How to Implement the Future?

C. Verhoef

University of Amsterdam, Programming Research Group,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

x@Qwins.uva.nl

Abstract

This paper sheds light on the realities of imple-
menting spanking new ideas in existing software
systems. Information is provided both on the ad-
vantages and drawbacks of starting from scratch
and basing yourself on an existing software asset
to implement your IT future. The paper touches
upon the need for tool support to refactor exist-
ing software systems so that implementing their IT
future is enabled. An idea of how such refactory
tools look like is given and pointers to technical re-
search contributions are provided. Those tools aid
in overcoming the maintenance debt built up over
the years. It is argued that implementing the fu-
ture in IT amounts to dealing with the past to a
large extent.

Categories and Subject Description: 1D.2.6 [Soft-
ware Engineering]: Programming Environments—
Interactive; D.2.7 [Software Engineering]: Distri-
bution and Maintenance—Restructuring; D.3.4. [Pro-
cessors|: Parsing.

Additional Key Words and Phrases:
System renovation, Software renovation factories.

Reengineering,

1 Introduction

Inventing the future is one thing, and should maybe
best left to the Three Princes of Serendip, who ac-
cording to legend [85], during their travels were al-
ways making discoveries, by accident and sagacity,
of things which the highnesses were not in quest
of. Implementing such marvelous inventions is an-
other matter, and how to do it is the subject of
this paper. New inventions are often implemented
in existing infrastructures, for instance, when mo-
bile phones were invented, their full-blown imple-

mentation not just consisted of building the phones
and putting antenna’s everywhere in our environ-
ment. The implementors also had to make signifi-
cant modifications to sometimes 20 year old public
telephony switches. Or imagine a very old building,
like a cathedral. It was not at all designed to ac-
commodate a sewer, tap water, electricity, heating,
and what have you, but its all there, implemented
in an existing infrastructure that apparently sur-
vived countless technological generations. When
you think of it, nearly all implementations of new
inventions need significant adaptations of existing
artifacts; artifacts that were definitely not designed
to smoothly integrate with the new invention. In
fact, when you try to implement a central heating
system in an old building you have to understand
the structure of the building, you have to take out-
moded design decisions into account, and there are
a lot of unexpected restrictions around. Such con-
strains are not present in a contemporary building
that is designed from day one with things like cen-
tral heating in mind. The same issues play a role
when you want to implement new inventions in soft-
ware intensive systems. In this paper you will get
some information on what aspects pay a role when
implementing the future in software.

Knowing what the hot issues in implement-
ing the future in information technology are is
a simple matter. It’s all about money, money,
money. Global benchmarking organizations like
Gartner Group, Giga Group, META Group, Stan-
dish Group, and so on, are polling the big spenders
on information technology where the money goes.
Just looking at their wish lists gives you all the in-
formation you need. For instance, in Europe there
is an annual benchmark where the top 100 com-
panies spending the most on IT are polled. Last
year (1999) this benchmark revealed that solving

the Year 2000 problem soaked up to 30% of the
budgets. See [66] for more information on cost as-
pects of the Year 2000 problem. Other top-of-the-
list issues are the rise of Internet development and
a growing fascination for knowledge management.
Hey, this was not a surprise, for, we’re moving from
the information age to the age of immediate an-
swers. Implementing these issues reveals another
top-priority of the top 100 spenders on IT: deal-
ing with erratic infrastructures that are hindering
global networking [99]. Surprise or not, significant
portions of IT budgets are spent on existing sys-
tems, adapting them to our ever changing environ-
ment where the future is being invented.

Owing to hardware engineering this kind of work
is often called software maintenance. The word
maintenance has its origins in the Latin phrase
manu tenere, which means to hold in the hand. The
word software has its origin in the 1960s and is
considered to be the entire set of programs, proce-
dures, and related documentation associated with a
computer system. Software maintenance could be
dubbed as to keep your software in the hand. As
a continuous stream of data over the past 30 years
has shown extensively: in general, software mainte-
nance gets out of hand. One of the most well-known
facts about software maintenance is that it is ex-
pensive in manpower and resources. Estimates of
the magnitude of software maintenance costs range
from 50% to slightly more than 80% of overall soft-
ware life-cycle costs [39, 12, 35, 76, 86, 13, 58, 65,
83, 78]. Not only the total cost is high, but also the
cost per unit of work is high. Already in the early
seventies the ratio of the costs for development to
costs for maintenance was more than 1 to 50 [103].
This ratio has gone up since then.

One study reveals that only 8% of the post-
release work on software systems comprises the cor-
rection of errors [86]. Significant parts of work-
ing on software in the employment phase consists
of implementing the future. So, the word mainte-
nance is a misnomer: it implies simple corrective
work. This corrective meaning is much more true
in hardware maintenance where it refers to sim-
ple activities in comparison with the construction
activity. Fact is that many of us consider work-
ing on existing software systems as unstimulating
drudgery. When you buy a car you first figure out
what you want, and then make a buy. It is not your
intention to put in a jet engine in 3 months, move

the steering wheel to the back seat, have it com-
pletely remote controlled, or shift gears with your
rear view mirror. By contrast, the first release of a
software intensive system is only the beginning of
its evolution. Even stronger, as soon as the require-
ments phase is finalized the software grows during
development at arate of 2% undocumented features
per month due to requirements creep [64, p. 211].
An example of the software equivalent of a “rear
view mirror kludge” is the web-enabling of main-
frame applications: originally designed to run on
dumb 3270 data stream terminals using function
keys, the new requirement is to run the front-end
from a personal computer, from a remote location
anywhere in the world, using a web browser and a
mouse instead of function keys. While this kind of
dramatic change sounds silly for a car, this is not
at all the case for an evolving software system, in
fact it is the most wanted implementation of our
electronic future.

Some people think of shrink-wrapped software
when they are confronted with the abstract notion
of a software system. Or do you think of the soft-
ware running on about 60 computer chips when you
step into your car? In other words, what kind of
systems should you have in mind for this paper?
Think of a sophisticated Magnetic Resonance Imag-
ing (MRI) Scanner, which is employed between 10
and 20 years. Of course, no hospital can afford to
abandon such a system just because they want to
integrate their medical information systems with
the output of this MRI Scanner so that the time
between scanning and diagnosis is shortened dras-
tically, saving a lot of money. An MRI scanner is a
system typically containing 2 million lines of code,
written in 15 languages, running on 7 CPUs con-
taining 4 different operating systems. Obviously
complex systems, and implementing unforeseen in-
ventions into them amounts to major renovation
efforts. Another example: take a public telephone
switch; they also have a life-time between 10 and
20 years. After its first release many years ago,
it needs significant modifications to incorporate
matters such as: ISDN, Internet telephony, mo-
bile phones, automatic number identification, auto-
matic location identification, 112, 911, 411, 1-800,
call waiting, call redirect, voice mail, interactive
voice response, computer telephony integration, the
Year 2000 fix, and the Euro conversion. Note that
I call the Year 2000 fix an invention. This may

sound strange at first sight: isn’t is just an error?
No. It was in many software projects even part of
the requirements. The Year 2000 fix has exactly
the same characteristics as a so-called preventive
innovation, just like birth control is a preventive
innovation [87, 88]. They are both hard to under-
stand, hard to sell, and when it is finally applied
the effect is that there is, well, no effect. “Nothing
happens” is the best result of a preventive innova-
tion, for, the nature of preventive measures is to
lower the probability that some future unwanted
event will occur. The unwanted future event might
not happen anyway, even without adoption of the
measure, and so the benefits of adoption are not
clear-cut. Also the prevented events, by definition,
do not occur, and so they cannot be observed or
counted [88]. Anyways, the main point is: think of
these kind of bespoke business-critical systems, sys-
tems in constant need to be significantly extended
over time, unlike a car or shrink-wrapped software.

