Development, Assessment, and Reengineering of Language Descriptions

Alex Sellink and Chris Verhoef

University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

alex@wins.uva.nl, x@wins.uva.nl

Abstract

We discuss tools that aid in the development, the assess-
ment and the reengineering of language descriptions. The
assessment tools give an indication as to what is wrong with
an existing language description, and give hints towards cor-
rection. From a correct and complete language description,
it is possible to generate a parser, a manual, and on-line
documentation. The parser is geared towards reengineering
purposes, but is also used to parse the examples that are
contained in the documentation. The reengineered language
description is a basic ingredient for a reengineering factory
that can manipulate this language. We demonstrate our ap-
proach with a proprietary language for real time embedded
software systems that is used in telecommunications indus-
try. The described tool support can also be used to develop
a language standard without syntax errors in the language
description and its code examples.

Categories and Subject Description: D.2.6 [Software En-
gineering]: Programming Environments—Interactive; D.2.7
[Software Engineering]:
Restructuring; D.3.4. [Processors]: Parsing.

Distribution and Maintenance—

Additional Key Words and Phrases: Reengineering, System reno-
vation, Language description development, Grammar reengineer-
ing, Document generation, Computer aided language engineering
(CALE), Message Sequence Charts.

1 Introduction

Since the emerge of computer languages, the need to de-
scribe languages in a precise way became an indispensable
part of computer science. In his paper on the syntax and
semantics of the proposed international algebraic language,
Backus [2] writes: ‘we shall need some metalinguistic con-
ventions for characterizing various strings of symbols. To
begin, we shall need metalinguistic formulae.” Then he in-
troduced using an example what is now widely known as the
Backus-Naur Formalism. In virtually all documents that
give a precise language description the method of Backus is
used: first the syntax description notation is explained using
an example accompanied with some conventions, and then
the language description itself follows. In this way myriads
of dialects of the Backus-Naur Formalism emerged. They
are referred to as BNF, or EBNF, for extended BNF, or
metasyntax, metalanguage.

Language descriptions serve more than one purpose: they
are used as a guide to implement tools such as compilers or
they serve as a reference manual for users. We use language

descriptions to implement tools that serve the reengineer-
ing of those languages. Such grammar descriptions form the
basis of our approach towards reengineering. Let us give an
idea to make this more concrete. It is possible to generate
all kinds of prefab components that are useful in an environ-
ment for reengineering. We can generate a native pattern
language from a context-free grammar that can be used to
recognize code fragments [30]. It is possible to generate full
documentation for such a language [9]. In [8] we generate
components for software renovation factories. A sophisti-
cated parser can be generated from this grammar [17]. A
structured editor can be generated from the grammar [22].
It is also possible to generate complete programming envi-
ronments from context-free grammars. In order to gener-
ate such environments, one needs an environment as well.
The ASF+SDF Meta-Environment [19] is such an environ-
ment. We use it for the generation of tool factories [8]. SDF
stands for Syntax Definition Formalism [16], it can be used
to define the syntax of a language. ASF stands for Alge-
braic Specification Formalism [3], it can be used to describe
the semantics of a language. The combination is thus ad-
equate for defining syntax and semantics of languages and
the ASF+SDF Meta-Environment is the supporting envi-
ronment for both formalisms.

It is not a trivial task to construct a grammar for reengi-
neering purposes. First of all, such a grammar should have
certain properties that make reengineering easy. Secondly,
since reengineering problems do not have the habit to re-
side in small languages, the development process is time
consuming. For instance, many academics and companies
have struggled with a language definition for COBOL in or-
der to create a decent parser for reengineering targets. Due
to the myriad of COBOL dialects, it can be the case that
such a grammar itself needs reengineering. Such grammars
can suffer from large maintenance problems. In [7] this was
called the Year 1999 problem: before that date the gram-
mars had to be ready so that the generated parsers can be
used to analyze Year 2000 problems. We refer to [7] for an
overview of current parser technology that is used in reengi-
neering and problems that induce maintenance problems
on grammars. Since in reengineering, the grammar seems
to be the variable and the problem the constant, grammars
should be modifiable and tool support should be insensi-
tive to such modifications. Therefore, generating everything
from a grammar is in our opinion a solution. According to
[28] there are two problems with parser-based technology:
first the stringent constraints on the input, and second it
is problematic to extend existing parsers. We solve this by



using modular grammars that are easily modifiable, and we
use unification of grammar rules that are not important for
reengineering tasks [5]. Despite the use of new technology, it
is still not easy to develop a new grammar for reengineering
purposes or reengineering old grammars to migrate them to
the new technology. Therefore, we developed tools to sup-
port development, the assessment and the reengineering for
language descriptions.

Let us give an example of current practice in serious lan-
guage description documentation. We have encountered the
following case in the literature. The language description
document (an ITU standard) of so-called Message Sequence
Charts [18], is an MS-Word document. In order to extract
the BNF syntax, the PostScript version of the Word doc-
ument was first converted to ASCII, then using a script
called extract.perl [12], the (nonlexical) BNF rules were
extracted. Then, fourteen manual corrections were needed
(see the comments in the script [12]). Then the BNF rules
were fed to another script that generates an HTML docu-
ment so that the BNF rules can be browsed. This is obvi-
ously not an optimal situation.

Our approach to develop a standard would be to write a
complete grammar using the ASF4+SDF Meta-Environment
and put the accompanying text in comments in the gram-
mar specification. Then, by using the formatting technology
discussed in [9] we generate a IATEX document and produce
hard copy. Using technology presented in [15], we can gen-
erate the HTML version, and using the ASF+SDF Meta-
Environment we can generate a programming environment
for the language. As can be seen, we take the opposite route
to develop a standard. The advantage of our approach is
that the grammar is complete, its syntax is checked and the
examples in the document are parsed using the generated
parser.

Results After finishing this paper, we used this technol-
ogy to generate a complete software renovation factory from
the source code of a compiler. See [31] for details. Moreover
we used an extension of the technology described in this pa-
per to generate a correct VS COBOL II grammar from its
corresponding IBM Manual (see [25] for a URL). Correct
means here that our generated parser could parse 800.000+
lines of VS COBOL II code without problems. Using this
technology, it is possible to generate correct grammars for
other languages as well, e.g., SQL, CICS, PL/I, and so on.
This means that it is viable for both obscure and well-known
languages to recover their grammars, and as such to speed
up tool development for software renovation. So, the results
in this paper are of significant economic importance.

