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SOLUTION TO PRACTICE PROBLEM

Examine the Casorati matrix:

2k 3k sin %” 3% cos %”

C(k) - 2k+1 3k+1 sin (k+21)yr 3k+1 cos (k+21)7r
k+2 3k+2 sin (k+22)7r 3k+2 cos (k+22)fr

Set k = 0 and row reduce the matrix to verify that it has three pivot positions and hence
is invertible:

1 0 1 1 0 1
coy=|2 3 o|l~l0 3 -2
4 0 -9 0 0 —13

The Casorati matrix is invertible at k = 0, so the signals are linearly independent. Since
there are three signals, and the solution space H of the difference equation has dimen-
sion 3 (Theorem 17), the signals form a basis for H, by the Basis Theorem.

“B°N APRLICATIONS TO MARKOV CHAINS

The Markov chains described in this section are used as mathematical models of a
wide variety of situations in biology, business, chemistry, engineering, physics, and
elsewhere. In each case, the model is used to describe an experiment or measurement
that is performed many times in the same way, where the outcome of each trial of the
experiment will be one of several specified possible outcomes, and where the outcome
of one trial depends only on the immediately preceding trial.
For example, if the population of a city and its suburbs were measured each year,
then a vector such as
. [ .60] i

40

could indicate that 60% of the population lives in the city and 40% in the suburbs. The
decimals in x¢ add up to 1 because they account for the entire population of the region.
Percentages are more convenient for our purposes here than population totals.

A vector with nonnegative entries that add up to 1 is called a probability vector. A
stochastic matrix is a square matrix whose columns are probability vectors. A Markov
chain is a sequence of probability vectors Xy, X|, X2, . . ., together with a stochastic matrix
P, such that

x; = Pxp, X =Px;, x3=Px,
Thus the Markov chain is described by the first-order difference equation
X = Px;, fork=0,1,2,...

When a Markov chain of vectors in R" describes a system or a sequence of exper-
iments, the entries in x; list, respectively, the probabilities that the system is in each

. .
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of n possible states, or the probabilities that the outcome of the experiment is one of n
possible outcomes. For this reason, X, is often called a state vector.

EXAMPLE 1 In Section 1.10 we examined a model for population movement between
a city and its suburbs. See Fig. 1. The annual migration between these two parts of the
metropolitan region was governed by the migration matrix M

From:
City Suburbs To:

95 .03 City
M= [.05 .97] Suburbs

That is, each year 5% of the city population moves to the suburbs, and 3% of the
suburban population moves to the city. The columns of M are probability vectors, so M
is a stochastic matrix. Suppose the 2000 population of the region is 600,000 in the city
and 400,000 in the suburbs. Then the initial distribution of the population in the region
is given by x in (1) above. What is the distribution of the population in 2001? In 2002?

Annual percentage migration between city and suburbs.

Solution In Example 3 of Section 1.10, we saw that after one year, the population
600,000

veotor {400,000

} changed to

.95 .03]] 600,000 | 582,000
.05 .97 || 400,000 | ~ | 418,000

If we divide both sides of this equation by the total population of 1 million, and use the
fact that kMx = M (kx), we find that

95 .03 .600 | |.582
05 97| .400] | 418

The vector x| = gives the population distribution in 2001. That is, 58.2% of

.582
418
the region lived in the city and 41.8% lived in the suburbs. Similarly, the population




306

CHAPTER 4

Vector Spaces
distribution in 2002 is described by a vector xa, where
95 03|].582 565
"2=M"'=[.05 .97][.413]‘{.435] .

Il EXAMPLE 2  Suppose the voting results of a congressional election at a certain voting
precinct are represented by a vector x in R

% voting Democratic (D)

x = | % voting Republican (R)

% voting Libertarian (L)
Suppose we record the outcome of the congressional election every two years by a vector
of this type and the outcome of one election depends only on the results of the preceding

election. Then the sequence of vectors that describe the votes every two years may be a
Markoyv chain. As an example of a stochastic matrix P for this chain, we take

From:

D R L To:

J0 .10 .30 D
P=|.20 B0 .30 R

00 10 .40 L

The entries in the first column, labeled D, describe what the persons voting Democratic
in one election will do in the next election. Here we have supposed that 70% will vote D
again in the next election, 20% will vote R, and 10% will vote L. A similar interpretation
holds for the other columns of P. A diagram for this matrix is shown in Fig. 2.

