
Software Quality Journal, 12, 297–309, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

9210: The Zip Code of Another IT-Soap ∗

A.S. KLUSENER steven@cs.vu.nl
Software Improvement Group, Amsterdam, The Netherlands and
Free University of Amsterdam, Department of Computer Science, Amsterdam, The Netherlands

C. VERHOEF x@cs.vu.nl
Free University of Amsterdam, Department of Computer Science, Amsterdam, The Netherlands

Abstract. Nine-to-ten (9210) refers to the problem that the Dutch banks are running out of 9-digit bank account
numbers and need to convert to 10-digit numbers. At the same time, the Dutch government wants bank account
numbers to be portable to encourage competition; this may become European policy. A recent European standard
for cross-border money transfers proposes totally nonportable bank account numbers. These orthogonal policies
have such a high IT-soap caliber that we sometimes refer to it as 9210 Policy Nils. Whatever the plot of “nine-
two-one-o,” major challenges are at stake for European banks and other “number crunchers” like tax authorities,
mail-order firms, etc. This paper gives insight in cost aspects, the possibilities, and impossibilities of 9210 and
related problems.

Keywords: software pasteurization, 9210-problem, bank account number portability, international bank ac-
count number (IBAN), software cost estimation, IT-portfolio analysis, automated program transformation, IT-
portfolio transformation, IT-portfolio management

1. Introduction

Data types that were once envisioned never to have certain properties, cause severe
problems when the need for these unanticipated properties nonetheless arises. Think
of return codes that were never envisioned to be negative. Out of the blue they will
become negative due to a new release of some software product ranging from a screen
generator, a new compiler, to a database product. If your implementation relies entirely
on positive numbers, you have a problem. Or think of a Customer-Relationship Man-
agement system that was never envisioned to deal with more than a million customers.
After a merge you pass the magic line and you can no longer store knowledge about all
your customers. Which is unacceptable. A hundred different financial products was
unthought of in the 1960s, but after several mergers and acquisitions the company has
grown and at short notice you need to monitor hundreds of financial products. But you
can’t.

Or constants you were sure would never change, behave unexpectedly: they vary!
Think of the recently abandoned European currencies, but also error codes, zip codes,
phone numbers, bank account numbers, addresses, names, and what have you. For
instance, some European banks used the currency as the primary key for certain cross-
border money transfers. So, transferring 100 DM implied that it should go to the

∗ Contract/grant sponsor: This research has partially been sponsored by the Dutch Ministry of Economic Affairs
via contract SENTER-TSIT3018 CALCE: Computer-Aided Life Cycle Enabling of Software Assets.

298 KLUSENER AND VERHOEF

German office. Likewise, 100 NLG would go to the Dutch office. But when the Euro
was introduced, it was no longer possible to use this method, and although the systems
were thought to be Euro-compliant, these banks had to transfer up to 30% of their
international transactions manually for some months before this was repaired.

1.1. Software pasteurization

Solving such problems is nothing else than extending the best-before-date of the soft-
ware assets. The Year 2000 problem was not just a data type no longer simulating
reality accurately, but also that the best-before-date of all these systems coincided.
The latter problem is solved, but the repaired systems still have a best-before-date,
that will be due somewhere in the future. Some people think this is in 2050, or 2038,
but it happens every day. Let us give an example of RPG-code that needs an update at
the time of writing this paper.

H*** 28-01-98
H* THIS Y2K-FIX GOES WRONG WHEN A DATENUMBER IS
H* GREATER THAN 40000 (= 06-06-2003)!!!
CSR N18N56 SETON 2489
CSR 18 56IDAYLA COMP VDAYLA 561818
CSR 18 IDAYLA SUB ARVDDD DGN 24H1
CSR 56 VDAYLA SUB ARVDDD DGN 24H1
CSR 02 56DORCLA COMP ASDORC 1919

Mass-maintenance projects are occurring every day, and their costs are substantial.
They all deal with extending the best-before-date of business-critical software assets,
thereby capitalizing on existing systems to deploy and exploit them to their full ex-
tent. We call this (software) pasteurization: preventing the software from turning sour
by prolonging its best-before-date much like Louis Pasteur’s method to prolong the
due-date of milk by partial sterilization that destroys objectionable organisms with-
out changing the functionality of the milk. Pasteurization not necessarily implies a
date-related change like Y2K, but any effort that enables software assets to keep func-
tioning properly by removing approaching show-stoppers that otherwise render them
useless (Klusener et al., 2004).