Organization In Section 2 we discuss syntax definition
languages and their syntax and semantics. We discuss pars-
ing of language description documents, and pretty printing
them. In Section 3 we describe a number of quality as-
sessment tools that give an insight in the current state of
language descriptions. Then in Section 4 we discuss tools
that aid in the reengineering of a language description. We
discuss modularization and conversion to an executable for-
mat. We illustrate that this step aids in the detection of

semantic errors in a language description document. We il-
lustrate the use of our tools by applying them to a real-world
example: a language description document of a nontrivial
language that is used in telecommunications industry. In
Section 5 we discuss an assembly line that takes care of the
automatic migration from the format used in manuals to
an executable format. Finally, in Section 6, we discuss our
conclusions and future work.

Related work In [10] the ASF+SDF Meta-Environment
was used to check the formal parts of a book on action se-
mantics [27]. In [10] it has been reported that these checks
revealed about one error on every two pages. We use simi-
lar technology to reveal errors in language description doc-
uments. In a tutorial on functional programming [13] one
of the exercises is constructing a BNF parser. We use a
BNF parser to parse language descriptions. In the GMD
Toolbox for Compiler Construction, there are conversion
tools available to convert certain BNF dialects into others.
We implemented a converter from BNF to our preferred
syntax definition language SDF in order to reveal seman-
tic errors in language descriptions. In [11] the Yacc part of
a C++ grammar is automatically converted to SDF using
the ASF+SDF Meta-Environment. In that paper the C++
grammar is used to parse C++ programs in order to per-
form optimizing source to source transformations using an
algebraic specification. As far as we know, no other pub-
lications exist where language definitions are reengineered
so that the resulting grammars can be used as input for
renovation tools.

Acknowledgements We thank Arie van Deursen (CWI),
Dinesh (CWTI), and Paul Klint (CWI) for pointers to related
work. We thank Joakim Ek (Frameworks, Ericsson Software
Technology AB), Leif Ekman and Johanna Persson (both
Reengineering Center, Ericsson Software Technology AB),
Roger Holmberg (Ericsson Utvecklings AB), and Magnus
Nilsson (Software Engineering, Ericsson Software Technol-
ogy AB) for inviting us over, for visiting us in return, and
for their comments on an earlier version of this paper. We
thank them for their willingness to provide us with their
proprietary language description that is the running exam-
ple in this paper. We thank the reviewers for their valuable
comments.

2 Syntax Definition Languages

We think of metasyntax as a domain specific language. It
is a language geared towards the definition of the syntax of
(programming) languages. We will call such languages syn-
tax definition languages. Any dialect of the Backus-Naur
Formalism (BNF) is an example of a syntax definition lan-
guage. The Syntax Definition Formalism (SDF) [16] is an-
other example of a syntax description language. In contrast
with BNF, SDF is not available in a myriad of dialects: it
is part of a support environment (the ASF+SDF Meta-En-
vironment) as a means to define syntax.

A document containing a language description can be
seen as a program written in a syntax definition language;



the text in natural language is the comment. This phe-
nomenon is widely known as literate programming [21].
Seen from this perspective, maybe the most literate pro-
grams that one can think of are language description doc-
uments, in particular a standard. In our opinion, it would
be natural to parse and compile such documents. For, it
is a fact of life that programs that are neither parsed, nor
compiled have a high risk of containing errors. Indeed, we
have experienced that the language descriptions that we
have parsed and compiled often contain errors.

Let us first explain what we consider parsing in the case
we are dealing with a language description document. There
are at least two possibilities. First of all we can think of a
parser for the metalanguage that is explained in the pre-
liminary part of the document. Secondly, we can think of
a parser of the language that is described. Using the meta-
language parser we can parse the language description, and
using the parser for the language itself we can parse the code
that we wish to describe with the language (for instance, the
code examples in the language description document).

There are at least two possibilities for the meaning of
compilation of a language description document. First, the
documentation in some typeset form can be generated, or
a parser can be generated from the documentation. Note
that this idea is not new: it is in accordance with the phi-
losophy of literate programming [21]. Let us give an exam-
ple. From various sources (standards, manuals, programs)
we constructed a COBOL grammar for reengineering pur-
poses [5]. On the one hand we use the grammar as input
for a parser generator, so we can parse code that we wish
to analyze or transform [8, 6, 30] (in this paper we use this
approach as well, for details we refer to Section 5). On the
other hand we can generate typeset documentation using
technology described in [9]. This document can be used by
operators of our COBOL factory. For COBOL this amounts
to a 25 page IXTEX document with a table of contents, nat-
ural language, cross references, etc. This type of documen-
tation is in compliance with the so-called book paradigm
[29]. In [15] technology has been implemented that enables
the generation of on-line documentation in HTML format.
We can use this to create an HTML document with cross
references.

2.1 Syntax Errors and Semantic Errors

The first step in language description development is, in
our opinion, parsing the language description itself. For, a
typographical error in a language description now becomes
a syntax error during parsing. Although this phase is ob-
vious to us, this is not a common approach (but see [10]
where errors in a book on action semantics [27] are detected
in a similar way). Many language description documents,
including standards that we have parsed contain syntax er-
rors.

Apart from syntax errors in language description docu-
ments they also contain semantic errors. Let us first ex-
plain what we consider the semantics of a language descrip-
tion document. The semantics of a language description
program can be seen as the set of objects that can be rec-
ognized by this program. Suppose, for instance, that we

have the following BNF program x ::= ’a’. This program
can recognize a single a. The BNF program consisting of
the rules x ::= ’a’ and x ::= x x recognizes a, aa, aaa,
etc. A semantic error is recognition of other objects than
intended. So if it was our intention to recognize a b there is
a semantic error in the BNF program.

A typical situation is that the parser (generated from the
language description document) does not recognize the ex-
ample programs that are contained in the document. An-
other error is that the generated parser does recognize ex-
amples but in an unexpected way, for instance a keyword is
parsed as an identifier. Then either the language descrip-
tion contains an error, or the example. In either case, the
problem should be resolved.

We have seen errors where it is obvious from the context
what their cause was. But we have also encountered situ-
ations where we had no idea. Testing all the possibilities
with the compiler is an option, but then we discover the in-
terpretation of the compiler constructor. Another compiler
constructor may have another interpretation. Our solution
for this is to restrict ourselves to a certain hardware plat-
form. For us this is not a problem: if we need to reengineer
code, it is our intention that it will run on a already known
architecture. We note that for a language description docu-
ment that has the status of an official standard, our solution
breaks down. Therefore, it seems useful to apply our meth-
ods to develop standards for languages, since this would
reveal such errors before the standard will be published.