The goal of this paper is to inform you about
the way the future is implemented in such software
intensive systems. Being informed will not make
things easier, just more realistic. As Dorner puts it
eloquently [36, pp.98-99]:

Anyone who has a lot of information,
thinks a lot, and by thinking increases his
understanding of the situation will have
not less but more trouble coming to a clear
decision. To the ignorant, the world looks
simple. If we pretty much dispense with
gathering information, it is easy for us to
form a clear picture of reality and come to
clear decisions based on that picture.

May the informed decision be with you!

organization The rest of this paper is organized
as follows. Section 2 deals with some common mis-
understandings about restarting projects that need
to incorporate the future. Section 3 illustrates that
reusing existing software assets is also not an easy
task. In Section 4 tool support to aid in rework-
ing existing systems is highlighted. Finally, in Sec-
tion 5 some sobering words, so that the innovators
among us do not become too thrilled and have a
little more patience before their great innovations
make the transfer from future to present. Exten-
sive references to the relevant literature help you

find your way mastering the intricacies of the fine
art of implementing the future.

Note This invited paper served as background
material for a keynote address to the 26th Eu-
romicro Conference, Maastricht, the Netherlands,
September 5-7, 2000. The theme of the flagship
meeting of Euromicro was: Informatics: Inventing
the Future. Many thanks to the General Program
Chairman of Euromicro 2000, Ferenc Vajda from
the Computer and Automation Research Institute
of the Hungarian Academy of Sciences (Budapest)
for asking me to explain how to go about imple-
menting the future once the attendees invented it.

2 Restarting from Scratch

Some people think that the best way to implement
the future is to start from scratch and do every-
thing right this time. Just stop thinking of the
crusty old systems written in outdated languages,
running on obsolete platforms, and designed using
superseded methods. Use all the new and hot meth-
ods and technologies to materialize the fantastic in-
novations and all problems of the past will vanish.
Several problems stand between these desires and
the reality. Here’s a short list:

e resistance to change

e second system effect

silver bullet syndrome
e management responsibility cycle

e large chance of failure

The rest of this section deals with these issues.
All (human) life forms have an instinct that pro-
tects them from the possibly dangerous unknown.
Just remember that time you got sick of some bad
food: years and years later the scent of that partic-
ular food immediately rings the alarm-bell! Over-
all it is very natural to have a healthy resistance
to change. As soon as software developers are told
to skip whatever they learned: use a different lan-
guage, a different method, different technology and
so on, be prepared for a severe reaction resisting
your plans [6, 14, 82, 108]. For instance the intro-
duction of a single technology like the valuable idea

of software inspections [40, 41, 49, 47] is so resistant
to change that despite a continuous stream of proof
that this is a best practice [78] it is hardly possi-
ble to introduce this in an enterprise. And even
when you succeed, you can shoot yourself in the
foot with it, as you can read in the post-mortem of

the Ariane 5 disaster [77]:

Nevertheless, it is evident that the limita-
tions of the SRI [Inertial Reference Sys-
tem] software were not fully analysed in
the reviews, and it was not realised that
the test coverage was inadequate to ex-
pose such limitations. Nor were the possi-
ble implications of allowing the alignment
software to operate during flight realised.
In these respects, the review process was
a contributory factor in the failure.

So the inquiry board contributes the failure in
flight 501 in part to the reviews. They do recom-
mend to have better reviews for all software includ-
ing embedded software.

Then there is the problem also known as the
second system effect. As Fred Brooks puts it [31,
p. 55]:

This second is the most dangerous system
a man ever designs. [..] The general ten-
dency is to over-design the second system,
using all the ideas and frills that were cau-
tiously sidetracked on the first one.

The qualification second should not be taken lit-
erally. You can sometimes diagnose a case of sec-
ond system effect by spotting irregularities in ver-
sion numbers. I was once involved in a consultancy
project for one of the largest financial enterprises
in the world. The main version numbers of the sys-
tem that needed refactoring badly [46] were 1, 2,
and 4. There was no version 3. Version 3 was an
attempt to start from scratch with this very suc-
cessful system using a new language, employing a
new platform, and adding many new features. A
clear example of the infamous second system. As
it turned out, version 4 was the reincarnation of
the failed effort, and indeed it ran on the new plat-
form, was written in the new language, but it did
not contain by approximation the features of the
much more powerful version 2. After these failures

the CIO decided to embark on a multi-million dol-
lar reengineering effort that would evolve version 2
in many small steps towards the changed business
needs. Needless to say that huge amounts of money
were waisted on this “second” system, and that
extremely high-turnover rates were caused by this
failure, adding to the loss of valuable knowledge
about the existing systems.

Apart from these problems the well-known silver
bullet syndrome is always lurking. Brooks postu-
lated in an invited paper at the IFIP 86 confer-
ence in Dublin (later reprinted in [30]) that there
is no single development in technology or manage-
ment that can improve productivity, reliability, or
simplicity even one order-of-magnitude. The well-
known myth that dramatic improvements are pos-
sible with simple means, is still omnipresent in
the current software engineering practice. What is
maybe less well-know is why this pitfall is roaming
around us. I think that one of the major causes why
people keep falling in this trap is that, they do not
feel the pain it causes. Normally when you make a
decision, you are responsible for the consequences.
Especially in the case of failure you are to blame,
and next time, like with rotten food, the preventive
alarm-bell will sound. In the IT business things are
different. There is a dynamic that could be called
the management responsibility cycle that plays a
major role. Often, managers are responsible for
sparking off the use of new technology, new meth-
ods, or new tools, and so on. There is a huge short-
age of IT personnel. As a consequence, the aver-
age time that a manager is responsible for a certain
project is in some companies about 8 months. Soft-
ware projects that use unfamiliar technologies are
normally taking longer than 8 months, so the man-
agers that initiated the new technology are gone
before it is time to take responsibility for the con-
sequences of their decisions. They moved up in the
management responsibility cycle and are not held
responsible. It is interesting to see how the new
manager reacts on a project that is under way: if
he or she approves the use of unfamiliar technology
initiated by the former manager, this implies tak-
ing over the responsibility. Therefore, often another
(new) technology is proposed. This causes again a
delay, and probably just long enough so that the
second manager can also escape the project with-
out taking the responsibility. Being a good man-
ager then amounts to successfully avoiding taking

responsibility and assigning management tasks to
inexperienced developers just before things go awry
(which closes the negative feedback loop). In this
way the silver bullet syndrome is self-sustaining and
becomes a chronic disease within an organization.
Apart from this unhealthy corporate situation also
the people themselves change due to the constant
organizational reengineering they are exposed to.
The continuous focus on short term gain learns
them the lesson that detachment and superficial
cooperativeness are better armor for dealing with
the current realities of short term emphasis than
behavior based on values of loyalty and service [97,
p- 25]. This short-term philosophy threatens to cor-
rode the character of human beings, particularly
those qualities of character which bind them to one
another and furnishes each with a sense of sustain-
able self [97, p. 27].

Another problem with a restart from scratch is
that large software projects are risky and have a
large chance of failure. To give you an idea, in one
research report 8000+ projects were taken as input
to get an idea of the situation in the USA. One of
the outcomes was that each year about 81 billion
US dollars were spent on cancelled projects. More-
over, 59 billion was spent each year for challenged
projects. Think of cost/time overruns, or a change
of scope [61, 55]. These figures are not carved in
stone: some people do not believe these figures [50,
p. 2]. Based on my own experience I do believe that
the losses are huge. Of course, we all know about
the infamous software related disasters like the ex-
ploding space shuttle Challenger [81], the (earlier
mentioned) exploding Ariane 5 rocket [77] and so
on. We are not talking about such disasters per se.
Let me give a few examples to make clear what I
mean.

The Department of Motor Vehicles (DMV) in
California owns an information system originating
from 1965. The system had become so brittle that
it took the equivalent of 18 programmers working
for an entire year to add a social security number
file to the drivers license and vehicle registration
file [89]. Then they decided to thoroughly renew
the system in the early 1990s. Seven years later not
a single usable program was produced and the state
had to cancel the project with a loss of 44 million
US dollars [16, 54, 48, 38, 51]. Now you think okay,
but we learned from this major disaster and this
will not happen again. Au contraire. In 1993, the

Oregon Department of Motor Vehicles embarked on
a five-year project to computerize its paper-based
records. It was estimated that they could downsize
the DMV workforce by one-fifth and save 7.5 mil-
lion US dollar annually. In a few years, the delivery
date slipped to 2001 and the estimated budget rose
from 50 to 123 million US dollars. In 1996 a pro-
totype was installed that was a total failure [42].
Another 123 million US dollars shot to shambles.

