Lasso regression

Wessel van Wieringen w.n.van.wieringen@vu.nl

Department of Epidemiology and Biostatistics, VUmc & Department of Mathematics, VU University Amsterdam, The Netherlands

VU medisch centrum

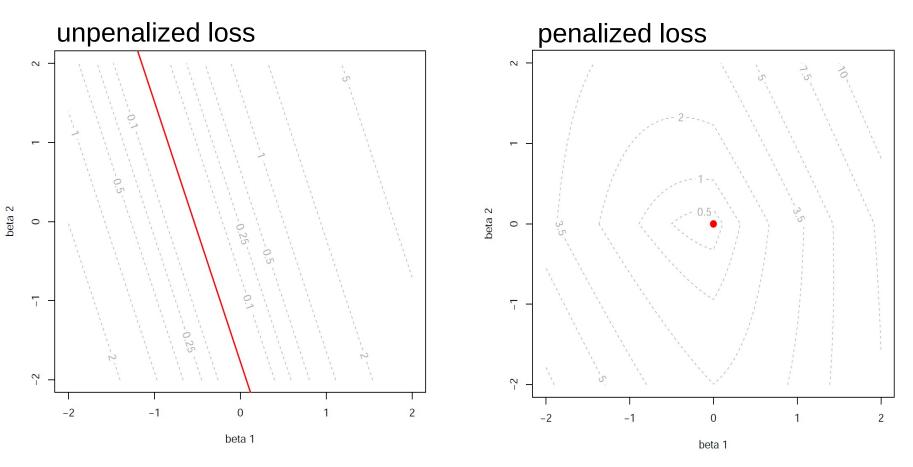
Instead of ridge why not use a different penalty? E.g.:

$$\mathcal{L}(\boldsymbol{\beta}; \boldsymbol{\lambda}) = \|\mathbf{Y} - \mathbf{X} \boldsymbol{\beta}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1}$$

$$= \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i*} \boldsymbol{\beta})^{2} + \lambda_{1} \sum_{j=1}^{p} |\boldsymbol{\beta}_{j}|$$
sum of squares lasso penalty

- $\lambda_1 \ge 0$ penalty parameter
- Penalty deals (super)-collinearity

Effect of the penalty on the loss function



The red line / dot represents the optimum (minimum) of the loss function.

Convexity

Both the sum of squares and the lasso penalty are convex, and so is the lasso loss function. Consequently, there exist a global minimum. However, the lasso loss function is not strictly convex. Consequently, there may be multiple β 's that minimize the lasso loss function.

Problem

In general, there is no explicit solution that optimizes the lasso loss function.

Solution

Resort to numerical optimization procedures, e.g., gradient ascent.

Non-uniqueness (example)

Consider the linear regression model: $Y_i = X_{i,1}\beta_1 + X_{i,2}\beta_2 + \varepsilon_i$, with perfectly collinear covariates.

The minimizer of the lasso loss is:

$$\begin{split} \hat{\beta}_1(\lambda_1) &= \frac{1}{2}[\hat{u}(\lambda_1) + \hat{v}(\lambda_1)] \\ \hat{\beta}_2(\lambda_1) &= \frac{1}{2}[\hat{u}(\lambda_1) - \hat{v}(\lambda_1)] \\ \end{split}$$
where $u &= \beta_1 + \beta_2$ and $v = \beta_1 - \beta_2$.

For sufficiently small $\lambda_1 > 0$, the minimizer satisfies $|\hat{u}(\lambda_1)| > 0$ together with any $\hat{v}(\lambda_1)$ s.t. $0 \le |\hat{v}(\lambda_1)| < |\hat{u}(\lambda_1)|$.

Predictor uniqueness

Suppose not. Then, there exists $\hat{\beta}_a(\lambda_1)$ and $\hat{\beta}_b(\lambda_1)$ s.t. $\mathbf{X}\hat{\beta}_a(\lambda_1) \neq \mathbf{X}\hat{\beta}_b(\lambda_1)$

By the convexity of the penalty and the strict convexity of the sum-of-squares (in the predictor!):

$$\begin{aligned} \|\mathbf{Y} - \mathbf{X}[(1-\theta)\hat{\boldsymbol{\beta}}_{a}(\lambda_{1}) + \theta\hat{\boldsymbol{\beta}}_{b}(\lambda_{1})]\|_{2}^{2} \\ +\lambda_{1}\|(1-\theta)\hat{\boldsymbol{\beta}}_{a}(\lambda_{1}) + \theta\hat{\boldsymbol{\beta}}_{b}(\lambda_{1})\|_{1} \\ < \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{a}(\lambda_{1})\|_{2}^{2} + \lambda_{1}\|\hat{\boldsymbol{\beta}}_{a}(\lambda_{1})\|_{1}, \end{aligned}$$

where $\theta \in (0,1)$.

This contradicts the initial assumption. Q.E.D.

Lasso regression

Predictor uniqueness (example)

Consider the linear regression model: $Y_i = X_{i,1}\beta_1 + X_{i,2}\beta_2 + \varepsilon_i$, with perfectly collinear covariates.

Let there be two minimizers of the lasso loss:

$$\hat{\boldsymbol{\beta}}_{a}(\lambda_{1}) = \begin{pmatrix} \frac{1}{2} [\hat{u}(\lambda_{1}) + \hat{v}_{a}(\lambda_{1})] \\ \frac{1}{2} [\hat{u}(\lambda_{1}) - \hat{v}_{a}(\lambda_{1})] \end{pmatrix}$$

and $\hat{\beta}_b(\lambda_1)$ defined similarly.

Then: $\mathbf{X}\hat{\boldsymbol{\beta}}_a(\lambda_1) = \mathbf{X}\hat{\boldsymbol{\beta}}_b(\lambda_1)$.

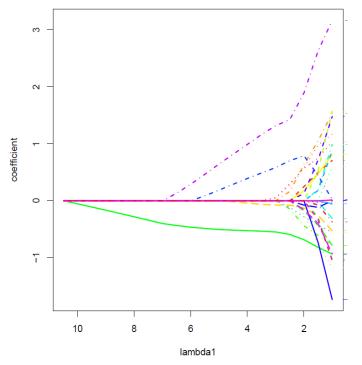
Lasso regression fits the same linear regression model as ridge regression:

$$\mathbf{Y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{arepsilon}$$

The difference between ridge and lasso is in the estimators, confer the following theorem.

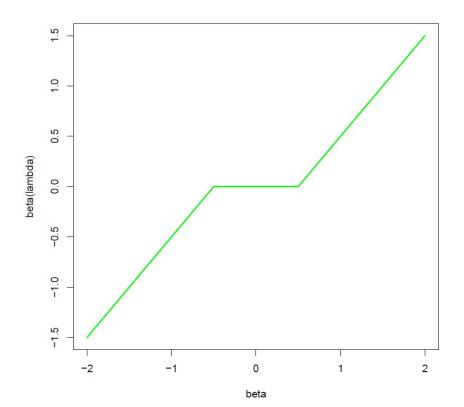
Theorem

The lasso loss function yields a piecewise linear (in λ_1) solution path $\beta(\lambda_1)$.



In the orthonormal case, i.e.
$$\mathbf{X}^T \mathbf{X} = \mathbf{I} = (\mathbf{X}^T \mathbf{X})^{-1}$$
:
 $\hat{\beta}_j(\lambda_1) = \operatorname{sgn}(\hat{\beta}_j) (|\hat{\beta}_j| - \lambda_1/2)_+$

That is, the lasso estimate is related to the OLS estimate via the so-called *soft threshold function* (depicted here for λ =1).



For
$$\lambda_1 > 2 \| \mathbf{X}^\top \mathbf{Y} \|_{\infty}$$
, $\hat{\boldsymbol{\beta}}(\lambda_1) = \mathbf{0}_p$.

The lasso estimator satisfies:

$$\mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}(\lambda_1) = \mathbf{X}^{\top} \mathbf{Y} - \frac{1}{2} \lambda_1 \hat{\mathbf{z}}$$

where $(\hat{\mathbf{z}})_j = \operatorname{sign}\{[\hat{\boldsymbol{\beta}}(\lambda_1)]_j\}$ if $[\hat{\boldsymbol{\beta}}_j(\lambda_1)]_j \neq 0$
 $(\hat{\mathbf{z}})_j \in [-1, 1]$ if $[\hat{\boldsymbol{\beta}}_j(\lambda_1)]_j = 0.$

Then:

$$0 \leq [\hat{\boldsymbol{\beta}}(\lambda_1)]^{\top} \mathbf{X}^{\top} \mathbf{X} \hat{\boldsymbol{\beta}}(\lambda_1) = \sum_{j=1}^p [\hat{\boldsymbol{\beta}}(\lambda_1)]_j (\mathbf{X}^{\top} \mathbf{Y} - \frac{1}{2}\lambda_1 \hat{\mathbf{z}})_j.$$

Conclude by a case-by-case evaluation.

