
Enabling the creation of knowledge about software assets

Paul Klint a,*, Chris Verhoef b

a Centrum voor Wiskunde en Informatica, University of Amsterdam, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
b Department of Mathematics and Computer Science, Free University, De Boelelaan 1081a, 1081 HV Amsterdam,

The Netherlands

Received 4 December 2001; received in revised form 10 December 2001; accepted 19 December 2001

Abstract

In most companies two factors play a crucial role: managing the knowledge that is necessary for doing
business and managing the hardware and software infrastructure that supports the business processes.
Usually, business processes and infrastructure are not optimally aligned.

We investigate how principles from knowledge management can be applied to enable the creation,
consolidation, conservation and continuous actualization of knowledge about valuable software systems
(‘‘software assets’’) that are part of the infrastructure.

Our point of departure is a generic framework for knowledge creation proposed by Von Krogh, Ichijo
and Nonaka. We investigate the explicit and tacit knowledge about software assets that may exist in an
organization and specialize the framework to obtain a strategy for creating new knowledge about these
software assets. By applying this strategy, one can optimize the quality and the flexibility of the software
assets while reducing costs. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Knowledge management; Knowledge creation; Software asset management; Software engineering; Software

maintenance; Software renovation

1. Managing knowledge versus managing knowledge creation

It is widely believed that knowledge management should be a key factor in the strategy of every
modern company. Knowledge management has managerial as well as technical aspects. From the

www.elsevier.com/locate/datak

Data & Knowledge Engineering 41 (2002) 141–158

*Corresponding author.

E-mail addresses: Paul.Klint@cwi.nl (P. Klint), x@cs.vu.nl (C. Verhoef).

0169-023X/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.
PII: S0169-023X(02 )00038-1



management perspective, it should contribute to the company’s global strategy and be included in
the standard operating procedures [19,20]. Of particular importance are measures to promote
knowledge management such as incentives to share knowledge and procedures to use shared
knowledge. From a technical perspective, information systems or knowledge bases are used to
store the shared knowledge.

In practice, knowledge management does not always live up to its promises. There are a variety
of reasons for this (also see [10]):

• Much knowledge in an organization is ‘‘tacit’’, i.e., unformalized knowledge that is only known
to a small community inside a company. Knowledge management relies too much on easily de-
tectable, quantifiable, information.

• Technical solutions dominate managerial solutions and knowledge management reduces to
‘‘filling a database’’.

• A ‘‘knowledge officer’’ is responsible for the knowledge management process. From a manage-
rial perspective this is a reasonable approach, but in most cases the knowledge officer is a staff
member and is too far away from the organizational units where actual knowledge is being gen-
erated (manufacturing departments, marketeers, and the like). In addition, knowledge creation
is a serendipitous process that can only be enabled but it cannot be controlled as many knowl-
edge officers have found out the hard way.

• Knowledge is not static but dynamic: it is created, it is used and it becomes obsolete. These dy-
namics are not well supported by standard knowledge management practices.

Knowledge management is an economically rational theory stating that sharing knowledge
leads to better (organizational) intelligence than without sharing. The consequence is that using
this shared knowledge, organizations can compete much better than would otherwise be possible.
As the saying goes: Knowledge is power. Knowledge management is indeed strongly connected to
power of expertise. This truism not only applies to competing organizations but also to the social
systems within a single organization.

A well-known phenomenon inside organizations is the ‘‘knowledge czar’’: an individual who
has large informal power based on the unique knowledge that he or she possesses (power of
expertise). The strong relation between power and knowledge thus effectively blocks knowledge
sharing and dissemination throughout the organization. Without proper power management,
successful knowledge management may easily fail. However, it is hard to manage power [13, p. 7]:

The greater the recourse to power, the stronger the desire for it, just as the use of ‘hard drugs’
will result in a stronger craving for drugs.

Power is not explained in economically rational terms, but in terms of addiction. Therefore, the
quantity of power is a more decisive factor than the quality of it [13, p. 16]. This is the clarification
for another truism: power corrupts. So without proper power management, one could say that
knowledge corrupts. This may be one of the reasons that knowledge management does not live up
to its promises.

The general observation is therefore that knowledge cannot be controlled or managed in a
rational, top–down fashion like other assets of an organization as is assumed by knowledge
management. As a response to this observation, current literature is focusing on the question how

142 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



the process of knowledge creation can be enabled in such a way that the special properties of
knowledge are taken into account.

In this paper, we address the question how general strategies for enabling knowledge creation
can be used to increase the knowledge about an organization’s software assets: all software systems
that support the realization of its goals. These software systems provide functions like information
management, billing, telecommunications, e-commerce and the like. In this case, there is first
business knowledge that leads to requirements for software systems and these requirements are
used to build the desired systems. Successful systems generate new requirements thus further ob-
fuscating the knowledge about old and new requirements. As a consequence, business knowledge
gets concealed in the program code. Unfortunately, this step cannot easily be reversed: having the
code does not mean that one can understand it and can recover the original requirements. To use
an analogy: knowing the human genome does not automatically lead to understanding humans.