1.2. The 9210-problem

The Dutch financial industry is facing a significant pasteurization effort: solving the
9210-problem. Most Dutch banks now use 9-digit bank account numbers, except one
bank that uses serial numbers starting with 1 (the account number of the Dutch Na-
tional Treasury), up to 7 digits, which complicates matters further. We analyzed several
IT-portfolios of large international banks. Our analyses revealed that low percentages
of their source listings contain only 9-digit bank account numbers, which seems to
indicate the problem is small. This is not true: the low percentages are spread over the
majority of the IT-systems. We carried out a benchmark project, showing that solving

9210: THE ZIP CODE OF ANOTHER IT-SOAP 299

the 9210-problem using automated system modification tools can reduce the cost of
change by at least a factor 4 (Klusener et al., 2004). We cannot reduce the cost of
release without taking risks. Still, using mass-update 9210-tools, the total cost savings
are in the order of 30–40%.

The goal of this paper is to give insight in 9210-project costs, with and without us-
ing tools. Moreover, we will put 9210 in the context of regulatory changes like number
portability, and international/domestic bank account number standards. We hope the
paper adds to a better mutual understanding between policy makers, the financial in-
dustry, and their customers.

2. The cost of change and release

The authors have been commissioned to pasteurize significant amounts of software
in several roles: advisory roles, estimating impacts, building and deploying support-
ing tools, doing entire projects, etc. In addition, the authors have analyzed large
IT-portfolios for several reasons: Y2K-impact analyses, Euro-impact analyses, 9210-
impact analyses, and financial analyses (Verhoef, 2002, 2004a, 2004b). We have ex-
perience with the technical nuts and bolts of changing entire IT-portfolios plus their
financials. Moreover we have seen several 9210 cost estimates during economical
analyses of IT-portfolios (Verhoef, 2002). Without revealing sensitive data, it is pos-
sible to give you candid insight in these costs, and based on our benchmarks, we can
indicate how to reduce them.

2.1. Setting the stage

Large international banks possess according to public benchmarks 450,000 function
points of software (Jones, 1996, p. 51). A function point (Albrecht, 1979; Jones, 1996)
is a synthetic metric giving an indication of the size of software. If we suppose that all
the code of such a large international bank is written in Cobol, we multiply the amount
of function points by 107, to get an impression of the amount of logical statements:
a little over 48 million statements. This is in accord with our experience: indeed we
analyzed IT-portfolios of 50 million physical lines of Cobol code and beyond of large
international banks to measure the impact of 9210.

2.2. Cost of change

A rule of thumb to estimate the cost of outsourcing the Y2K-problem was to use be-
tween $1.00 and $2.50 per physical line of code (Jones, 1998b, p. 211) and for Euro-
conversion this was between $1.15 and $2.75 (Jones, 1998b, p. 213). We note that the
estimates for making such changes in-house are lower: between $0.25 and $1.00 for
Y2K (Jones, 1998b, p. 211) and $0.50 and $1.25 for Euro-conversion (Jones, 1998b,
p. 312). From several portfolio analyses (Verhoef, 2002) we learned that these rules of
thumb were transposed to 9210, and used as a first estimate for the cost of change. The
one that we have seen most is $1.00 per physical line of code. According to this rule of

300 KLUSENER AND VERHOEF

thumb, a typical large international bank will at least spend in the order of 50 million
dollars on 9210 for the cost of change alone.

2.3. Cost of release

The 50 million excludes the release costs of the pasteurized systems. Often decision
makers and policy makers think that if only a few percent of the code is infected the
total cost will be low. But, release costs can range from very high if all systems are
infected to very low if all the problems are concentrated in a few systems. You will
only know this after a 9210-impact analysis.