Constrained estimation and the selection property

Constrained estimation

Lasso regression as constrained estimation

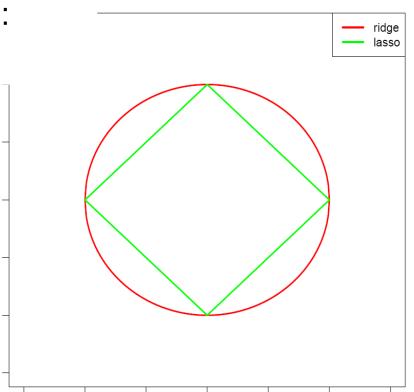
The method of Lagrange multipliers enables the reformulation of the penalized least square problem:

$$\min_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\,\boldsymbol{\beta}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$$

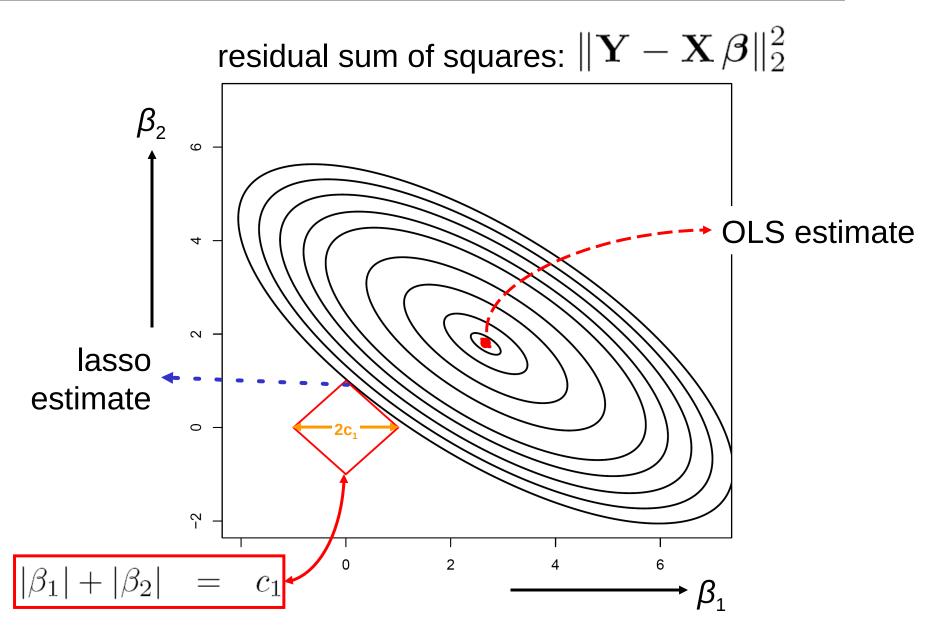
as a constrained estimation problem: $\min_{\|\boldsymbol{\beta}\|_1 \leq \theta(\lambda)_1} \|\mathbf{Y} - \mathbf{X} \,\boldsymbol{\beta}\|_2^2$

Ridge constraint: $\beta_1^2 + \beta_2^2 = 1$

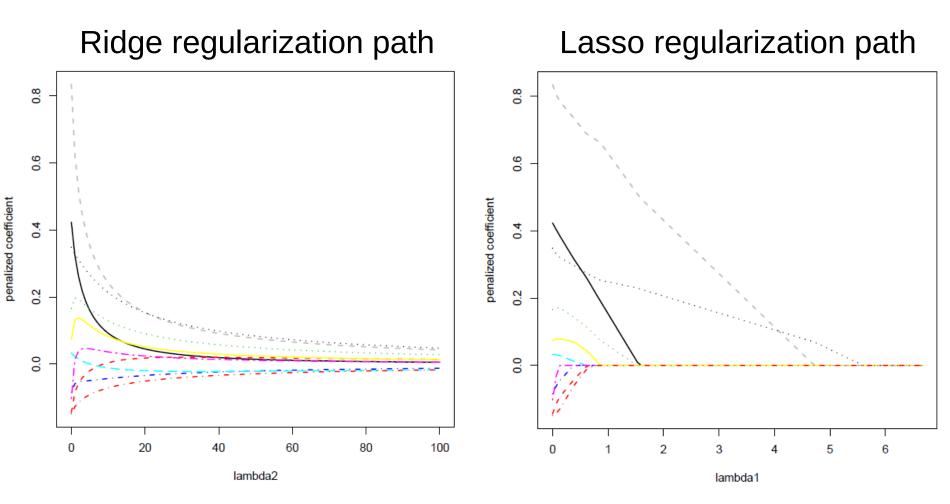
Lasso constraint: $|\beta_1| + |\beta_2| = 1$



Constrained estimation



Selection



Question What are the qualitative differences?

Simple example

Data have been generated in accordance with:

$$Y_i = X_{i1} + X_{i2} + \varepsilon_i$$
 where $\varepsilon_i \sim \mathcal{N}(0, 1)$.

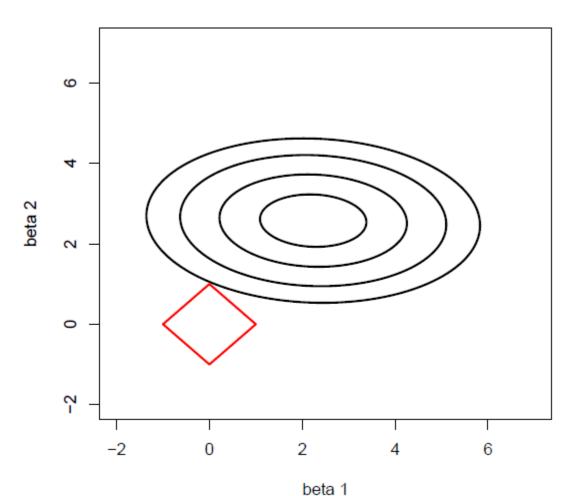
Fit lasso and ridge both with a penalty equal to 3:

Selection

Illustration of the sparsity of the lasso solution

In the 2-dim setting, for a point to lie on an axis, one coordinate needs to equal zero.

If the lasso estimate coincides with a corner of the diamond, one of the coordinates (estimated regression parameters) equals zero.

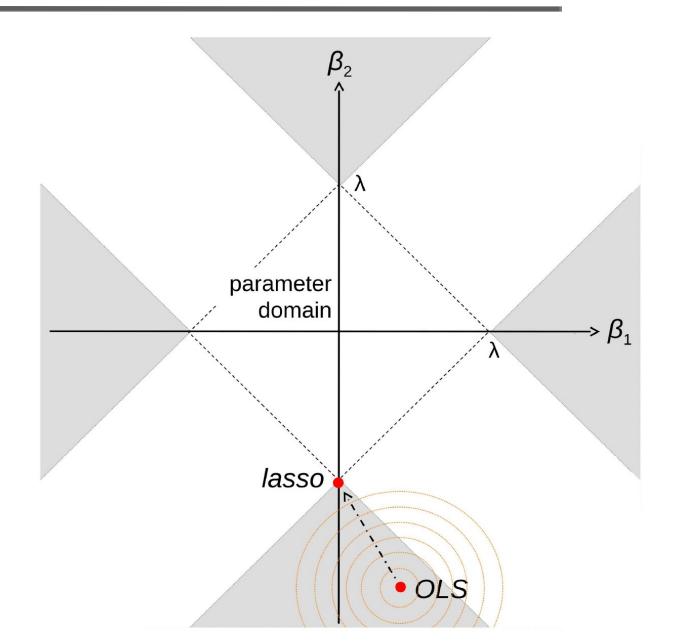


Selection

Suppose **X** is orthonormal.

Recall explicit expression for lasso estimate.

Grey domains yield sparse solution, at least for large enough lambda.



In summary

Lasso regression has the advantage (for the purpose of interpretation) of yielding a sparse solution, in which many parameters (β 's) are equal to zero.

The true model may not be sparse in terms of containing many zero elements. A regularization method that shrinks the parameters proportionally may then be preferred.

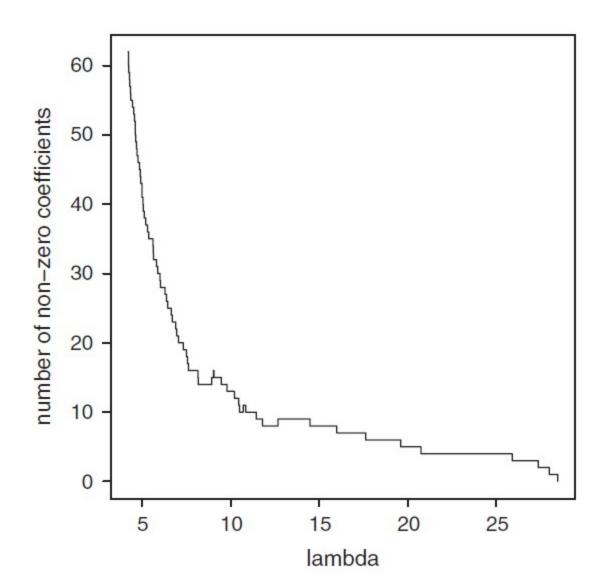
Question

When is sparsity a reasonable assumption? Think about the gene expression data. How about astronomy data?

Selection

Lasso fit

The number of nonzero regression coefficients is not necessarily a monotone function of the penalty parameter.



"Every lasso estimated model has cardinality smaller or equal to min(n, p)." (B, vdG, 2011)

Proven in Osborne *et al*. (2000), and "obvious from the analysis of the LARS algorithm (Efron *et al*., 2004)." (Buhlmann, Van de Geer (2011).

When *p* large and *n* small, this implies a large dimension reduction.

A simple numerical illustration

> library(penalized)
> X <- matrix(rnorm(6), ncol=3)
> Y <- matrix(rnorm(2), ncol=1)
> coef(penalized(Y ~ X[,1] + X[,2] + X[,3],
unpenalized=~0, lambda1=0.0001), "all")
nonzero coefficients: 2
 X[, 1] X[, 2] X[, 3]
0.0000000 0.7327322 -1.0369745

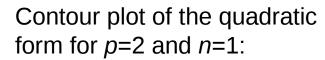
Number of non-zero parameters

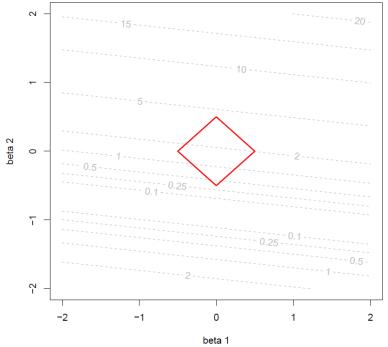
Some intuition

Assume *n* < *p* and consider the lasso problem:

$$\min_{\|\boldsymbol{\beta}\|_1 \leq c(\lambda_1)} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$$

The canonical form of this quadratic problem has *n* nonzero, positive eigenvalues. This describes an ellipsoid in *n* dimensions.





Consider the high-dimensional prediction problem: $Y_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$

Let

- \rightarrow S₀ : set of "true" covariates that contribute to Y.
- $\rightarrow \lambda_{cv}$: cross-validated lasso penalty parameter
- → $S(\lambda_{cv})$: set of selected covariates for λ_{cv} .