Needles to say that the 81 billion US dollars is
not solely spent on disasters in risky space related
software intensive projects but also in daily infor-
mation systems practice. Many more failure stories
can be found in books devoted to the topic of failure
in software engineering [50, 51].

So, starting from scratch is a risky business and
not always the best idea, although it appeals to
many of us. An alternative to restarting from
scratch to implement the future is to renovate the
existing software system first.

3 Restarting from an Existing
System

Many of the problems that were mentioned for
brand-new systems also apply to projects where ex-
isting systems play a prominent role. Just don’t
start flying ribbons in the sky and think that start-
ing with an existing system would solve all your
problems. Several major impediments are waiting
for you here as well:

o failure of (business process) reengineering
e underestimating the problems

e business-rules are well-hidden

paying the maintenance debt first

lack of tool support

Often, a software reengineering project is a con-
sequence of a reshuffling of the business, also called
business process reengineering [57]. These business
reengineering projects do not necessarily end in suc-
cessfully reengineered enterprises. As Scott Adams
puts it: a good example for which you can confi-
dently predict failure is any large-scale reengineer-
ing effort [1, p. 73]. Or take Clemons who states

that many, even most reengineering efforts fail [34].
The existing system of the Californian Department
of Motor Vehicles system is a good example: it was
so problematic that further modifications seemed
impossible in a cost-effective way. But it was also
not possible for them to restart from scratch. So
they seem to be trapped. In fact, some compa-
nies found themselves as early as 1993 in such a
situation where the entire workload is related to
updating, enhancing, and fixing problems in exist-
ing legacy applications [63, pp. 145-6]. So it is not
even possible to do any new development for those
companies.

Another problem that is associated with major
enhancements of an existing system is that people
often grossly underestimate such efforts. When ex-
pectations are not well-managed this can cause as
severe failures as you can encounter on a green-
field software engineering project. If reengineering
projects are not carefully planned, do not get the
proper expert staffing, and no realistic budget they
are a sure candidate for failure. In fact, the more
easy you think a task is, the more likely it is that
you make errors. An illustration will help here.
Suppose you want to downsize an old system from
the mainframe to a PC environment [98]. Since
you are into component-based software engineer-
ing [37, 4], and the Visual Basic Component market
is very promising, you decide to migrate the obso-
lete OS/VS COBOL code to Visual Basic while you
are busy downsizing the system. Then one of the
software engineers converts the code below (both
fragments are taken from [100]):

DATA DIVISION.

01 A PIC S9V9999 VALUE
PROCEDURE DIVISION.

ADD 1.005 TO A.
DISPLAY A.

-1.

into its equivalent in Visual Basic:

Dim A As Double

A=-1
A=A+ 1.005
MsgBox A

Are you alarmed? Probably not. However,
the Visual Basic code yields +0.0049, indicating a
rounding error. Would you want to be the manager

of this conversion project when the accounting de-
partment finds out that millions of US dollars are
missing due to some obscure rounding error in the
freshly converted system? If you are exposed to
the manager responsibility cycle probably someone
else gets the blame (but remember that your char-
acter might corrode). Apart from that, this exam-
ple illustrates how easy it is to underestimate the
difficulties of reengineering existing systems. Now
imagine an accumulation of such countless unfath-
omable details scattered over millions of lines of
code. That, now, is a reengineering project.

Remember that existing systems have been mod-
ified often. Most of the times the updates and en-
hancements have not been mirrored in user and or
system documentation so that the requirements of
a new system are well-hidden in the code of the
existing system. Huge amounts of critical knowl-
edge often called business-rules are encoded over
the years in such systems. I say encoded and I
mean encoded. Often I get the question: how is it
possible that you write a software system that you
cannot understand once it is written? Fair ques-
tion. How is it possible that we cannot solve every
imaginable medical problem whereas all the rele-
vant information is just in our genes? The answer
is: the information may be there, but inaccessible
for human comprehension. Of course, deciphering
the human genome is much more complicated than
to decode a software system and extract its actual
business rules. But both humans and serious soft-
ware systems materialized in an evolutionary man-
ner [7, 70].

When commencing with a major reengineering
effort of evolved systems it is necessary that the
software is fast-forwarded 30 years in time on a very
sort notice. In order to be successful the enormous
maintenance debt has to be paid, and extensive re-
working of the system is mandatory before any new
invention can be implemented in a save manner.
This may be costly but bear in mind that the pay-
off especially for such business-critical indefinitely-
lived systems is commensurately large [53].

Luckily, more and more people are recognizing
that reworking existing systems to enable change is
a good idea. A recent book calls this effort refactor-
ing [46]. The book advocates Ovid’s “Adde parvum
parvo magnus acervus erit'”. You should make

1Add little to little and there will be a big pile

many small systematic modifications to an existing
software asset and the result will be a system that
is better understandable, and enabled for change—
the ultimate goal of extensive rework so that the
future can be implemented. In the book, the usual
arguments of program transformation aficionados
are extensively used. Already in 1970 [15] Boyle
claimed that many small transformations to com-
puter programs (supported with a tool) can cause
improvements of many kinds to the programs. In-
deed, although the refactoring book emphasizes re-
working by hand, the book contains a brief chapter
on refactoring tools whose introduction reads as fol-
lows [46, p. 401]:

One of the largest barriers to refactoring
code has been the woeful lack of tool sup-
port for it. Languages in which refac-
toring is part of the culture, such as
Smalltalk, usually have powerful environ-
ments that support many of the features
necessary to refactor code. Even there,
the process has been only partially sup-
ported until recently, and most of the
work is still being done by hand.

The authors of Chapter 14 of [46], Don Roberts
and John Brant, mark the spot with this remark.
There is an endemic lack of tool support to aid re-
working existing code. Jones reports Year 2000
search engines support for less than 50 languages
and Year 2000 repair engines are available for about
10 languages [66, p. 325]. This seems a lot, but
it was also estimated that the Year 2000 problem
manifests itself in systems written in at least 700
languages [65]. So tool support was available only
for a small fraction of the languages. Add to this
that most software systems are mixed language ap-
plications for which most Year 2000 engines come
to a halt anyway, and the conclusion must be that
general tool support for automatically renovating
aging software systems is lacking. This is problem-
atic since, especially with large amounts of code, it
is error prone and time consuming to make changes
by hand, and tool support to rework existing sys-
tems would help significantly.

So also using existing systems as a starting point
of implementing the future is not an easy task. But
extensive tool support to aid systematic evolution-
ary modifications leads to a situation where imple-
menting the future becomes more feasible.

4 Tool support for Imple-

menting the Future

Gartner Group advises anyone who has the respon-
sibility for a software portfolio of 2 million lines of
code or more should use a so-called software reno-
vation factory to implement the Year 2000 updates,
and/or analyses [56, 67]. Of course this does not
only apply to the Year 2000 problem but to any sig-
nificant software renovation problem. A software
renovation factory, or should it be called a refac-
tory, is a product-line architecture [5] that enables
the rapid implementation of tools to support pro-
gram and system analysis and/or transformations.
One could say that such refactories are the future
compilers of our existing software assets, meant to
“compile” them into refactored systems better ca-
pable of meeting new business needs [73, 59].