The release of a system comprises shipping, compiling, linking, testing, and putting
it into production. Complete release costs can vary substantially per system. Sim-
ple single-site releases of business-critical systems easily cost 20 person days, which
amounts to $20,000 when you take a daily fully burdened rate of $1000. A complex
multi-site release of a business-critical system like a global transaction and settlement
system can cost you easily between 4 and 6 person years which is $0.8–1.2 million
release costs, assuming 200 working days per year (Faust and Verhoef, 2003). Migrat-
ing an entire IT-portfolio of a large international bank to a Y2K-compliant operating
system costed between $60 and $100 million. So, IT-portfolio release costs are in the
same order of magnitude as IT-portfolio change costs. Normalizing these data for a
large international bank owning 450,000 function points, we found $1.00 release costs
per physical line of code.

2.4. Major findings

From several 9210-impact analyses we found the following patterns:

• only between 2 and 8% percent of the source listings contains 9-digit numbers;
• these 9-digit numbers are spread over 75–100% of the IT-systems.

This implies not only substantial change costs, but also very high release costs.
Thus, the assumption that the costs are low because only a few percent of the IT-
portfolio contains 9-digit bank account numbers, is not in accordance with the em-
pirical data that we collected. Summarizing, a large international bank owning about
450,000 function points of software assets will spend in the order of a hundred million
dollar to solve 9210. Next we explain how these costs can be reduced.

3. Reducing the costs

To estimate potential cost reductions, it would be ideal to carry out a small 9210-
project. But, in order to test the outcome in vivo, it is very hard to change only a small
part of the IT-portfolio and solve 9210 in that part. This is partly due to the spread
of the problem over the entire IT-portfolio, but also since it is hardly possible to test
partial solutions since many IT-systems are interconnected within an IT-portfolio.

9210: THE ZIP CODE OF ANOTHER IT-SOAP 301

3.1. Benchmark project

As we already mentioned, these problems occur frequently, and we found a sufficiently
similar benchmark project. It is called the 223-project: going from two to three digits.
We carried it out, tested it in vivo, accurately measured the changes, and published all
its aspects, including cost issues (Klusener et al., 2004). In a nutshell, the 223-project
was about migrating a small (100,000 LOC) business-critical system that contained
2-digit product codes to a system that could work with more than a hundred product
codes (3-digit numbers). This problem resembles the 9210-problem, although 9210
is more complex. For, a bank account number contains separator periods, satisfies
validation algorithms, and more, unlike a 2-digit product code. Still for a 9210-cost
reduction estimate enough similarities were found between 223 and 9210. For instance
in the 223-benchmark, we identified about every 1000 lines of code another type dec-
laration for the same 2-digit product code field. Similarly, bank account numbers come
in many flavors. Thus, like the 223-problem, the 9210-problem is not simply changing
a single data type: there are many different data types representing the same bank ac-
count number. Another additional complexity is that some banks use 10-digit saving
account numbers. These saving account numbers will interfere with new 10-digit bank
account numbers. Only a 9210-impact analysis will reveal such things. The techni-
cal aspects of the detailed analysis that we used for 9210 are beyond the scope of this
paper and elaborately treated elsewhere for the 223-benchmark (Klusener et al., 2004).

3.2. Reduction factor

Using the rule of thumb that this type of change costs about $1.00 per line of code,
an initial estimate for 223 was made. The cost of change for 223 should at least be
in the order of $100,000 (ex release costs). The actual total cost of change for the
223-benchmark was about $25,000. This included the development of 223-tools to
detect and change the infected code and their use to make the actual changes. Based
on detailed knowledge on what was changed, how much was changed, and where it
was changed, we could validate the rule of thumb: indeed at least $1.00 per LOC was
necessary to make the changes, if it were done manually. For this we assumed that
not a single error would be made if all changes were done without using automated
support. Thus, since the tool-supported change costed $25,000, we saved a factor 4
on the cost of change by using 223-tools. This factor is not only conservative because
we assumed no manual errors, but also since we did not used the actual amount of
changes but the number of different types of change, to maximize for the learning
curve effect (doing the same change often). We identified 48 types of changes, and
used that number to base our calculations on. Note that in the 223-benchmark, there
were 597 actual changes, which is a factor 12+ more than our 48. Using the 48, we
calculated that a manual pasteurizing effort would take at least 100 person-days. The
fully burdened cost of a software engineer is about $1000 per day or $100,000 for the
entire project. This is in the same order of magnitude as the rule of thumb. Another
indication showing our factor 4 is conservative is that for Y2K and Euro repairs, Jones
estimates that you can repair 15 function points per staff month (Jones, 1998b, p. 600).