2.2 Parsing of Documents

In order to explain our approach we treat a real-world exam-
ple. We were contacted by Ericsson Reengineering Center
to investigate whether it is possible to cooperate in tool de-
velopment that can be used for their proprietary language.
We asked for a language description, and they mailed us
an electronic version of the language manual. The running
example in this paper is their language description. We ana-
lyzed their language description so that we had a clear view
of how much work it would be to turn it into a working
grammar. We abbreviate the language that Ericsson uses
by SSL which stands for Switching System Language. SSL
is a real-time language developed by Ericsson in the early
seventies and modernized in the early eighties.

The intended hardware platforms are either the central or
regional processor of the AXE 10 program controlled tele-
phone switch. SSL is the language that is used to run on the
central processor. SSL is compiled to an assembly language
that runs on the central processor. We note that, although
SSL was designed for telephone switches only, the language
is substantial (over 200 keywords and the hardcopy language
reference manual is over 150 pages).

In order to parse a language description document, we
need a parser. The information we need is contained in the
section describing the metasyntax. We specified the meta-
syntax in SDF. The ASF+SDF Meta-Environment incre-
mentally generates a GLR parser [17] and a structured text
editor [22]. So we can parse existing language descriptions
and we can build them using a structured text editor. If we
have the language description document available in some



electronic form, we can extract the formal language descrip-
tion using standard Unix tools. In the case of SSL we ob-
tained an HTML file from Ericsson Reengineering Center.
So, it was not hard to extract the syntax rules. Below we
depict the definition of the BNF dialect that is used in the
HTML file. We call it SBNF, short for SSL Backus Naur
formalism. The description consists of an example with ex-
planations and some conventions. We mention the example
and the conventions below:

if-statement ::=
’IF’ [’NOT’] cond-exp ’THEN’ sequence-of-statements
[{’ELSIF’ cond-exp ’THEN’ sequence-of-statements}]
[’ELSE’ sequence-of-statements]
YFI? 50
cond-exp ::=
variable <’=’ | ’/=’> value

The following conventions are used:

e Terminals (representing actual SSL keywords and sym-
bols) are surrounded by single quotes.

o Nonterminals are lower case words.

e [ ] represents optional parts of a construction. From
the example above we see that an IF statement may or
may not contain a NOT keyword.

e { } represents a non-empty sequence of elements. For
example, we see that an IF statement may contain a
sequence of ELSIF branches. (Since the ELSIF construc-
tion is also surrounded by [ ], the sequence of ELSIF
branches may be left out altogether.)

e < > represents a choice of elements. The alternatives
are separated by vertical bars. We see that a condi-
tional expression may contain either an equality oper-
ator (=) or an inequality operator (/=), but not both.

Note that, for instance, cond-exp is a nonterminal and IF
is a terminal. A nonterminal is also called a sort. The lan-
guage description is supposed to be a syntactically correct
SBNF program. We opened a structured text editor that
understands SBNF and loaded the SBNF program consist-
ing of the complete language description that we extracted
from the HTML file. It did not parse. We will discuss a
few typical errors, to give the reader an idea. The first er-
ror that we found were missing quotes around an equality
sign. We found many more such errors and repaired them
without effort. Another problem that we encountered was
that text brackets indicating optional constructs in SBNF
did not match. An example of such a rule is:

single-signal-reception-statement ::= ’ENTER’
signal [’WITH’> signal-datum [{’,’ signal-datum}] ’;’

There is a ] missing. A short inquiry of example code
revealed that the closing text bracket should be inserted just
before the quoted semicolon. This error was propagated
in the document, apparently due to a copy-paste editing
session.

The convention that nonterminals are lower case words
was violated. We detected nonterminals containing dig-
its, upper case letters, and in one case even an ellipse
(flconnfid. . .). We solved this by relaxing the conventions

that were given in the manual. With the aid of real-world
code or a knowledge expert we can reconstruct the actual
situation and repair the language description accordingly.

2.3 The Language Description Parser

Creation of a parser amounts to defining the grammar of
the metasyntax in SDF. The parser is generated on-the-fly
by the ASF+SDF Meta-Environment [17]. Let us depict
the SDF module containing the grammar of SBNF:

imports Layout
exports
sorts
SBNF-Terminal SBNF-NonTerminal
SBNF-Element SBNF-Rule SBNF-Program
SBNF-Elements
lexical syntax
non "[)]* non
[A-Za-z0-9\-]+
context-free syntax
"flconnfid..."

-> SBNF-Terminal
-> SBNF-NonTerminal

-> SBNF-NonTerminal
SBNF-Terminal -> SBNF-Element

SBNF-NonTerminal -> SBNF-Element

SBNF-Element* -> SBNF-Elements

"[" SBNF-Elements "]" -> SBNF-Element

"{" SBNF-Elements "}" -> SBNF-Element

"<" { SBNF-Elements "|" }+ ">" -> SBNF-Element
SBNF-NonTerminal "::=" SBNF-Elements -> SBNF-Rule
SBNF-Rule+ -> SBNF-Program

Let us discuss this module. First of all, SDF is a modu-
lar syntax definition language. We import an SDF module
that defines layout for SBNF. Since this was not in the con-
In the
so-called exports section, we describe the complete syntax
of SBNF. We declare the used nonterminals in the sorts
paragraph. In the lexical syntax paragraph we define
terminals and nonterminals of SSL: the first lexical rule
says that the terminal quote (’) followed by zero or more
characters that are not a quote followed by a quote (?) is an
SBNF-Terminal. This is the first convention of the metasyn-

ventions, we use a standard SDF layout module.

tax. The second convention is defined in the other rule: a
string that consists of one or more upper case letters, lower
case letters, digits, or minus signs is an SBNF-NonTerminal.
Note that we relaxed the convention, in order to parse
the SBNF program. Then we enter the context-free
syntax paragraph. First we deal with the flconnfid...
by declaring this to be an SBNF-NonTerminal. Then we
construct from the smallest parts of the grammar the el-
Since an
SBNF-NonTerminal and an SBNF-Terminal can occur in an
SBNF rule, we inject them into the sort SBNF-Element.
Zero or more such elements are called SBNF-Elements. This

ements that can be present in an SBNF rule.

is the next rule. Then we implement the next three con-
ventions. If we have some SBNF-Elements and put text
brackets around them, they become a new SBNF-Element.
The intended interpretation is, of course, the optional part
of a construction. In a similar way we implement one or
more occurrences using the curly braces. The next rule ex-
presses that a list of one or more SBNF-Elements separated
by the symbol | surrounded by angle brackets is again an
SBNF-Element. Now we can construct an SBNF-Rule: it is
a SBNF-NonTerminal followed by the terminal : := followed



Figure 1: Parse tree of 1 + 2.

by some SBNF-Elements. Finally, one or more SBNF-Rules
forms an SBNF-Program.

