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Abstract. In a first attempt to bring some structure in the use

of linear unary operators in process algebra, we propose two prin-

ciples, in order to obtain a uniform approach for the introduction

of these operators. For this we will use the notion of a linear

functional specification that consists of functional equations and

boundary conditions; the operator definition principle states that

such a system has a solution. Furthermore, we define an operator

specification principle; this principle states that a linear functional

specification has at most one solution. Examples to demonstrate

the usage of the two principles are given. We can think of the use

of auxiliary operators in verifications, specifications, or a combi-

nation of both. Although these specific operators are, in general,

not usable in another context, there is a need for auxiliary opera-

tors that can be defined as we wish. Moreover, we will need even

more complicated auxiliary linear unary operators in the future,

and therefore, a more sophisticated definition of a linear functional

specification. Suggestions to generalize this concept are given, too.
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An Operator Definition Principle: 1. Introduction

1. Introduction

WE will consider in this paper the algebra of communicating processes with abstraction and
linear unary operators (ACPτ,u). We will introduce ACPτ,u as an extension of ACPτ , the

algebra of communicating processes with abstraction, (see [6]). Hereinafter, we will give an overview
of what can be expected in the subsequent sections and we will give some motivation for the theory
that will be presented in this paper.

In section 2 we will give the signature and the axioms of ACPτ,u. Furthermore, we will formulate
the operator definition principle and the operator specification principle in terms of solutions for linear
functional specifications. In ACPτ,u, we will have two sorts: the sort of processes and the sort of
linear unary operators. In the sort of processes we will have the “usual” constants: the atomic actions
and the special constants. In the sort of linear unary operators we will have the projection operators,
the encapsulation operator and the abstraction operator. It can be found that, with the aid of this
theory, we can introduce the latter two operators. We still added them to the set of constants, since
they are not auxiliary: with these operators we want to formulate other axioms. We can mention
here KFARn ([10]) and conditional axioms ([3]). The same yields for the projection operators: we
formulate the approximation induction principle with them. So, even in a generalized version of
this theory in which we can specify the projection operators (see section 8), we want to have these
operators as constants. We will redefine certain items that are already known in ACPτ , for instance,
the notion of a guard and of a guarded recursive specification. This will be done in definition (2.15).
We will give a motivation on the alterations that we made into these notions. We will introduce two
more principles: the recursive definition principle (RDP) and the recursive specification principle
(RSP). These principles can be found in [7]. We will also introduce the approximation induction
principle (AIP) that can be found in [7], too.

In section 3 we will prove the termination of the system that we introduced in section 2 by
means of a method that is called the recursive path ordering. In [6] this method is used to prove
the termination of ACPτ . We will use the same method to prove the termination of ACPτ,u. We
will explain this method and we will give all the necessary definitions. Thereinafter, we will prove
an elimination result, which states that every closed ACPτ,u-term can be rewritten into a closed
BPAδ,τ -term.

In section 4 we will introduce some more concepts that are necessary in order to state general
theorems concerning linear unary operators, which can be defined with the aid of linear functional
specifications. In this section it will become clear that with this theory we do not longer have to
prove for each auxiliary linear unary operator separately that it has certain properties: it will be
sufficient to verify that this operator satisfies the conditions stated in these general theorems in order
to know that it has the desired properties. We attempted to handle a great variety of subjects. But
it will be far from complete. Many questions could be asked, and answered, on the subject of linear
unary operators. For instance, we want to know what processes are fixed points of a linear unary
operator, or: “When do linear unary operators commute?” Just to mention a few.

In section 5 we will construct a model for ACPu. This is the axiom system ACPτ,u, but without
abstraction. We did this because we wanted to construct what is called the standard model of process
algebra, that is, the inverse or projective limit model. Moreover, it is a well-known fact that the
combination of the projective limit model with the concept of abstraction is very problematic. We
will prove that a desired property (such as RDP, or OSP) is valid for the elements of the inverse
system and we use this to prove that it is preserved by taking the inverse limit. We think that
some of these proofs can be shortened by using so-called preservation theorems on inverse limits, but
since the theory on preservation theorems is only developed for single-sorted algebras, we will give
direct proofs.
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An Operator Definition Principle: 1. Introduction

In section 6 we will apply the theory by giving some examples of verifications and specifications
with the aid of auxiliary linear unary operators. We will also see that this theory is used to prove
certain properties of operators that we already know. For instance, if we have the abstraction
operator τI (this operator renames all the atomic actions that are in the subset I ⊆ A into the silent
step τ), then we immediately “feel” that τI ◦ τI must be τI . With the aid of OSP it is, actually, very
trivial to prove this. It turns out that, with the aid of the general theorems in section 4, it will be
sufficient to verify that τ2

I and τI are the same on the set of atomic actions in order to conclude that
they are equal.

