
0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 111

As the term name magic indicates, you
don’t need proof to support your claims.
Anyone desperate for solutions will whole-
heartedly accept those unsupported claims.1

In fact, many software industry decision-
makers find themselves trapped in huge
amounts of legacy code, in dire need of
modification. At the same time, software
engineering educators deliver people skilled
in contemporary development rather than
enhancement programming, let alone geri-
atric care for aging legacy applications. Ca-
pers Jones2 even thinks that this phenome-
non is one of the 60 most important risks in
software engineering. You do not have to be
a rocket scientist to figure out that a lan-
guage converter could solve your personnel
problems: a language conversion is sup-
posed to bridge the gap between available
knowledge of people and the knowledge
needed to solve legacy problems. Is it that

easy? This article sheds light on the realities
of language conversions; it also provides
simple examples that expose the prob-
lems—anyone involved in software engi-
neering can understand them.

So How Hard Is Language
Conversion?

We encountered a company stating about
a Cobol–to–Visual Basic converter, “The con-
verter runs as a simple wizard: it is intended
to be something a secretary can run.” Fur-
thermore, at a panel of the International
Conference on Software Maintenance, a re-
searcher discussing the next century’s chal-
lenges implied that automated conversion is
solved and that the next challenge is para-
digm-shift conversion. This means not only
converting Cobol to C++ but also text-based
procedural code into Web-enabled object-
oriented C++. From such observations, we

feature
The Realities of
Language Conversions

Andrey A. Terekhov, St. Petersburg State University

Chris Verhoef, Free University of Amsterdam

Billions of lines
written in Cobol,

PL/I, and other
mature languages

are still in
active use. Many
developers have
tried to convert
these languages
to more modern

ones, but few have
succeeded. This

article sheds light
on the realities

of language
conversions and

discusses the
possibilities and

limitations of
automated

language
converters.

T
he most influential cost drivers of software engineering relate to
management, personnel, and team capability—not software tools,
although software vendors and academic researchers emphasize
them. Many managers become victims of quack software modi-

fication tools and services. This mechanism, also known as the silver-bullet
syndrome, is what anthropologists call name magic: you just say the name
of the thing—“Cobol to Java”—and you have its full power at your disposal.

programming languages

could conclude that automated language
conversions are easy. And let’s face it, con-
verting the Cobol calculation ADD 1.005 TO
A to its equivalent in VB, A = A + 1.005, is
indeed very easy. Any simple tool can do it.

On the other hand, language conversion
seems to be risky business. We know of
three companies that went bankrupt and
two departments of large software-intensive
enterprises that were dismantled, all be-
cause of failed language conversion proj-
ects. Tom Holmes from Reasoning states
that if success means making a profit, then
most conversion projects are not successful.
A reader of a preliminary version of this ar-
ticle told us of an enterprise that spent $50
million on failed language conversion proj-
ects. In his book on computing calamities,
Robert Glass mentions the failure of a trans-
lation system that would convert software
from an obsolete system to a new one. Man-
agement told the developers that the con-
version problem was limited in scope and
that they would need only to convert a lim-
ited set of constructs. This turned out not to
be true. The postmortem analysis indicated
that the converter was perhaps 10 times
more complicated than expected; suddenly,
what had been technically feasible became
economically and technically infeasible.3

In the news group alt.folklore.computers,
S.C. Sprong, who ported software from Fortran
to C, stated, “Low-level porting, even with
provided documentation, is one of the black-
est software arts; knowing how to do it well
will surely get you a first-class ticket to hell.”

Needless to say, there is a lot of disagree-
ment on the complexity of language conver-
sion. Perhaps it is theoretically possible to
automatically improve a software system’s
structure to achieve a paradigm shift—for
example, by introducing OO concepts.
However, this is very difficult to automate
and it implies a lot of human intervention.4

However, the payoff is commensurately
large, especially for systems with indefinite
life spans. Due to automation problems,
most conversion tools apply the technology
of syntactic conversion. Even with this
seemingly simple and low-level approach,
many difficulties occur, and the scale of
those intricacies is not yet fully understood.

Despite the lack of solid publications
about language conversions (we listed the
most useful references,5–13 but some are dif-

ficult to find or are in German, so contact us
for copies or pointers), lots of vendors ad-
vertise migration tools and services. Many
companies say they can convert your sys-
tems to whatever language you want. Al-
though some of them may be doing a great
job, others who claim to have technology
and skills are not. For instance, one com-
pany advertising on the Internet provided
examples of converted code that appeared
not even to be compilable. Another com-
pany claimed to be able to convert Power-
Builder to Java, but after our inquiries they
had neither the experience nor the tools to
do the job. Instead, they were claiming to
have a process! In a quote (which we trans-
lated from German to English) from his book
on OO software migration, Harry Sneed
summarizes the state of the practice in the
transformation marketplace as follows:12

“The reality looks different. Those who can
read between the lines recognize that the
problems are grossly simplified and that the
advertised products are far from being ripe
for use in practice.”

Requirements for Language
Conversion Aids

The problem statement for language con-
version is simple: convert this system to that
language without changing the external be-
havior. From an abstract point of view, a lan-
guage migration project seems deceptively
simple. Consequently, requirements for lan-
guage converters are often not formulated.

Usually, the availability of constructions
that facilitate the expression of a solution
determines how easy it is to formulate a so-
lution for a particular problem. We could
call such elements in a programming lan-
guage native language constructs. For in-
stance, if we wish to express a conditional
problem, a language that supports a condi-
tional language construct is more conven-
ient than a language lacking an if-then-else
construct. If we must use the latter lan-
guage, we must simulate the conditional
construct. Such code fragments are called
simulated language constructs. We can, for
instance, simulate object orientation in a
language lacking OO support.

The language conversion problem for a se-
rious software system amounts to mapping its
native and simulated constructs to hopefully
only native constructs available in the target

1 1 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

The problem
statement

for language
conversion
is simple:

convert this
system to

that language
without

changing the
external
behavior.

language(s), as Figure 1 shows. There are at
least six possible categories in this mapping
(expressed as the six arrows in the figure), all
of which we have encountered. Requirement
specifications usually mention only the na-
tive-to-native part of the mapping, in the
form of a statement-by-statement conversion.
This phenomenon is in accordance with peo-
ple’s tendency to focus first on the easiest
problems. One of us (Chris Verhoef) was an
external reviewer of several large-scale lan-
guage conversion projects. Most of them
failed because the hard problems were
avoided in the requirements. In one case, for
instance, about 80% of the requirements
specification dealt with the graphical user in-
terface, while the actual language converter
was represented by a single arrow. Someone
underestimated the problem and thus omitted
the hard parts from the requirements.