Then,

- → with high probability $S(\lambda_{cv})$ contains S_0 , or at least the most relevant covariates of S_0 .
- → Under suitable assumption $S(\lambda_{optimal})$ contains with probability one S_0 , asymptotically.

Parameter estimation

Parameter estimation - I

Quadratic programming

The constrained estimation problem of the lasso:

$$\arg\min_{\|\boldsymbol{\beta}\| \le c(\lambda)} \|_1 \mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$$

can be reformulated as a quadratic program (e.g. for p=2):

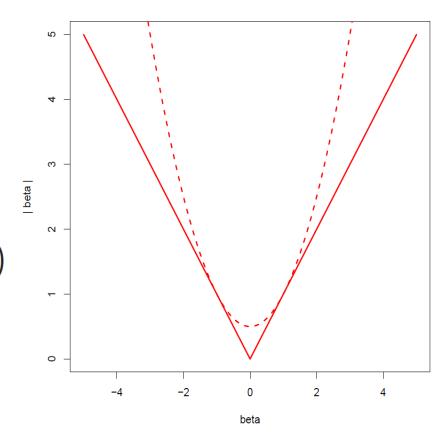
$$\arg \min_{\substack{\beta_1+\beta_2 \leq c(\lambda) \\ \beta_1-\beta_2 \leq c(\lambda) \\ -\beta_1+\beta_2 \leq c(\lambda) \\ -\beta_1-\beta_2 \leq c(\lambda)}} \frac{\frac{1}{2} \boldsymbol{\beta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta} - \mathbf{Y}^\top \mathbf{X} \boldsymbol{\beta}}{2} \mathbf{y}^\top \mathbf{X} \mathbf{y}$$

Question Why not feasible for large *p*? The loss function of the lasso regression: $\mathcal{L}(\boldsymbol{\beta}; \lambda) = \|\mathbf{Y} - \mathbf{X} \boldsymbol{\beta}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$

may be optimized by iteratively applying ridge regression.

Key observation Given some initial parameter value, the lasso penalty is approximated by:

$$|\beta| = |\beta_0| + \frac{1}{2|\beta_0|} (\beta^2 - \beta_0^2)$$



Plug the approximation into the lasso loss function:

$$\begin{aligned} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{(k+1)}\| + \lambda_1 \|\boldsymbol{\beta}^{(k+1)}\|_1 \\ &\approx \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{(k+1)}\| + \lambda_1 \|\boldsymbol{\beta}^{(k)}\|_1 \\ &+ \frac{\lambda_1}{2} \sum_{j}^{p} \frac{1}{|\beta_j^{(k)}|} [\beta_j^{(k+1)}]^2 - \frac{\lambda_1}{2} \sum_{j}^{p} \frac{1}{|\beta_j^{(k)}|} [\beta_j^{(k)}]^2 \\ &\propto \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{(k+1)}\| + \frac{\lambda_1}{2} \sum_{j}^{p} \frac{1}{|\beta_j^{(k)}|} [\beta_j^{(k+1)}]^2 \end{aligned}$$

The loss function now contains a weighted ridge penalty.

Analogous to the derivation of the ridge estimator, the approximated lasso loss function is optimized by:

$$\begin{split} \beta^{(k+1)} &= \{ \mathbf{X}^{\mathrm{T}} \mathbf{X} + \lambda_1 \Psi[\beta^{(k)}] \}^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y} \\ \text{where} \\ &\operatorname{diag} \{ \Psi[\beta^{(k)}] \} \\ &= (1/|\beta_1^{(k)}|, 1/|\beta_2^{(k)}|, \dots, 1/|\beta_p^{(k)}|) \end{split}$$

The solution above converges to the lasso estimator.

Parameter estimation - II

Gradient ascent approach (explained next):

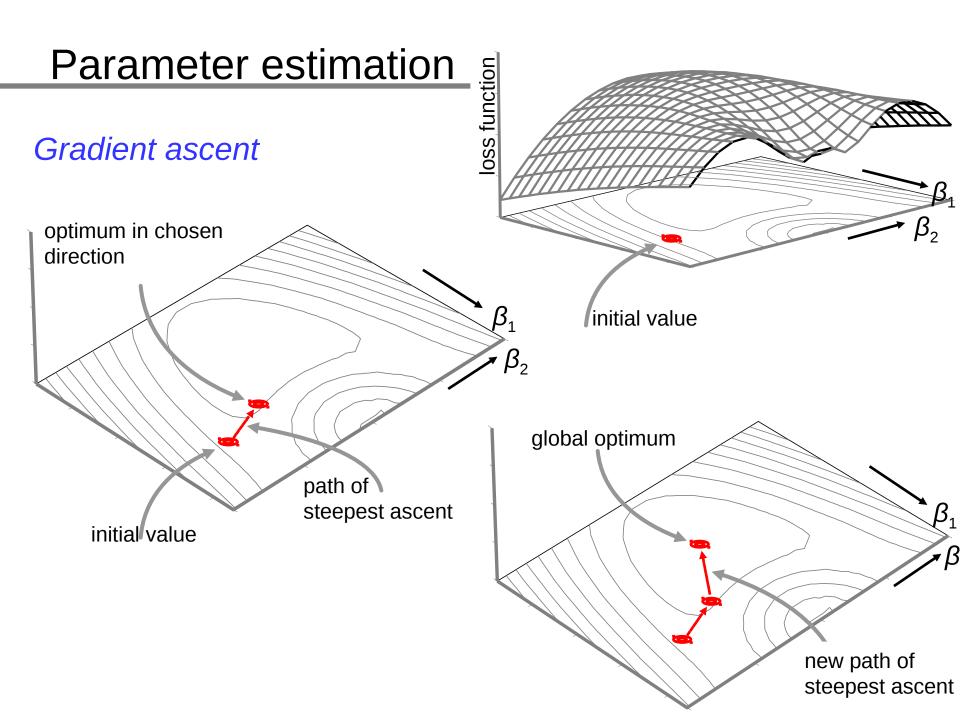
Iterative ridge:

```
Error in solve.default(...) :
   system is computationally singular: reciprocal
   condition number = 2.15377e-16
        X[, 1]        X[, 2]
1.678667e-18 -0.01405338
```

The latter requires a modification to accommodate estimates that get very close to zero.

Gradient ascent (hill climbing)

- 1) Choose a starting value.
- 2) Calculate the derivative of the loss function, and determine the direction in which the loss function increases most. This direction is the *path of steepest ascent*.
- 3) Proceed in this direction, until the loss function no longer increases.
- 4) At this point recalculate the gradient to determine a new path of steepest ascent.
- 5) Repeat the above until the region around the optimum is found (usually: when a linear model is no longer adequate).



Gradient ascent

Recall: f(x) = |x| is not differentiable at x=0. Consequently, so is the lasso loss function. Solution: employ the Gateaux derivative, which is properly defined at x=0.

The Gateaux derivative of $f: \mathbb{R}^p \to \mathbb{R}$ at \mathbf{x} in \mathbb{R}^p in the direction of \mathbf{v} in \mathbb{R}^p as:

$$f'(\mathbf{x}) = \lim_{\tau \downarrow 0} \frac{1}{\tau} \left[f(\mathbf{x} + \tau \mathbf{v}) - f(\mathbf{x}) \right]$$

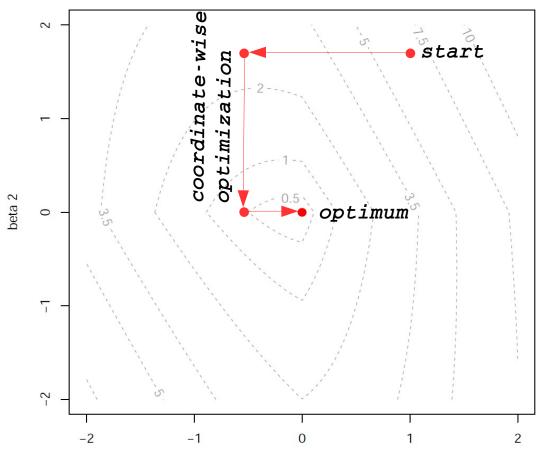
To uniquely define this derivative the directional vectors $\ensuremath{\boldsymbol{v}}$ are limited to

- \rightarrow those with unit length, and
- \rightarrow the direction of steepest ascent.

Parameter estimation - IV

Coordinate descent

Due to the convexity of the loss function, parameter-byparameter optimization converges to the lasso estimate.



Coordinate descent

Thus, solve: $\arg \min_{\beta_j} \|\mathbf{Y} - \mathbf{X}_{*, \setminus j} \boldsymbol{\beta}_{\setminus j} - \mathbf{X}_{*, j} \beta_j \|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1$

This is equivalent to:

$$\operatorname{arg\,min}_{\beta_j} \|\tilde{\mathbf{Y}} - \mathbf{X}_{*,j}\beta_j\|_2^2 + \lambda_1 \|\beta_j\|_1$$

which (assuming $\mathbf{X}_{*,j}^{\top} \mathbf{X}_{*,j} = 1$) has an explicit solution: $\hat{\beta}_{j}^{(\text{update})}(\lambda_{1}) = \operatorname{sign}(\mathbf{X}_{*,j}^{\top} \tilde{\mathbf{Y}})(|\mathbf{X}_{*,j}^{\top} \tilde{\mathbf{Y}}| - \frac{1}{2}\lambda_{1})_{+}$

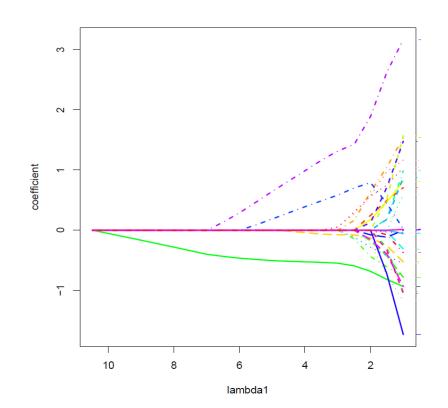
Finally, run over the parameters until convergence to arrive at the lasso estimate.