In section 7 we will give some suggestions how we can generalize this theory in order to be able to
describe more (auxiliary) linear unary operators. Such as the projection operators or the generalized
state operator, just to mention a few. We will also give a short example of the increase of the proving
power of the generalized theory.

In section 8 we will emphasize that this theory can be the beginning of the unification of all the
theories, built up from ACP or ACPτ and, in addition, a number of auxiliary linear unary operators,
by discussing the results of section 6 in more detail.

In section 9 we will catalogue all the references we are going to make throughout the paper. We
will try to refer to the first source in which a concept can be found.

Finally, we will include a glossary in section 10.

Acknowledgement

The author would like to thank J. A. Bergstra for his comments and suggestions to improve the
draft versions of this paper.

2. Definitions

In this section we will consider the algebra of communicating processes with abstraction and linear
unary operators. We will use the following notation for this system: ACPτ,u. First, we will give a
graphical representation of the signature of ACPτ,u in figure 1. Subsequently, we will enumerate the
same signature in a more textual way.

A, δ, τ

P χ F

∂H , τI , π1, π2, π3, . . .

‖, , |,+, · · ◦ ·

Figure 1. Graphical representation of the signature.
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From this “pair of spectacles” it is not clear what the order of the arguments in the function χ is.
We will also give the naming of the symbols, used in figure 1. First, we consider the sort P . We have
a set of constants A, or atomic actions. We have also two special constants in P : δ or deadlock, and
τ or silent step. Consider the binary operators (they are all infix operators):

merge: ‖ : P × P −→ P,

left-merge: : P × P −→ P,

communication-merge: | : P × P −→ P,

sequential composition: · : P × P −→ P,

alternative composition: + : P × P −→ P.

Now we consider the sort F . For each I ⊆ A we have a constant τI ∈ F , which is called the
abstraction operator. For each H ⊆ A we have a constant ∂H in F . This constant is called the
encapsulation operator. For each n ≥ 1 we have a constant πn ∈ F . The constant πn is called
the (nth) projection operator. There is one binary operation with both arguments of sort F ; it is
the composition of functions: ◦ : F ×F −→ F . Finally, we have a binary operation χ : F ×P −→ P .
This operator can be called the apply function. This concludes our discussion on the signature of
ACPτ,u. Hereinafter, we will give the axiom system of ACPτ,u in table 1 on page 6. In this table we
use the following notational conventions: a, b, c are atomic actions or δ (we abbreviate Aδ = A∪{δ});
x, y, z are processes; γ is a special constant (we use C = {δ, τ} for the set of special constants); n ≥ 1,
and finally, f, g and h are linear unary operators.

At this point we will formulate an extensionality axiom which states: functions that behave the
same on all processes are indeed the same. We will not use the axiom in this paper but we added it
since there is no reason not to have it.

Axiom (2.1) Extensionality(2.1)

Let f and g be linear unary operators. If for all processes x ∈ P : χ(f, x) = χ(g, x), then f = g.
We will use the abbreviation EA for this axiom.

Definition (2.2)

Let N be a finite set of function names. A linear functional specification E(N) for N is a set of
the following form:

E(N) =
{

rn,a | n ∈ N, a ∈ A
}

∪
{

en,a | n ∈ N, a ∈ A
}

. (1)

Both rn,a and en,a are equations. Let a ∈ A and n ∈ N be fixed. Then we define the two equations
rn,a and en,a for this particular pair (n, a). The first equation rn,a is called a boundary condition
and has the following form: there is an element b ∈ A ∪ C such that

rn,a ≡ χ(n, a) = b.

The second equation en,a is called a (linear) functional equation and it is of the following form:

en,a ≡ χ(n, a · x) = b · χ(m,x) for one m ∈ N.

Examples of linear functional specifications can be found in remarks (2.11) and (2.19). Furthermore,
if the set of function names contains only one element , say n, we will omit the braces in the notation
of (1): we will write E(n) instead of E({n}).