What should be the properties of a refactory?
You would expect it depends on the changes to the
existing software are likely to occur. In the refac-
toring book an extensive list is presented, which
could serve as a starting guideline. However, when
dealing with software that has a large maintenance
debt, the most likely changes that are necessary
are the ones you’d expect the least. A few exam-
ples make things clear here. What about an auto-
mated COBOL 85 back to COBOL 74 conversion?
It consists of GO TO introduction, explicit scope ter-
minator elimination, among other unexpected code
modifications [32]. Or a COBOL to PL/I conver-
sion? Or going from SAP’s ABAP /4 to VS COBOL
II? Notice that all these conversions are nonintu-
itive: they go from more modern languages back
to older paradigms. Still all these real-life reengi-
neering projects were utterly necessary. To imple-
ment the future, there are many more examples
that spring to mind, but I’ll refrain from giving you
a long list. The details would distract you from the
main point which is: it is important for now to re-
alize that in general no one can predict what kind
of modification is useful. So, a software renovation
factory should be prepared for any analysis or code
transformation. Of course within the limits of cost-
effectiveness.

Instead of bogging you down with a requirements
engineering document on the ins and outs of the in-
dispensable features that a software renovation fac-
tory should contain, it is maybe better to continue

with a typical case, and discuss requirements issues
when they pop up.

Let’s take a typical business-critical mixed lan-
guage application that runs on an IBM Mainframe
and is written in COBOL with embedded SQL.
Some parts of this management information sys-
tem are more than 25 years old, and other parts
have been added just yesterday. This example is
based on research reported on in [93]. A number
of typical refactorings are necessary before the new
version of DB2, which implements SQL, can be in-
stalled. The example system employs hard-wired
constants all over the place including literals for
SQL return codes. For the new version of DB2 ad-
ditional SQL return codes have to be added, and
it was decided by the company that prior to this
update, the hard-wired constants should be elimi-
nated. This would also ease future modifications to
the software system, for instance web-enabling this
system.

We need to parse the COBOL/SQL code. It
would be naive to think that lexical tools would
do the trick. Many analyses and modifications
need type information, or need information that
is not concentrated in one location. In [28] an en-
tire section is spent on what devastating problems
would occur when just removing UPON CONSOLE
from statements like:

DISPLAY ’** BEGIN PROGRAM’ UPON CONSOLE.

This would cause the system to be broke at worst,
and unreadable at best. On second thought, it is
not hard to figure out that as soon as you start
to modify millions of lines of code in thousands of
files with lexical tools, it can easily create havoc.
Believe me, it will, so a parser is what you need.
Now you know more: don’t suggest to use Microsoft
Word for making changes to business-critical sys-
tems, but the solution does not become more clear
cut, as Dorner eloquently formulated it in his book
on the logic of failure (see Section 1).

Ever built a parser? Ever built a COBOL parser?
Ever built a COBOL parser that does not remove
comments, that can handle different dialects, em-
bedded languages like CICS and/or SQL, that deals
with (home grown) preprocessors, that does not
destroy compiler directives, that can handle un-
expanded macros, unexpanded include files (copy
books), that knows how to deal with debugging

lines, continuation lines, that moreover parses un-
documented syntax, retains idiosyncratic layout, to
mention a few issues? Well, these are the typical
problems you need to overcome when dealing with
the compiler of the future: the existing systems
are written in languages containing the above men-
tioned properties so tools to refactor or renovate
code should take them into account.

To make a long story short: the first problem
to attack is to get a parser suitable for software
renovation. This problem in itself sparked off an
entire field of research, called grammar engineer-
ing [73], computer aided language engineering [95]
or lingware engineering [80]. It turns out to be
possible to obtain parsers both for very obscure
languages and for well-established languages such
as COBOL in a cost-effective manner by using a
very systematic approach of taking small steps and
applying refactorings. More information on how to
accomplish this can be found in the following pa-
pers [91, 95, 94, 73]. By way of proof, a complete
grammar specification for COBOL can be retrieved
on the Internet [72].

It would come in handy when you can combine
grammars to build new ones. For instance the com-
bination of an SQL grammar with a COBOL gram-
mar would be nice to have for the example project.
Unfortunately, with this extra requirement it be-
comes infeasible to use so-called mainstream parser
generator technology: this is Lex/Yacc like tech-
nology [75, 62] implementing the class of LR lan-
guages. It is known that combining two LR lan-
guages does not necessarily result in another LR
language [3, 2]. Consequently, combining LR gram-
mars does not necessarily result in a grammar that
you can use as input for an LR based tool. So we
need different tools for combining grammars. One
solution is to use tools supporting an implementa-
tion of general context-free languages, e.g., Gener-
alized LR parser generators [74, 102, 84, 105, 106]
or approximations of them [11].

It is possible to implement a COBOL parser with
all the qualifications that were presented above in
a cost-effective manner [25, 73]. In fact this is pos-
sible for other languages, as well.

So it is save to assume that you can parse the
COBOL/SQL example system for refactoring pur-
poses. Next, for each program it should be checked
whether the hard-wired SQL return codes are used,
and if so certain modifications need to be made

to the code. Hopefully the modifications are done
completely automated. Okay, so you need to ana-
lyze and transform source code. Now imagine this
giant parse tree residing in some repository, or in
main memory. Some tool should figure out whether
the Boolean condition

SQLCODE = -818 OR -904 OR -911 OR -922

occurs in the code. Of course this is only one pos-
sibility a programmer could have written it down.
Many other possibilities exist including ones con-
taining brackets (see below). So this tool should
sniff along the entire parse tree in search of a spe-
cific piece of subtree representing the above code
fragment. If it has found it the tool reports this.
This implies that another requirement of a software
renovation factory is that a set of generic analyzers
is available that can combine the analysis results
of small trees into large ones leading to an anal-
ysis of an entire parse tree. It is possible to gen-
erate such generic functionality directly from the
grammar of a language [28]. Using such a generic
analysis framework, it is trivial to implement a tool
detecting the above displayed piece of code.

Once such a piece of code is found, it has to
be refactored into something else. Whereas in the
refactoring book the idea is put forward to improve
the code in some way, in software renovation the
code does not necessarily improve in the sense of
understandability. It becomes other code. For in-
stance, the code fragment:

IF SQLCODE = -818 OR -904 OR (-922 OR -911)
PERFORM 9999-EM904-FILL

has to be refactored into:

MOVE SQLCODE TO SQL-CODE IN LINKAREA-EM948
CALL °UT100° USING L-EM948 LINKAREA-EM948
IF RETURNCODE = 9’
PERFORM 9999-EM904-FILL

So the four hard-wired constants are exchanged
for another hard-wired constant: the number 9.
With respect to the refactoring movement this kind
of code modification is debatable: for, is the code
really improved with respect to comprehensibility?
On the other hand, we should not flex the code
more than necessary since in business-critical sys-
tems failure can be quite expensive. Anyways,

imagine this giant parse tree. A tool should tra-
verse the tree and upon detection of the Boolean
condition it should replace the unwanted IF con-
struct by the MOVE and CALL statements. This re-
veals yet another requirement of a software reno-
vation factory: you need a framework of generic
traversals. It is convenient when these generic
traversals implement the identity mapping on a
parse tree. Then on certain locations you can over-
ride the framework to implement an actual modi-
fication you need to make. Completely analogous
to the generic analysis functionality it is possible
to generate a generic traversal framework directly
from the grammar of a language [28].

Now assume that you have analyzed and refac-
tored this entire system in accordance with the re-
quests of the owners. How to get their source code
back? After all, everything is now stored in parse
tree format. We have to go back to source text,
to be fed to maintenance teams and the compiler
of the present. It is possible to generate from the
grammar of the language a set of rules that need
manual adaptation to the local company standards
that takes care of formatting the code. It is the
inverse of a parser generator and is often called an
unparser generator [29].

So you need grammar engineering tools, sophisti-
cated parser generators, generic analysis and trans-
formation generators, and unparser generators to
construct a product-line architecture that is suit-
able to refactor source code. There is more. As
soon as all the tools are available to carry out the
mass-changes to this COBOL/SQL software sys-
tem, they have to be coordinated. As said earlier,
we need to perform many small steps and com-
bine them to accomplish significant change. The
steps are small tools like the one discussed above.
Imagine you have accumulated a number of such
steps, and you have a certain ordering of applying
them. The steps should ideally be components that
you can invoke at wish. In that way it is possible
to assemble a special-purpose refactoring product
for a client who can run it locally. Of course a
component-based development approach also lets
you use third-party components such as parsers,
control-flow or data-flow analyzers. So, an archi-
tecture able to smoothly integrate heterogeneous
components is mandatory [70].