Underestimation often leads to runaway
projects. The first project failure delays the
actual software conversion, which in turn
triggers increased pressure on the next devel-
opment team to deliver the converter. This
pressure makes it easy for the new team to
skip requirements altogether; after a few fail-
ure cycles, total breakdown occurs, clarifying
the demise of the earlier-mentioned language
conversion companies and departments.

To develop a source-to-source converter,
you need at a minimum several requirement
specifications:

■ You must inventory the native and simu-
lated language constructs of the system
that needs conversion.

■ You must develop a conversion strategy
for each language construct. Specifically,
you must list the input and output frag-
ments that describe the converter’s de-
sired behavior.

■ You must make an explicit statement
about whether the converted system
should be functionally equivalent to the
original system. Intuitively, you would
think this is always so, but in practice, a
sophisticated automated modification
effort usually exposes faults and unsafe
code in the original system. Often, the
customer then requires the developers to
fix these faults as well. Thus, potential
requirements creep must be dealt with in
the requirements. Note that it also ham-
pers testing the new system because re-

gression testing is based on
equivalence.

■ You must include a statement
about whether the original
system’s test sets are to be con-
verted. If errors in the tests
are exposed, the requirements
must state the policy toward
modification.

■ You must set as your goal maximum au-
tomation of the conversion (enabling min-
imal human interference).

■ If you plan to maintain the converted sys-
tem, you must make it maintainable. For
instance, if the original maintenance team
is going to continue in its role, the new
system should be as similar as possible to
the original system so that the team can
recognize the original code. If, on the
other hand, the maintenance team is new,
the conversion should try to use the target
language’s idiom so that maintainers rec-
ognize the code as normal for that lan-
guage. In other cases, the original source
code (say, in Cobol) is used for modifica-
tions even after a successful conversion
(say, to Java), because the translation
process is so automated that it’s easier to
re-generate final Java code than to make
changes in Java. This also helps maintain-
ers if they are familiar with the original
language but not yet with the target one.

■ You must make the converted system’s
efficiency adequate both in compilation
and execution time.

■ If you will use the converter many times,
the time required for conversion is rele-
vant. It is not always feasible to optimize
this without distributing calculations
over many machines.

■ If you plan to maintain the converted
system, its size must not exceed the orig-
inal system’s size by much (if at all).

Apart from these explicit requirements,
there is always an implicit understanding of
how the converter will work. This reflects
the customer’s expectations of the advan-
tages associated with transferring the sys-
tem to a more contemporary environment.
These imaginary advantages often motivate
the conversion process but they are rarely
realized. A popular misconception is that af-
ter conversion the system is change-enabled
so that totally new features can be imple-

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 113

Native
construct

Simulated
construct

Native
construct

Simulated
construct

No
construct

Figure 1. A mapping
of constructions
between languages.

mented easily. The problem is aggravated by
companies marketing conversion software
as yet another silver bullet; the quality of
such converters is often less than optimal,
and in some cases even nonexistent.

An automatically converted program is usu-
ally not as good as a new one developed within
the full range of a contemporary programming
language. Although the outcome of conversion
should ideally be code that acts as if it is writ-
ten in the target language and uses the target
language’s features and idiom, actual con-
verted programs often retain the idiom of the
source language (more on this later). Some
people expect that the structure of the program
will surely improve after automated conver-
sion, but conceptual changes to the application
will always remain labor-intensive and require
human interference.5,13 For instance, imagine
replacing mainframe CICS with C++ using Mi-
crosoft Transaction Server.

Technical Problems
A list of input and output patterns is very

helpful when converting from one language
to another—in fact, this is the hard part of
language conversion.

Converting data types
One of the first problems is converting

data types. Although we do not always real-
ize it, programming languages usually have
idiosyncratic data type conventions. For in-
stance, many people consider C++ and Java
to be similar, so a native-to-native conver-
sion seems a simple task. Yet, their data
types reveal many differences. For example,
C++ has pointer-type variables but Java
doesn’t; Java has Booleans but C++ doesn’t.
Also, C++ data type sizes vary from plat-
form to platform, whereas they are fixed in
Java. So even when converting between C++
and Java, we run immediately into the prob-
lem of representing idiosyncratic data types.

Thus, you should not be surprised that
the differences between languages like
Cobol or PL/I and languages such as Java,
VB, or C++ are perhaps insurmountable.
For example, consider this PL/I data type:

DECLARE C FIXED DECIMAL (4, -1);

The variable C occupies three bytes, with the
decimal point assumed to be one position to the
right of the number. Thus, Cmay contain values

123450 and 123460 but not 123456. C ranges
from –99999∗ 10 to 99999∗ 10, and all values
assigned will be truncated at the last digit, so the
assignment C = 123456 is equivalent to C =
123450. Since the last digit is always a zero, it is
not stored at all. Clearly, neither this data type
nor the assignment operator correspond to any
standard C++ data type and assignment opera-
tion. (The article by Kostas Kontogiannis and
colleagues5 converts a PL/I dialect to C++ but
does not address this problem.)

Cobol to Visual Basic
In a Cobol-to-VB conversion, one possibil-

ity is to convert only the data types that have
an equivalent in the target language. This is the
native-to-native mapping shown in Figure 1.
The converter would report variables of all
other data types to the user, suggesting that the
user rewrite the parts of the code that use them.
This simple Cobol code fragment illustrates
the problems with data type conversions:

DATA DIVISION.

01 A PIC S9V9999 VALUE -1.

PROCEDURE DIVISION.

ADD 1.005 TO A.

DISPLAY A.

The variable A can represent values such as
–3,1415; here, it initially represents –1. In
the procedural part of the program, we add
the number 1.005 to A, then we print the re-
sult to the screen. A converter could turn
this simple Cobol program into the follow-
ing VB program:

Dim A As Double

A = -1

A = A + 1.005

MsgBox A

The VB program declares the same variable
A as a Double. The variable A is initialized and
obtains the value –1. VB represents the Cobol
ADD as a VB + operator. When we run both pro-
grams, the VB code yields a different result
(+0.0049, indicating a rounding error) than
the Cobol code.