70 .80

_(_| 20 ,_>_

Democratic > Republican
vote < vote

10
30 \0 10 30

Libertarian
vote

L, |

40

FIGURE2 Voting changes from one election o
the next.

[f the “transition” percentages remain constant over many years from one election
to the next, then the sequence of vectors that give the voting outcomes forms a Markov
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chain. Suppose the outcome of one election is given by
35
Xp= 40
.05

Determine the likely outcome of the next election and the likely outcome of the election
after that.

Solution The outcome of the next election is described by the state vector x; and that
of the election after that by x,, where

70 .10 307[.55] [.440 44% will vote D.
xi=Pxg= (.20 .80 30|{.40| = | .445 44.5% will vote R.
A0 .10 .40J .05 | _.115 11.5% will vote L.
70 .10 .307] .4407] [.3870 38.7% will vote D.
x;=Px;=|.20 .80 .30||.445| = | 4785 47.8% will vote R.
10 .10 .40 | 115 | | 1345 13.5% will vote L.

To understand why x; does indeed give the outcome of the next election, suppose 1000
persons voted in the “first” election, with 550 voting D, 400 voting R, and 50 voting L.
(See the percentages in Xg.) In the next election, 70% of the 550 will vote D again, 10%
of the 400 will switch from R to D, and 30% of the 50 will switch from L to D. Thus the
total D vote will be

.70(550) +.10(400) +.30(50) =385+ 40 + 15 =440 2)

Thus 44% of the vote next time will be for the D candidate. The calculation in (2) is
¢ssentially the same as that used to compute the first entry in x;. Analogous calculations
could be made for the other entries in Xy, for the entries in x,, and so on. n

Predicting the Distant Future

The most interesting aspect of Markov chains is the study of a chain’s long-term behav-
ior. For instance, what can be said in Example 2 about the voting after many elections
have passed (assuming that the given stochastic matrix continues to describe the tran-
sition percentages from one election to the next)? Or, what happens to the population
distribution in Example 1 “in the long run”? Before answering these questions, we turn
to a numerical example.

S5 2 .3 I
EXAMPLE3 Let P=|.3 .8 .3 | andxyo= |0 |. Consider a system whose
2 0 4 0

state is described by the Markov chain x¢; = Pxg, for k =0, 1, .... What happens to
the system as time passes? Compute the state vectors x|, .. ., X5 to find out.
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Solution

s 2 31[1 5

Xj = PX;} =1.3 .8 3 01=1(.3
2 0 4]|0 2
5 2 31[.5 37

Xy = PX] =1.3 .8 3 3=].45
2 0 4|2 18
5 2 370[.37 .329

x3=Px=|.3 8 3||45|=].525
|2 0 4]|.18 146

The results of further calculations are shown below, with entries rounded to four or five
significant figures.

[.3133] [ 3064 ] (3032 [.3016]
x, = |.5625|, xs = |.5813|, x5 = |.5906|, x; = |.5953
| .1242 | | 1123 | | .1062 | | .1031 |
[.3008 ] [.3004 ] [.3002 ] [.3001 ]
xg = |.5977|, X9 = |.5988|, xpo= |.599%4|, xy = |.5997
| .1016 | | .1008 | | .1004 | | .1002 |
30005 [.30002 [.30001 [.30001
X192 = .59985 , X3 = 59993 |, x4 = 59996 |, x5 = .59998
10010 | .10005 | .10002 | .10001

3
These vectors seem to be approaching q = | .6 | . The probabilities are hardly changing
1

from one value of k to the next. Observe that the following calculation is exact (with no
rounding error):

S5 2 3|3 A5+.124 .03 .30
Pgq={3 8 3||.6|=|.09+48+.03|=].60|=gq
2 0 4|41 06+ 0 +.04 10
When the system is in state g, there is no change in the system from one measurement
to the next. il
Steady-State Vectors

If P is a stochastic matrix, then a steady-state vector (or equilibrium vector) for P is
a probability vector q such that

Pq=q

It can be shown that every stochastic matrix has a steady-state vector. In Example 3, q
is a steady-state vector for P.