To complicate matters even further, the software assets are continually evolving over time due
to changed business insights (leading to changing requirements) and technical evolution of the
platforms on which the software depends. In the case of software assets there are also ample
opportunities for knowledge czars having expertise about some subsystems, but in the end no one
understands the software assets to their full extent. This is largely due to maintenance. Or more
precisely, this is due to the lack of knowledge management during the evolution of software assets
which becomes manifest during maintenance. Weinberger calls this the ‘‘maintenance masking
dynamic’’. In [22, p. 243], he describes the problems that occur when an organization fails to
manage the tacit knowledge of maintenance teams.

There is another essential component to maintainability: the competence of the crew, which
is affected by turnover, training, and management attitude toward maintenance. Because
people are naturally learners, the competence of the crew to maintain a particular system will
tend to grow over time, possibly masking the deterioration of the code itself. But the crew’s
competence must also be maintained, largely by providing them with tools, training, and re-
sources for the job. If there should be a sudden exodus from the maintenance crew, manage-
ment will quickly discover how ugly a situation has been allowed to fester in the code,
masked by the growing competence of the people.

The central problem addressed in this paper is therefore how to obtain circumstances that
enable the creation, consolidation, conservation and continuous actualization of knowledge about
software assets. We proceed as follows: In Section 2 we summarize a state-of-the-art framework
for knowledge creation and knowledge enabling. A central notion in this framework is the dis-
tinction between tacit and explicit knowledge. In Section 3 we give an overview of implicit and
explicit knowledge about software assets. In Section 4 we show how the general framework helps
to understand the mechanisms to increase the knowledge about software assets. Our conclusions
are presented in Section 5.

2. Managing knowledge creation

Knowledge creation is an inherently bottom–up process while standard management practices
are of a top–down nature. Managing knowledge creation is therefore a balancing act to reconcile

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 143



bottom–up and top–down processes: the chaos of knowledge creation and the order of man-
agement.

2.1. Knowledge creation steps

In [15] the following five knowledge creation steps are distinguished:

2.1.1. Sharing tacit knowledge
As already pointed out above, the basis of organizational knowledge creation is the tacit

knowledge held by individuals. This knowledge cannot easily be communicated directly to others
since it is implicit, has not yet been verbalized, and depends on the physical and mental cir-
cumstances in which it has emerged. Instead, indirect mechanisms are needed such as joint
problem solving in small knowledge communities and teacher/apprentice relationships. The result
of this is a shared mental model of the tacit knowledge. Knowledge communities are in most cases
completely unrelated to the actual organizational structure.

2.1.2. Creating a concept
Based on the shared mental model, a verbalization of the tacit knowledge is made. Metaphors

and figurative speech are useful tools to achieve this.

2.1.3. Justifying a concept
The concepts that are created in the previous step are screened for relevance and worth for the

organization. Note that other parts of the organization will be involved in the justification pro-
cess.

2.1.4. Building a prototype
The justified concept is turned into a tangible prototype: either a working prototype of a

product or a model of a service. Note that other parts of the organization (e.g., manufacturing,
marketing) will be involved in the building of a prototype.

2.1.5. Cross-leveling knowledge
The previous two steps already involved other parts of the organization, but once the prototype

is completed it is used to propagate the knowledge that it embodies throughout the whole or-
ganization.

2.2. Knowledge enablers

Using the above five knowledge creation steps as point of departure, the question arises what
circumstances can be created that enable this knowledge creation process. As already pointed out,
hierarchical and technological solutions are not sufficient. Rather mechanisms must be found that
increase the awareness of knowledge creation in all ‘‘veins’’ of the organization.

In [10], the following knowledge enablers are identified, that support the knowledge creation
steps in various ways:

144 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



2.2.1. Instill a vision
Rather than a top–down managerial approach to knowledge creation, a knowledge vision

should succinctly describe the relevance of knowledge creation for the organization. It should
create awareness for knowledge creation at all levels and it should identify knowledge sharing as a
company value. It should create trust, care and cooperation rather than suspicion, indifference
and internal competition.

2.2.2. Manage conversations
Conversations over a cup of coffee form the social fabric of each organization [12]. They also

form the primary mechanism for sharing tacit knowledge. Personal dialogues are one of the most
effective mechanisms for information and knowledge exchange. Managing conversations amounts
to creating an environment in which everyone can participate in (semi-formal) conversations and
make valuable contributions. A conversation manager may define explicit rules for conversational
etiquette, intervene and direct conversations, and introduce innovative language to describe
concepts and ideas. Form of and rules for conversation differ for each knowledge creation step.

2.2.3. Mobilize activists
Knowledge activists are persons that facilitate the knowledge creation process. They may act as

catalyst and start a new initiative by bringing together the right people. They may act as coor-
dinator by creating the right context and by making connections with the global knowledge vision
as well as with related local initiatives in the organization. They may act as merchant by attracting
attention for an initiative in other parts of the organization. As opposed to the traditional
knowledge officer who tries to control the knowledge creation process, the knowledge activist
aims at enabling it [21].