302 KLUSENER AND VERHOEF

And since a 100,000 LOC system is about a 1000 function points, the effort should be
around the 66 staff months. A 100 person-day project for one person takes about 5 staff
months. Nevertheless, we stick to our factor 4, which stems from actual measurements.
This is unknown for Jones’ estimate. Even with our reduction factor, the cost savings
are substantial.

3.3. Reduced cost for 9210

Based on the very accurate and detailed information for the 223-benchmark, we in-
ferred this rather conservative factor 4, so when we use the same factor for the 9210-
problem, this will also save at least a factor 4 on the cost of change. For a large
international bank, owning 450,000 function points of software, we already estimated
the cost of manual change on $50 million, and the release costs at $50 million as well
(due to the spread of the 9-digit numbers over the majority of the systems). Saving a
factor 4 on the cost of change, will lead to a cost of change in the order of $12.5 mil-
lion. So the total cost of a 9210-project for a large international bank amounts then
to $62.5 million. This leads to a cost reduction of at least 37.5% for a 9210-project.
You could lower release costs, by using partial testing: when no errors occur after a
representative amount of systems, put the other systems in production without testing.
We do not recommend this. To calculate precise costs we recommend a 9210-impact
analysis plus a pricing process as we described for 223 (Klusener et al., 2004).

3.4. Silver bullet vaccination

We realize that according to Brooks’ law—there is no silver bullet—you cannot im-
prove productivity by an order of magnitude using a single technology (Brooks, 1995).
In the case of 9210, the change effort is systematic and rule-based so that automation
becomes feasible, which causes the order of magnitude productivity improvements.
Our findings are in compliance with Gartner Group, who stated (Mieritz, 2002):

These “endowed” systems can often yield a 10 percent to 50 percent efficiency im-
provement with the application of best practices; technology refresh (a cost in itself,
but often with a rapid payback), standardization, consolidation and elimination of
redundant systems.

Indeed deploying innovative technology to consolidate an IT-portfolio by solving
the 9210-problem leads to efficiency improvements in the same order of magnitude as
indicated by Gartner Group.

4. The cabala of numbers

Bank account numbers (BANs) are not easy, and the more you know about them, the
more it looks like an esoteric doctrine or a mysterious art: the cabala of numbers. In
banking databases almost only 10-digit BANs are present making many believe that
there is no problem. Interpay, the responsible authority in the Netherlands for issuing

9210: THE ZIP CODE OF ANOTHER IT-SOAP 303

Table 1. Distribution of different types
of BANs over source listings.

Type of BAN Percentage

No BANs 50–70%
10-digit BANs only 10–20%
All kinds of BANs 15–25%
Only 9-digit BANs 2–8%

bank account numbers, released what they call the 0-series: 10-digit BANs with a
leading zero. The leading zero is exploited by programmers in their code. Sometimes
the leading zero is treated as a space, sometimes as a zero, sometimes it is thrown away
when a 10-digit number is fetched from a 10-digit compliant database or entered by
a user, sometimes the “free space” is reserved for a special token, or there are n-digit
numbers from the start with n �= 10.

We summarized the cabalistic situation in Table 1. An analysis of the data types
used for BANs in several IT-portfolios revealed that between 50 and 70% of the source
listings did not contain any kind of bank account number. In 10–20% of the listings,
10-digit BANs are used. This does not imply that the semantics of these 10-digit BANs
is according to specification. Often the leading zero is dropped as soon as possible,
or the leading zero is not taken into account in the checksum algorithm, and so on.
Then between 15 and 25% is using all kinds of formats. This ranges from internal
BANs that are not according to specification (starting with special prefixes like 99),
to n-digit BANs, for n = 4, . . . , 14. This category also contains data type definitions
containing hard-wired BANs in their Cobol value clause. In addition to numerical
BANs, we also encountered alphanumerical varieties, while according to the European
Committee for Banking Standards, numerical fields are only allowed (ECBS, 2002).
Finally, between 2 and 8% of the source listings contain 9-digit BANs only. This
percentage is relatively low, and indeed there are almost no citable quotations showing
that 9-digit BANs in the Netherlands exist. An exception is a technical report of the
European Committee on Banking Standards, where the specification for the Dutch
BANs is specified as follows: 9/10n, meaning minimally nine and maximally ten
numeric characters (ECBS, 2002, p. 61). In addition to this standard, one Dutch bank
is using another standard: BANs ranging from 1 to 7 digits. The 9/10n BANs use a
check, which is absent for the 1–7 length BANs. Additionally, there is a multitude
of data types, hard-coded BANs, numerical and alphanumerical fields all used for the
single notion bank account number. This is in accordance with the 223-benchmark
project, where we found in a 100,000 LOC Cobol system, every 1100 lines of code a
different data type for the same two-digit product code (Klusener et al., 2004).