The reason for the small difference is the
fact that the Cobol code uses a fixed-point
data type and the VB fragment uses a float-
ing-point data type. A number of reference
books have documented the poor precision
of VB’s floating-point implementation.

1 1 4 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

Although we
do not always

realize it,
programming

languages
usually have
idiosyncratic

data type
conventions.

For the fragment just given, we can solve
the rounding problem by using a VB data
type called Currency. But consider a
slightly different Cobol program:

DATA DIVISION.

01 A PIC S9V99999 VALUE -1.

PROCEDURE DIVISION.

ADD 1.00005 TO A.

DISPLAY A.

This is now converted using the Currency
data type:

Dim A As Currency

A = -1

A = A + 1.00005

MsgBox A

The Cobol code calculates with more pre-
cision than the previous one, yielding the ex-
pected result. However, the VB code prints
0.0001, which is twice as much as in the sec-
ond Cobol program. This problem occurs
because the Currency data type uses four-
digit precision and rounded results for
smaller amounts. So the Currency data type
will misbehave in other contexts.

So, no single data type in VB can handle
the fixed-length record structure in Cobol.
Therefore, any simple strategy to convert
these Cobol data types is doomed to fail, be-
cause different contexts require different so-
lutions. Clearly, a sophisticated data type
analysis is mandatory even in the simple ex-
ample programs shown here.

Cobol to C
We mailed the simple Cobol program just

listed and its conversion to VB to the researcher
mentioned earlier who had listed the next cen-
tury’s 10 challenges—to check whether he con-
sidered this a syntactic transformation. He con-
firmed this and stated, “I contrast syntactic
transformation (which we know how to do
well) with deeper ones.” He did not observe
the rounding problem in the VB conversion.
This is perfectly understandable; he told us
later that he had never worked with Cobol or
VB, nor on a converter between the two. He
also converted our first Cobol example into C:

double A = -1.0;

A =+ 1.005;

printf(”%d\n”, A);

This code cannot be compiled at all. We think
he meant to include some main function:

double A = -1.0;

main () {

A =+ 1.005;

printf(”%d\n”, A);

}

This code compiles and produces
1072698490. The format string %d does not
expect floating numbers, hence the erroneous
output. (At least we now know the answer to
the question “Why does 2 + 2 = 5986?” on the
cover page of a book on practical C program-
ming.14) It should be another format string, %f.
After this repair, the code produces 1.005000.
Of course, the =+ should be +=. After another
editing session, we obtain 0.005000. More ed-
iting to silence all the compiler warnings leads
to the following neat C code:

#include <stdio.h>

double A = -1.0;

int main (void) {

A += 1.005;

printf(”%f\n”, A);

return (0);

}

Unfortunately, this program is still wrong:
although we have the correct arithmetic an-
swer, the Cobol program’s output differs from
the C program’s output. We did not mention
this before, since we want to address one
problem at a time. The actual Cobol output is
00050+. The literal output of the C program
is 0.005000. Obviously, the two programs
are not semantically equivalent. This may
seem nit-picking, but what if this Cobol code
were part of a successful multilingual invoice
layout system where printing in the wrong for-
mat would have devastating consequences?
After all, only business-critical systems are
candidates for conversion. In our next attempt
to convert the Cobol program, we come up
with the following:

#include <stdio.h>

double A = -1.0;

void display (double A) {

char s[16];

sprintf(s, ”%+#6.4f”, A);

printf(”%c%s%c\n”,

*(s + 1), s + 3, *s);

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 115

No single data
type in VB can

handle the
fixed-length

record
structure
in Cobol.

}

int main (void) {

A = A + 1.005;

display(A);

return (0);

}

First, observe that this program has little
resemblance to the initial C solution. Second,
when we imagine that the display function
is in a library, the code shows strong resem-
blance with the Cobol source. Thus the idiom
of Cobol is entirely preserved in the C code.

Let’s discuss the code just given. We see the
initial stage of a library function called display
in the code that emulates the output behavior of
the Cobol DISPLAY statement. We declare a
character string of length 16 and put the value
of A in a buffer. Then we use the printf func-
tion to format it in the correct way: we skip the
sign and print the contents of the pointer to the
second array value using *(s + 1), then we
print the contents of everything behind the dot
using s + 3, and finally we print the contents of
the first array value, which is the sign using *s.
Still, we cannot be sure that this C program is a
correct conversion of the Cobol program. For
instance, what is the exit status of the original
Cobol program when executed on a main-
frame? Does it equal 0, the exit status of our C
program? Or, is the level of compiler warnings
the same for the original and converted pro-
grams? If not, maybe the converted program is
not accepted in the production environment;
who knows? But more importantly, we hope
you will doubt whether our C program is equiv-
alent to the Cobol program. Indeed, doubt is
healthy when it comes to converted code.

Cobol to Java
Any language construct that can be abused

will be abused. These so-called clever uses of
programming language constructs can lead to
unexpected discrepancies between the in-
put–output behavior of the original code and
the converted code. There are problems asso-
ciated with overflow, type casting, and other
complicated type manipulations. Consider
the following Cobol program.

DATA DIVISION.

01 A PIC 99.

PROCEDURE DIVISION.

MOVE 100 TO A.

DISPLAY A.

In this fragment, a variable A is declared that
can represent two digits like 42. In the pro-
cedural code, a constant that is too large for
this data type is assigned to A. Then we print
the result. A converter could transform this
code into the following Java fragment:

public class Test {

public static void main(String

arg[]) {

short A = 100;

System.out.println (A);

}

}

We declare a short integer variable A and as-
sign the value 100 to it. Then we print the re-
sult. Of course, both programs yield entirely
different output values: the Cobol program
prints 00, the Java program displays 100.