Constructing and testing this grammar was not a hard
job. Furthermore, removing the syntax errors was also easy.
It was maybe one hour work to extract the SBNF rules from
the HTML file, to make the grammar, and to remove the
errors. Using the approach that we describe here makes it
a trivial task to remove all the syntax errors in a language
description document.

2.4 Language Description Formatter

Using technology described in [9] we are able to generate a
formatter for language description programs. We use this
formatter to pretty print the SBNF rules, or to generate
BTEX documentation. In [15] the formatting technology of
[9] has been used so that HTML code can be generated.
The generated formatter that we use for pretty printing the
SBNF code has been fine tuned so that it satisfies the coding
style that is used in the SSL manual.

3 Quality Assessment Tools

In order to judge the quality of an existing language descrip-
tion, it is useful to have tools that can give an indication
of the quality of a grammar. Let us first explain what we
experienced to be sensible measures to assess the quality of
a language description. Suppose we have a language con-
sisting of the rules x ::= y ’+’ z, y ::= ’1’ and z ::=
’2?. This language is capable of recognizing 1 + 2. We
depict the parse tree of this term in Figure 1.

As we can see, there is one sort at the top of this tree,
and at the bottom we have only terminals. Now suppose
that in the above language description the rule z ::= ’2’
was missing. Then the sort z would be at the bottom of
the parse tree. We call this a bottom sort. If such a sort
occurs there is an indication that part of the grammar is
missing. Now suppose that the rule x ::= y ’+’ z would
be missing. Then we have two sorts at the top of the parse
tree: y and z. We can parse the symbol 1 and the symbol 2
but we are not able to parse their sum. The situation that
we have more than one top sort is an indication that a pro-
duction rule is missing that ‘glues’ grammar rules together.
Therefore, we made tools that list top and bottom sorts. In
the remainder of this section we discuss a number of such
tools, and we indicate what their use was by applying them
to our running example language description for SSL. We
like to stress that our tools are in fact very simple to imple-
ment. The contribution of our work is to advocate the use
of such simple tools to solve problems that are perceived to

be hard by many colleagues in our field. Since the tools are
so simple, they are easily implemented by others as well.

top and bottom sorts We implemented two tools that
report the number of top sorts and the number of bottom
sorts. A top sort is a sort that is defined but not used, a
bottom sort is a sort that is used but not defined. In case
of the SSL language description we reported 107 top sorts
and 118 bottom sorts. We note that this situation is not
uncommon, after all, such documents were never parsed be-
fore. The high number of bottom sorts is explained is as
follows: since it is not possible in BNF to express lexical
syntax, there is not a single lexical syntax rule in the SBNF
program. This means that all the rules that are compara-
ble with y ::= ’1’ are missing. Let us give an example
fragment of the SBNF program.

ioconnection ::= ’ID’ ’IS’ vn-1 °’,°
?ABRANCH’ ’IS’ label ’,’ ’CODE’ ’IS’ vn-2
[>,> °BUFFER’ °IS’ buf] [’,’ ’POINTER’ ’IS’ p]

The sorts vn-1, label, vn-2, p, and buf are all bottom
sorts. In fact, variable names of a certain types are meant.
This implies that addition of lexical rules will solve this.
We estimate that those sorts can be turned into one sort
representing identifiers. So it might be the case that in
the above rule we can substitute a sort Identifier for all
of them, and give a lexical definition for this sort. Another
solution for this problem is to define all those sorts lexically.
In order to solve it satisfactorily, we either need to see more
SSL code or compiler experts of Ericsson inform us what
the best solution is.

The high number of top sorts is caused by the fact that the
rules connecting the language constructs are often missing.
A reason for this could be that the authors of the manual
focussed on describing the individual language constructs,
and not on the overall structure of the language. Let us
give an example. For instance statement is a bottom sort
and case-statement is a top sort. Obviously, a produc-
tion rule like statement ::= < ... | case-statement
| ... >is missing. This rule expresses part of the overall
structure of the language: it answers the question “What
kind of statements do exist in SSL?” Note that it is also
possible to turn case-statement into statement. We do
not opt for the latter choice, since the grammar will be-
come shallow. This implies that it becomes more work to
implement tools to reengineer code that has been written
in the language, which is our purpose for defining a cor-
rect language description of SSL. Of course, for language
description purposes another option may be more appropri-
ate.

We also have a tool that lists all the sorts. This
may seem a silly tool, but it is a useful tool as well. First,
it puts the number of top and bottom sorts in perspective,

list-sorts

and second it reveals other problems as well. We counted
initially 294 sort names. One sort name was FLEXTERNAL.
Since we relaxed the conditions on the sort names (because
they contained forbidden upper case letters) the keyword
FLEXTERNAL was parsed as a sort name. This could happen



since in one of the SBNF rules the quotes for the terminal
FLEXTERNAL were missing. We repaired this. We also found
the sorts names flconfid and flconnfid. After inspection
we learned that flconfid contained a typographical error.
It should have been flconnfid. So the language descrip-
tion contains 292 sort names. Thus, we found two nasty
errors. Moreover, we can conclude that the number of top
and bottom sorts is high.

list-keywords A tool that gives a list of all the keywords
is also useful. It gives an idea of the size of the language.
More importantly, it reveals errors in the language descrip-
tion. In our running example we found some errors. We will
treat an example. In the following rule temp is a keyword
due to the quotes. Inspection of other rules learned that it
is in fact a sort name.

convert-call ::=
’CONVERT’ conversion [’,” ’CODE’ ’IS’ ’temp’]
[’>,’ °POINTER’> ’IS’ pointer] ’;’

list-redundant-rules We also implemented a tool that
reports multiple occurrences of production rules. The lan-
guage description of SSL counts 203 production rules. We
detected 12 redundant production rules. So 6 % of the pro-
ductions is redundant. The reported rules need to be re-
moved, since double rules make the grammar ambiguous.
We note that our tools are insensitive to formatting differ-
ences. So, rules that are the same (modulo spaces, newlines,
tabs, indentation, formatting, and so on) are still identified
as being the same. To give an idea of the ease of implement-
ing the redundant rules tool we depict the ASF specification
of this tool. We recall that ASF stands for Algebraic Spec-
ification Formalism.