It is known from sociology that many people find jobs via personal contacts. The majority of
the personal connections are not close friends but so-called ‘‘weak ties’’. Weak ties are outside the
person’s inner circle and have knowledge that differs from the knowledge of the people closer by.
Granovetter who discovered this in the 1970s called this: the strength of weak ties [6]. The more
acquaintances a person has, the more powerful he or she becomes. Knowledge activists have the
professional goal to connect the right people and by doing so they can become socially very
powerful. Proper power management should be applied to avoid that this unintended potential
power concentration compromises the long term goal of knowledge sharing.

2.2.4. Create right context
How can one create the right context for knowledge creation? When answering this question

several paradoxes become manifest. How to combine central managerial control with flexibility?
How to reconcile the top–down formal structure of an organization with spontaneous structures
that have emerged in a bottom–up fashion among knowledge workers working in different de-
partments of the same company or even of other companies (e.g., customers)? How to moderate
between the need for technological advancement and the need to survive as a company? There is
no one-size-fits-all solution for this. It is important to understand that a proper context should
support the cycle of sharing individual tacit knowledge, documenting it, and again internalizing it
at the group level. From an organization perspective various solutions exist ranging from task
forces and empowered divisions to cross-divisional units.

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 145



2.2.5. Globalize local knowledge
The final enabler aims at transferring locally created knowledge throughout the perhaps

globally distributed company. All phenomena known from diffusion theory [8,21] apply here: this
theory explains how innovations diffuse into society and organizations. The knowledge has to be
transferred between a creator and a receiver and psychological, sociological as well technological
barriers have to be taken. In [10] this is formulated as a three-staged process: triggering the process
of recognizing a business opportunity and relating it to knowledge available in some part of the
company (using knowledge activists, workshops, bulletin boards, and the like), packaging and
dispatching this knowledge, and re-creating it at the site of the receiver. The underlying idea is that
knowledge transfer is not a verbatim copying operation from sender to receiver but that it has to
consider the implicit and explicit knowledge of sender and receiver as well as the local circum-
stances in which the knowledge has to be re-created and applied.

In Table 1 the relation between knowledge creation steps and knowledge enablers is sketched.
An empty field denotes no correlation, a þ indicates a moderate correlation, and þþ indicates a
strong correlation. We refer again to [10] for an extensive motivation of this table.

3. Tacit and explicit knowledge about software assets

The software assets of an organization are formed by all software systems that support the
realization of the organization’s goals. In principle, software assets are like other tangible assets of
an organization: they can be captured by standards and technical procedures can be used to
control their development. However, software is also unlike many tangible assets, e.g., a new
automobile runs, but new software usually not (cf. [11]). The older an automobile gets, the more
chance it stops running, but the older software gets, the more chance it starts doing what it should
have done in the first place. Another difference is that software congeals valuable business
knowledge as time goes by, while this is not the case for a tangible asset like an automobile.

In practice, however, the ideal situation that software assets are being managed like ordinary
tangible assets is far from being achieved and the creation and management of software assets is
either non-existent or is done in an ad hoc fashion. It certainly does not resemble an engineering
discipline. This makes it even more urgent to consider the question how knowledge about soft-
ware assets is being created, managed and used. As we have seen above, knowledge as such be-
haves differently from ordinary assets and the same is true for knowledge about software assets.

Table 1

Relation between knowledge creation steps and knowledge enablers

Knowledge enablers Knowledge creation steps

Sharing tacit

knowledge

Creating a

concept

Justifying a

concept

Building a

prototype

Cross-leveling

knowledge

Instill a vision þ þþ þ þþ
Manage conversations þþ þþ þþ þþ þþ
Mobilize ativists þ þ þ þþ
Create right context þ þ þþ þ þþ
Globalize local knowledge þþ

146 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



Knowledge about software assets is clearly important and the question arises what the implicit
and explicit knowledge about software assets amounts to. To answer this question, we must first
understand that there are differences between organizations in the way they deal with their
software assets. The various dimensions in this space are:

• Application software is developed in-house or by third parties (insourcing).
• Applications are operated in a corporate computer center or by a third party (application ser-

vices provider).
• Maintenance is done in-house or by third parties (outsourcing).

In practice, mixtures of these extremes are quite common. In order to simplify the presentation,
we discuss the knowledge about software assets from the perspective: in-house software devel-
opment, corporate computer center, and in-house maintenance. It is however, straightforward, to
adapt the following overview to other perspectives.

In the following paragraphs we summarize the knowledge areas architecture, application area,
construction, implementation, operations, maintenance, performance, quality and costs. In each
case we list relevant knowledge items and the frequently occurring forms of explicit and implicit
knowledge. By default, the implicit knowledge consists of all instances where the explicit
knowledge is incomplete, erroneous or out of date. It also covers all undocumented aspects or
features. Also note that the division between explicit and tacit knowledge depends on the maturity
of the organization as we will further discuss in Section 4. The division we present below, applies
to the vast majority of organizations.

3.1. Architecture

Architecture concerns the global structure and functionality of the software assets, such as:

• Overall architecture of all systems and applications.
• Operating systems, databases, networking, user-interfaces.
• Local as well (inter)national standards.
• Software engineering methods and tools (including design, construction, implementation, and

maintenance).
• Global inventory of all software assets.