4.1. Standards

Our colleague Andy Tanenbaum once said that the good thing about standards is that
there are so many to choose from. The occult world of bank account numbers is
no exception to this truism. For a start, the Dutch banks need to implement a 10-digit
BAN standard using zero and non-zero first digits, which is a difficult problem in itself,

304 KLUSENER AND VERHOEF

given the many and diverse representations within a single system. Second, there is
the IBAN standard. IBAN (the International Bank Account Number) is a European
standard (ECBS, 2002) facilitating cross-border money transfers. The goal is that
such transfers become fully traceable at minimal overhead and as cheap as domestic
money transfers. The IBAN standard consists of a prefix indicating country, check
digits, and bank/branch code, plus the domestic BAN. The string IE29 AIBK 9311
5212 3456 78 is an example IBAN from Ireland. IE is the ISO code for Ireland, the
2 and 9 in IE29 are check digits depending on the entire number, AIBK is short for
the Allied Irish Bank, and the tail is a domestic Irish BAN. So, this standard forces
the European banks to extend their domestic BAN with a variable location prefix.
The IBAN standard is as nonportable as it can get: the country, bank, branch are all
present in the standard. After all, its goal is traceability. These additional standards
add to the complexity of the 9210-problem. For, people might want to deal with all
the problems simultaneously (Koster et al., 2002). This is not a good idea, like it was
unwise and hazardous to combine Y2K with the European currency conversion (Jones,
1998, p. 200). Then there is the proposal for (European) number portability, which
potentially implies that all banks have to implement all domestic BAN standards (of
which there are many to choose from). We will come back to this later, but first explain
portability.

4.2. Number portability

Completely orthogonal to the IBAN standard, is the proposed Dutch/European policy
of number portability for bank account numbers. This idea stems from regulations in
the telecommunications industry: to stimulate competition between operators, number
portability for telephone numbers was implemented. The idea is that a customer can
switch between operators without unacceptable switching costs. The same was pro-
posed by the Dutch government for bank account numbers to stimulate competition
between banks (Working Group on Switching Costs, 2002). We display two advices
(among many others) by the Dutch Committee on Switching Costs:

16. Oblige banks to implement number portability for payment accounts.
17. Prevent that European developments (like the International Bank Account number

IBAN and the further integration of national payment systems) thwart the imple-
mentation of number portability.

The Dutch Government adopted bank account number portability officially (Jor-
ritsma-Lebbink et al., 2002) and claimed to make an effort of having their policy
adopted in Europe. Let’s see what happens when we implement this.

4.3. Belgian–Dutch portability

Suppose you are living near the Dutch–Belgian border and you want to switch from
a Belgian to a Dutch Bank. Number portability implies that the Dutch bank of
your choice adopts your Belgian number. Here’s an example of a Belgian BAN:

9210: THE ZIP CODE OF ANOTHER IT-SOAP 305

539-0075470-34 (taken from (ECBS, 2002)). The first three digits are the so-called
bank-code identifying the bank (immediately showing how happy the Belgian banks
will be with number portability). Then there is a 7-digit BAN, plus 2 check dig-
its. The Belgian BAN has the following characteristic: the first ten digits mod-
ulo 97 should be equal to the last two digits; this is called the 97-check. Indeed,
5390075470 − 97 · 55567788 = 34, so the number is according to Belgian standards.
Number portability implies that this number needs to be used verbatim by the Dutch
bank of the customer’s choice. A first small problem is that Dutch BANs are 10-digits,
so this is impossible. Suppose we skip the bank-code identifying the Belgian bank;
remains 7547034. This number is only a valid Dutch Postbank number: since the first
3 digits are zero it is a Postbank BAN, and there is no check on the Postbank number.
So to have sort-of your old number implies you are forced to become a customer of
Postbank, which is not encouraging competition. We called the Postbank and they told
us that the number is in use by a business client, and it is not possible to obtain it. An
alternative is to use the first nine or ten digits: (9)007547034. Except for Postbank, the
Dutch domestic BANs satisfy an 11-check. The Dutch modulus 11-check algorithm
with weights is used to validate the account number structure. Starting at the right,
each digit is multiplied by its respective weight, ranging from 1 to 10. The sum of the
resulting numbers is then divided by 11. For the account to be valid, the remainder
should be zero. So, for the Belgian number, we get:

4 · 1 + 3 · 2 + 0 · 3 + 7 · 4 + 4 · 5 + 5 · 6 + 7 · 7 + 0 · 8 + 0 · 9 + 9 · 10 = 227

if we take ten numbers. Dividing 227 by 11 results in a remainder of 7, so this 10-digit
BAN is not a valid Dutch BAN. If we remove the leading 9 we get 137, which divided
by 11 gives a remainder of 2. So also this number is not a valid Dutch BAN. So, it is
impossible to port this Belgian number to a Dutch bank, except if you force Postbank
to remove a business client. This is not stimulating competition, but stunting it.

4.4. Dutch–Belgian portability

Now let’s see what happens when we want to switch from a Dutch to a Belgian bank.
An example of a Dutch BAN is: 0417164300 (taken from (ECBS, 2002)). Suppose
we allow the leading zero. We need to comply with the 97-check, so we can only
become a customer at those Belgian banks that have a bank-code ending in a zero:
e.g., 100-4171643-00. But there is no tenfold n between 100 and 990, such that
n-4171643-00 satisfies the 97-check. Suppose we ignore the leading zero as is tra-
ditional in the Netherlands: 417164300. Then there are a few more possibilities: there
are about 10 valid bank-codes between 100 and 999 such that the 97-check is met.
For instance, if we open an account at the bank with bank code 123, the 97-check is
correct: 1234171643 − 97 · 12723419 = 0. Again, we are forced to choose instead of
free to choose, disabling competition, rather than enabling it.

306 KLUSENER AND VERHOEF

4.5. Possible policies

These examples show that there can only be one conclusion: in order to get portability
working, all Dutch banks have to change all their systems to accommodate for Belgian
BANs and vice versa. The used BANs were arbitrarily taken from a report by the
European Committee on Banking Standards, from which we quote: “[t]he validation
methods differ substantially from country to country and very often from bank to bank
within the same country” (ECBS, 2002, p. 3). For instance, all 11-checks are equal,
but some 11-checks are more equal than others: the BANs of the Czech Republic also
have an 11-check, but use a different weight table: 20, 21, . . . , 210, so for the Dutch
BAN 0417164300 this means:

0 · 1 + 4 · 2 + 1 · 22 + 7 · 23 + 1 · 24 + 6 · 25 + 4 · 26

+ 3 · 27 + 0 · 28 + 0 · 210 = 916

which has a remainder of 3 after division by 11. And this type of argument goes on
forever. So, with the current systems of the banks, and the current domestic stan-
dards, European portability is not possible. Therefore, policy makers face these two
possibilities to realize European bank account number portability:

• oblige all the banks operating in Europe to implement all the domestic formats and
validation algorithms;

• oblige the customers and the banks to switch en bloc to a new portable European
BAN system.

We expect the first possibility to be extremely costly, technically challenging, and
likely to fail. For the second possibility, a single portable European standard needs to
be developed, all banks need to switch to that standard, abandon the old ones, and all
customers need to switch. In addition to the obstacles for the first solution, the latter
possibility is also putting the cart before the horses: to prevent number switching, you
first have to switch. In the end the customer will pay for the Dutch/European BAN
portability, instead of being paid via better competition.