5



An Operator Definition Principle: 2. Definitions

x+ y = y + x A1 x · τ = x T1

x+ (y + z) = (x+ y) + z A2 τ · x+ x = τ · x T2

x+ x = x A3 a · (τ · x+ y) = a · (τ · x+ y) + a · x T3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5 τ x = τ · x TM1

x+ δ = x A6 (τ · x) y = τ · (x ‖ y) TM2

δ · x = δ A7 τ | x = δ TC1

x | τ = δ TC2

a | b = b | a C1 (τ · x) | y = x | y TC3

(a | b) | c = a | (b | c) C2 x | (τ · y) = x | y TC4

δ | a = δ C3

χ(τI , a) = a, if a /∈ I TI1

x ‖ y = x y + y x+ x | y CM1 χ(τI , a) = τ, if a ∈ I TI2

a x = a · x CM2 χ(τI , x · y) = χ(τI , x) · χ(τI , y) TI3

(a · x) y = a · (x ‖ y) CM3

(x+ y) z = x z + y z CM4 χ(f ◦ g, x) = χ
(

f, χ(g, x)
)

XC1

(a · x) | b = (a | b) · x CM5 χ
(

(f ◦ g) ◦ h, x
)

= χ
(

f ◦ (g ◦ h), x
)

XC2

a | (b · x) = (a | b) · x CM6

(a · x) | (b · y) = (a | b) · (x ‖ y) CM7 χ(f, γ) = γ X1

(x+ y) | z = x | z + y | z CM8 χ(f, γ · x) = γ · χ(f, x) X2

x | (y + z) = x | y + x | z CM9 χ(f, x+ y) = χ(f, x) + χ(f, y) X3

χ(∂H , a) = a, if a /∈ H D1 χ(πn, a) = a PR1

χ(∂H , a) = δ, if a ∈ H D2 χ(π1, a · x) = a PR2

χ(∂H , x · y) = χ(∂H , x) · χ(∂H , y) D3 χ(πn+1, a · x) = a · χ(πn, x) PR3

Table 1. ACPτ,u.

Remark (2.3)

We will give a more explicit formulation of the definition of a linear functional specification. Let
N = {n1, . . . , nk} be a set of function names. Let σ : A× {1, . . . , k} −→ {1, . . . , k} be a map. Now
we define a linear functional specification to be the following:

E(N) =
{

ni(a) = a(i) : a ∈ A, 1 ≤ i ≤ k
}

∪
{

ni(a · x) = a(i) · nσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ k
}

,

with a(i) ∈ A∪{δ}. It will be clear that this formulation of a linear functional equation is equivalent
to definition (2.2).

We will now formulate two principles which say something about the “solutions” for this sort of
equational systems: the operator definition principle (ODP) and the operator specification principle
(OSP). But first, we will need a definition to map the function names into the set of linear unary
operators.
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Definition (2.4)

We will call a mapping ϕ : N −→ F a valuation for N .

Principle (2.5) The Operator Definition Principle(2.5)

Let E(N) be a linear functional specification for a set of function names N . Then the following
holds: there is a valuation ϕ for N which solves the system of equations E(N). We will use the
compact notation ODP for this principle.

Principle (2.6) The Operator Specification Principle(2.6)

Let E(N) be a linear functional specification for a set of function names N . Then there is at
most one valuation ϕ for N such that ϕ solves the system of equations E(N). Here we will use the
compact notation OSP.

Remarks (2.7)

See remarks (2.11) and (2.19) for examples of the use of both principles ODP and OSP. Hence-
forth, we will write for the expression χ(f, x), with f ∈ F and x ∈ P , the more usual notation f(x),
provided that no confusion can arise. If n is a function name we will use this convention, too. If we
have specified the boundary conditions of a certain function name n and we want this function name
to respect the sequential composition, we will abbreviate this by stating the functional equation for n
as follows: n(a ·x) = n(a) ·n(x) instead of reiterating the results of n(a) for each a ∈ A. Examples of
linear functional specifications in which a function name distributes over the sequential composition
can be found in remark (2.11) and in section 6.

Definition (2.8)

Let f ∈ F be a linear unary operator. We will define a subset D(f) ⊆ F as follows:

(i) f ∈ D(f)

(ii)
(

g ∈ F, a ∈ A, b ∈ A ∪ C, ∀x ∈ P : f(a · x) = b · g(x)
)

=⇒ g ∈ D(f)

(iii) h ∈ D(g), g ∈ D(f) =⇒ h ∈ D(f).