[01] double-rules(SBNF-Rulel* SBNF-Rulel
SBNF-Rule2* SBNF-Rulel SBNF-Rule3*) =
double-rules(SBNF-Rulel* SBNF-Rulel
SBNF-Rule2* SBNF-Rule3*) SBNF-Rulel

[default-02] double-rules(SBNF-Rulel*) = NO DOUBLE RULES FOUND.

[03] NO DOUBLE RULES FOUND. SBNF-Rulei+ = SBNF-Rulei+

We generated a native pattern language from the SBNF
grammar, see [30] for details. So we have variables avail-
able in order to define tools on SBNF. In the ASF spec-
ification we see five of them. The variables SBNF-Rulel*
— SBNF-Rule3* represent zero or more occurrences of ar-
bitrary SBNF rules. The variable SBNF-Rulel matches
exactly one production rule. The pattern that we match
checks for double occurrences of SBNF-Rulel, hence it oc-
curs twice. If it occurs, we throw one SBNF-Rulel over the
edge and recursively search the remaining rules. The default
rule that we have returns that there is no redundancy. The
third rule removes this message as soon as a double is found.
This is represented by the variable SBNF-Rulel+ with the
plus representing one or more occurrences of a production
rule.

The explanation for the redundancy in SSL is as follows.
Again since the constructions are treated as separate enti-
ties, sorts that are necessary in more rules are reiterated. In
fact, we can see this as a form of code duplication with all

the maintenance problems that come with it. At first sight
the use of words like maintenance problem and code dupli-
cation may seem exaggerated, however, we actually found
such maintenance problems during modularization of the
grammar. See Section 4 for more details.

rule complexity The above tools give an indication of
the overall quality of a language description. It is also useful
to assess the quality of individual production rules. For, if
they are correct but complex, the language description will
miss its purpose of explaining the language. In our opinion,
a language description should be as self-documenting as pos-
sible. Well-named additional sort names are preferable to
comments in the accompanying natural language and less
sort names. We can reduce the complexity of a production
rule by introducing sort names that produce subconstruc-
tions. In fact, this is comparable to a subroutine call that
makes a program less complex and more self-documenting.
According to [14], modularity of code is a very important
factor for comprehension. A recognized measure for com-
plexity is Tom McCabe’s cyclomatic complexity [26]. We
implemented this measure for the metalanguage of Erics-
son. We note that a high McCabe is not always a sign of
bad design. A high complexity is a warning flag indicating
that a BNF rule might need redesign. In the SSL language
description we found about 12 complex BNF rules that need
redesign in our opinion. We give a typical example.

single-signal-transmission-statement ::=
’SEND’ signal [’REFERENCE’ field-variable]
[’WITH’> signal-datum [{’,’ signal-datum}]]
[[’>,?] < ’BUFFER’
| ’HURRY’
| DELAY’ < numeral
| field-variable
| field-expression >
< °MS’ | ’S? | M’ >
| °DELAY’ °UNTIL’
month-day-hour-minute > ] ’;°

The cyclomatic complexity of this BNF rule is 17. Be-
low we depicted part of a solution. We depicted rules that
handle the DELAY.

delay := ’DELAY’ delay-time
delay-time := amount-of-time time-units
delay-time := ’UNTIL’ absolute-time

amount-of-time ::= < numeral

| field-variable

| field-expression >
time-units < °MS’ | ’S? | M’ >
absolute-time .

We turned both the DELAY alternatives into one sort
delay. This means that the original SBNF rule will be-
come more simple at that point. We can do the same for
other parts of the rule. We have tools that can restructure
BNF rules automatically, and that reduce the complexity
per grammar rule. Of course they cannot define descriptive
names automatically, so we have to take care of that using
a table that converts the generated names into more de-
scriptive ones. We note that if the rules do not have a high
complexity, the sort names that we generate from the origi-
nal sort names are acceptable. As soon as the rules become



very complex, the generated sort names will become com-
plex as well. We discuss those tools in section 5 where we
explain the assembly line that takes care of an automated
transformation from SBNF to SDF.

Other Measures If we inspect the sort names with a high
McCabe, we sometimes find rules that are not complex at
all. Case statements are an example: a ::= <b|...[z>.
Therefore, McCabe is not in all cases an optimal choice.
The just mentioned rule, for instance, has a very low nesting
level. We implemented a tool that reports the nesting level
per nonterminal so that we can correct on the false-positive
McCabe’s. We also implemented a measure that counts the
number of decision point in a BNF rule. This is in fact
a combination of McCabe and the Nesting degree. This
measure gives us the highest correlation: a rule with many
decision points is complex and vice versa. Using a simple
awk [1] one-liner we transform the data that we list with our
tools into formatted reports.

4 Language Description Reengi-

neering

In the previous section we discussed many useful and sim-
ple tools that give an impression of the current state of a
language description and we take care of the fact that it
parses. This is not a guarantee that it does not contain er-
rors anymore. In fact, some errors cannot easily be found
using the technology that we explained so far. They can be
revealed when we execute the language description, in other
words with a semantical analysis. On the way to make the
grammar executable we will also find errors, for instance
during modularization. In theory, a language description is
complete and error-free so it should be clear how to obtain
a parser for the language. If you use tools like Lex and
Yacc there is an effort, namely in resolving ambiguities in
the language description. Since we use a more sophisticated
parsing technology, we do not have to resolve such conflicts:
they are resolved for us by the parser.