Explicit knowledge: White papers describing architecture, and design principles; architecture
diagrams; standards.

Tacit knowledge: Quality, performance and cost aspects of the architecture as a whole as well as
of individual applications, engineering techniques and tools.

Illustration: The need for knowledge management for architecture is illustrated by the following
example. The United States General Accounting Office (GAO) reviewed the Defense Logistics
Agency (DLA). This review comprised the efficiency and effectiveness of meeting customer re-
quirements, application of best practices, and opportunities for improving DLA operations. The
importance of architecture is made explicit in this review [16]:

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 147



DLA does not have an enterprise architecture to guide its investment [. . .] even though De-
partment of Defense policy requires their use. Rather, DLA plans for creating an architecture
as a by-product [. . .]. Moreover, DLA’s architecture development plans address only one, al-
beit the largest, of its six primary business areas [. . .]. According to DLA’s plans, its archi-
tectural products will not be extended to its other business areas until 5 years from now.
This nonagencywide approach to developing and implementing an enterprise architecture
is not consistent with federal guidance, and it increases the risk that DLA will modernize
in a way that optimizes an individual business area but does not optimize agencywide logis-
tics management performance and accountability.

So, the GAO makes clear that enterprisewide knowledge sharing is crucial in order to achieve
the desired results.

3.2. Application area

The application area covers the overall goals and techniques relevant in a certain application
area, such as:

• Business goals, application concepts, and standard operating procedures.
• Technical concepts, standards and procedures.
• Markets and products.

Explicit knowledge: Handbooks describing the application area; market and tool surveys.
Tacit knowledge: Knowledge about new, immature, application areas that is not avail-

able in handbooks; up-to-date knowledge of the market; experience with state-of-the-art
tools.

Illustration: It is well known that software can become so complex that repairing one error
leads to another error. In that case, the fault injection rate has approached 100% and the project
has entered the so-called complexity catastrophe [3]. In reaction to this, organizations tend to
discard the past, plan to build a completely new software system, and by doing so they destroy
valuable knowledge. This will lead to so many errors in the new system that the new system will
not be acceptable.

Implementation of enterprise resource planning (ERP) packages is a form of discarding the
past. Seen from the knowledge perspective, it should not come as a surprise that The Standish
Group has estimated that over 90% of ERP projects end up behind schedule or over budget.
Discarding the past, leads to the so-called error catastrophe [3]. The solution is to exploit the old,
while exploring the new, which is in fact using knowledge management of the application effec-
tively.

3.3. Construction

Using software engineering methods and tools as well as knowledge about an application area,
software for that application area can be constructed. Relevant topics are:

148 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



• Software engineering methods and tools (design, construction, testing, documentation).
• The software development environment (including programming languages, compilers and

other construction tools).
• New and existing libraries and utilities.
• Procedures and tools for unit testing.
• Detailed inventory and analysis of the application software (including all programs, databases,

and user-interfaces and their inter-relationships and relevant metrics.)

Explicit knowledge: Software engineering handbooks; vendor reference manuals (for pro-
gramming languages, tools, procedures); in-house developed documentation (for existing appli-
cations, libraries and utilities); maintenance and testing history of all programs.

Tacit knowledge: Quality, performance and cost aspects of the application; qualitative and
quantitative assessment of maintenance and testing history (i.e., which are good and bad pro-
grams); quality of individual programmers; up-to-date knowledge about the application that
extends or replaces the explicit knowledge (e.g., changes in program interfaces, performance
problems in certain library functions, changed algorithms, new program dependencies, the effects
of foreseen changes in other applications or libraries).

Illustration: The Weinberg–Schulman experiment [23] is a clear illustration of the role of ex-
plicit knowledge during construction. Making the goals for construction explicit has the effect that
you get what you asked for. However, without explicit goals, you also get what you asked for. In
this case construction is optimized according to the goal that has been communicated implicitly,
e.g., deliver as quickly as possible. In this experiment, five programming teams were given the
same job, but each team got a specific explicit goal to do the work. The findings are summarized in
Table 2. Each team optimized indeed according to the explicit goal, and none of them performed
consistently on the other goals.

Knowledge management helps to make such goals explicit, to recognize that some of them
conflict, and to achieve the desired goals.

3.4. Implementation

The word ‘‘implementation’’ is ambiguous. In the computer science literature it means
‘‘building software’’. In the parlance of software development for business applications it usually

Table 2

Results of the Weinberg-Schulman experiment

Goals Achievements

Minimize

effort to

complete

Minimize

number of

statements

Minimize

memory

required

Optimize

program

clarity

Optimize

program

output

Minimize effort to complete 1 4 4 5 3

Minimize number of statements 2–3 1 2 3 5

Minimize memory required 5 2 1 4 4

Optimize program clarity 4 3 3 2 2

Optimize program output 2–3 5 5 1 1

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 149



means ‘‘introducing software in a production environment’’, e.g., an enterprise resource planning
system from some vendor is implemented in a specific organization. In this paper, we will use the
latter meaning. Relevant knowledge topics are:

• The production environment.
• Procedures and tools for testing the integration of a new application in the production environ-

ment.