Parameter estimation - V

LARS

The LARS (Least Angular Regression) algorithm solves the lasso problem over the whole domain of the penalty parameter.

This yields the full piecewise linear solution path of the regression coefficients.

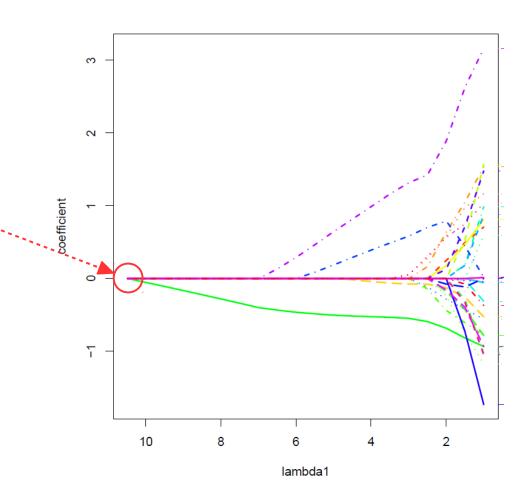


Parameter estimation - V

LARS

Covariates with nonzero coefficients form the active set.

- Algorithm
- → initiate with an empty active set $(\lambda_1 = \infty)$,
- → determine largest λ_1 for which active set ... is non-empty.
- → at this λ_1 determine for covariates in active set the optimal direction direction of β .



Parameter estimation - V

LARS

Covariates with nonzero coefficients form the active set.

Algorithm (continued) \rightarrow decrease λ_1 and determine when active set changes, \rightarrow at this λ_1 determine for covariate in active set the optimal direction direction of β . \rightarrow iterate last 2 steps.

8

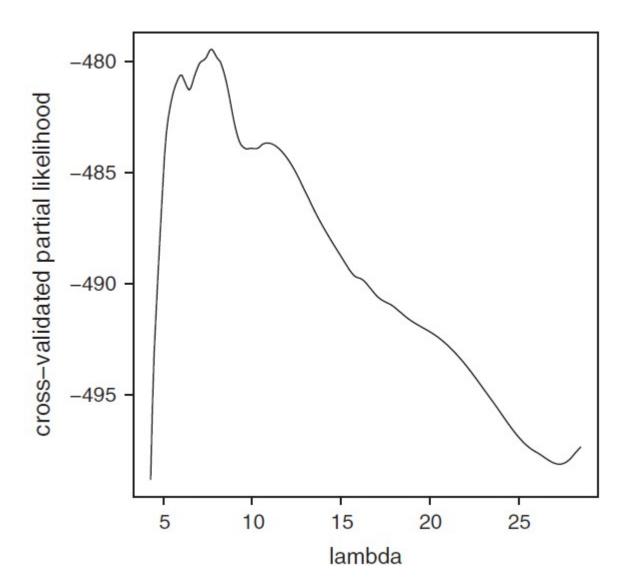
lambda1

10

2

Penalty parameter

The cross-validated (partial) likelihood has several local maxima. This is a typical feature of lasso fits. Hence, always check for global optimality.



Moments of the lasso estimator

Summary

In contrast to ridge regression, there are no explicit expressions for the bias and variance of the lasso estimator.

Approximations of the variance of the lasso estimates can be found in Tibshirani (1996) and in Osborne et al. (2000). Discussed on the next slides.

As with the ridge estimator:

- \rightarrow the bias of lasso estimator increases and
- \rightarrow the variance of the lasso estimator decreases as the lasso penalty parameter increases.

Moment approximations

Approximate the lasso penalty quadratically around the lasso:

$$\begin{aligned} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} \\ \approx \|\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \frac{\lambda_{1}}{2} \sum_{j=1}^{p} \frac{1}{|\hat{\beta}(\lambda_{1})|} \beta_{j}^{2} \end{aligned}$$

Optimization of this loss function gives a 'ridge approximation' to the lasso estimate:

$$\hat{oldsymbol{eta}}(\lambda_1) ~~pprox~ \{ \mathbf{X}^{ op} \mathbf{X} + \lambda_1 \mathbf{\Psi}[\hat{oldsymbol{eta}}(\lambda_1)] \}^{-1} \mathbf{X}^{ op} \mathbf{Y}$$

where Ψ diagonal with $(\Psi[\hat{\beta}(\lambda_1)])_{jj} = 1/|\hat{\beta}_j(\lambda_1)|$ if $\hat{\beta}_j(\lambda_1) \neq 0$ and zero otherwise.

Moments of the lasso estimator

Moment approximations

Analogous to moment derivation of the ridge estimator, one obtains:

$$\mathbb{E}[\hat{\boldsymbol{\beta}}(\lambda_1)] \approx \{\mathbf{X}^\top \mathbf{X} + \lambda_1 \boldsymbol{\Psi}[\hat{\boldsymbol{\beta}}(\lambda_1)]\}^{-1} \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta}$$
 and

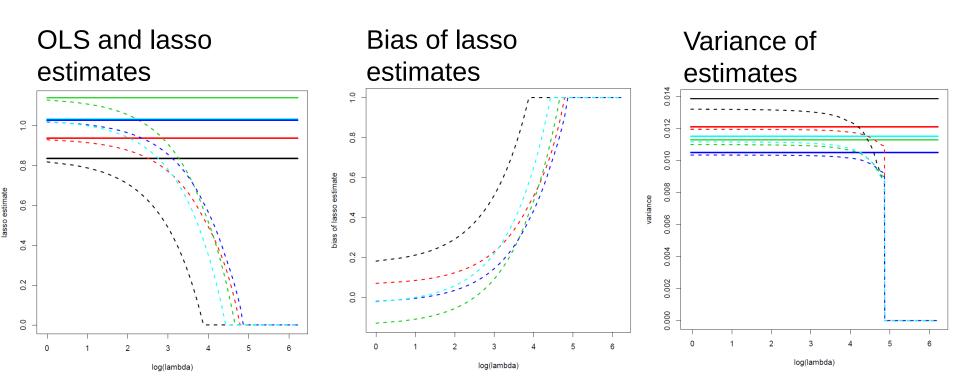
$$\operatorname{Var}[\hat{\boldsymbol{\beta}}(\lambda_{1})] \approx \sigma^{2} \{ \mathbf{X}^{\top} \mathbf{X} + \lambda_{1} \boldsymbol{\Psi}[\hat{\boldsymbol{\beta}}(\lambda_{1})] \}^{-1} \\ \times \mathbf{X}^{\top} \mathbf{X} \{ \mathbf{X}^{\top} \mathbf{X} + \lambda_{1} \boldsymbol{\Psi}[\hat{\boldsymbol{\beta}}(\lambda_{1})] \}^{-1}$$

where σ^2 is the residual variance.

The design matrix **X** should be of full rank to warrant the existence of the variance matrix estimate.

Osborne et al (2000) improves on these approximations.

Moments of the lasso estimator



Questions

The (approximated) variance of the lasso estimates may equal zero. Interpretation? Realistic?

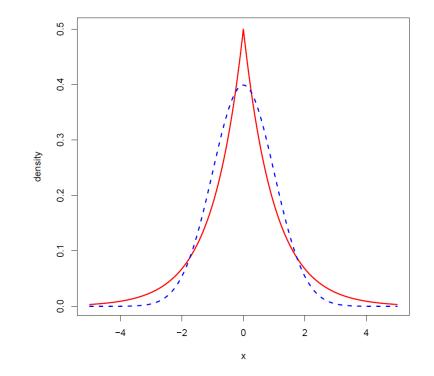
How about the MSE? *Hint*: Contrast a truly sparse model vs. a full model.

Recall, the ridge regression estimator can be viewed as a Bayesian estimate of β when imposing a Gaussian prior.

Similarly, the lasso regression estimator can be viewed as a Bayesian estimate when imposing a Laplacian (or double exponential) prior:

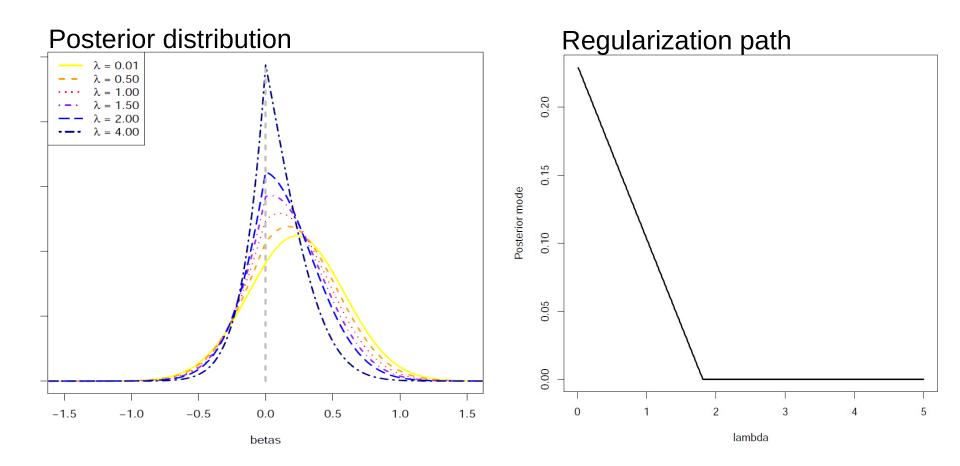
$$f(\beta_j) = \frac{1}{2}\lambda_1 \exp(-\lambda_1 |\beta_j|)$$

The lasso loss function suggests form of the prior.



The lasso prior puts more mass close to zero and in the tails than the ridge prior. Hence, the tendency of the lasso to produce either zero or large estimates.

The lasso regression estimates then correspond to the posterior mode estimate of β .



Remarks

- → A "true Bayesian" also puts a prior on the penalty parameter (giving rise to Bayesian lasso regression, Casella, Park, 2004).
- → In high-dimensions, the Bayesian posterior need not concentrate on the "true" parameter (even though its mode is a good estimator of the regression parameter).