For the COBOL/SQL refactoring example things

look as follows: 5 tools were necessary to carry out

components eqs bytes

Norm-cond.eqgs 15 2622856
Add-EM948.eqgs 7 2670264
Use-EM948.eqgs 20 2673768
Eval-SQL-a.eqs 5 2638336
Eval-SQL-b.egs 6 2638336

Table 1: Some characterizations of the components.

totals SLOC
handwritten code: 325
Shared C code: 91777
Make files: 4651

Table 2: Totals of physical source lines of code for
the components.

the refactoring tasks. The coordination was simple:
a pipeline of 5 tools of which the first tool loops
until a fixed point is reached. This was expressed
in a coordination language with a supporting soft-
ware bus called ToolBus [9, 8, 10]. Furthermore,
using an expert compiler [23, 18] the small steps
encoded as term rewriting systems [71] were com-
piled into ANSI C programs. The parser used an
efficient binary format as intermediate format that
is understood by the generated C programs [17].

Without going into too much detail it is worth-
while to take note of some metrics that character-
ize these kinds of projects. In Table 1 we sum-
marized the 5 components. In the second column
you find an entity called eqs. This abbreviation
stands for equations that are encodings of condi-
tional term rewriting rules possibly containing neg-
ative premises [71, 69, 45, 52, 79]. Such term rewrit-
ing systems are a very powerful means to succinctly
express, e.g., code transformations. These term
rewriting systems can be compiled into executa-
bles [68, 107, 23, 18, 43, 44]. In this example the
implementation discussed in [23, 18] was used. The
executables that were built are all about 2.6 Meg
and have a memory footprint of 10 Meg.

The data in Table 2 gives you an idea how much
coding effort the work comprised. SLOC stands
for physical source lines of code. The handwritten
code only took 300+ lines. Of course, this code
was connected to the generated frameworks so that
the resulting generated C code contained 90.000+
lines. The make files were also generated and com-

10

activity min.
analysis and design 240
implementation 180
loading grammar and tools 10
dumping trees 10
C code generation 30
make 20
factory assembly 5

Table 3: Productivity metrics for this particular
problem.

piling the components amounted to invoking the
GNU tool gmake.

In Table 3 the accumulated effort by activity
of the entire tool construction project is specified.
The abbreviation min. stands for minutes. You can
easily check that the total effort is a single day, af-
ter which it is possible to start running the tool
on a software system. Bear in mind that these
figures are representative for someone who is well-
informed on software renovation, on COBOL/SQL
systems, on the domain of the information systems
and on program transformations. So probably an
untrained software engineer needs more than a sin-
gle day to accomplish this task. Nevertheless, the
figures clearly show that the product-line architec-
ture indeed is capable of delivering ad-hoc tools
of very high-accuracy that can accomplish the re-
quired refactoring tasks in a 100% automated fash-
ion.

Since you only looked at a single sketchy example
obviously not all the requirements for software ren-
ovation factories have been highlighted, although
the most important ones have been illustrated. We
depict them in Figure 1. The five pillars of software
renovation factories are:

e grammar engineering
e factory generation

component development and testing

factory assemblage

factory operation

The first four pillars are demarcated in Figure 1

by the dashed boxes. The fifth pillar is illustrated

original system

|
I r I
! Grammar D ' ! Component | Factory !
: o Factory Generator ‘ ' Development L !
! Development P generic ! ! .) |
| - o reprocessin
1 | | transformations = | Tool-1 L prep 9 3
| ¥] S :
| | 4
" [CALETool B Project |18 Tod2 |1 g |
a . =2 =]
| oS - oree generic Ho @ X e factory |
| Ly Grammar analyzers v B 5 manager | |
! P e Tool-3 | | | 3 |
| L Vol P 2. !
! P N I I D g |
| 8
: 3 pey Ll e]| 2 :
| | Native Pattern inter b L post |
| | | e |
! N Language : Docs b processing !
,,,,,,,,,,,,,,, e e e e e e o o D D e e e e e e e e I
! |
ey
renovated system

Figure 1: The five pillars of Software Renovation Factories

hard-wired (Litl Lit2 Lit3 Lit4) true

Use-EM948_Sentence(

Statement*1

IF SQLCODE = Litl OR Lit2 OR Lit3 OR Lit4
Sentence-1

)
Statementx*1
MOVE SQLCODE TO SQL-CODE IN LINKAREA-EM948
CALL °UT100° USING L-EM948 LINKAREA-EM948
IF RETURNCODE = 9’

Sentence-1

Figure 2: Example of a conditional term rewriting
rule.

by the I/O arrows indicating that an original sys-
tem is the input of the assembled factory, and its
output is a renovated system.

Let’s discuss the remaining issues that are in the
figure, but were not yet covered. The first thing
that needs a clarification is the so-called native
pattern language [92]. This is best explained by
example. One of the equations dealing with the
COBOL/SQL refactoring example is shown in Fig-

ure 2.

The idea of a native pattern language is that the
code you have to write in transformations should
resemble the world of the domain as much as pos-

11

sible. In that way, it is not too difficult for do-
main experts to develop refactoring components.
So for instance the replacement code that we illus-
trated before, is verbatim contained in the trans-
Of course the patterns contain
variables. They resemble the variables that a pro-
grammer usually finds in user manuals. For in-
stance Sentence-1 is a familiar one for COBOL
programmers (it stands for an arbitrary COBOL
sentence, just like in the language reference man-
ual [60]). Such a pattern language can be generated
in a trivial manner [92] from the grammar of the

formation code.

language.

In the third dashed box Docs is mentioned. This
is a nicely typeset version of the grammar that
serves as a language reference manual for the tool
developer. It has been generated using unparser
generator technology [29]. In the fourth box there
is a repository containing tools. The factory man-
ager is a tool that generates the assembled end-
product from the coordination script and the com-
ponents needed for the renovation task. The user
should provide the factory manager with informa-
tion where the original files are located, in what
languages the original system is written, on how
many machines the various components should run,
and some other vital technical data. All in all this
comprises a few lines of code (say 20), from which

the entire refactory is generated. By pressing a
button the renovation task starts. Some languages
need pre- and postprocessing, such as stripping line
numbers in COBOL programs [25]. They are re-
stored and if necessary updated in a postprocessing
tool. Of course more such small technical details
are taken care of during pre- and postprocessing.

It would be nice to see some figures about
the performance of the mass-change to the
COBOL/SQL system so that you get an impression
of the fifth pillar: factory operation. I do not have
such figures for that particular project. Instead I
provide some figures of a similar project: a COBOL
85 to COBOL 74 conversion project. It also com-
prised of about 6 transformation components in
addition to parsing, unparsing and pre- and post-
processing. About 10 million lines of VS COBOL
IT were converted back to OS/VS COBOL using
a generated distributed component-based software
renovation factory that ran on 9 SUN Sparc sta-
tions, which took about 24 hours real-time. This is
about 400.000+ LOC per hour.

To learn more about the ins and outs of software
renovation factories, their use, their implementa-
tion, case studies, and how to employ them in a
commercial environment the following papers are
suitable starting points [21, 33, 19, 20, 70, 22, 104].
For more involved information take a look at [25,
28, 26, 92, 27, 93, 90, 96].