R
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625
ulation migration matrix M in Example 1, because

95 .03 ||.375 .35625 + .01875 375

EXAMPLE 4 The probability vector q = [ b ] is a steady-state vector for the pop-

05 97| .625 01875 + .60625 .625

If the total population of the metropolitan region in Example 1 is 1 million, then
q from Example 4 would correspond to having 375,000 persons in the city and
625,000 in the suburbs. At the end of one year, the migration out of the city would
be (.05)(375,000) = 18,750 persons, and the migration into the city from the suburbs
would be (.03)(625,000) = 18,750 persons. As a result, the population in the city would
remain the same. Similarly, the suburban population would be stable.

The next example shows how to find a steady-state vector.

EXAMPLE5 Let P = ['(’ N

4 7 ] . Find a steady-state vector for P.

Solution First, solve the equation Px = x.

Px—x=0
Px—Ix=0 Recall from Section 1.4 that Ix =x.
(P—-Dx=0

For P as above,

A N

e - R PR ]

To find all solutions of (P — I')x = 0, row reduce the augmented matrix:
-4 3 0| _[—-4 3 0] |1 -3/4 0
4 -3 0 0 0 0 0 0 0

Then x| = %.XQ and x; is free. The general solution is x; [3{4] .

3/4

Next, choose a simple basis for the solution space. One obvious choice is 1

but a better choice with no fractions is w = i (corresponding to x; = 4).

Finally, find a probability vector in the set of all solutions of Px = x. This process
is easy, since every solution is a multiple of the w above. Divide w by the sum of its

entries and obtain
_|3/7
a=[47]
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As a check, compute

po_ |6/10 3/107[3/7] _ [18/70+12/70
9=14/10 7710|477 |~ | 12/70+28/70

~ [30/70
= | 40/70

The next theorem shows that what happened in Example 3 is typical of many stochas-
tic matrices. We say that a stochastic matrix is regular if some matrix power P* contains
only strictly positive entries. For the P in Example 3, we have

37 26 .33
P*=1.45 70 45
18 .04 22

Since every entry in P? is strictly positive, P is a regular stochastic matrix.

Also, we say that a sequence of vectors {X; : k =1, 2, ...} converges to a vector q
as k — oo if the entries in the x, can be made as close as desired to the cotresponding
entries in ¢ by taking k sufficiently large.

THEOREM 18

If P is an n x n regular stochastic matrix, then P has a unique steady-state vector
q. Further, if x; is any initial state and x;,.; = PXx; for k=0,1, 2, ..., then the
Markov chain {x,} converges to q as k — oo.

This theorem is proved in standard texts on Markov chains. The amazing part of
the theorem is that the initial state has no effect on the long-term behavior of the Markov
chain. You will see later (in Section 5.2) why this fact is true for several stochastic
matrices studied here.

EXAMPLE 6 In Example 2, what percentage of the voters are likely to vote for the
Republican candidate in some election many years from now, assuming that the election
outcomes form a Markov chain?

Solution For computations by hand, the wrong approach is to pick some initial vector
Xo and compute Xy, . . ., X; for some large value of k. You have no way of knowing how
many vectors to compute, and you cannot be sure of the limiting values of the entries in
the x;.