Which penalty parameter to use?

Problem:

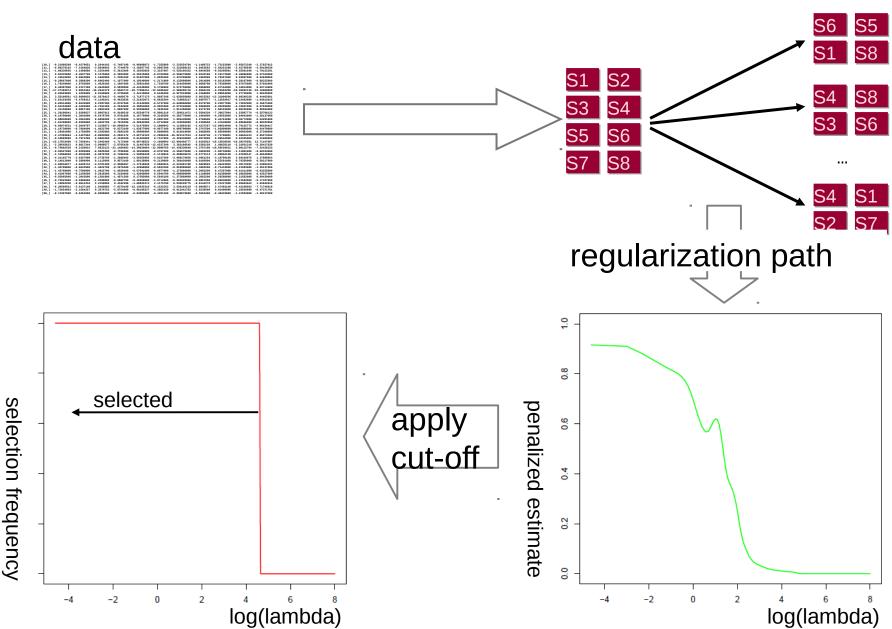
 \rightarrow Scale of the penalty parameter is meaningless.

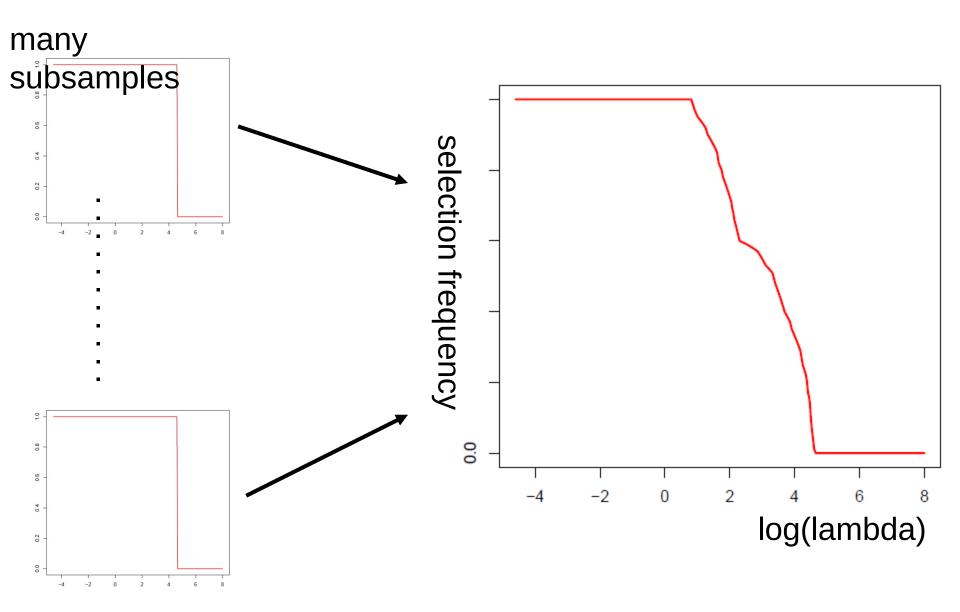
Solution:

 \rightarrow Map, by re-sampling, λ to a scale with a tangible interpretation.

Selection frequency

- \rightarrow number of times a parameter is included in the model.
- \rightarrow directly related to λ ,
- \rightarrow used to determine the amount of penalization.





Stability selection (Meinshausen, Bühlman, 2009)

- → Given a selection frequency cut-off: upperbound on the expected number of falsely selected parameters.
- → The upperbound further only depends on the average number of selected parameters, a quantity directly determined by λ .
- → Having specied the selection frequency cut-off, the desired error rate is achieved by chosen the appropriate penalty parameter.

Ridge vs. lasso l

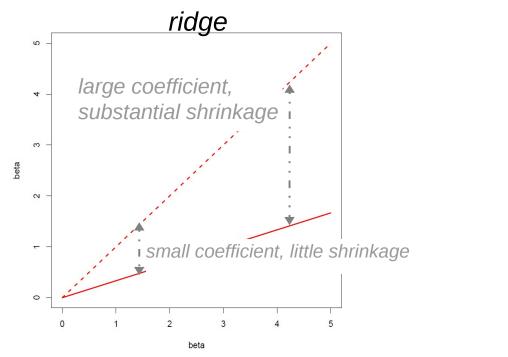
shrinkage

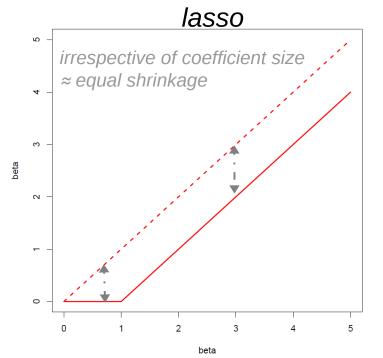
Recall in the orthonormal case the ridge estimator equals: $\hat{\beta}_j(\lambda_2) = (1 + \lambda_2)^{-1} \hat{\beta}_j$

and the lasso estimator:

$$\hat{\beta}_j(\lambda_1) = \operatorname{sgn}(\hat{\beta}_j) (|\hat{\beta}_j| - \lambda_1/2)_+$$

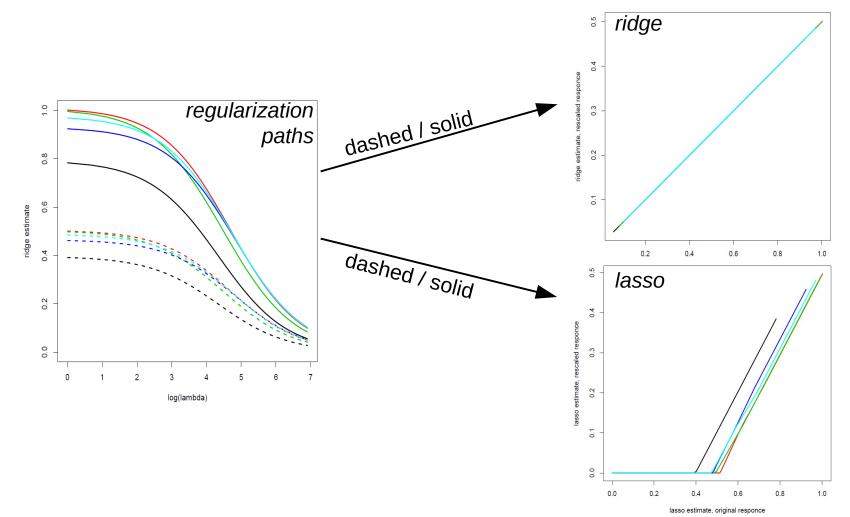
Ridge scales and whereas lasso translates:





Ridge vs. lasso I

Ridge estimator is *linear* in the response, while lasso is not. Compar fit of $Y = X\beta + \varepsilon$ (*solid*) and $Y/2 = X\beta + \varepsilon$ (*dashed*).



Ridge vs. lasso II

Simulations

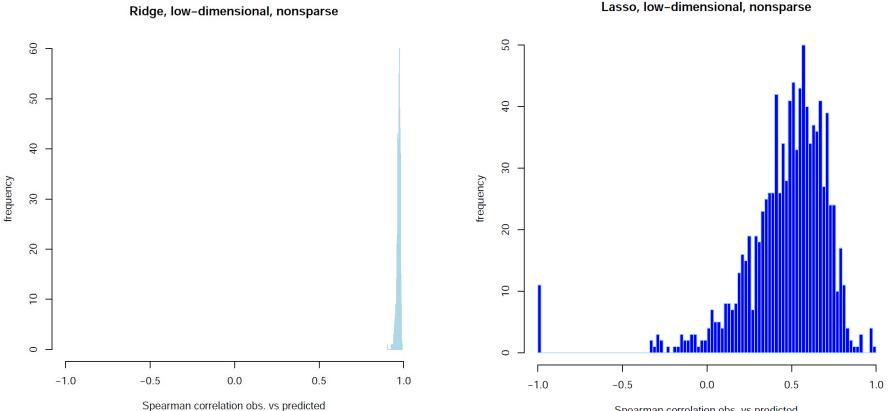
Ridge vs. lasso estimation

Consider a set of 50 genes. Their expression levels follow a standard multivariate normal law.

Together they regulate a 51th gene through: $Y_i = \mathbf{X}_{i*}\boldsymbol{\beta} + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, 1)$ and regression coefficients $\boldsymbol{\beta} = \mathbf{1}_{50}$. Hence, the 50 genes contribute equally.