Explicit knowledge: In-house developed documentation (testing procedures); vendor reference
manuals (operating systems, databases, networking, user-interfaces); test histories.

Tacit knowledge: Quality, performance and cost aspects of transferring the application to the
production environment; qualitative and quantitative assessment of test histories.

Illustration: Traditionally, development tools may be replaced from time to time, but the
production environment tends to be immutable. This implies that vendor’ tools or products that
are part of the production environment will be in use over a very long period of time.

It turns out that not all vendors can guarantee this. Some are taken over by competitors who
have the explicit goal to kill the competing product, others just go out of business due to lack of
profitability. From this perspective, it is not surprising that many organizations have started
projects to eliminate ‘‘exotic’’ 4GLs and GUI generators and replace them by main stream so-
lutions. The lesson here is that implicit knowledge about the software and tool market may be
crucial for the long term implementation and operations strategy.

3.5. Operations

Operations entail the day-to-day production usage of all software assets. This is typically done
in a corporate computer center. Knowledge topics include:

• Scheduling and optimization of jobs in the production environment.
• Monitoring of the production environment.
• Backup procedures.
• Trouble shooting.

Explicit knowledge: In-house developed documentation (operating procedures for the pro-
duction environment); vendor reference manuals; operations history.

Tacit knowledge: Quality, performance and cost aspects of running applications in the pro-
duction environment; qualitative and quantitative assessment of operations history (e.g., which
applications cause problems, how quickly can problems be resolved).

Illustration: It is known from accident analysis that 60–80% of all errors are attributed to
operator errors [18, p. 9]. This research has been done on complex systems ranging from nuclear
plants and dams, to tankers and airplanes. These so-called operator errors, are more a blame of
the victim (the operator) than that the cause of the error can be attributed to the operator.
Operators are confronted with ultra complex systems, have to deal with incomplete information,
or even contradictory data. Simultaneously, they have to decide sometimes rather fast to prevent

150 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



disaster. Such complex systems are all very software intensive, and the lack of knowledge and
knowledge sharing increases the chances that operators make errors.

3.6. Maintenance

Maintenance occurs when an application program fails to perform as required during opera-
tions. This may be discovered during operations (program crashes or does not terminate) or after
wards (program computes wrong answers). Knowledge topics include:

• The application area.
• The application program.
• Software engineering methods and tools (testing, debugging).
• The software development environment (debugging and testing).

Explicit knowledge: In-house developed documentation (application programs, debugging and
testing procedures); vendor reference manuals (tools); maintenance history; test history.

Tacit knowledge: Qualitative and quantitative assessment of maintenance and test history.
Illustration: Lack of knowledge sharing hinders optimal deployment of existing software assets.

The maintenance masking dynamic (already explained in Section 1) is a prime example of the
relevance of knowledge management for maintenance.

3.7. Performance, quality and costs

For each of the above areas knowledge about the required and achievable performance, quality
and costs. More precisely, for each application, knowledge is required about:

• Detailed inventory of the application software,
• development costs,
• quality of service during operations,
• costs during operations (response time, resource usage, trouble shooting, human resources,

software, hardware),
• maintenance costs,
• economic value from a business perspective,
• qualitative and quantitative assessment of all cost factors.

The inventory of all software applications combined with the detailed knowledge about each
application makes it possible to obtain knowledge about performance, quality and costs of the
complete software portfolio.

Explicit knowledge: Databases with history information gathered during construction, imple-
mentation, operations and maintenance; qualitative and quantitative assessment of the infor-
mation in these databases.

Tacit knowledge: In many cases history and performance information is not gathered in a
systematic fashion and the assessment of performance, quality and costs has to be judged by
individuals based on incomplete and subjective insights.

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 151



Illustration: The Y2K problem has demonstrated the need to share knowledge. In many
companies there was no detailed knowledge about the software portfolio: which systems were in
use, which systems were no longer functioning, etc. A complete lack of such information effec-
tively blocks a solution to system wide problems like the Y2K problem, the Euro conversion, and
others.

At the beginning of most Y2K projects this information had to be collected at high costs in
order to start the actual Y2K conversion. It is sobering to observe that this same knowledge had
to be collected at the start of many Euro projects as well. Clearly, in some companies there has
been no knowledge sharing between these projects.

The lack of inventory information prohibits organizations to have insight in their total IT
spending. Proper knowledge management can potentially solve some problems related to IT-
spending, and more important to IT-wasting.

4. Increasing the knowledge about software assets

From the analysis in the previous section, it becomes clear that knowledge about software
assets can be subdivided in three areas:

• The software development process,
• operations,
• maintenance.

The maturity of the software development process can be judged by the capability maturity
model (CMM) as developed by the Software Engineering Institute of Carnegie Mellon University
[17]. CMM distinguishes the following five levels:

1. Initial level: Ad hoc, informal management practices are used. Characteristics of the software
(quality, performance) and the software process (budget, schedule) are unpredictable.