The correct approach is to compute the steady-state vector and then appeal to The-
orem 18. Given P as in Example 2, form P — I by subtracting 1 from each diagonal
entry in P. Then row reduce the augmented matrix:

-3 .1 3 0
[(P—1) 0]=| 2-2 3 0
1 1-6 0
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Recall from earlier work with decimals that the arithmetic is simplified by multiplying
each row by 10.1

-3 1 3 0 1 0 -9/4 0
2 -2 3 01~|0 1 -15/4 0
1 1 -6 0 0 0 0 0
The general solution of (P — I)x =01is x; = %x3, Xy = 14—5x3, and x3 is free. Choosing

X3 = 4, we obtain a basis for the solution space whose entries are integers, and from this
we easily find the steady-state vector whose entries sum to 1:

9 9/28 32
w=|[15|, and q=|15/28 | ~ | .54
4 4/28 14

The entries in q describe the distribution of votes at an election to be held many years
from now (assuming the stochastic matrix continues to describe the changes from one
election to the next). Thus, eventually, about 54% of the vote will be for the Republican
candidate. ]

NUMERICAL NOTE
You may have noticed that if x;,; = Px, fork =0, 1, ..., then
x; = Px; = P(Pxo) = P’xo,
and, in general,
%= Ptxg fork=0,1,...

To compute a specific vector such as x3, fewer arithmetic operations are needed
to compute X, X3, and x3, rather than P3 and P3x,. However, if P is small—
say, 30 x 30—the machine computation time is insignificant for both methods, and
a command to compute P3xy might be preferred because it requires fewer human
keystrokes.

PRACTICE PROBLEMS

1. Suppose the residents of a metropolitan region move according to the probabilities
in the migration matrix of Example 1 and a resident is chosen “at random.” Then a
state vector for a certain year may be interpreted as giving the probabilities that the
person is a city resident or a suburban resident at that time.

a. Suppose the person chosen is a city resident now, so that xg = [é] . What is the

likelihood that the person will live in the suburbs next year?

'Warning: Don't multiply only P by 10. Instead, multiply the augmented matrix for equation
(P —-Ix=0by 10.
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b. What is the likelihood that the person will be living in the suburbs in two years?

7

2. Let P = [2 ﬂ and q = ['3 ] . Is q a steady-state vector for P?

3. What percentage of the population in Example 1 will live in the suburbs after many

years?

1. A small remote village receives radio broadcasts from two ra-

dio stations, a news station and a music station. Of the listeners
who are tuned to the news station, 70% will remain listening
to the news after the station break that occurs each half hour,
while 30% will switch to the music station at the station break.
Of the listeners who are tuned to the music station, 60% will
switch to the news station at the station break, while 40% will
remain listening to the music. Suppose everyone is listening
to the news at 8:15 A.m.

a. Give the stochastic matrix that describes how the radio lis-
teners tend to change stations at each station break. Label
the rows and columns.

b. Give the initial state vector.

c. What percentage of the listeners will be listening to the
music station at 9:25 A.M. (after the station breaks at 8:30
and 9:00 a.m.)?

. Alaboratory animal may eat any one of three foods each day.
Laboratory records show that if the animal chooses one food
on one trial, it will choose the same food on the next trial with
a probability of 50%, and it will choose the other foods on the
next trial with equal probabilities of 25%.

a. What is the stochastic matrix for this situation?

b. If the animal chooses food #1 on an initial trial, what is the
probability that it will choose food #2 on the second trial
after the initial trial?

[ [ s ISR s B | | |
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3. On any given day, a student is either healthy or ill. Of the

students who are healthy today, 95% will be healthy tomor-
row. Of the students who are ill today, 55% will still be ill
tomorrow.

a. What is the stochastic matrix for this situation?

b. Suppose 20% of the students are ill on Monday. What
fraction or percentage of the students are likely to be ill on
Tuesday? On Wednesday?

c. Ifastudent is well today, what is the probability that he or
she will be well two days from now?

. The weather in Columbus is either good, indifferent, or bad

on any given day. If the weather is good today, there is a 60%
chance the weather will be good tomorrow, a 30% chance the
weather will be indifferent, and a 10% chance the weather will
be bad. If the weather is indifferent today, it will be good to-
motrow with probability .40 and indifferent with probability
.30. Finally, if the weather is bad today, it will be good to-
morrow with probability .40 and indifferent with probability
.50.

a. What is the stochastic matrix for this situation?

b. Suppose there is a 50% chance ot good weather today and
a 50% chance of indifferent weather. What are the chances
of bad weather tomorrow?

c. Suppose the predicted weather for Monday is 40% indif-
ferent weather and 60% bad weather. What are the chances
for good weather on Wednesday?