In practice, we have to reengineer a language descrip-
tion. In the case of our running example, this is clear from
our quality assessment: many production rules are miss-
ing. There are at least three aspects that play a role in
reengineering a language description. We can reengineer
the original language description to make it complete, we
can modularize it, and we can convert it to other syntax
definition languages. The first aspect is obvious: a com-
plete description is the target of a language description.
The second aspect is useful for several reasons. It is use-
ful to have related production rules grouped together. It
is for our application (reengineering software written in the
language) useful to have a modular grammar [7]. It is also
useful to have a modular grammar since then we can gener-
ate a modular language description document from it. Af-
ter all, a document is also modular: chapters, sections, and
paragraphs. This modularity is inherited from the modular
grammar definition. Another reason why modular gram-
mars are useful, is that we can execute small parts of it (we
will use this approach in an example where we show how

to detect semantic errors). The third aspect (conversion) is
useful for the semantical issues. If we convert the completed
grammar to a syntax description language that is supported
by a parser generator tool, we can generate a parser for the
language description and then do semantical checks. We
can, for instance, test the example code that is present in
the manual, or real world code written in the language. In
this way semantical errors can be traced. This is also in-
teresting for standardization, since it prevents semantical
errors before the standard is published.

remove-redundant-rules We have implemented a tool
that removes the redundant production rules. Let us recall
that the original number of rules is 203. To be honest, its
203 and a half. We found the (incorrect) SBNF-Element
[set-name:]parameter-name[.attribute] in the on-line
manual. We excluded this one since we had no idea what to
do with it. Remains 203 rules. We removed the redundant
ones so 191 are left.

Modularization We implemented a tool that groups pro-
duction rules by the sort that is produced. This gives us on
the one hand insight whether sorts can be defined more eas-
ily. On the other hand it gives an idea of how we can split
up the language description into modules if we would con-
vert the grammar to SDF, which supports modular syntax
definition. Let us have a look at the problems that were
revealed during modularization of SSL. We mention two
examples. We found an error in one of the production rules
for the sort ioconnection. The production rule for the
ioconnection occurs 6 times in the manual (we removed
those). It also occurs once in the wrong way. This was re-
vealed during modularization when we saw all the rules that
define ioconnection together. We depicted the erroneous
production rule in the paragraph on the top and bottom
sorts tools (we are curious to know whether an SSL expert
reading this has detected this error when we depicted the
rule earlier). It is supposed to recognize the first statement
in the following code fragment that we took from the man-
ual:

RELEASE FILE,
ID IS IoP,
ABRANCH IS ROK,
CODE IS IOCODE,
POINTER IS P,
BUFFER IS DBUF;
ROK) FREE DBUF, POINTER IS P;

We do not need to generate a parser for the ioconnection
module to know that this code cannot be parsed using the
earlier mentioned production rule. For, the rule expects a
BUFFER first and then a POINTER and not vice versa, as is
presented in the example. The rule happened to be erro-
neous.

Another example is that some rules are slightly different.
This can be due to maintenance problems, or due to the fact
that some combinations are in some cases slightly different.
We give an example, of the signal-datum and a possible
simplification. We found several rules for this sort. We give
a few of them.



signal-datum ::=
< field-variable | symbol-variable | pointer | numeral
| string-object | buffer-variable | field-expression
|$+$>

signal-datum ::= < field-variable | symbol-variable
| pointer | numeral | string-object | buffer-variable
| 2+ >

signal-datum ::= < field-variable | string-variable
| pointer | buffer-variable | ’+’ >

This can be simplified to one rule covering all the combi-
nations:

signal-datum ::=
< field-variable | symbol-variable | pointer
| numeral | string-object | string-variable
| buffer-variable | field-expression | ’+’ >

We can unify [5] the possibilities into one rule contain-
ing them all. If the various forms are only applicable
in certain situations, we cannot do this. In that case,
the name signal-datum should be changed. For instance,
reception-signal-datum for the signal-datum that be-
longs to the single-signal-reception-statement, and so
on. Both solutions are simple, the problem is to pick the
right one. This was simply decided by feeding discriminat-
ing examples to the compiler.

BNF2SDF With the aid of the modularization tool, we
identify possible modules. With another tool we convert
these modules into SDF. The tool is called BNF2SDF. This
tool translates a given BNF program into an SDF program.
So it gives us a language description in SDF that is exe-
cutable in the sense that we can generate a parser (and on-
line documentation and a hard copy manual). The language
description will then be in SDF notation, although it is pos-
sible to represent the SDF in BNF notation as well. If we
convert from BNF to SDF then the SDF version of the BNF
language description can be used to generate a tool factory.
So for SSL this means that we can generate a tool factory
in which we can construct tools for SSL. This can be qual-
ity assessment tools, development tools, and reengineering
tools. The reengineering includes conversion to other lan-
guages, restructuring, and code analysis.

The first version of an executable language description
will presumably not parse in the correct way. In the case of
SSL this was certainly not the case. We used the first version
to detect semantic errors in the language description.

Let us give an example how we traced semantic errors that
were not detected during static analysis tools. We converted
a module of the SSL grammar describing the DIRECTIVE
statement. The rule for the directive-statement con-
tained a semantic error that was not so easy to reveal. Let
us display the relevant production rules from the manual.

directive-statement ::=
’DIRECTIVE’ ’[’ message [{’,’ message}] ’]’ ’;’
message ::= identifier [{directive-parameter}]

We converted this SBNF fragment to SDF. The output
of the tool is depicted below:

imports Layout
exports

sorts
Directive-statement Message
Identifier Directive-parameter
context-free syntax
WDIRECTIVE" ||\[u {Message ||,||}+ Il\] " II;II
-> Directive-statement
Identifier Directive-parameter* -> Message

Then we loaded this file into the ASF+SDF Meta-Envir-
onment as a syntax module. Since we have bottom sorts
Identifier and Directive-parameter, we added some
lexical syntax by hand:

imports Layout
exports
sorts
Directive-statement Message
Identifier Directive-parameter
lexical syntax
l|\||ll ~ [\II]* II\II" _> Identifier
\"m T[\"]* "\"" -> Directive-parameter
context-free syntax
IIDIRECTIVEII II\ [II {Message n s II}+ Il\] non ; n
-> Directive-statement
Identifier Directive-parameter* -> Message

We tried to parse some code. In this example case we
parsed a code fragment containing a single DIRECTIVE state-
ment. In the manual we found the following statement:

DIRECTIVE "CBOPT" "ON";

It did not parse. The error message indicated that it ex-
pected a [ right after the keyword DIRECTIVE. True: there
is a keyword [ in the original BNF rule. The quotes around
the [ and ] should have been left out. Then the construc-
tion becomes a list of zero or more messages separated by a
comma, which makes sense.