5 OQOutlook

Despite many efforts of software professionals who
invest in educating us about improving the intrinsic
quality of software systems, and how to keep their
quality up to date, in practice many enterprises are
not at all interested in quality. Since it is very hard
for such organizations to assign business value to
the intrinsic quality of the software product itself,
it is going to be a hard-sell to convince the Mon-
golian hordes of the relevance of building at high
quality levels. This is not just a stupid attitude of
such enterprises. It is really hard to calculate the
risk of making a change to a software system, with-
out adding business value but to improve its struc-
ture enabling possible future enhancements. The
risk of failing today due to preventive measures is
weighted against the risk of failing tomorrow due to
the lack of taking such preventive measures. Bear

12

in mind that if, e.g., a brokerage operation is down
the costs are huge: 6.450.000 US dollar per hour.
For a Credit Card/Sales Authorization system the
costs are about 2.600.000 US dollar per hour [101,
p. 5]. Therefore, the reality of today is that sooner
or later in virtually every successful software inten-
sive system a maintenance debt is created. Just like
the fact that many people are keen on borrowing
money, but less willing to pay the debts, software
owners are interested in moving onwards with soft-
ware at minimal costs but not willing to spend their
budgets to preventive measures that will keep their
costs low in the long run. The management respon-
sibility cycle prohibits long-term thinking, so these
preventive measures are seen as mere failure mag-
nets. In other words, it is to be expected that main-
tenance and renovation are going to be among us
for a long time. If there is no way out anymore, the
companies who accumulated enough money by em-
ploying their software-in-debt have the funds to em-
bark on major renovation projects. Large reengi-
neering efforts are only initiated if there is a com-
pelling reason. Most of the times the reason is that
a Prince of Serendip invented the unavoidable fu-
ture. This paper has shown you that implementing
such great ideas starts with paying the debts. So
implementing the future, implies dealing with the
past. Therefore, software renovation is the technol-
ogy to implement the future.

About the author Chris Verhoef is affiliated
with the University of Amsterdam and the Software
Engineering Institute of the Carnegie-Mellon Uni-
versity. He is an elected Executive Board member
of the IEEE Technical Council on Software Engi-
neering. He serves in Steering Committee, General
Chair and Program Chair positions for several im-
portant juried research conferences, including the
IEEE Working Conference on Reverse Engineering
and the European Conference on Software Main-
tenance and Reengineering. He co-founded the
upcoming IEEE International Conference on Soft-
ware Architecture. His research interests are soft-
ware engineering, maintenance, renovation, soft-
ware architecture, and theoretical computer sci-
He is a frequent speaker on international
conferences. He contributed to numerous papers
in conference records and journals. He co-authored
two chapters in computer science handbooks. He

ence.

co-edited conference proceedings and special issues.

He has acted as an industrial consultant in several

software intensive areas, notably hardware manu-
facturers, telecommunications companies, financial
enterprises, leading software renovation companies,

and large service providers.

Contact him at the

Programming Research Group, University of Am-
sterdam, Kruislaan 403, 1098 SJ Amsterdam, The
Netherlands; x@wins.uva.nl. His research is avail-
able via http://adam.wins.uva.nl/"x.

References

(1]
2]

(10]

(11]

(12]

(13]

S. Adams. The Dilbert Principle. MacMillan Publish-
ers Ltd, 1996.

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers.
Principles, Techniques and Tools. Addison-Wesley,
1986.

A.V. Aho and J.D. Ullman. The theory of parsing,
translation, and compiling. Prentice-Hall, Englewood

Cliffs (NJ), 1972-73. Vol. L. Parsing. Vol II. Compiling.

P. Allen and S. Frost. Component-Based Development
for Enterprise Systems. Cambridge University Press,
1998.

L. Bass, P. Clements, and R. Kazman. Software Ar-
chitecture tn Practice. Addison-Wesley, 1998.

M. Bauer (ed.). Resistance to New Technology: Nu-
clear Power, Information Technology, and Biotech-
nology. Cambridge University Press, 1997. reprint
edition.

B.L. Belady and M.M. Lehman. A model of large pro-
gram development. IBM Systems Journal, 15(3):225—
252, 1976.

J.A. Bergstra and P. Klint. The ToolBus coordina-
tion architecture. In P. Ciancarini and C. Hankin,
editors, Coordination Languages and Models, volume
1061 of Lecture Notes in Computer Science, pages 75—
88, 1996.

J.A. Bergstra and P. Klint. The discrete time ToolBus.
In M. Wirsing and M. Nivat, editors, Algebraic
Methodology and Software Technology, volume 1101
of Lecture Notes in Computer Science, pages 286-305.
Springer-Verlag, 1996.

J.A. Bergstra and P. Klint. The discrete time
ToolBus—a software coordination architecture. Sci-
ence of Computer Programming, 31:205-229, 1998.

D. Blasband. Analysis of An-
cient Languages. PhD thesis, Free Uni-
versity of Brussels, 2000. Available via
http://www.phidani.be/homes/darius/thesis.html.

Automatic

B.W. Boehm. Software engineering. IEEE Transac-
tions on Computers, C-25:1226-1241, 1976.

B.W. Boehm. Software Engineering Economics. Pren-
tice Hall, 1981.

13

(14]

(15]

(17]

(18]

(19]

20]

(21]

(22]

(24]

B.M. Bouldin. Agents of Change — Managing the In-
troduction of Automated Tools. Yourdon-Press, 1989.

J.M. Boyle. A transformational component for pro-
gramming language grammar. Technical Report ANL-
7690, Argonne National Laboratory, Argonne, Illinois,
1970.

J.S. Bozman. DMV Disaster: California Kills Failed
$44M Project. Computerworld, page 1 and 16, May
1994.

M.G.J. van den Brand, H.A. de Jong, P. Klint, and
P.A. Olivier. Efficient annotated terms. Software—
Practice and Ezperience, 30:259-291, 2000.

M.G.J. van den Brand, P. Klint, and P. Olivier. Com-
pilation and memory management for ASF4SDF. In
S. Jahnichen, editor, Proceedings of the eight Interna-
tional Conference on Compiler Construction, volume
1575 of LNCS, pages 198-213. Springer-Verlag, 1999.

M.G.J. van den Brand, P. Klint, and C. Verhoef.
Core technologies for system renovation. In K.G. Jef-
fery, J. Kral, and M. Bartosek, editors, SOFSEM’96:
Theory and Practice of Informatics, volume 1175 of
LNCS, pages 235-255. Springer-Verlag, 1996.

M.G.J. van den Brand, P. Klint, and C. Ver-
hoef. Re-engineering needs generic program-
ming language technology. ACM SIGPLAN
Notices, 32(2):54-61, 1997. Available at
http://adam.wins.uva.nl/ "x/sigplan/plan.html.

M.G.J. van den Brand, P. Klint, and C. Ver-
hoef. Reverse engineering and system renovation

— an annotated bibliography. ACM Software En-
gineering Notes, 22(1):57-68, 1997. Available at
http://adam.wins.uva.nl/“x/reeng/REanno.html.

M.G.J. van den Brand, P. Klint, and C. Ver-
hoef. Term rewriting for sale. In C. Kirch-
ner and H. Kirchner, editors, Second Interna-
tional Workshop on Rewriting Logic and its Ap-
plications, Electronic Notes in Theoretical Com-
puter Science. Springer-Verlag, 1998. Available at:
http://adam.wins.uva.nl/ "x/sale/sale.html.

M.G.J. van den Brand, P. Olivier, J. Heering, and
P. Klint. Compiling rewrite systems: The ASF+4SDF
compiler. Technical report, CWI/University of Ams-
terdam, 1998. In preparation.

M.G.J. van den Brand, M.P.A. Sellink, and C. Ver-
hoef. Generation of components for software ren-
ovation factories from context-free grammars. In
ID. Baxter, A. Quilici, and C. Verhoef, editors,
Proceedings Fourth Working Conference on Reverse
Engineering, pages 144-153, 1997. Available at
http://adam.wins.uva.nl/"x/trans/trans.html.

M.G.J. van den Brand, M.P.A. Sellink, and C. Ver-
hoef. Obtaining a COBOL grammar from legacy
code for reengineering purposes. In M.P.A.
Sellink, editor, Proceedings of the 2nd Interna-
tional Workshop on the Theory and Practice of
Algebraic Specifications, electronic Workshops in
Computing. Springer-Verlag, 1997. Available at
http://adam.wins.uva.nl/ "x/coboldef/coboldef.html.