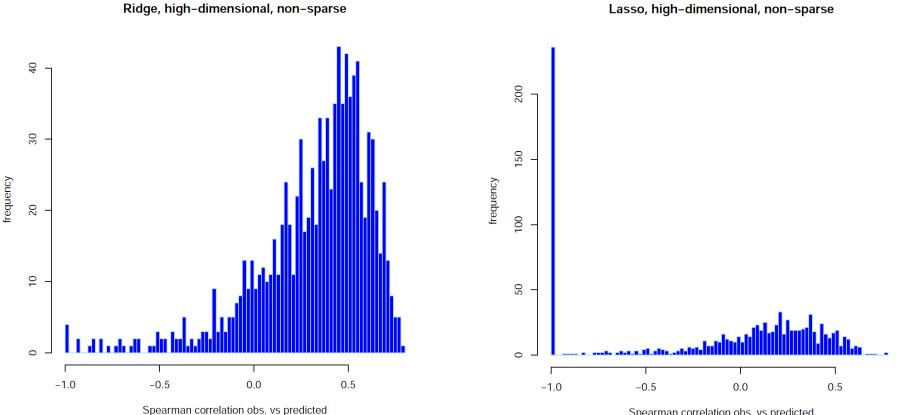
- \rightarrow Fit a linear regression model with ridge and lasso.
- \rightarrow Penalty parameters chosen through cross-validation.
- → With these penalty parameters, penalized regression parameters and linear predictors are obtained.
- \rightarrow The linear predictor is compared to the observations.

Ridge vs. lasso estimation (n=100, p=50) Spearman's correlations of observation vs. model prediction



Spearman correlation obs. vs predicted

Ridge vs. lasso estimation (n=50, p=100) Spearman's correlations of observation vs. model prediction



Spearman correlation obs. vs predicted

Ridge vs. lasso estimation

Consider a set of 50 genes. Their expression levels follow a standard multivariate normal law.

Together they regulate a 51th gene, in accordance with the following relationship:

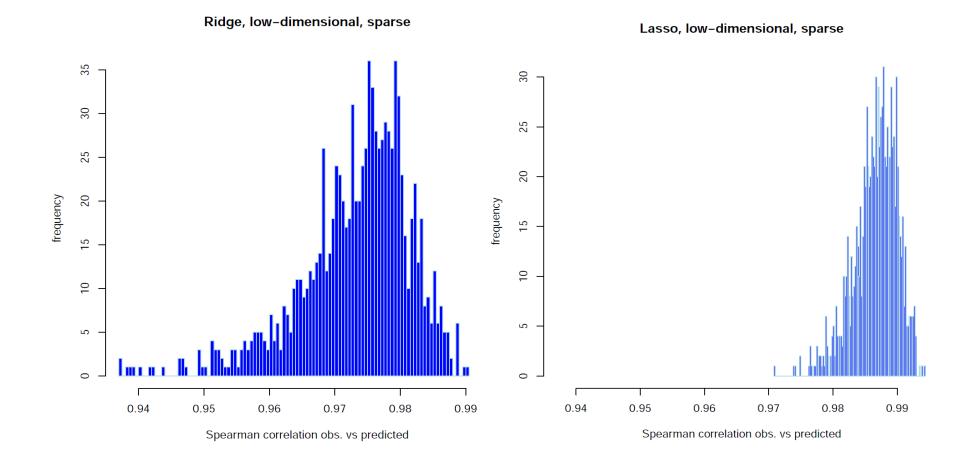
 $Y_i = \mathbf{X}_{i*}\boldsymbol{\beta} + \varepsilon_i \quad \text{with} \quad \varepsilon \sim \mathcal{N}(0, 1)$

The regression coefficients are

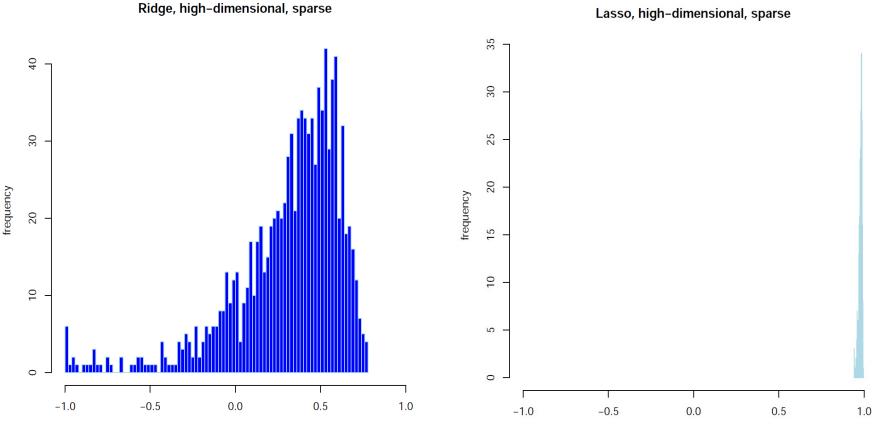
$$\beta_j = \begin{cases} j & \text{if } j = 1, 2, \dots, 5 \\ 0 & \text{if } j > 5 \end{cases}$$

Hence, only five genes contribute.

Ridge vs. lasso estimation (n=100, p=50) Spearman's correlations of observation vs. model prediction



Ridge vs. lasso estimation (n=50, p=100) Spearman's correlations of observation vs. model prediction



Spearman correlation obs. vs predicted

Spearman correlation obs. vs predicted

Simulations

Simulation I and II suggest:

- → In the presence of many small or medium effect sizes ridge is to be preferred.
- \rightarrow In only a few variables have a medium to large effect, the lasso is the method of choice.

However, simulations do not take into account collinearity. A second run of these simulations, incorporating collinearities, indicates that ridge regression appear to profit more from collinearity.

Effect of lasso estimation

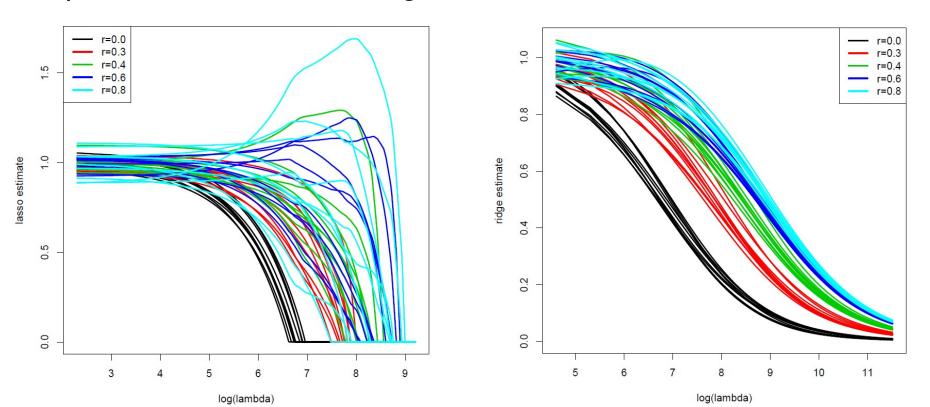
Consider a set of 50 genes. Their expression levels followa multivariate normal law with mean zero and covariance:

$$\Sigma \ = \ egin{pmatrix} \Sigma_{11} & 0 & 0 & 0 & 0 \ 0 & \Sigma_{22} & 0 & 0 & 0 \ 0 & 0 & \Sigma_{33} & 0 & 0 \ 0 & 0 & 0 & \Sigma_{44} & 0 \ 0 & 0 & 0 & 0 & \Sigma_{55} \ \end{pmatrix}$$
 where $\Sigma_{bb} = rac{b-1}{5} \mathbf{1}_{10 imes 10} + rac{6-b}{5} \mathbf{I}_{10 imes 10}.$

Together they regulate a 51th gene through: $Y_i = \mathbf{X}_{i*}\boldsymbol{\beta} + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, 1)$ and regression coefficients $\boldsymbol{\beta} = \mathbf{1}_{50}$. Hence, the 50 genes contribute equally.

Effect of lasso estimation

Whereas ridge regression shrinks coefficients of collinear covariates towards each other, lasso regression is somewhat indifferent to very correlated predictors and tends to pick one covariate and ignore the rest.



Regulation of mRNA by microRNA

microRNAs

Recently, a new class of RNA was discovered: MicroRNA (mir). Mirs are non-coding RNAs of approx. 22 nucleotides. Like mRNAs, mirs are encoded in and transcribed from the DNA.

Mirs down-regulate gene expression by either of two post-transcriptional mechanisms: mRNA cleavage or transcriptional repression. Both depend on the degree of complementarity between the mir and the target.

A single mir can bind to and regulate many different mRNA targets and, conversely, several mirs can bind to and cooperatively control a single mRNA target.

Aim

Model microRNA regulation of mRNA expression levels.

Data

- → 90 prostate cancers
- \rightarrow expression of 735 mirs
- \rightarrow mRNA expression of the MCM7 gene

Motivation

- \rightarrow MCM7 involved in prostate cancer.
- \rightarrow mRNA levels of MCM7 reportedly affected by mirs.

Not part of the objective: feature selection \approx understanding the basis of this prediction by identifying features (mirs) that characterize the mRNA expression.

Analysis

Find:

mrna expr. = f(mir expression) = $\beta_0 + \beta_1 * \min_1 + \beta_2 * \min_2 + ... + \beta_p * \min_p + error$

However, p > n: lasso regression. Having found the optimal λ , we obtain the lasso estimates for the coefficients: $b_{i}(\lambda)$.

With these estimates we calculate the linear predictor:

 $b_0 + b_1(\lambda) * mir_1 + ... + b_p(\lambda) * mir_p$

Finally, we obtain the predicted survival:

pred. mrna expr. = f(linear predictor)

= $b_0 + b_1(\lambda) * mir_1 + ... + b_p(\lambda) * mir_p$

Compare observed and predicted mRNA expression.

Cross-validated likelihood

Penalty Beta hat Obs. vs. pred. mRNA expression distribution parameter choice LOOCV for penalty choice Fit of lasso analysis Histogram of ridge regression estimates 76.0 9.2 75.5 600 9.1 75.0 obs. MCM7 expression level 74.5 9.0 400 requency 74.0 8.9 73.5 200 8. 8 73.0 8.7 72.5 0 8.90 8.95 9.00 9.05 1.0 2.0 2.5 3.0 3.5 4.0 1.5 -0.015 -0.010 0.005 -0.0050.000 pred. MCM7 expression level lambda_1 lasso estimates with optimal lambda 1 0.626 $\#(\beta != 0)$ ${oldsymbol{
ho}}_{
m sp}$ = $R^2 = 0.372$ 8 (out of 735)

> #(β < 0) = 3 (out of 735)

Biological dogma

MicroRNAs down-regulate mRNA levels: negative regression coefficients prevail. Re-analyze the data with sign parameter constraints.