We repaired the SBNF rule and generated the SDF mod-
ule again. Thus we obtained (after adding the missing lexi-
cal definitions):

imports Layout
exports
sorts
Directive-statement Message
Identifier Directive-parameter
lexical syntax
II\IIII '[\II]* II\IIII _> Identifier
M\ T[\"]* "\"" -> Directive-parameter
context-free syntax
"DIRECTIVE" {Message ","}* ";"
Identifier Directive-parameter* -> Message

-> Directive-statement

Using this module we could parse the above DIRECTIVE
statement without errors. In the way we illustrated above,
it is possible to obtain a modular grammar for SSL that can
parse all the SSL code

Remark Some of the errors that we detected in earlier
analyses, were in fact semantic errors. The reason that
they were found earlier is that there was something spe-
cial about them. We mention the erroneous ioconnection:
since there was much redundancy we were alarmed that
something could be wrong. Indeed during modularization,
we found the two versions, and inspection of the examples
revealed the error. If there had only been one version, we



would perhaps not have been triggered that something could
be wrong. But then a semantic analysis like the one above
would have revealed the error.

5 An Assembly line for BNF2SDF

In this section we discuss the assembly line that we devel-
oped for the conversion of BNF programs to SDF programs.
In fact, this is a language conversion. The conversion con-
sists of several parts. In general, when converting from one
language to another there are a few situations that we can
encounter. There are constructs that are native in both lan-
guages. Those conversions are the most simple ones. Then
there are constructs that are native in the original language
but not available in the other. This means that those have
to be simulated in the converted language. We also have
the other possibility: constructions that are simulated in
the original language that are available in the converted
one. The latter is often an incentive to do a conversion
project. Then we have the cases that a natural construct
is simulated in the original language and also needs to be
simulated in the target language. And we have the situa-
tion that a construct is not at all expressible in the target
language or vice versa. For more information on language
conversions we refer the reader to [32].

We discuss the assembly line. It contains some prepro-
cessing operations, a main operation, and some postpro-
cessing operations. This approach is also applied in [6] and
[30]. All the operations are components. We glue these
components together with a coordination language called
SEAL [23]. SEAL stands for Semantics-directed Environ-
ment Adaptation Language; it not only takes care of the
coordination but also of a graphical user interface [24].

Lists A list can be represented in SBNF as s [{s}] stand-
ing for one or more occurrences of sort s. In SBNF, this
can also be represented as {s}. A simpleminded conversion
would not see that the s [{s}] is in fact {s} and turn it
into an unnatural SDF construct. We implemented a trans-
formation that preprocesses SBNF and turns the simulated
version into the native version. It is not possible to represent
zero or more occurrences natively in SBNF. It is simulated
as [{s}]. We translate such occurrences to an intermediate
BNF formalism that we called IBNF. It contains the new
notation (s) standing for zero or more occurrences of sort
s. These transformations make converting to SDF a lot eas-
ier. Moreover, they contribute to as native as possible SDF,
since SDF has native notation for both types of lists. We
note that the transformations use pattern recognition. We
recognize these patterns using our generated native pattern

language for SBNF [30].

Separated lists In SBNF, lists with a separator can be
simulated in various ways. We mention four possible ways
s [{’,’ s}] or its equivalent [{s ’,’}] s, for one or
more occurrences of sort s with a comma as separator;
[s [{’,’ s}] orits equivalent [[s ’,’3}] s] for the zero
or more variant. We converted the first twoto { s }_7,’
and the second two to (s)_’,?. The latter constructs are

available in our intermediate IBNF language. We note that
SDF contains an explicit notation for separated lists, as well.
So conversion from SBNF via IBNF to SDF is a logical

route.

Elimination of optionals, choices and complex list-
items In this phase we simulate constructions that are not
available in SDF. There are no optionals like [s] in SDF, no
choices <s|t>, and no complex list items {s t}. The reason
for that is that such constructions are not context-free func-
tions in the strict sense. For more details on the design of
SDF we refer to [16]. We note that this elimination process
reduces the complexity of SBNF rules. Our task is to elimi-
nate those constructs and change them into native SDF. We
convert a rule a ::= [b] to the rules a ::= opt-b, opt-b
::= b, and opt-b ::= . We transform a ::= <b|c> into
the rulesa ::= band a ::= c. We transform complex list
items into one sort: a ::= {b c} into a ::= {b-c} and
b-c ::= b c. Some of the generated sorts needed a more
descriptive name. That required a little hand work.

Main operation: syntax swap Now that we have pre-
treated the SBNF program the actual transformation to
SDF like syntax is easy. Since SDF contains context-free
functions, the rules are denoted the other way around. Fur-
thermore, the main operation takes care of the fact that SDF
nonterminals start with an upper case. Since the SBNF pro-
gram is pretreated the main operation is simple and smooth.
Still, the code that we obtain is not complete SDF. We
needed to postprocess the code a little.

Addition of Sorts In SDF, we have to declare the sorts
that we wish to use. In SBNF this is nonexistent. There-
fore, we postprocess the code and add the sort names. This
operation is also useful when writing an SDF grammar by
hand. If a grammar is large, then it is hard to remember
whether the produced sorts are defined already or not. So
in our development environment for tool factories, we use
this tool already for the support of language description de-
velopment. We could reuse this component without a single
change. For more information on reuse and our general ap-
proach towards (evolutionary) software engineering we refer
to [20].

6 Conclusions

In this paper we proposed an approach to develop, assess
and reengineer language description documents. The de-
scribed methods and tools can be used to develop language
description documents that are correct in the sense that the
grammar of the language does not contain errors in the de-
scription, and that the examples in the document can be
parsed by a parser that can be generated from the language
description. From the language description it is possible
to generate typeset documents, or on-line documents (us-
ing already existing technology). This is particularly useful
for the development of standards. We applied our tools
to a real-world example: a proprietary language from Er-
icsson. Our tools generated useful listings containing the



information that is necessary to correct the errors. We also
developed a method to test the definition in order to obtain
a correct language description.

After finishing this paper, we used this technology to gen-
erate a complete SSL grammar from the source code of the
compiler. We used that grammar to generate a software
renovation factory See [31] for details. Moreover we used an
extension of the technology described in this paper to gen-
erate a correct VS COBOL II grammar from its correspond-
ing IBM Manual (see [25] for a URL). Correct means here
that our generated parser could parse 800.000+ lines of VS
COBOL II code without problems. Since many reengineer-
ing activities start with a grammar in good shape, the meth-
ods and tools that we discussed in this paper are extremely
helpful for us to accomplish a cost-effective approach to-
wards reengineering. It is, for instance, possible to generate
correct grammars for SQL, CICS, PL/I, and so on from
IBM manuals. This means that it is viable for both obscure
and well-known languages to recover their grammars, and
as such to speed up tool development for software renova-
tion. So, the results in this paper are of significant economic
importance.