In Exercises 5-8, find the steady-state vector.

10.

11.

12,

13.

14.

15.

16.

17.

e

7 | 1 ol 2 2
2 8 8 0 2 4
1 | 7 3 6 4
- 2 1. . .
. Determine if P = 3 0 is a regular stochastic matrix.
N - 1 2. ; .
Determine if P = [ 0 8} is a regular stochastic matrix.

a. Find the steady-state vector for the Markov chain in Exer-
cise 1.

b. Atsome time late in the day, what fraction of the listeners
will be listening to the news?

Refer to Exercise 2. Which food will the animal prefer after
many trials?

a. Find the steady-state vector for the Markov chain in Exer-
cise 3.

b. What is the probability that after many days a specific stu-
dent is ill? Does it matter if that person is ill today?

Refer to Exercise 4. In the long run, how likely is it for the
weather in Columbus to be good on a given day?

[M] The Demographic Research Unit of the California State
Department of Finance supplied data for the following mi-
gration matrix, which describes the movement of the United
States population during 1989. In 1989, about 11.7% of the
total population lived in California. What percentage of the to-
tal population would eventually live in California if the listed
migration probabilities were to remain constant over many
years?

From:
CA  Restof US. To:
9821 .0029 California
[.0179 .9971} Restof U.S.

[M] In Detroit, Hertz Rent A Car has a fleet of about 2000
cars. The pattern of rental and return locations is given by
the fractions in the table below. On a typical day, about how
many cars will be rented or ready to rent from the Downtown
location?

Cars Rented from:
City Down- Metro
Airport town Airport Returned to:

90 01 .09 City Airport
01 90 .01 Downtown
09 .09 .90 Metro Airport

Let P be an n x n stochastic matrix. The following argument
shows that the equation Px = x has a nontrivial solution. (In

18.

19.

20.

21.
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fact, a steady-state solution exists with nonnegative entries. A
proof is given in some advanced texts.) Justify each assertion
below. (Mention a theorem when appropriate.)

a. If all the other rows of P — I are added to the bottom row,
the result is a row of zeros.

b. The rows of P — I are linearly dependent.
c. The dimension of the row space of P — I is less than #.

d. P — [ has a nontrivial null space.

Show that every 2 x 2 stochastic matrix has at least one steady-
state vector. Any such matrix can be written in the form
-« B

o 1-8
tween 0 and 1. (There are two linearly independent steady-
state vectors if & = B = 0. Otherwise, there is only one.)

P= , where o and g are constants be-

Let S be the 1 x n row matrix with a 1 in each column,

S=[1 1 --- 1]

a. Explain why a vector x in R” is a probability vector if and
only if its entries are nonnegative and Sx =1. (A 1x1
matrix such as the product Sx is usually written without
the matrix bracket symbols.)

b. Let P be ann x n stochastic matrix. Explainwhy SP = S.

c. Let P be an n xn stochastic matrix, and let x be a proba-
bility vector. Show that Px is also a probability vector.

Use Exercise 19 to show that if P is an n x n stochastic matrix,
then so is P2.

[M] Examine powers of a regular stochastic matrix.
a. Compute Pffork =2,3,4,5, when

3355 3682 3067 .0389

2663 2723 3277 5451

1935 1502 1589 .2395

2047 2093 2067  .1765

Display calculations to four decimal places. What hap-
pens to the columns of P* as k increases? Compute the
steady-state vector for P.

b. Compute QF for k = 10, 20, ..., 80, when

Pa—

97 .05 .10
0=10 90 .05
.03 05 85

(Stability for Q* to four decimal places may require
k =116 or more.) Compute the steady-state vector for Q.
Conjecture what might be true for any regular stochastic
matrix.