4.6. Domestic portability

For domestic portability the above two possibilities could be obliged at the National
level. But the conclusion stays the same: mostly harmful. For instance, we already saw
Belgium BANs where a bank-code identifies a certain bank; this is common in many
other European countries (ECBS, 2002). In the Netherlands, there are “only” two stan-
dards, so some assume that number portability is within reach. This is illustrated by
an official advice to the Dutch government stating that: while banks are solving 9210,
they can just as well implement number portability—at no additional cost (Koster et
al., 2002, p. 4). This advise has a high IT-soap caliber. Mingling the hugely com-
plex number portability with the already complex 9210-problem does not make sense.
Here’s why: almost all banking software is written in Cobol. Cobol has special prop-
erties, or better: lack thereof. From our 223-benchmark project, and other projects
we found that Cobol only allows for hard-wired constants and data-types (Klusener et

9210: THE ZIP CODE OF ANOTHER IT-SOAP 307

al., 2004). So these systems are chockful of hard-coded prefixes, up to entire BANs,
hard-wired BAN-related data types, hard-coded internal booking numbers that start
to interfere with new 10-digit BANs, and so on. Also it is a Herculean effort to de-
tect all the variations and their bank-specific hidden semantics: how to decipher the
meaning of certain prefixes, and whether it is exploited. In one system, e.g., we found
that the hard-coded prefix 666 implies that the surname of the client starts with the
hard-wired character X.1 We found that other systems exploited this, for instance, to
schedule batch jobs for printing bank statements. Or hard-wired bank-codes are ex-
ploited to identify a physical location. These bank-codes are used in other systems
to streamline certain business processes. For instance, to print bank statements at a
central shared service center, to internally ship them near the customers, and then mail
them out for quick, accurate, and cheap delivery. There are many more examples,
and implementing number portability can have devastating effects on the business due
to the semantical mismatches with alien numbers. So the policy of domestic BAN
portability should be banned. It is close to impossible to implement, let alone at no
additional cost.

5. Lessons learned

The Dutch banks are running out of bank account numbers (the 9210-problem); new
bank account number standards and number portability are proposed. We conclude
that number portability is neither feasible for Europe, nor in the Netherlands. Either
the bank’s IT-portfolio balloons to accommodate for all the domestic standards, or
the customers’ cost balloon: they need to switch to prevent future switching and the
bank’s IT-portfolios need drastic changes as well. Number portability cannot be im-
plemented at no additional cost, while dealing with 9210. The official advise to the
Dutch government stating this cannot be taken seriously, neither can its adoption by
the Dutch government. Do not mix 9210 with other portfolio-wide projects, since this
adds considerable costs and unacceptable risk to a successful solution.

The change costs for 9210 are substantial, and since 9210 is spread over the majority
of the IT-systems, the release costs are also high. The cost of change can be reduced by
at least a factor 4 if you use automated detection and modification tools. The release
costs can only be reduced by putting untested systems in production. Refraining from
this still gives a net reduction of a factor 3. For a large international bank 9210 costs
about a $100 million; the cost savings are in the $30+ million.

Note

1. We changed the real values for anonymity.

References

Albrecht, A.J. 1979. Measuring application development productivity, Proceedings of the Joint SHARE/GUIDE/
IBM Application Development Symposium, pp. 83–92.

308 KLUSENER AND VERHOEF

Brooks Jr., F.P. 1995. The Mythical Man-Month—Essays on Software Engineering, Anniversary edition. Addison-
Wesley.

ECBS, 2002. Register of European account numbers, Technical Report ECBS TR 201V2.2.18, European Com-
mittee of Banking Standards, Avenue de Tervueren 12, 1040 Brussels, Belgium, www.ecbs.org, select TR201
Report under Publications.

Faust, D. and Verhoef, C. 2003. Software product line migration and deployment, Software: Practice & Experi-
ence 33: 933–955. Available via: www.cs.vu.nl/~x/pl/pl.pdf.

Jones, C. 1996. Applied Software Measurement: Assuring Productivity and Quality, 2nd ed. McGraw-Hill.
Jones, C. 1998. Estimating Software Costs. McGraw-Hill.
Jones, C. 1998. The Year 2000 Software Problem—Quantifying the Costs and Assessing the Consequences.