2. Repeatable level: Formal management, quality assurance and version control are in place. The
outcome of similar projects becomes predictable. However, there is still a major dependence on
the management quality of individuals.

3. Defined level: A formal software development process is in place and there is a basis for quali-
tative process improvement.

4. Managed level: The formal development process is complemented with a formal programme for
quantitative data collection. Quantitative process improvement is enabled.

5. Optimizing level: Continuous process improvement is budgeted and planned and is an integral
part of the organization’s process.

As one can see, going from level 1 to 5, the knowledge about the software process is first made
explicit, then it is used for qualitative improvements, then data collection about the process starts
and finally these data are used to optimize the process.

From a knowledge engineering perspective, CMM judges the amount of explicit knowledge
about the software development process. It does not cover operations and maintenance, but

152 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



proposals to extend the model in those directions exist [14]. It does not cover people management
either, but an extension for this is described in [4]. It is clear that CMM takes a top–down
managerial view which is at odds with knowledge creation as we have seen in Section 1.

What we need for a better governance of software assets is knowledge about the software
development process, about operations and about maintenance. It goes without saying that de-
tailed technical knowledge about the software itself as well as about its history (development,
operations, testing, maintenance) is essential to achieve this. However, as we have seen in the
previous section, there is usually a lot of missing or tacit knowledge about software assets. To
make things worse, this knowledge may change rapidly.

In order to explore how we can increase this knowledge we follow the model for managing
knowledge creation developed in [10] and summarized in Section 2. We specialize the model here
for creating knowledge about software assets. The creation of knowledge about software assets
should be part of the overall knowledge creation strategy of an organization.

4.1. Instill a vision

In many organizations there is only a limited awareness of the crucial role that software as-
sets play to achieve the organization’s goals. As we have seen, much of this knowledge is tacit.
A software asset knowledge vision should therefore succinctly describe the relevance of creating
knowledge about software assets for the organization. It should generate awareness for knowl-
edge creation at all levels and it should identify sharing knowledge about software assets as a
company value. It should lead to trust, care and cooperation rather than suspicion, indifference
and internal competition. Typically, the knowledge vision should stress that

• Software assets are crucial for achieving the organization’s goals.
• Creating knowledge about software assets is essential to

– monitor their business value;
– enable their continuous evolution;
– optimize their quality and performance.

• Knowledge about software assets should be made explicit and measurable.
• Everybody wins in the long run by sharing knowledge about software assets. The individual

wins, since its expertise becomes valued company-wide rather than only locally. The depart-
ment and business unit win, since sharing knowledge prevents re-inventing the wheel and po-
tentially improves operational performance.

Software assets are essential production factors for virtually all businesses and company val-
ues should strongly encourage creating and sharing knowledge about them. This should also be
made clear by making managers at the highest level in the organization responsible for software
assets.

4.2. Manage conversations

In the case of software assets there are several sources of tacit knowledge that can be tapped:

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 153



• The tacit knowledge of system architects, system designers, development programmers, testers,
operators and maintenance programmers. This is mostly technical and operational knowledge
about software systems.

• The tacit knowledge of experts from marketing, customer relations, and other business depart-
ments. This is knowledge how well the software assets behave from a business perspective.

• The source code itself. This includes the text of all programs, test code, test data, database sche-
ma’s (meta-data), data (database contents), job control scripts, in-house developed tools, com-
pilation and testing scripts as well as history information about revisions, testing, operations,
and maintenance. The source code itself is explicit, but the understanding of it is tacit.

In many organizations there are impenetrable walls between the various categories of profes-
sionals mentioned in the above summary. Usually, software people don’t communicate with
business people. But the same is true for development programmers and operators, development
programmers and maintenance programmers, or system architects and operators. It is, for in-
stance, not uncommon that development programmers and maintenance programmers only share
code but no other knowledge. They may even use different tools suites.

Regarding the source code itself, organizations largely differ in how well they manage the
knowledge about their software. In CMM level 1 organizations everything is done in an ad hoc
fashion: they use no version management, configuration control, build management, bug track-
ing, or test management. In this case, most knowledge is completely implicit. In a CMM level 5
organization, all these aspects are taken care of and in addition detailed performance data is being
collected about costs of software development and maintenance and operations.

The amount of implicit knowledge about software assets is staggering: about 75% of all the
organizations are still at CMM level 1 [9, p. 30]. Only in a few cases, the explicit knowledge is
adequate, see Table 3 for a recent distribution of organizations over CMM levels.

For organizations at levels 1 and 2 a useful knowledge creation scenario is as follows:

• Use automatic tools to extract knowledge from the source code.
• Confront human experts with these results and extend the automatically generated knowledge

with expert opinions.
• Create informal groups consisting of software professionals from different disciplines to discuss

and extend this knowledge.
• Create informal groups consisting of software professionals as well as professionals from busi-

ness units to discuss and further extend this knowledge.

Table 3

Distribution of organizations over CMM levels

CMM level Meaning Frequency of occurrence (%)

1 Initial Chaotic 75.0

2 Repeatable Marginal 15.0

3 Defined Adequate 8.0

4 Managed Good to excellent 1.5

5 Optimizing State of the art 0.5

154 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



• Introduce techniques such as version management, configuration control, build management,
bug tracking, or test management.