Solving the problems of unexpected side ef-
fects with data types is one of the realities of
language conversions. To fight these problems,
we need a different approach, which we call
data type emulation.7 For each source lan-
guage data type that does not have a precise
equivalent in the target language, we create
dedicated support emulating the transactions
specific to this data type. So, in a sense, we add
some constructs to the target language so that
the “Native” arrow in Figure 1 moves from
“No construct” to “Simulated construct.” For
example, the Cobol variable declarations

01 A PIC 9V9999.

01 B PIC X(15).

do not have a satisfactory equivalent in, say,
Java. Therefore, their conversion could have
the following syntax:

Picture A = new Picture

(”9V9999”);

Picture B = new Picture

(”X(15)”);

where the Picture class emulates in detail
the source data type behavior, dealing with
the treatment of assignments, conversion to
related data types, and overflow handling.
Obviously, the converted program has a
strong Cobol flavor, although it is a Java
program. You could call such programs
Java-compliant Cobol programs, but maybe
not Java programs (we already saw a C-

1 1 6 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

We hope you
will doubt

whether our
C program
is indeed

equivalent to the
Cobol program.

compliant Cobol program). As soon as we
start to emulate data types, we also have to
question the compositionality issue. That is,
if we use emulated data types in a native
arithmetic construct of a converted pro-
gram, is the result correct? If not, we have
to create special functions like Add(Pic,
Pic) or create special methods implement-
ing the arithmetic operations that give the
correct behavior for the emulated data
types, for instance, a.Add(b). In C++ we
can overload operators like +, –, *, and =.
Now imagine a programmer who is adding
functionality to this C++ program, and the
wrong emulated, overloaded + is applied in-
stead of the usual operation. Given all these
problems, we find it hard to believe that
converted programs are more maintainable,
change-enabled, contemporary, component-
based, or any other qualification that is of-
ten heard as primary reason for a language
conversion.

OS/VS Cobol to VS Cobol II
We have seen that it is not so easy to

safely convert the data part of programs to
a target language. Converting the proce-
dural code is not easy, either. So let us limit
our expectations a little and look at dialect
conversion. As an example, we will focus on
converting from a Cobol 74 dialect called
OS/VS Cobol to a modern Cobol 85 dialect
called VS Cobol II. The compilers are both
from IBM, and the code runs on IBM main-
frames. Many of us think that such conver-
sions are a non-issue; let’s see. The follow-
ing code excerpt displays the word IEEE:

PIC A X(5) RIGHT JUSTIFIED

VALUE ’IEEE’.

DISPLAY A.

This is valid syntax in both Cobol di-
alects, so it is tempting to assume conversion
is unnecessary. The problem is that the same
syntax can have different behavior. For in-
stance, the OS/VS Cobol compiler prints
the expected result, namely “ IEEE”, which
is right-justified. The VS Cobol II compiler
displays the output “IEEE ”, which is left-
justified (if you wonder why, we have two
words for you: ANSI standards). This is not
an isolated case.15–17 Carl Gehr and Rex
Widmer call this “same syntax, different be-
havior” in their Cobol Migration Course.17

We call it the homonym problem.
Another case of a problem that is not eas-

ily detected is presented in Figure 2.18 Basi-
cally, the OS/VS Cobol program in Figure 2a
declares a TMP variable with eight positions
and then defines a data type H-DATE for deal-
ing with dates like 13/01/99. In the proce-
dural part, the special register CURRENT-DATE
stores today’s date in the TMP variable. The
program stores this value in the simulated
date field, then prints the day, month, and
year. To convert this program to a newer
Cobol dialect, we must replace the CURRENT-
DATE special register by the new system call
DATE. The type of DATE is YYMMDD, which
is not the same as DD/MM/YY, the type of
CURRENT-DATE. IBM’s Cobol/370 Migration
Guide19 proposes converting the type of vari-
able TMP from PIC X(8) to X(6) and con-
verting MOVE CURRENT-DATE into an ACCEPT

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 117

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.

PROGRAM-ID. TEST-1. PROGRAM-ID. TEST-2.

DATA DIVISION. DATA DIVISION.

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.

01 TMP PIC X(8). 01 TMP PIC X(6).

01 H-DATE. 01 H-DATE.

02 H-MM PIC XX. 02 H-MM PIC XX.

02 FILLER PIC X. 02 FILLER PIC X.

02 H-DD PIC XX. 02 H-DD PIC XX.

02 FILLER PIC X. 02 FILLER PIC X.

02 H-YY PIC XX. 02 H-YY PIC XX.

PROCEDURE DIVISION. PROCEDURE DIVISION.

PAR-1. PAR-1.

MOVE CURRENT-DATE TO TMP ACCEPT TMP FROM DATE

MOVE TMP TO H-DATE MOVE TMP TO H-DATE

DISPLAY ’DAY = ’ H-DD. DISPLAY ’DAY = ’ H-DD.

DISPLAY ’MONTH = ’ H-MM. DISPLAY ’MONTH = ’ H-MM.

DISPLAY ’YEAR = ’ H-YY. DISPLAY ’YEAR = ’ H-YY.

Figure 2. Two seem-
ingly equivalent
Cobol programs:
(a) OS/VS Cobol and
(b) VS Cobol II.

(b)(a)

statement. This leads to the VS Cobol II pro-
gram in Figure 2b.

The IBM solution breaks down in this
context, because the type of the variable
TMP assumes in the MOVE statement that it
equals the type of the variable H-DATE. But
this is no longer true, so the converted pro-
gram’s output is completely erroneous. Exe-
cuting the converted program on 15 Sep-
tember 1999 results in the output

DAY = 91

MONTH = 99

YEAR =

The program has mapped the string 990915
onto H-DATE. The subfield H-MM obtains the
first two digits and is set to 99, then the FILLER
is set to 0. The subfield H-DD gets the next two
digits, 91; the next FILLER gobbles up the last
5; and H-YY gets nothing. So, the program
prints first the contents of H-DD as value 91,
then H-MM as 99, and H-YY as nothing.

How do we fix this? One solution could be
to also convert the H-DATE field and all code
that depends on it. This solution ripples
through the program, and it can also affect
other programs: the data type could be used in
a database or passed as a parameter in a call
to another program. Procedural code conver-
sion is tightly coupled with the conversion of
the data types involved in the procedural code.
If we follow the IBM solution, we must mod-
ify the entire system. By using data type emu-
lation, we can prevent the ripple effect, namely
by converting to the following code:18

IDENTIFICATION DIVISION.

PROGRAM-ID. TEST-3.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 F-DATE.

02 F-YY PIC XX.

02 F-MM PIC XX.

02 F-DD PIC XX.

01 TMP PIC X(8).

01 H-DATE.

02 H-MM PIC XX.

02 FILLER PIC X.

02 H-DD PIC XX.

02 FILLER PIC X.

02 H-YY PIC XX.

PROCEDURE DIVISION.

