lasso

This yields the adaptive 
lasso estimator.

In similar fashion, a Ridge-
Lasso estimator may be 
conceived.



Lasso variants - III

Groups of variables may be discerned. To select at the 
group level employ the group lasso penalty:

Sparse group lasso

The group lasso estimator 
does not result in a sparse 
within-group estimate. This 
may be achieved through 
employment of the sparse 
group lasso penalty: 



Lasso variants - III

The sparse group lasso estimator is found through 
exploitation of the convexity of the loss function:
→ group-wise optimization,
→ within-group parameter-wise optimization.
Much like the coordinate descent approach. 

Sparse group lasso

→ Does it work?
→ Show regularization paths.



Lasso variants - IV

Ridge regression shrinks coefficients of collinear covariates 
towards each other, while lasso regression is somewhat 
indifferent to correlated predictors and tends to pick one 
covariate and ignore the rest.

Elastic net penalty

This drawback (?) of the 
lasso may be resolved by 
simply adding the two 
penalty, thus forming the 
elastic net penalty:



Lasso variants - IV

Elastic net penalty
Consider a set of 50 genes. Their expression levels follow a 
multivariate normal law with mean zero and block diagonal 
covariance with                                                  for b = 1, … 5.

Together they regulate a 51th gene through:
with                        and regression coefficients:
→              ,

→ 

→ 

Evaluate (see exercises) the elastic net estimator with 
                      and either                  or                      . 



Lasso variants - IV

Elastic net penalty
Non-sparse: need not 
have an obvious effect.

Sparse: tends to have an effect. 
High correlation + dominating 
ridge penalty preferred.



Lasso variants - IV

Both penalty terms shrink the parameter estimates. These 
confounding shrinkage effects frustrate the choice of the 
penalty parameters when optimizing a prediction criterion.

Elastic net penalty

CV-likelihood contour
→ red    = low
→ yellow = high

Flat surface from 
orange to yellow.

Many penalty parameter 
combinations of yield 
the same CV-likelihood.



Lasso variants - V

Large class of penalties, of 
which ridge and lasso are 
special cases.

Bridge penalty

Question
Supremum norm (            ) 
also yields corners in 
constraint. Why does the 
resulting estimator not 
select?

Penalty:



Lasso variants - VI

The ideal penalty would be the L0-penalty:
L0 penalty

This penalty thus punishes 
only the number of 
covariates that enters the 
model, not their regression 
coefficients (which are only 
surrogates).

This penalty is computationally too demanding: one 
searches over all possible subsets of the p covariates.

Question: can the adaptive lasso be viewed as a surrogate?



References & 
further reading
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