We will call D(f) the set of derived operators of f .

Examples (2.9)

We will calculate here for a number of linear unary operators, their sets of derived operators.
We will start with π3. Because of condition (i), we see that π3 ∈ D(π3). We know that for all
a ∈ A, x ∈ P : π3(a · x) = a · π2(x). So we find with (ii) that π2 ∈ D(π3). We also know
that π2(a · x) = a · π1(x) for all a ∈ A and x ∈ P ; thus we find with (ii) that π1 ∈ D(π2). And with
the aid of (iii) we see that π1 ∈ D(π3). Observe that we do not have constant linear unary operators.
For, let c : P −→ P be as follows. For all x ∈ P : c(x) = c, with c ∈ P . Suppose that c ∈ F , then
we know that c(δ) = δ, because of X1. So we find that c = δ. But on the other hand we know that
c(τ) = τ , so we see that c = τ . Since δ 6= τ we see that the assumption that c ∈ F cannot hold. So
in particular, we do not have in F a linear unary operator `, with for all x ∈ P : `(x) = τ . We know
that π1(a · x) = a = a · τ = a · `(x). But ` /∈ F . So we find that D(π1) = {π1}. We thus obtain
D(π3) = {π1, π2, π3}. It is very easy to deduce that D(πn) = {π1, . . . , πn}, for n ≥ 1. The facts that
D(τI ) = {τI} and D(∂H) = {∂H} are also easy to verify. In remark (2.19) we have two linear unary
operators µ and ν. It is immediately clear that D(µ) = D(ν) = {µ, ν} q.v..

Definition (2.10)

Let f ∈ F be a linear unary operator, which can be defined with the aid of a linear functional
specification. If |D(f)| = 1 we will call f a (linear unary) renaming operator.
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Remark (2.11)

We will give the definition of the renaming operator as it is stated in [17], in order to make
a comparison with the renaming operators that we defined hereinbefore in definition (2.10). Let
f : A −→ A ∪ C be a function. Define an operator ρf as follows.

(i) ρf (γ) = γ

(ii) ρf (a) = f(a)

(iii) ρf (x · y) = ρf (x) · ρf (y)

(iv) ρf (x+ y) = ρf (x) + ρf (y)

Consider the linear functional specification E(r) for the set of function names {r}.

E(r) =
{

r(a) = f(a) : a ∈ A
}

∪
{

r(a · x) = r(a) · r(x) : a ∈ A
}

.

According to ODP there is a valuation ϕ : {r} −→ F which solves the system of equations E(r).
Let us say ϕ(r) = ρ. It is evident that |D(ρ)| = 1; so we know, by definition, that ρ is a renaming
operator. We also see that ρf is a solution for this system: ρf (a) = f(a) and ρf (a ·x) = ρf (a) ·ρf (x).
But according to OSP, there is at most one solution, so thus we find: ρf = ρ. We have seen that the
“old” renaming operators can be defined in terms of the “new” ones. In fact, these definitions are
equivalent, since a linear functional specification that defines a renaming operator can only be of the
form that E(r) has.

Definition (2.12)

A linear unary operator f ∈ F is called an abstracting operator if there is a linear unary
operator g ∈ D(f), such that g(a) = τ , for some a ∈ A. Otherwise, f ∈ F is called a concrete
operator. Observe that the abstraction operator τI ∈ F is an abstracting operator (if I 6= ∅).

Example (2.13)

Let µ, ν be the linear unary operators considered in (2.19). We already saw in (2.9) that µ is an
element of D(ν). In the linear functional specification which defined both operators we can see that
µ(i) = τ , so ν is an abstracting operator.

Subsequently, we will introduce two more principles: the recursive definition principle (RDP) and
the recursive specification principle (RSP). For these principles, we need the notion of a (guarded)
recursive specification. These notions are taken from [7], although the notion of a guard can already
be found in [9]. The definitions of such specifications are given hereinafter.

Definition (2.14)

Let X be a set of variables. A recursive specification E with variable set X over ACPτ,u is a
system of recursion equations with variables in X :

E = {x = tx(X) : x ∈ X}.

For all x ∈ X , we have that tx(X) is an ACPτ,u-term with variables from the set X .