• Start collecting performance data.

Once the above steps have been implemented, another problem can be addressed: it is very
common that decisions about software assets are made by the wrong people at the wrong or-
ganizational level. Once managerial support for software asset management exists and the
knowledge creation process has been initiated by the above steps, well-informed decisions are
enabled at the corporate level.

4.3. Mobilize activists

Knowledge activists are important for all knowledge creation enablers. For managing con-
versations, they act as catalysts by starting new initiatives and by coordinating and facilitating
meetings and workshops. They are also important for creating the right context: finding a com-
promise between bottom-up knowledge creation versus top-down knowledge management. Fi-
nally, they promote globalizing local knowledge by acting as merchant that attracts attention to
local initiatives. In the area of software assets, an activist is facing many challenges:

• Disbelief that automatic analysis tools can extract useful information from the source code.
• An even bigger disbelief that automatic tools can transform and improve the source code.
• Resistance to adopt new practices, for instance, for collecting history information.
• Resistance to adopt new tools, for instance, for version management, testing or measuring.
• Reluctance to share locally developed practices or tools with other departments.
• Reluctance to give up the power of expertise (Section 1).
• Disbelief that ‘‘the guys from the other department’’ have something useful to say about the

software you are working on.
• Lack of interest in considering the merits of practices and tools used in other departments.

To address these issues, knowledge activists can be appointed according to various strategies.
Process activists can focus on the overall software development process and its improvement.
Typical actions are initiatives to share tacit knowledge, ‘‘selling’’ best practices and appropriate
tools to the various departments [2], and initiating measuring and improvement processes. Ar-
chitecture activists aim at collecting knowledge about the global architecture in relation to all
applications and using this knowledge for architectural improvement. Application activists aim at
creating all relevant technical and business knowledge regarding one application and using that
for further improvement.

4.4. Create right context

As already mentioned in Section 2.2, the paradox of knowledge creation is how to reconcile
top-down managerial control with bottom-up knowledge creation. We have already seen that
there is a strong separation between the various departments involved in software assets, ranging

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 155



from architecture, development, operations, maintenance, marketing and other business units. We
have also seen that this separation is very detrimental to knowledge sharing.

There are various approaches to this problem. A first, lightweight, approach is to create task
forces for process improvement, architecture improvement and application improvement, one for
each application. A second, heavyweight, approach, is to create cross-divisional units with similar
charters. A third approach is to create empowered divisions that are responsible for all aspects of
a part of the software assets. Typically, one division per application and a central division for
architecture.

4.5. Globalize local knowledge

Relevant knowledge created locally, has the biggest impact if it used globally. Recall from
Section 2.2 that this knowledge transfer can be seen as a three-staged process consisting of trig-
gering, packaging and dispatching, and re-creating knowledge. For software assets the following
triggers can be identified:

• A changed business strategy or new commercial opportunities impose new requirements on the
existing software assets.

• Costs for development, operations or maintenance exceed the averages in industry benchmarks.
• Long development times result in a too long time-to-market to profit from new commercial op-

portunities.
• Reliability or performance problems during operations frustrate the business strategy.
• New technological standards or developments require changes to the software assets.
• The vendor-support for a certain tool stops.

For each trigger, the need arises to find or create relevant knowledge. Packaging and dis-
patching this knowledge implies the following:

• Package in-house developed tools as well as documentation and course material. Install the
tools at the appropriate site.

• For software asset knowledge: package the knowledge in appropriate form (e.g., HTML pages,
content-management system, database).

In order to re-create the knowledge at the receiving side the following steps are relevant:

• Give tailored courses about tools. Use feedback to adjust course material and tools.
• Create an interdisciplinary working group that applies the software asset knowledge to a par-

ticular problem. This may lead to solutions of the problem as well as to the identification of
omissions in the software asset knowledge.

5. Conclusions

As we have shown in this paper, the abstract concepts from the field of knowledge management
can easily be instantiated for software asset management. The main results from this study are:

156 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158



• An attempt to construct an inventory of explicit and tacit knowledge about software assets
(Section 3).

• An explicit strategy for increasing the knowledge about software assets in an organization (Sec-
tion 4).

These insights are partly theoretical and they are partly based on our experience in software
maintenance and renovation. For instance, the Dutch bank ABN AMRO has taken several steps
described in Section 4. As part of their ‘‘software logistics’’ programme they have implemented
fully automatic documentation generation (using DocGen [5,7]) for all their circa 50 million lines
of Cobol code [1]. As a result, the knowledge buried in their software becomes explicitly available
and can be accessed with an ordinary web browser. Standard search engines can be used to further
query this knowledge. Software is clearly used as a source of knowledge. Other companies are
following this example

However, to further validate our insights and increase their applicability we foresee the fol-
lowing steps:

• Application and qualitative validation of our knowledge creation strategy in other organiza-
tions.

• Design of metrics that can be used to measure the impact of knowledge creation strategies for
software asset management.

• Quantitative case studies.