PAR-1.

ACCEPT F-DATE FROM DATE

STRING F-MM ’/’ F-DD ’/’ F-YY

DELIMITED SIZE INTO TMP

END-STRING.

MOVE TMP TO H-DATE

DISPLAY ’DAY = ’ H-DD.

DISPLAY ’MONTH = ’ H-MM.

DISPLAY ’YEAR = ’ H-YY.

First, we declare a fresh variable F-DATE
with the same type as the procedural code’s
new system call. We store the result of the
DATE system call in the fresh variable F-
DATE, then we emulate the old special reg-
ister by storing the old data type in TMP.
Now all the other code that relies on the old
date format runs as if we were still using the
old special register. The entire ripple effect is
prevented, and the solution can be 100% au-
tomated, though it may not be as beautiful
as it could be. IBM has corrected this error
in newer versions of their migration guide.

Turbo Pascal to Java
The following Turbo Pascal program is

based on code written in a proprietary lan-
guage that needed conversion to Java. We
have transposed the problem to Turbo Pas-
cal to make the code compilable for others.

Program StringTest;

var s: string;

a: integer;

begin

s := ’abc’;

a := pos (’d’, s);

writeln (a);

s [pos (’a’, s)] := ’d’;

writeln (s);

end.

We have two global variables. First, we
set the string variable to abc. Then we set
variable a to the offset of the first occurrence
of the string d in the string abc. Since there
is no such occurrence, the value 0 is assigned
to a. We write the result to the screen. Then
on the first occurrence of substring a in the
string abc, we replace a with d, and we write
the string to the screen. So the program’s
output is 0 and dbc. The following Java pro-
gram could be the output of a naïve, auto-
matic source-to-source converter:

public class StringTest {

public static void main

1 1 8 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

Procedural
code

conversion
is tightly

coupled with
the conversion

of the data
types involved

in the
procedural

code.

(String args[]) {

StringBuffer s =

new StringBuffer (”abc”);

int a;

a = s.toString().indexOf(’d’);

System.out.println (a);

s.setCharAt (s.toString()

.indexOf(’a’), ’d’);

System.out.println (s);

}

}

Here, we declare s to be abc and we set a
to the offset of the first occurrence of d in the
string s. However, the convention in Java is
that when this does not occur, the return
code equals –1, so –1 is printed on the screen.
Thus, the semantics of the first part of the
Java program is not correct. Fortunately, the
second part is converted correctly. We take
the return-code side effect into account and
convert the Pascal program as follows:

public class StringTest {

public static void main

(String args[]) {

StringBuffer s =

new StringBuffer (”abc”);

int a;

a = s.toString()

.indexOf(’d’) + 1;

System.out.println (a);

s.setCharAt (s.toString()

.indexOf(’a’) + 1, ’d’);

System.out.println (s);

}

}

To solve the return code problem in the first
part, we add 1 to the index to simulate the
Turbo Pascal return code. The value of a is
correctly 0. However, the second part is now
incorrect: the output is adc instead of dbc. Ap-
parently, the code replaced the second position
in the string abc with a d. This is due to an-
other side effect of conversion: arrays in Java
start with 0, instead of 1 as in Turbo Pascal.
When we take this effect into account, we get

public class StringTest {

public static void main

(String args[]) {

StringBuffer s =

new StringBuffer (”abc”);

int a;

a = s.toString().indexOf(’d’)

+ 1;

System.out.println (a);

s.setCharAt ((s.toString()

.indexOf(’a’) + 1) - 1, ’d’);

System.out.println (s);

}

}

We add one to the indexOf function to cor-
rect for the difference in return codes. For
Java arrays, we subtract 1 from the array
counter so that we correct the difference
with Turbo Pascal. During the restructuring
phase of the converted code, we can nor-
malize for cumulative calculations in the
code and restructure the code

s.setCharAt ((s.toString()

.indexOf(’a’) + 1) - 1, ’d’);

by rewriting it as

s.setCharAt (s.toString()

.indexOf(’a’), ’d’);

Now we see why in the first conversion
attempt the second part gave the correct an-
swer: it was a cumulation of two errors that
canceled each other out and provided the
right answer by accident. Or, as Scott Adams
formulates it in his book The Dilbert Princi-
ple: Two wrongs make a right, almost.

The Gory Details
The essence of reengineering is getting all

the gory details right—and the list of annoying
issues that must be taken care of is endless.

Special difficulties are caused by opera-
tions involving the internal representation
of variables as well as other operations in-
teracting with memory. Such cases require
separate runtime support procedures. Con-
sider the following example:20

STRING ID-1 ID-2 DELIMITED BY ”*”

ID-4 ID-5 DELIMITED BY SIZE

INTO ID-7 WITH POINTER ID-8

ON OVERFLOW GO TO OFLOW-EXIT.

This Cobol sentence combines the partial
or complete contents of four different data
items into one single data item ID-7, also
providing the pointer ID-8 to the last char-
acter position in the receiving field. More-

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 119

As Scott Adams
formulates it
in his book
The Dilbert
Principle:

Two wrongs
make a right,

almost.

over, when too many elements are put in
ID-7, the control flow of the program goes
to a paragraph named OFLOW-EXIT. The
STRING statement deals with the internal rep-
resentation of the variables and must be emu-
lated when converting into a language not sup-
porting this kind of composition of variables.
To preserve the program’s semantic correct-
ness, the target types ought to have the same
internal representation as the source ones.

This problem is closely related to the data
type casting problem, and a solution of the
first depends on a solution to the second. If
the data types are emulated, then the opera-
tions must be emulated as well. We do not
believe that merely using native data types
will lead to satisfactory solutions for Cobol
programs containing this kind of operation.
This is not the only operation of this type.
Cobol contains native syntax for searching in
data items, counting of data items, and re-
placement by other data items. For instance,
the INSPECT statement specifies that charac-
ters (or groups of characters) in a data item
are to be tallied, replaced, or both. Auto-
mated conversion to languages not support-
ing this kind of functionality in a native way
must be extended with syntax and semantics
capturing such constructs, which brings us to
the more general issue of a language domain
focus. The example just given clearly shows
that Cobol contains a rich set of construc-
tions to deal with rather sophisticated data-
processing tasks. Any attempt to convert
such a typical Cobol construct to a language
that has a different domain focus is doomed
to fail, for the latter lacks the language sup-
port to deal with the other domain. As one
reviewer pointed out to us: Analogously,
Cobol is pretty hopeless as a systems pro-
gramming language, and it would be difficult
to impossible to translate a good systems
program (in any language) into Cobol. The
converse of this statement, namely that con-
version between similar languages would be
easy, is not at all true. The homonym prob-
lem is a counter example, which shows that
conversion is always intricate.