[26]

(27]

(28]

29]

(37]
(38]

(39]

M.G.J. van den Brand, M.P.A. Sellink, and
C. Verhoef. Control flow normalization for
COBOL/CICS legacy systems. In P. Nesi and
F. Lehner, editors, Proceedings of the Second
FEuromicro Conference on Maintenance and
Reengineering, pages 11-19, 1998. Available at
http://adam.wins.uva.nl/"x/cfn/cfn.html.

M.G.J. van den Brand, M.P.A. Sellink, and
C. Verhoef. Current parsing techniques in soft-

ware renovation considered harmful. In S. Tilley
and G. Visaggio, editors, Proceedings of the
stecth International Workshop on Program Com-
prehension, pages 108-117, 1998. Available at
http://adam.wins.uva.nl/"x/ref/ref.html.

M.G.J. van den Brand, M.P.A. Sellink,
C. Verhoef. Generation of components
software renovation factories from context-free
grammars. Science of Computer Program-
ming, 36(2-3):209-266, 2000. Available at
http://adam.wins.uva.nl/ "x/scp/scp.html. An
extended abstract with the same title appeared
earlier: [24].

M.G.J. van den Brand and E. Visser. Generation of
formatters for context-free languages. ACM Transac-
tions on Software Engineering and Methodology, 5:1—
41, 1996.

and
for

F.P. Brooks Jr. No silver bullet: Essence and accidents
of software engineering. IEEE Computer, 20(4):10-19,
1987.

F.P. Brooks Jr. The Mythical Man-Month — Essays
on Software Engineering. Addison-Wesley, 1995. An-
niversary Edition.

J. Brunekreef and B. Diertens. Towards a user-
controlled software renovation factory. In P. Nesi and
C. Verhoef, editors, Proceedings of the Third Euro-
pean Conference on Maintenance and Reengineering,
pages 83-90. IEEE Computer Society Press, 1999.

E.J. Chikofsky and J.H. Cross. Reverse engineering
and design recovery: A taxonomy. IEEE Software,
7(1):13-17, 1990.

E.K. Clemons. Using Scenario Analysis to Manage the
Strategic Risks of Reengineering. Sloan Management
Review, 36(4):62, 1995.

E.B. Daly. Management of Software Engineering.
IEEE Transactions on Software Engineering, SE-
3(3):229-242, 1977.

D. Dérner. The Logic of Failure — Recognizing
and Avoiding Error in Complex Situations. Perseus

Books, 1996.

A.W. Brown (ed.). Component-Based Software Engi-
neering. IEEE Computer Society Press, 1996.

V. Ellis. Audit says DMV ignored warning. Los An-
geles Times, pages A3—-A34, Augustus 18 1994.

J.L. Elshoff. An analysis of some commercial PL/I
programs. IEEE Transactions on Software Engineer-
ing, SE-2(2):113-120, 1976.

14

40]

[41]

42]

(43]

[44]

(51]

(52]

(53]

(54]

(53]

M.E. Fagan. Design and code inspections to reduce
errors in programs. IBM Systems Journal, 15(3):182—
211, 1976.

M.E. Fagan. Advances in software inspections. IEEE
Transactions on Software Engineering, SE-12(7):744—
751, 1986.

T. Field. When bad things happen to good
projects. CIO, October 15 1997. Retrieved via:
http://www.cio.com/archive/101597_bad.html.

W.J. Fokkink, J.F.Th. Kamperman, and H.R. Wal-
ters. Within ARM’s reach: compilation of left-linear
rewrite systems via minimal rewrite systems. ACM
Transactions on Programming Languages and Sys-
tems, 20(3):679-706, 1998.

W.J. Fokkink, J.F.Th. Kamperman, and H.R. Wal-
ters. Lazy rewriting on eager machinery. ACM
Transactions on Programming Languages and Sys-
tems, 22(1), 2000. To appear.

W.J. Fokkink and C. Verhoef. Conservative extension
in positive/negative conditional term rewriting with
applications to software renovation factories. In J.-P.
Finance, editor, Proceedings 2nd Conference on Fun-
damental Approaches to Software Engineering, vol-
ume 1577 of LNCS, pages 98-113, Amsterdam, 1999.
Springer-Verlag.

M. Fowler. Refactoring — Improving the Design of
FEzisting Code. Object Technology Series. Addison-
Wesley, 1999.

D.P. Freedman and G.M. Weinberg. Handbook of
Walkthroughs, Inspections and Technical Reviews.
Dorset House, 3rd edition, 1990. Originally published
by Little, Brown & Company, 1982.

W.W. Gibbs. Software’s chronic crisis.
American, 273(3):86-95, 1994.

T. Gilb and D. Graham.
Addison-Wesley, 1993.

R.L. Glass. Software Runaways — Lessons Learned
from Massive Software Project Failures. Prentice Hall,
1998.

R.L. Glass.
1999.

J.A. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis,
J. Meseguer, and T. Winkler. An introduction to
OBJ3. In S. Kaplan and J.-P. Jouannaud, editors,
Conditional Term Reuwriting Systems (CTRS ’88),
volume 308 of Lecture Notes in Computer Science,
pages 258-263. Springer-Verlag, 1988.

Scientific

Software Inspection.

Computing Calamities. Prentice Hall,

R. Gray, T. Bickmore, and S. Williams. Reengineer-
ing Cobol Systems to Ada. In The Proceedings of
the Seventh Annual Air Force/Army/Navy Software
Technology Conference, Salt Lake City, April 1995.

R.X. Gringely. When disaster strikes IS. Forbes
ASAP, pages 60-64, Augustus 29 1994.

The Standish Group. CHAOS, 1995. Retrievable via:
http://standishgroup.com/visitor/chaos.htm.

[56]

(62]

(63]

[64]

[70]

[71]

[72]

(73]

B. Hall. Year 2000 tools and services. In
Symposium/ITzpo 96, The IT revolution continues:
managing diversity in the 21st century. Gartner-
Group, 1996.

M. Hammer and J. Champy. Reengineering the Cor-
poration. Harper Business, New York, US, 1993.

M. Hanna. Maintenance Burden Begging for a Rem-

edy. Datamation, pages 53—63, April 1993.

J. Heering and P. Klint. Semantics of programming
languages: A tool-oriented approach. ACM SIGPLAN
Notices, March 2000.

IBM Corporation. VS COBOL II Reference Sum-
mary, 1.2. edition, 1993. Publication number SX26-
3721-05.

J. Johnson. Chaos: The dollar drain of IT project
failures. Application Development Trends, 2(1):41-47,
1995.

S.C. Johnson. YACC - Yet Another Compiler-
Compiler. Technical Report Computer Science No.
32, Bell Laboratories, Murray Hill, New Jersey, 1975.

C. Jones. Assessment and Control of Software Risks.
Prentice-Hall, 1994.

C. Jones. Applied Software Measurement: Assuring
Productivity and Quality. McGraw-Hill, second edi-
tion, 1996.

C. Jones. Estimating Software Costs. McGraw-Hill,
1998.

Capers Jones. The Year 2000 Software Problem
- Quantifying the Costs and Assessing the Conse-
quences. Addison-Wesley, 1998.

N. Jones. Year 2000 market overview. Technical re-
port, GartnerGroup, Stamford, CT, USA, 1998.

J.F.Th. Kamperman. Compilation of Term Rewriting
Systems. PhD thesis, University of Amsterdam, 1996.

S. Kaplan. Positive/negative conditional rewriting. In
S. Kaplan and J.-P. Jouannaud, editors, Conditional
Term Rewriting Systems, volume 308 of LNCS, pages
129-143. Springer-Verlag, 1988.

P. Klint and C. Verhoef. Evolutionary software engi-
neering: A component-based approach. In R.N. Hor-
spool, editor, IFIP WG 2.4 Working Conference: Sys-
tems Implementation 2000: Languages, Methods and
Tools, pages 1-18. Chapman & Hall, 1998. Available
at: http://adam.wins.uva.nl/"x/evol-se/evol-se.html.

J.W. Klop. Term rewriting systems. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of
Logic in Computer Science, Volume II, pages 1-116.
Oxford University Press, 1992.