Software maintenance and renovation can easily be seen as knowledge creation processes where
tacit knowledge is made explicit. The more encompassing view is to consider software and all the
tacit knowledge it embodies as a company asset and to properly manage that asset. The
knowledge creation perspective described in this paper may help to understand how proper
software asset management can be achieved.

References

[1] J. Boef, A. van Deursen, P. Klint, Goede softwarelogistiek basis voor snelle aanpassingen, Automatisering Gids

(2001) 19 (in Dutch: Good software logistics basis for fast adjustments).

[2] M.T. Bosworth, Solution Selling––Creating Buyers in Difficult Selling Markets, McGraw-Hill, 1994.

[3] S.L. Brown, K.M. Eisenhardt, Competing on the Edge––Strategy as Structured Chaos, Harvard Business School

Press, 1998.

[4] B. Curtis, W.E. Hefley, S. Miller, Overview of the People Capability Maturity Model, Technical Report CMU/SEI-

95-MM-002, Software Engineering Institute, 1995.

[5] A. van Deursen, T. Kuipers, Building documentation generators, in: H. Yang, L. White (Eds.), Proceedings of the

International Conference on Software Maintenance, IEEE Computer Society Press, 1999, pp. 40–49.

[6] M. Granovetter, Getting a Job––A Study of Contacts and Careers, second ed., University of Chicago Press, 1995.

[7] Software Improvement Group, Automatic Documentation Generation, Software Improvement Group, May 2001.

URL: http://www. software-improvers.com/PDF/DocGenWhitePaper.pdf.

[8] V.K. Jolly, Commercializing New Technologies, Harvard Business School Press, 1997.

[9] C. Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, 2000.

[10] G. Von Kroch, K. Ichijo, I. Nonaka, Enabling Knowledge Creation, Oxford University Press, 2000.

P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158 157



[11] L. Lamport, How to Tell a Program from an Automobile, in: J. Tromp (Ed.), A Dynamic and Quick

Intellect––Liber Amicorum in honor of Paul Vitanyi’s 25-year jubilee, CWI, 1996, pp. 77–79. URL: http://

research.microsoft.com/users/lamport/pubs/automobile.pdf.

[12] C. Locke, R. Levine, D. Searls, D. Weinberger, The Cluetrain Manifesto––The End of Business as Usual, Perseus

Books, 2001.

[13] M. Mulder, in: The Daily Power Game, vol. 6, Martinus Nijhoff Social Sciences Division, Leiden, 1977,

International series on the quality of working life.

[14] F. Niessink, H. van Vliet, Software maintenance from a service perspective, Journal of Software Maintenance:

Research and Practice 12 (2) (2000) 103–120.

[15] I. Nonaka, H. Takeuchi, The Knowledge-Creating Company, Oxford University Press, 1995.

[16] General Accounting Office, DLA Should Strengthen Business Systems Modernization Architecture and Investment

Activities, 2001. URL: http://www.gao.gov/new.items/d01631.pdf.

[17] M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, The Capability Maturity Model: Guidelines for Improving the

Software Process, Addison-Wesley Publishing Company, Reading, MA, 1995.

[18] C. Perrow, Normal Accidents––Living with High Risk Technologies, Princeton University Press, 1984.

[19] M.E. Porter, Competitive Strategy––Techniques for Analyzing Industries and Competitors, The Free Press, New

York, 1980.

[20] M.E. Porter, Competitive Advantage––Creating and Sustaining Superior Performance, The Free Press, New York,

1985.

[21] E.M. Rogers, Diffusion of Innovations, fourth ed., The Free Press, Simon & Schuster Inc., 1995.

[22] G.M. Weinberg, in: Quality Software Management: Systems Thinking, vol. 1, Dorset House, 1992.

[23] G.M. Weinberg, E.L. Schulman, Goals and performance in computer programming, Human Factors 16 (1) (1974)

70–77.

Paul Klint is head of the Software Engineering Department at Centrum voor Wiskunde en Informatica (CWI,
the Dutch national research center for computer science and mathematics) and professor in Computer Science
at the University of Amsterdam. He is also president of the European Association for Programming Lan-
guages and Systems (EAPLS) and co-founder of the Software Improvement Group (SIG), a CWI spinoff
company. He holds a MSc in Mathematics from the University of Amsterdam and a PhD in Computer
Science from the Technical University Eindhoven. He (co)authored three books and has published over
hundred scientific articles. He has consulted for companies and governments worldwide. His research interests
include generic language technology, domain-specific languages, software renovation, and technology
transfer.

Chris Verhoef is a Computer Science professor at the Free University of Amsterdam and principal external
scientific advisor of the Deutsche Bank AG, New York. He is also affiliated with Carnegie Mellon University’s
Software Engineering Institute and has consulted for hardware companies, telecommunications companies,
financial enterprises, software renovation companies, and large service providers. He is an elected Executive
Board member and vice chair of conferences of the IEEE Computer Society Technical Council on Software
Engineering and a distinguished speaker of the IEEE Computer Society.

158 P. Klint, C. Verhoef / Data & Knowledge Engineering 41 (2002) 141–158