Discussion
The examples we have presented clearly

illustrate that language conversions are
grossly underestimated—even by well-
known reverse-engineering experts.21 Even
when we restrict ourselves to a dialect con-

version of two IBM products, we encounter
problems. IBM seems to have underesti-
mated the conversion of their own dialects.

The examples clearly illustrate that auto-
mated language conversion is much more
difficult than many people anticipate. A
possible cause of underestimating the prob-
lems is that the surface syntax of the con-
verted arithmetic looks deceivingly similar
to the original. As with ADD 1.005 TO A
and A = A + 1.005, we are fooled by our
perception of arithmetic reasoning. Moreover,
the printing routines for Cobol (DISPLAY),
VB (MsgBox), and C (printf) also have the
same look and feel, but their semantics are
not in accordance with our intuitions. Fi-
nally, when we restrict ourselves to dialect
conversions, the problem becomes even
harder: while the programs compile under
many compilers, the semantics of the same
syntax differ from compiler to compiler. As
a consequence, the semantics of converted
code will usually differ from the original un-
less we take many precautions.

The examples also show that it is danger-
ous to map data types of one language to an
approximate data type in the target language
(illustrated by the mapping in Figure 1 from
“Native construct” to “No construct”).

The use of native versus emulated data
types depends on the requirements that are
most important for the conversion. Native
data types do not always lead to correct
code, but the problems with data type emu-
lation are numerous and varied as well. Us-
ing the native data types of the target lan-
guage might simplify maintenance (because
it delivers less alien code), but it clearly re-
duces the level of automation or affects the
semantic correctness of the result. Applying
data type emulation leads to more automa-
tion and more correct programs, but at a
price of extra work required for writing
runtime libraries, more complicated mainte-
nance, and loss of efficiency in the perform-
ance of the converted system.

Both techniques can be used simultane-
ously. It is possible, for instance, to first an-
alyze whether a source program is type-safe;
that is, we check that problems like the ones
we have addressed earlier are not present. If
that is the case, we can opt for a translation
where we map to approximate native data
types in the target language, and when there
are problematic parts, we can choose to con-

Even when
we restrict
ourselves to

a dialect
conversion
of two IBM
products,

we encounter
problems.

1 2 0 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

vert these parts using data type emulation.
Also, the homonym problem reveals a

possible misconception that syntactic equal-
ity between language constructs of different
languages or dialects would be a useful indi-
cator of the complexity of a conversion proj-
ect—that the more equal the languages are,
the more easy a conversion would be. In fact,
it is a very nonintuitive measure for com-
plexity of language conversions because the
more syntactically equal languages are, the
more difficult it becomes to detect whether
there are differences. In addition to all the
language conversion problems we have, we
must also deal with semantic differences that
we cannot even detect syntactically.

Any decision maker considering language
or dialect conversions to solve a problem
should realize that the problems that are
perceived to be solved by the conversion
will be replaced by other, perhaps more in-
tricate problems. The more code that needs
to be converted, the more automation be-
comes a necessity. This in turn leads to more
alien code. If you are lucky, the only con-
nection with object orientation after a ma-
jor conversion effort is the inheritance of the
maintenance problems you already had.

A Process for Conversion
Converting application software from

one language to another is usually done to
simplify maintenance. Therefore, the target
source texts must be well structured, con-
tain as little global data as possible, and so
on. Since source language programs rarely
comply with these requirements, any sensi-
ble language conversion should first start
with extensive restructuring—despite the
problems you will encounter with the classi-
cal restructuring tools.9

Certain steps are necessary in a language
conversion. The simple example we will use
is based on work that was done for a Swiss
bank.11 Figure 3 depicts the basic language
conversion process as we experienced it.

First of all, we restructure the original
program so that the problematic arrows in
Figure 1 are removed as much as possible.
For example, Cobol programs do not neces-
sarily have a main, but C programs com-
monly do. Therefore, in converting from
Cobol to C, restructuring the Cobol code
should include adding a simulated main.
Subroutines are not common in Cobol but

are in other languages. It is hard to recover
them, especially with unstructured code.
For example, in a Cobol-to-Ada conversion
described elsewhere,4 an abundance of GO
TOs in the source code (one every 225 lines)
hampered subroutine identification.

In most conversions, restructuring is pre-
requisite to what we call the syntax swap,
where we swap the syntax of the precooked,
restructured original code with the target
syntax. This is a relatively easy step. The
swapped programs are usually ugly, so an-
other heavy restructuring phase in the target
language is necessary to make the new syntax
look as much as possible like native code.

To illustrate the process, we will trans-
form an example Cobol program (composed
from actual legacy code from the Swiss bank
project) into C. We abstracted from the data
type emulation problems to focus on the
problems with procedural code. We adapted
this code to the domain of traveling so that
the program’s meaning is easy to follow. The
code is of the quality that you might expect
to be provided in a real conversion: a GO TO
every four lines. The original code appears in
Figure 4a, the heavily restructured Cobol
code in Figure 4b.11

The output of both programs is

S.E.I.

Univ. of Waterloo

Univ. of Victoria

WCRE & ASE

The program describes a trip starting in
Amsterdam on a certain date. It shows that
we will fly via Atlanta to Pittsburgh to work
at the SEI, then some time later we travel
from Pittsburgh to the University of Water-
loo via Toronto. Next, we fly to the Univer-
sity of Victoria via Toronto and Vancouver,
then to Honolulu via Vancouver to visit two
conferences. Some time later, we fly to Am-
sterdam via New York. Note the dead code:
we do not fly through Detroit. Complex
vouchers often have some phantom destina-
tions simply because a two-way ticket is of-
ten cheaper than a one-way ticket. The indi-

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 121

Figure 3. A process
for language
conversion.