Are the microRNAs identified to down-regulate MCM7 expression levels also reported by prediction tools?

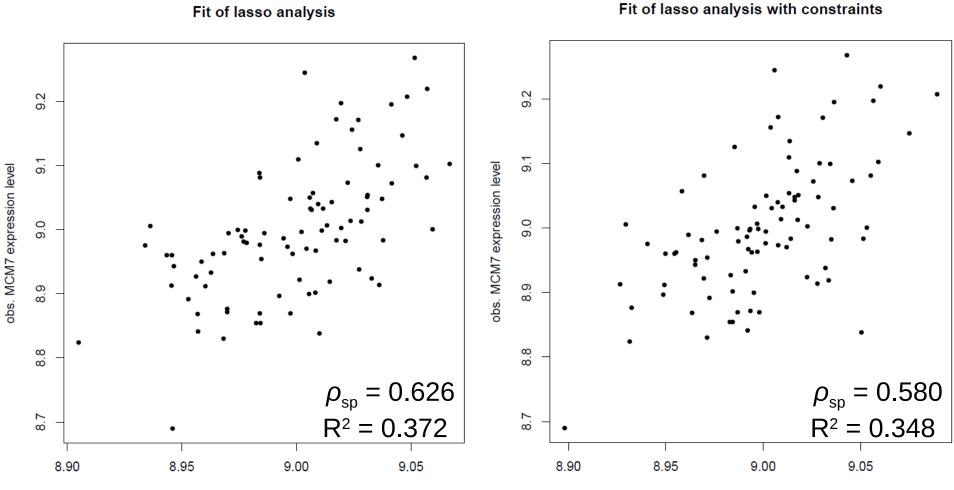
Contingency table

		prediction tool	
ridge	regression	no-mir2MCM7	mir2MCM7
	β = 0	705	22
	β < 0	8	0

Chi-square test Pearson's Chi-squared test with Yates' continuity correction

```
data: table(nonzeroBetas, nonzeroPred)
X-squared = 0, df = 1, p-value = 1
```

Observed vs. predicted mRNA expression for both analyses.



pred. MCM7 expression level

pred. MCM7 expression level

Clinical outcome prediction

Breast cancer data of Van 't Veer et al. (2004)

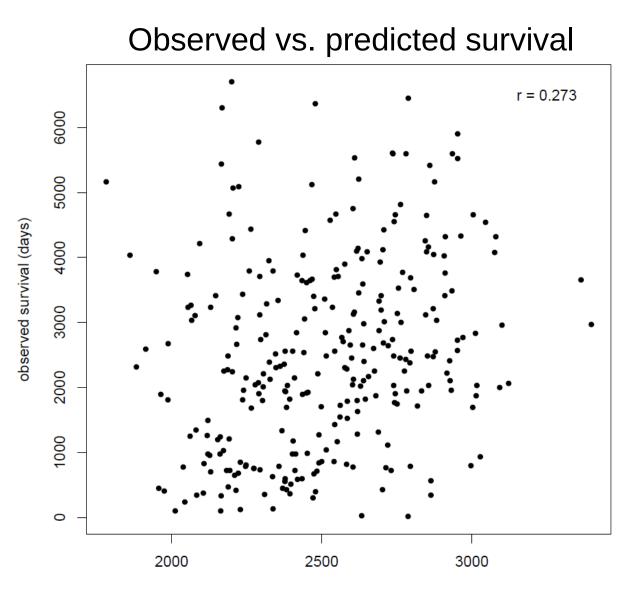
Study involves:

- 291 (after preprocessing) breast cancer samples,
- expression profile of 24158 genes for each sample, and
- survival data for each sample.

Question

Can we predict the survival time of a breast cancer patient on the basis of its gene expression data?

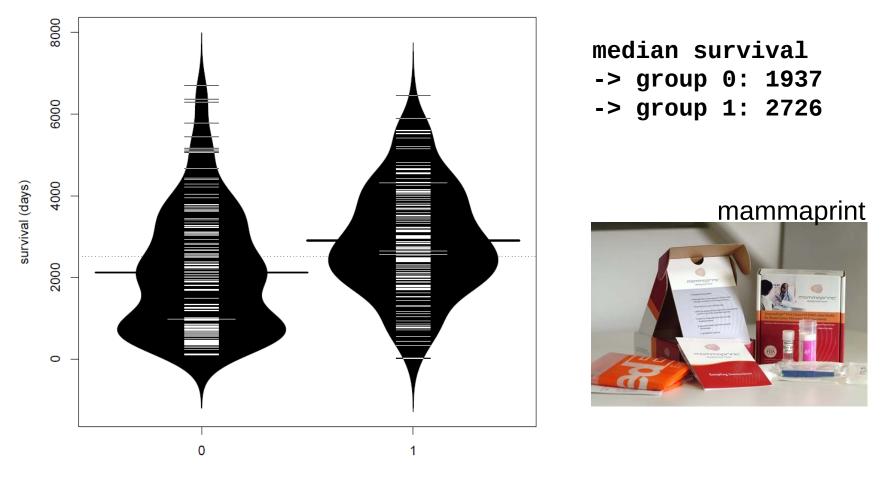
Now: lasso for the Cox model.



predicted survival (days)

Analysis (continued)

Compare groups by means of violinplots.



Analysis (continued)

Can we say anything about the underlying biology? E.g., which genes contribute most to survival?

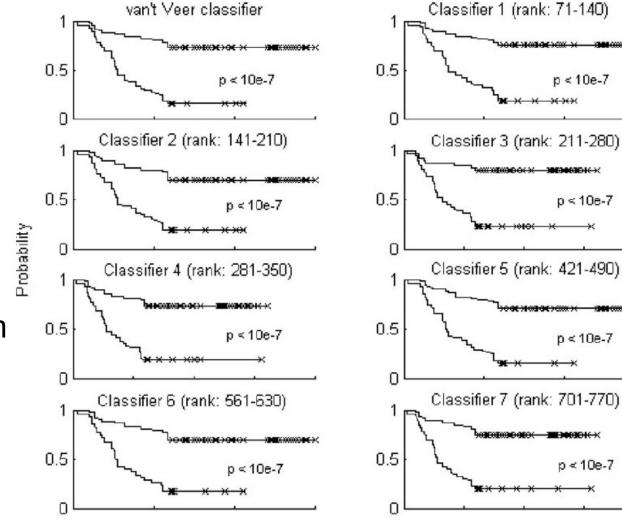
Solution Look for non-zero regression coefficients.

Lasso finds 8 genes with non-zero coefficients:

NM_000909	NM_002411	AL117406
NM_006115	Contig48328_RC	NM_020974
Contig14284_	RC	AF067420

Ein-Dor et al. (Bioinformatics, 2005) showed that predictor with nonoverlapping gene sets may perform equally well.

Famous example in breast cancer: Amsterdam signature vs. Rotterdam signature



Time to distant metastasis (months)

p < 10e-7

p < 10e-7

p < 10e-7

p < 10e-7

Question

OPEN OACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome

David Venet¹, Jacques E. Dumont², Vincent Detours^{2,3}*

1 IRIDIA-CoDE, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium, 2 IRIBHM, Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium, 3 WELBIO, Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium

Explain the above title. Note: size of signatures $p \approx 100$

Note

Ein-Dor *et al.* (PNAS, 2006) showed that a training set of thousands of samples is needed to produce a predictor with a stable gene set. That does not imply the predictor is any good.

Lasso variants

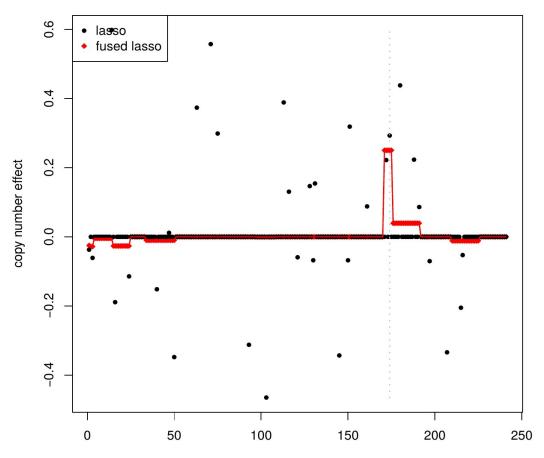
Lasso variants - I

Fused lasso

The fused lasso estimator, using $\lambda_{1,f} \sum_{j=1}^{p-1} |\beta_{j+1} - \beta_j|$, penalizes differences instead of individual coefficients.

See exercises for its computation.

Application to the DNA copy number *trans*-effect of the fused ridge.



chromosomal location

Lasso variants - II

Adaptive lasso

Lasso regression shrinks coefficients to zero.

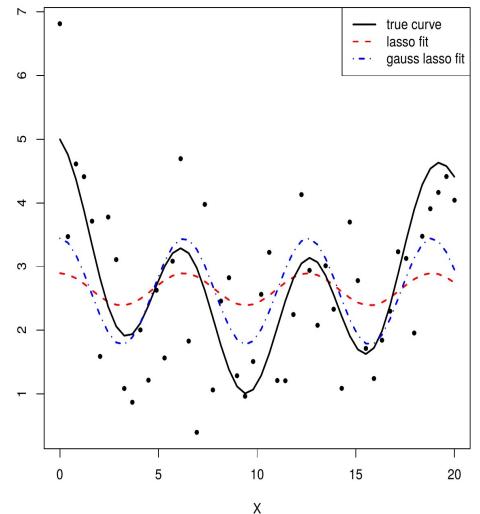
Correction for shrinkage:

- → use lasso regression for variable selection, and
- → re-estimate parameters

 of selected variables by →
 means of OLS.

 This is referred to as the

 Gauss-Lasso estimator.