References

[1] A. Aho, B.W. Kernighan, and P.J. Weinberger. The AWK Pro-
gramming Language. Addison-Wesley, 1988.

[2] J.W. Backus. The syntax and semantics of the proposed inter-
national algebraic language of the Zurich ACM-GAMM confer-
ence. In S. de Picciotto, editor, Proceedings of the International
Conference on Information Processing, pages 125—131. Unesco,

Paris, 1960.

[3] J.A. Bergstra, J. Heering, and P. Klint. The algebraic specifica-
tion formalism ASF. In J.A. Bergstra, J. Heering, and P. Klint,
editors, Algebraic Specification, ACM Press Frontier Series, pages
1-66. The ACM Press in co-operation with Addison-Wesley, 1989.

[4] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Gen-
eration of components for software renovation factories from
context-free grammars. In I.D. Baxter, A. Quilici, and C. Ver-
hoef, editors, proceedings of the fourth working conference
on reverse engineering, pages 144-153, 1997. Available at
http://adam.wins.uva.nl/“x/trans/trans.html.

[5] M.G.J.van den Brand, M.P.A. Sellink, and C. Verhoef. Obtaining
a COBOL grammar from legacy code for reengineering purposes.
In M.P.A. Sellink, editor, Proceedings of the 2nd International
Workshop on the Theory and Practice of Algebraic Specifications,
electronic Workshops in Computing. Springer verlag, 1997. Avail-
able at http://adam.wins.uva.nl/ "x/coboldef/coboldef.html.

[6] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Con-
trol flow normalization for COBOL/CICS legacy systems. In
proceedings of the second euromicro conference on mainte-
nance and reengineering, 1998. To appear. Available at
http://adam.wins.uva.nl/ "x/cfn/cfn.html.

[7] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Current
parsing techniques in software renovation considered harmful. In
S. Tilley and G. Visaggio, editors, Proceedings of the sizth Inter-
national Workshop on Program Comprehension, pages 108-117,
1998. Available at http://adam.wins.uva.nl/"x/ref/ref.html.

[8] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Genera-
tion of components for software renovation factories from context-
free grammars. Science of Computer Programming, 1999. To ap-
pear. Available at http://adam.wins.uva.nl/"x/scp/scp.html. An
extended abstract with the same title appeared earlier: [4].

[9] M.G.J. van den Brand and E. Visser. Generation of formatters
for context-free languages. ACM Transactions on Software En-
gineering and Methodology, 5:1-41, 1996.

[10] A. van Deursen. Ezecutable Language Definitions - Case Stud-
ies and Origin Tracking Techniques. PhD thesis, University of
Amsterdam, 1994.

[11] T.B. Dinesh, M. Haveraaen, and J. Heering. A domain spe-
cific programming style for numerical software, 1998. Work in
progress.

[12] N.  Faltin. extract.perl, 1996. Avail-
able at: http://www?7.informatik.uni-

erlangen.de/ " nsfaltin/mscbnf/extract.perl.
[13] J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors,
Advanced Functional Programming, volume 925 of LNCS, pages

1-23. Springer-Verlag, 1995.
R.L. Glass and R.A. Noiseux. Software Maintenance Guidebook.
Prentice-Hall, 1981.

M. van der Graaf. A specification of Box to HTML in ASF+SDF.
Technical Report P9720, University of Amsterdam, Programming
Research Group, 1997.

14]

(15]

[16] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF — Reference manual. SIGPLAN
Notices, 24(11):43-75, 1989.

[17] J. Heering, P. Klint, and J. Rekers. Incremental genera-

tion of parsers. IEEE Transactions on Software Engineering,
16(12):1344-1351, 1990.
International Telecommunication Union. Recommendation Z.120

(10/96) - Message sequence chart (MSC), 1996.

P. Klint. A meta-environment for generating programming en-
vironments. ACM Transactions on Software Engineering and
Methodology, 2(2):176-201, 1993.

P. Klint and C. Verhoef. Evolutionary software engineering: A
component-based approach. In R.N. Horspool, editor, IFIP WG
2.4 Working Conference: Systems Implementation 2000: Lan-
guages, Methods and Tools, pages 1-18. Chapman & Hall, 1998.
Available at: http://adam.wins.uva.nl/ x/evol-se/evol-se.html.

D.E. Knuth. Literate programming.
27(2):97-111, 1984.

J.W.C. Koorn. GSE: A generic text and structure editor. In
J.L.G. Diets, editor, Computing Science in the Netherlands
(CSN92), SION, pages 168-177, 1992.

J.W.C. Koorn. Connecting semantic tools to a syntax-directed
user-interface. In H.A. Wijshoff, editor, Computing Science in
the Netherlands (CSN93), SION, pages 217-228, 1993.

J.W.C. Koorn. Generating uniform user-interfaces for interac-
tive programming environments. PhD thesis, University of Ams-
terdam, 1994.

The Computer Journal,

[25] R. Lammel and C. Verhoef. VS COBOL 1II
grammar V1, vl edition, 1999. Available at
http://adam.wins.uva.nl/"x/grammars/vs-cobol-ii/.

[26] T.J. McCabe. A complexity measure. IEEE Transactions on

Software Engineering, SE-12(3):308-320, 1976.

[27] P.D. Mosses. Action Semantics. Cambridge University Press,
1992.
[28] G.C. Murphy and D. Notkin. Lightweight lexical source model

extraction. ACM Transactions on Software Engineering and

Methodology, 5(3):262-292, 1996.

P.W. Oman and C.R. Cook. The book paradigm for improved
maintenance. IEEE Software, 7(1):39-45, 1990.

M.P.A. Sellink and C. Verhoef. Native patterns. In
M. Blaha, A. Quilici, and C. Verhoef, editors, Proceedings
of the Fifth Working Conference on Reverse Engineering,
pages 89-103. IEEE Computer Society, 1998. Available at
http://adam.wins.uva.nl/"x/npl/npl.html.

M.P.A. Sellink and C. Verhoef. Generation of software ren-
ovation factories from compilers. In H. Yang and L. White,
editors, Proceedings of the International Conference on Soft-
ware Maintenance, pages 245-255, 1999. Available via
http://adam.wins.uva.nl/“x/com/com.html.

AA. Terekhov and C. Verhoef.

ties of language conversions, 1999.
http://adam.wins.uva.nl/ "x/con/con.html.

(31]

[32] The reali-

Available at