Original
program

Target
program

Restructuring

Syntax swap

Restructuring

rect code (represented by flight transfers in
the code) and the dead code (or phantom
destinations) are typical for legacy systems.
Also note the typical use of jump instruc-
tions that degenerate a program over time.
With some effort, it is also possible to figure
out that the restructured program’s seman-

tics are the same as the original program’s.
Note that dead code, indirect code, and GO
TOs are gone, a simulated subroutine section
has been created, subroutine candidates are
present, and so on. So a lot of work has
been done to simulate C code and shape up
the Cobol. Now we are ready to perform

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.

PROGRAM-ID. TRAVEL. PROGRAM-ID. TRAVEL.

DATA DIVISION. DATA DIVISION.

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.

01 D PIC 9(6) VALUE 980912. 01 D PIC 9(6) VALUE 980912.

01 X PIC 9 VALUE 1. 01 X PIC 9 VALUE 1.

PROCEDURE DIVISION. PROCEDURE DIVISION.

TRAVEL SECTION. TRAVEL SECTION.

AMSTERDAM. AMSTERDAM.

IF D = 980912 PERFORM TEST BEFORE UNTIL

GO ATLANTA. (D <> 980912)

GO HOME. PERFORM PITTSBURGH

LOS-ANGELES. PERFORM TORONTO

GO NEW-YORK. END-PERFORM

HONOLULU. STOP RUN.

DISPLAY ’WCRE & ASE’ BAR SECTION.

ADD 14 TO D BAR-PARAGRAPH.

GO LOS-ANGELES. STOP RUN.

DETROIT. TRAVEL-SUBROUTINES SECTION.

DISPLAY ’NOBODY’. PITTSBURGH.

WATERLOO. DISPLAY ’S.E.I.’

DISPLAY ’Univ. of Waterloo’ ADD 14 TO D.

ADD 6 TO D VICTORIA.

MOVE 0 TO X DISPLAY ’Univ. of Victoria’

GO TORONTO. ADD 4 TO D

ATLANTA. MOVE 1 TO X.

GO PITTSBURGH. WATERLOO.

NEW-YORK. DISPLAY ’Univ. of Waterloo’

GO AMSTERDAM. ADD 6 TO D

VANCOUVER. MOVE 0 TO X.

IF X = 0 TORONTO.

GO VICTORIA. PERFORM TEST BEFORE UNTIL

GO HONOLULU. X <> 1

PITTSBURGH. PERFORM WATERLOO

DISPLAY ’S.E.I.’ END-PERFORM

ADD 14 TO D PERFORM TEST BEFORE UNTIL

GO TORONTO. X <> 0

VICTORIA. PERFORM VICTORIA

DISPLAY ’Univ. of Victoria’ END-PERFORM

ADD 4 TO D DISPLAY ’WCRE & ASE’

MOVE 1 TO X ADD 14 TO D.

GO VANCOUVER.

TORONTO.

IF X = 1

GO WATERLOO.

GO VANCOUVER.

HOME.

STOP RUN.

Figure 4. Example
Cobol code:
(a) the original
code; (b) heavily
restructured code.

1 2 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

(a)

(b)

the syntax swap. As you can see, it is not the
hardest part of the conversion. The result is

#include <stdio.h>

long D = 980912 ;

int X = 1 ;

void PITTSBURGH () {

printf(”S.E.I.\n”);

D += 14;

}

void VICTORIA () {

printf(”Univ. of

Victoria\n”);

D += 4;

X = 1;

}

void WATERLOO () {

printf(”Univ. of

Waterloo\n”);

D += 6;

X = 0;

}

void TORONTO () {

while (X == 1) {

WATERLOO () ;

};

while (X == 0) {

VICTORIA () ;

};

printf(”WCRE & ASE\n”);

D += 14;

}

void main () {

while (D == 980912) {

PITTSBURGH () ;

TORONTO () ;

};

exit () ;

}

Further restructuring of the C code is
necessary. This dialect of Cobol had no na-
tive support for functions, but C does. We
can collapse near-clones in the new C code
into functions using parameters. A second
step is to turn the global variables into local
ones. Yet another step is to turn indirect
code, such as a function call that only calls
another function, into direct code. After
performing these typical C restructuring
steps, we end up with

#include <stdio.h>

void f(long dD, int

newX,long *D,int *X, char *s) {

printf(s);

*D += dD;

*X = newX;

}

void TORONTO (long *D, int *X) {

while (*X == 1) {

f(6,0,D,X,”Univ. of

Waterloo\n”);

};

while (*X == 0) {

f(4,1,D,X,”Univ. of

Victoria\n”);

};

f(14,*X,D,X,”WCRE & ASE\n”);

}

void main () {

long D = 980912;

int X =1;

while (D == 980912) {

f(14,X,&D,&X,

”S.E.I.\n”);

TORONTO (&D,&X) ;

};

exit () ;

}

We obtained some C code, but this does
not mean that language conversions are
possible if you have the proper tools. The
sample code is not the real thing: it does not
have input, its output is trivial, there is no
real use of data types, there are no possibly
dangerous calculations, the output behavior
is trivial, the program is small, the print
routines are trivial, and so on. It merely il-
lustrates the process of language conver-
sion. Conversion technology (for instance,
systolic structuring algorithms11) is still in
its infancy and must be developed to sepa-
rate coordination from computation so that
subroutines are revealed.

T he realities of language and dialect
conversion projects can be summa-
rized in five rules of thumb:

■ Conversions are difficult.
■ Conversions are always more difficult

than you think.
■ The more semantic equivalence is neces-

sary, the more impossible it gets.
■ Going from a rich language to a mini-

mal language is impossible.
■ Easy conversion is an oxymoron.

N o v e m b e r / D e c e m b e r 2 0 0 0 I E E E S O F T W A R E 123

Conversion
technology
is still in its
infancy and

must be
developed
to separate

coordination
from

computation
so that

subroutines
are revealed.

Thus, we hope that more people will accept
the realities of language conversions and
that decision makers will limit their expec-
tations regarding both the quality and the
semantic equivalence of converted code. We
also hope that software developers will use
our and their own examples as an antidote
to the technological quackery of language
conversion vendors.

Much work must be done before lan-
guage converters give satisfactory results on
real-world code. As soon as we realize that
language conversions are as easy as turning
a sausage into a pig, our mind-sets are ready
to attack the problem and considerable
progress becomes possible.