Lasso variants - II

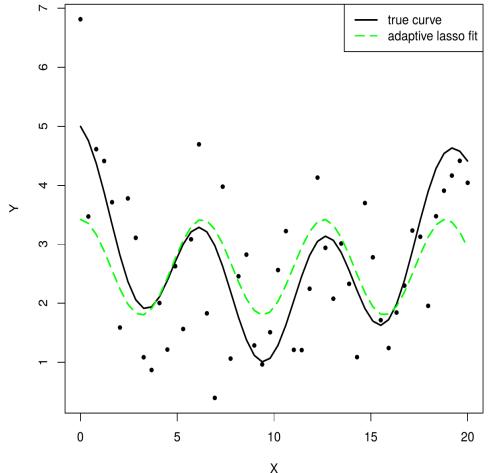
Adaptive lasso

As before but replace OLS estimator by lasso estimator with modified penalty:

$$\lambda_1 \sum_{j=1}^p \frac{|\beta_j|}{|[\hat{\boldsymbol{\beta}}^{\text{Gauss-Lasso}}(\lambda)]_j|}$$

This yields the adaptive lasso estimator.

In similar fashion, a *Ridge-Lasso estimator* may be conceived.



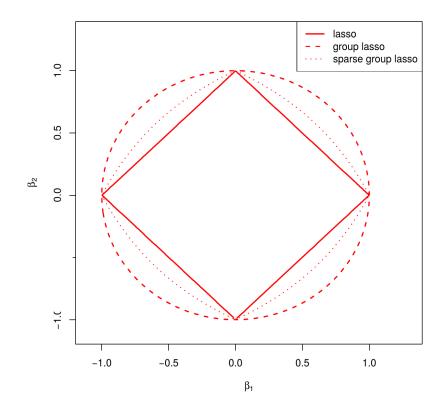
Sparse group lasso

Groups of variables may be discerned. To select at the group level employ the group lasso penalty:

$$\lambda_{1,G} \sum_{g=1}^{G} \sqrt{|J_g|} \|\beta_g\|_2 = \lambda_{1,G} \sum_{g=1}^{G} \sqrt{|J_g|} \sqrt{\sum_{j \in J_g} \beta_j^2}$$

The group lasso estimator does not result in a sparse within-group estimate. This may be achieved through employment of the *sparse* group lasso penalty:

$$\lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_{1,G} \sum_{g=1}^G \sqrt{|J_g|} \|\boldsymbol{\beta}_g\|_2$$



Sparse group lasso

The sparse group lasso estimator is found through exploitation of the convexity of the loss function:

- \rightarrow group-wise optimization,
- \rightarrow within-group parameter-wise optimization. Much like the coordinate descent approach.

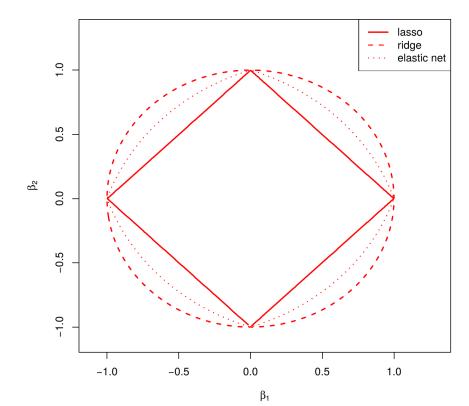
- → Does it work?
- \rightarrow Show regularization paths.

Elastic net penalty

Ridge regression shrinks coefficients of collinear covariates towards each other, while lasso regression is somewhat indifferent to correlated predictors and tends to pick one covariate and ignore the rest.

This drawback (?) of the lasso may be resolved by simply adding the two penalty, thus forming the elastic net penalty:

$$\lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2^2$$



Elastic net penalty

Consider a set of 50 genes. Their expression levels follow a multivariate normal law with mean zero and block diagonal covariance with $\Sigma_{bb} = \frac{b-1}{5} \mathbf{1}_{10 \times 10} + \frac{6-b}{5} \mathbf{I}_{10 \times 10}$ for b = 1, ... 5.

Together they regulate a 51th gene through: $Y_i = \mathbf{X}_{i*}\boldsymbol{\beta} + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, 1)$ and regression coefficients:

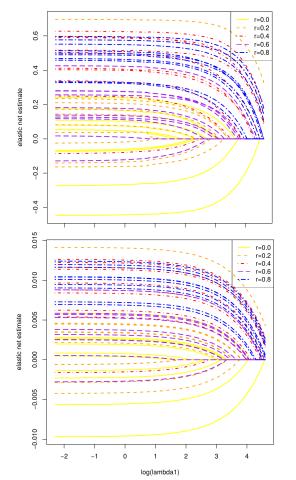
$$\neg \beta = \mathbf{1}_{50} , \neg \begin{cases} \beta_j = 0 & \text{for } j = 1, \dots, 45, \\ \beta_j = 1 & \text{for } j = 46, \dots, 50. \\ \neg \begin{cases} \beta_j = 0 & \text{for } j = 1, \dots, 25, 31, \dots, 50 \\ \beta_j = 1 & \text{for } j = 26, \dots, 30. \end{cases}$$

Evaluate (see exercises) the elastic net estimator with $\lambda_1 \in (0, 100]$ and either $\lambda_2 = 100$ or $\lambda_2 = 10000$.

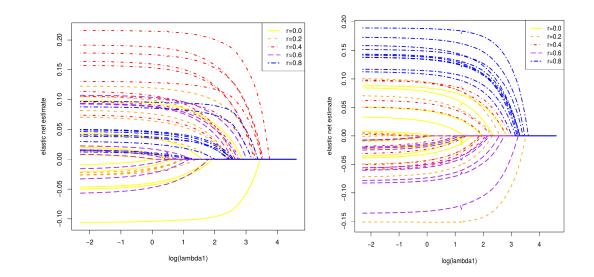
Lasso variants - IV

Elastic net penalty

Non-sparse: need not have an obvious effect.



Sparse: tends to have an effect. High correlation + dominating ridge penalty preferred.



Lasso variants - IV

Elastic net penalty

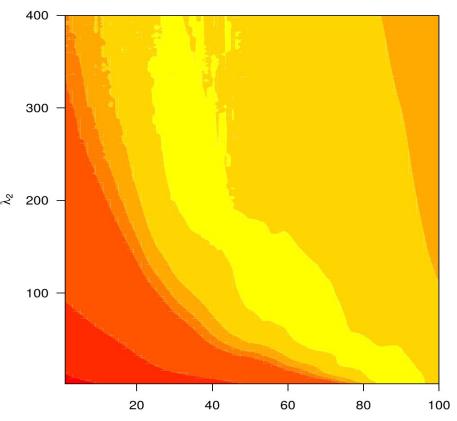
Both penalty terms shrink the parameter estimates. These confounding shrinkage effects frustrate the choice of the penalty parameters when optimizing a prediction criterion.

CV-likelihood contour

- \rightarrow red = low
- → yellow = high

Flat surface from **orange** to **yellow**.

Many penalty parameter combinations of yield the same CV-likelihood.



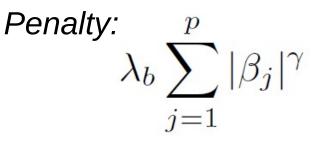
Lasso variants - V

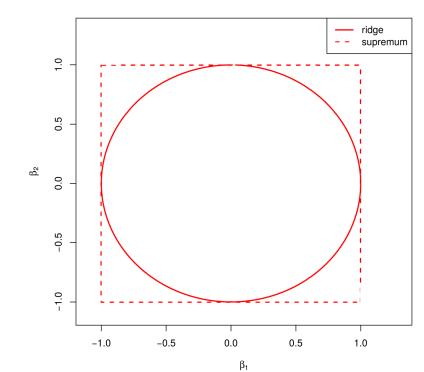
Bridge penalty

Large class of penalties, of which ridge and lasso are special cases.

Question

Supremum norm ($\gamma = \infty$) also yields corners in constraint. Why does the resulting estimator not select?

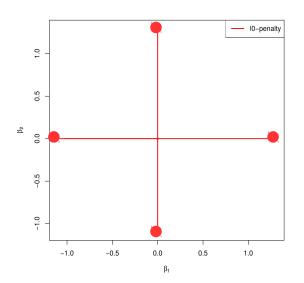




Lasso variants - VI

L₀ penalty The ideal penalty would be the *L*₀-penalty: $\lambda_0 \sum_{\{\beta_i \neq 0\}}^p I_{\{\beta_i \neq 0\}}$

This penalty thus punishes only the number of covariates that enters the model, not their regression coefficients (which are only surrogates).



This penalty is computationally too demanding: one searches over all possible subsets of the p covariates.

Question: can the adaptive lasso be viewed as a surrogate?

References & further reading

References & further reading

- Buhlmann, P. Van der Geer, S. (2011), *Statistics for High-dimensional Data: Methods, Theory and Applications*, Springer.
- Castillo, I., Schmidt-Hieber, J., & Van der Vaart, A. (2015). Bayesian linear regression with sparse priors. The Annals of Statistics, 43(5), 1986-2018.
- Ein-Dor, Liat, et al. "Outcome signature genes in breast cancer: is there a unique set?." *Bioinformatics* 21.2 (2005): 171-178.
- Fan, J., Li, R. (2001), "Variable selection via nonconcave penalized likelihood and its oracle properties", *JASA*, 96(456), 1348-1360.
- Goeman, J.J. (2010), "L1 penalized estimation in the Cox proportional hazard model", *Biometrical Journal*, 52(1), 70-84.
- Meinshausen, N., Buhlmann, P. (2010), "Stability selection", JRSS B, 74(4), 417-473.
- Osborne, M.R., Presnell, B., Turlach, B.A. (2000), "On the LASSO and its dual",
- Journal of Computational and Graphical Statistics, 9(2), 319-337.
- Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103(482), 681-686.
- Tibshirani, R. (1996), "Regression shrinkage and selection via the Lasso", JRSS B, 58(1), 267-288.

This material is provided under the Creative Commons Attribution/Share-Alike/Non-Commercial License.

See http://www.creativecommons.org for details.