R. Lammel and C. Verhoef. VS COBOL II
grammar Version 1.0.3, 1999. Available at:
http://adam.wins.uva.nl/"x/grammars/vs-cobol-ii/.

R. Lammel and C. Verhoef. Semi-automatic
Grammar Recovery, 2000. Available
http://adam.wins.uva.nl/"x/ge/ge.html.

via:

15

[74]

(80]

(87]

(88]

B. Lang. Deterministic techniques for efficient non-
deterministic parsers. In J. Loeckx, editor, Proceed-
ings of the Second Colloguium on Automata, Lan-
guages and Programming, volume 14 of Lecture Notes
in Computer Science, pages 255-269. Springer-Verlag,
1974.

M.E. Lesk and E. Schmidt. LEX - A lezical analyzer
generator. Bell Laboratories, UNIX Programmer’s
Supplementary Documents, volume 1 (PS1) edition,
1986.

B.P. Lientz and E.B. Swanson. Software Maintenance
Management—A Study of the Maintenance of Com-
puter Application Software in 487 Data Processing
Organizations. Reading MA: Addison-Wesley, 1980.

J.L. Lions. ARIANE 5 Flight 501 Failure / Re-
port by the Inquiry Board, 1996. Retrievable via:
http://www.esa.int/.

S. McConnell. Rapid Development. Microsoft Press,
1996.

C. K. Mohan and M. K. Srivas. Conditional specifica-
tions with inequational assumptions. In S. Kaplan and
J.-P. Jouannaud, editors, Conditional Term Rewrit-
ing Systems (CTRS ’88), volume 308 of Lecture Notes
in Computer Science, pages 161-178. Springer-Verlag,
1988.

M.J. Nederhof, C.H.A. Koster, C. Dekkers, and A. van
Zwol. The grammar workbench: A first step towards
lingware engineering. In W. ter Stal, A. Nijholt, and
H.J. op den Akker, editors, Proceedings of the second
Twente Workshop on Language Technology — Linguis-
tic Engineering: Tools and Products, volume 92-29 of
Memoranda Informatica, pages 103—115. University of
Twente, 1992.

United States. Presidential Commission on the Space
Shuttle Challenger Accident. Report to the President
/ by the Presidential Commission on the Space Shuttle
Challenger Accident. DIANE Publishing Co, 1986.

R.S. Pressman. Making Software Engineering Hap-
pen. Prentice-Hall, 1988.

L.H. Putnam and W. Myers. Measures for Ezcellence
— Reliable Software on Time, Within Budget. Yourdon
Press Computing Series, 1992.

J. Rekers. Parser Generation for Interactive Environ-
ments. PhD thesis, University of Amsterdam, 1992.
ftp:/ /ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z.

T.G. Remer (ed.). Serendipity and the Three Princes
of Serendip; From the Peregrinaggio of 1557. Norman,
University of Oklahoma Press, 1965.

J. Reutter. Maintenance is a management problem
and a programmer’s opportunity. In A. Orden and
M. Evens, editors, 1981 National Computer Confer-
ence, volume 50 of AFIPS Conference Proceedings,
pages 343-347. AFIPS Press, Arlington, VA, 1981.

E.M. Rogers. Commaunication Strategies for Family
Planning. Free Press, 1973.

E.M. Rogers. Diffusion of Innovations.
4th edition, 1995.

Free Press,

(89]

[90]

(91]

(92]

(93]

[95]

[96]

(97]

(98]

[99]

M.B. Romney, P.J. Steinbart, and B.E. Cushing. Ac-
couning Information Systems. World Student Series.
Addison-Wesley, 7th edition, 1997.

M.P.A. Sellink, H.M. Sneed, and C. Verhoef.
Restructuring of COBOL/CICS legacy systems.
In P. Nesi and C. Verhoef, editors, Proceed-

ings of the Third European Conference on Main-
tenance and Reengineering, pages 72-82. IEEE
Computer Society Press, 1999. Available at
http://adam.wins.uva.nl/ "x/cics/cics.html.

M.P.A. Sellink and C. Verhoef. Development,
assessment, and reengineering of language de-
scriptions — extended abstract. In B. Nu-
seibeh, D. Redmiles, and A. Quilici, editors,

Proceedings of the 13th International Automated
Software Engineering Conference, pages 314-317,
1998. For a full version see [95]. Available at:
http://adam.wins.uva.nl/"x/ase98/ase98.html.

M.P.A. Sellink and C. Verhoef. Native pat-
terns. In M. Blaha, A. Quilici, and C. Ver-
hoef, editors, Proceedings of the Fifth Working
Conference on Reverse Engineering, pages 89—

103. IEEE Computer Society, 1998. Available at
http://adam.wins.uva.nl/ "x/npl/npl.html.

M.P.A. Sellink and C. Verhoef. An Architec-
ture for Automated Software Maintenance.
D. Smith and S.G. Woods, editors, Proceed-
ings of the Seventh International Workshop on
Program Comprehension, pages 38-48. IEEE
Computer Society Press, 1999. Available at
http://adam.wins.uva.nl/ "x/asm/asm.html.

M.P.A. Sellink and C. Verhoef. Generation of software
renovation factories from compilers. In H. Yang and
L. White, editors, Proceedings of the International
Conference on Software Maintenance, pages 245-255.
IEEE Computer Society Press, 1999. Available via
http://adam.wins.uva.nl/"x/com/com.html.

M.P.A. Sellink and C. Verhoef. Development, as-
sessment, and reengineering of language descriptions.
In J. Ebert and C. Verhoef, editors, Proceedings of
the Fourth European Conference on Software Mainte-
nance and Reengineering, pages 151-160. IEEE Com-
puter Society, March 2000. Full version of [91]. Avail-
able at: http://adam.wins.uva.nl/ x/cale/cale.html.

M.P.A. Sellink and C. Verhoef. Scaffolding for
In J. Ebert and C. Ver-

In

software renovation.

hoef, editors, Proceedings of the Fourth FEu-
ropean Conference on Software Maintenance
and Reengineering, pages 161-172. IEEE Com-
puter Society Press, March 2000. Available via

http://adam.wins.uva.nl/“"x/scaf/scaf.html.

R. Sennett. The Corrosion of Character — The Per-
sonal Consequences of Work in the New Capitalism.
W.W. Norton & Company, 1998.

H.M. Sneed and E. Nyary. Downsizing large appli-
cation programs. Journal of Software Maintenance,
6(5):235-247, 1994.

P. Tate. The Big Spenders. Information Strategy,
pages 30-37, 1999. Retrieved via http://www.info-
strategy.com/current /top100.html.

16

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

A.A. Terekhov and C. Verhoef. The real-
ities of language conversions. IEEE Soft-
ware, 2000. To Appear. Available at

http://adam.wins.uva.nl/"x/cnv/cnv.html.

J.W. Toigo. Disaster Recovery Planning — Strategies
for Protecting Critical Information Assets. Prentice
Hall, 2000.

M. Tomita. Efficient Parsing for Natural
Languages—A Fast Algorithm for Practical Sys-
tems. Kluwer Academic Publishers, 1986.

‘W.L. Trainor. Software: From Satan to saviour.
Proceedings of the National Aerospace and Electronics
Conference, 1973.

In

C. Verhoef. Towards Automated Modification
of Legacy Assets. Annals of Software FEngi-
neering, 9:315-336, March 2000. Available at

http://adam.wins.uva.nl/ "x/ase/ase.html.

E. Visser. Scannerless Generalized-LR Parsing.
Technical Report P9707, Programming Research
Group, University of Amsterdam, July 1997. Avail-
able at http://www.wins.uva.nl/pub/programming-
research /reports/1997/P9707.ps.

E. Visser, J. Scheerder, and M. van den Brand.
Scannerless Generalized-LR Parsing, 2000. Work in
Progress.

H.R. Walters. On Equal Terms — Implementing Al-
gebraic Specifications. PhD thesis, University of Am-
sterdam, 1991.

G.M. Weinberg. Understanding the Professional Pro-
grammer. Dorset House, 1988.