Acknowledgments
Thanks to Alex Sellink (Quack.com) for writing

the funny but instructive example program summariz-
ing the travel scheme of a trip he and Chris Verhoef
once made. We thank Edmund Arranga (Object-Z
Systems), Eggie van Buiten (ASB), Bob Diertens (Uni-
versity of Amsterdam), Hayco de Jong and Jurgen
Vinju (both CWI), Tim Bickmore (MIT), Robert Fil-
man (NASA), Tom Holmes and Jasper Kamperman
(Reasoning Inc.), Carl Gehr (Edge Information
Group), Kostas Kontogiannis (University of Water-
loo), Steve McConnell (Construx Software), Boris
Kazansky and Mikhail Popov (Lanit-Tercom), Karina
Terekhova (Oxford University), Gert Veltink (Rogue-
Wave Software), and the reviewers for their valuable
comments and help.

References
1. T. DeMarco and T. Lister, Peopleware—Productive Pro-

jects and Teams, Dorset House, New York, 1987, p. 30.

2. C. Jones, Assessment and Control of Software Risks,
Prentice Hall, Englewood Cliffs, N.J., 1994.

3. R.L. Glass, Computing Calamities—Lessons Learned
from Products, Projects, and Companies That Failed,
Prentice Hall, Englewood Cliffs, N.J., 1999, pp. 190–191.

4. R. Gray, T. Bickmore, and S. Williams, “Reengineering
Cobol Systems to Ada,” Proc. Seventh Annual Air
Force/Army/Navy Software Technology Conf., US Dept.
of Defense, Hill Air Force Base, Ogden, Utah, 1995.

5. K. Kontogiannis et al., “Code Migration through Trans-
formations: An Experience Report,” Proc. IBM Center
for Advanced Studies Conf. (CASCON ’98), IBM, Ar-
monk, N.Y., 1998, pp. 1–12; www.swen.uwaterloo.ca/
~kostas/migration98.ps (current Nov. 2000).

6. W. Polak, L.D. Nelson, and T.W. Bickmore, “Reengi-
neering IMS Databases to Relational Systems,” Proc.
Seventh Annual Air Force/Army/Navy Software Tech-
nology Conf., US Dept. of Defense, Hill Air Force Base,
Ogden, Utah, 1995.

7. K. Yasumatsu and N. Doi, “SPiCE: A System for Translat-
ing Smalltalk Programs Into a C Environment,” IEEE
Trans. Software Eng., Vol. 21, No. 11, 1995, pp. 902–912.

8. R.C. Waters, “Program Translation via Abstraction and
Reimplementation,” IEEE Trans. Software Eng., Vol.
14, No. 8, 1988, pp. 1207–1228.

9. F.W. Calliss, “Problems with Automatic Restructurers,”
ACM SIGPLAN Notices, Vol. 23, No. 3, Mar. 1988,
pp. 13–23.

10. J.C. Miller and B.M. Strauss, “Implications of Auto-
mated Restructuring of COBOL,” ACM SIGPLAN No-
tices, Vol. 22, No. 6, June 1987, pp. 76–82.

11. M.P.A. Sellink, H.M. Sneed, and C. Verhoef, “Restruc-
turing of COBOL/CICS Legacy Systems,” Proc. Third
European Conf. Maintenance and Reengineering, IEEE
Computer Soc. Press, Los Alamitos, Calif., 1999, pp.
72–82; www.cs.vu.nl/~x/cics/cics.html (current Nov.
2000).

12. H.M. Sneed, Objektorientierte Softwaremigration [Ob-
ject-Oriented Software Migration], Addison Wesley
Longman, Bonn, Germany, 1998.

13. I. Jacobson and F. Lindström, “Re-Engineering of Old
Systems to an Object-Oriented Architecture,” Proc.
Conf. Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’91), ACM, New
York, 1991, pp. 340–350.

14. S. Oualline, Practical C Programming, 3rd ed., O’Reilly
& Assoc., Cambridge, Mass., 1997.

15. W.M. Klein, OldBOL to NewBOL: A COBOL Migra-
tion Tutorial for IBM, Merant Publishing, Rockville,
Md., 1998.

16. Y. Chae and S. Rogers, Successful COBOL Upgrades:
Highlights and Programming Techniques, John Wiley
and Sons, New York, 1999.

17. R. Widmer, COBOL Migration Planning, Edge Infor-
mation Group, Mt. Prospect, Ill., 1998.

18. M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef,
“Generation of Components for Software Renovation
Factories from Context-Free Grammars,” Science of
Computer Programming, Vol. 36, No. 2–3, Mar. 2000,
pp. 209–266; www.cs.vu.nl/~x/scp/scp. html (current
Nov. 2000).

19. COBOL/370 Migration Guide, release 1, IBM Corp.,
Armonk., N.Y., 1992.

20. VS COBOL II. Application Programming Language
Reference, 4th ed., IBM Corp., Armonk., N.Y., 1993.

21. C. Cerf and V. Navasky, The Experts Speak—The De-
finitive Compendium of Authoritative Misinformation,
Villard Books, New York, 1998.

1 2 4 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 0

About the Authors
Andrey A. Terekhov is a PhD candidate in software engineering at St. Petersburg
State University. He is also working at Lanit-Tercom Company on contract with Relativity Tech-
nologies, Inc. (USA) on the creation of a software reengineering workbench, where he is a
project manager. His research currently focuses on compiler technology, software reengineer-
ing, and cryptography. He received his MSc with honor from the Faculty of Mathematics and
Mechanics of St. Petersburg State University. He is a member of the ACM and the IEEE Com-
puter Society. Contact him at St. Petersburg State University, Faculty of Mathematics and Me-
chanics, 198504, Bibliotechnaya pl. 2, St. Petersburg, Russia; ddt@tepkom.ru;
http://users.tepkom.ru/ddt.

Chris Verhoef is a computer science professor at the Free University of Amsterdam and
is affiliated with the Software Engineering Institute of the Carnegie Mellon University. His re-
search interests are software engineering, maintenance, renovation, software architecture, and
theoretical computer science. He has consulted for hardware companies, telecommunications
companies, financial enterprises, software renovation companies, and large service providers.
He is an elected Executive Board member and vice-chair, conferences, of the IEEE Computer
Society Technical Council on Software Engineering. Contact him at the Free University of Ams-
terdam, De Boelelaan 1081-A, 1081 HV Amsterdam, The Netherlands; x@cs.vu.nl;
www.cs.vu.nl/~x.