Addison-Wesley.
Jorritsma-Lebbink, A., de Vries, J.M. and Zalm, G. 2002. Government standpoint on the Final report of the

Working Group on Switching Costs, www.ez.nl and select Documenten/Kamerbrieven, select then Juni of
Kamerbrieven/2002, finally select the PDF document 00010385 02024673-vtk (in Dutch).

Klusener, A.S., Lämmel, R. and Verhoef, C. 2004. Architectural modifications to deployed software, Science of
Computer Programming, to appear. Available via: www.cs.vu.nl/~x/am/am.pdf.

Koster, R., Ringnalda, J. and Schepers, R. 2002. The implementation of number portability for bank account
numbers in the Netherlands—advise to the Working Group on Switching Costs, www.ez.nl and select Doc-
umenten/Kamerbrieven, select then Juni of Kamerbrieven/2002, finally select the PDF document 00010384
02024673-bijlage3 (in Dutch).

Mieritz, L. 2002. Performance management framework—bridging the gap between business and it value, Tech-
nical Report, GartnerGroup, Stamford, CT, USA.

Verhoef, C. 2002. Quantitative IT portfolio management, Science of Computer Programming 45(1): 1–96. Avail-
able via: www.cs.vu.nl/~x/ipm/ipm.pdf.

Verhoef, C. 2004. Quantifying the value of IT-investments, Science of Computer Programming, to appear. Avail-
able via: www.cs.vu.nl/~x/val/val.pdf.

Verhoef, C. 2004. Quantitative aspects of outsourcing deals, Science of Computer Programming, to appear. Avail-
able via: www.cs.vu.nl/~x/out/out.pdf.

Working Group on Switching Costs. 2002. Final report of the Working Group on Switching Costs, Techni-
cal Report 02ME20, Dutch Government, www.ez.nl/upload/docs/Kamerbrieven/PDF-Documenten/02024673-
bijlage1.pdf (in Dutch).

Steven Klusener holds a Master’s in computer science from the University of Amster-
dam (1990) and a Ph.D. in computer science from the Technical University Eindhoven
(1993). His Ph.D. thesis was titled “Models and Axioms for a Fragment of Real Time
Process Algebra”, the research was actually done at the Dutch Center for Mathematics
and Computer Science (CWI) in Amsterdam. After his Ph.D., he was involved in the
application of the Formal Methods that were developed at CWI in the industrial practice.
Because of the successful cooperation with the industry he moved in 1996 to CapGemini
were he got responsible for the development of tooling for their Dutch Y2K Factory. He
then worked for a consultancy firm and a Y2K tooling provider. In 1999 he went back
to CWI to start, with several other CWI researchers, the Software Improvement Group.

In 2002 Steven accepted a 0.4 part-time detachment with the group of Chris Verhoef at the Free University of
Amsterdam, from March 1 2004 he is full time employed in this group as group leader of the CaLCE project.
Within the CaLCE project concrete problems, related to real-life IT-portfolios, are taken as point of departure for
academic research. The project aims at development technology to better maintain and adapt existing software
assets with less costs.

Steven current technical interests are grammar engineering, source code analysis and source code transfor-
mation, with the main concern that the techniques should be applicable on large software portfolios of several
millions of lines of code.

His research is available via www.cs.vu.nl/~steven.

9210: THE ZIP CODE OF ANOTHER IT-SOAP 309

Chris Verhoef is affiliated with the Free University of Amsterdam and scientific advisor
for IT innovator Info Support, both in The Netherlands. Before that he was principal
external scientific advisor at Deutsche Bank AG, New York, and nonresidential affiliate
at the SEI. He is Executive Board member of the IEEE Technical Council on Software
Engineering. He serves in Steering Committee, General Chair and Program Chair po-
sitions for several important juried research conferences, including the IEEE Working
Conference on Reverse Engineering, the European Conference on Software Maintenance
and Reengineering and the Working IEEE/IFIP Conference on Software Architecture.
He is a frequent speaker on international conferences. He contributed to over 50 papers
in conference records and journals. He has acted as scientific advisor in several software

intensive areas, notably hardware manufacturers, telecommunications companies, financial enterprises, hi-tech
companies, IT-service providers, and government.