Definition (2.15)

Let t be a term over ACPτ,u without abstracting operators. Suppose that in t a variable x occurs.
We will call an occurrence of x in t guarded if t has a subterm of the form a ·s, in which a is an atomic
action and s is a term over ACPτ,u, which contains this occurrence of x. Otherwise we will call the
occurrence of x in t unguarded. We will call an ACPτ,u-term t without abstracting operators guarded
if all occurrences of all variables in t are guarded. Let E = {x = tx(X) : x ∈ X} be a recursive
specification without abstracting operators. We will call E a guarded recursive specification if we can
rewrite it to a recursive specification E ′ with the aid of the axioms and/or the aid of the specification
E itself in which all right-hand sides of the recursion equations of E ′ are guarded. We will call E ′ a
completely guarded recursive specification.
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Definition (2.16)

Let E = {x = tx(X) : x ∈ X} be a recursive specification. A solution for E is a vector
p = (px)x∈X , with px ∈ P for all x ∈ X , such that for all x ∈ X the following expressions are true
statements: px = tx(p), in which tx(p) is shorthand for: substitute for each occurrence of an element
x ∈ X in tx(X) the process px. We say that two solutions are equal if the components of the vectors
are equal: (px)x∈X = (qx)x∈X if and only if we have for each x ∈ X that px = qx.

Principle (2.17) The Recursive Definition Principle(2.17)

Let E be a guarded recursive specification. Then there is a solution for E.

Principle (2.18) The Recursive Specification Principle(2.18)

Let E be a guarded recursive specification. Then there is at most one solution for E.

Remark (2.19)

Now we will explain why we have excluded all abstracting operators in definition (2.15). First,
we will show that we have to exclude the abstraction operator itself. Consider the following recursive
specification:

E =
{

x = i · τ{j}(y), y = j · τ{i}(x)
}

.

Let there be an atomic action a ∈ A\{i, j}, then it is easy to see that (i ·an, j ·an) is a solution for E,
for each n ≥ 1. This means that we have to exclude the abstraction operator since RSP cannot be
valid. The abstracting operators are of our next concern: with the aid of ODP it is very easy to
make operators that behave like the abstraction operator. Consider the following linear functional
specification for the set of names N = {n,m}.

E(N) =
{

n(i) = j, n(j) = i, n(a) = a : a ∈ A \ {i, j}
}

∪
{

m(i) = τ,m(j) = τ,m(a) = a : a ∈ A \ {i, j}
}

∪
{

n(i · x) = j ·m(x), n(j · x) = i ·m(x), n(a · x) = a · n(x) : a ∈ A \ {i, j}
}

∪
{

m(i · x) = τ · n(x),m(j · x) = τ · n(x),m(a · x) = a ·m(x) : a ∈ A \ {i, j}
}

.

According to ODP, there is a valuation ϕ : N −→ F , which solves the system E(N). And by OSP

there is at most one such a solution, so we can give these linear unary operators a name. Let us say,
ϕ(n) = ν and ϕ(m) = µ. Now consider the guarded recursive specification below:

E =
{

x = i · ν(y), y = j · ν(x)
}

Observe that we can prove the following for ν with induction to k:

ν(ak) = ak,

ν(ik) = j[
k+1

2 ],

ν(jk) = i[
k+1

2 ].

Now it is easy to see that (i2 · an, j2 · an) is a solution for this system E, for some a ∈ A \ {i, j} and
n ∈ N. For:

i · ν(y) = i · ν(j2 · an)

= i2 · µ(j · an)

= i2 · τ · ν(an)

= i2 · an

= x.

The calculation that j · ν(x) = y, is proved as above. This means that we found more than one
solution for the guarded recursive specification above; hence, we have to exclude the abstracting
operators, too, in the definition of a guarded recursive specification.
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Observation (2.20)

In the above, we have just seen that if we want to use ACPτ with renaming operators as they
are defined in [17], we have to adjust the definition of a guarded recursive specification. For, we have
to, at least, exclude all the renaming operators ρ, such that ρ(a) = τ , for some atomic action a ∈ A
in the definition of a guarded recursive specification.

At this point we want to introduce the approximation induction principle. This definition can
be found in [8].

Principle (2.21) The Approximation Induction Principle(2.21)

Let x, y be ACPτ,u-terms. If we have for all n ≥ 1 that πn(x) = πn(y), then we have x = y. We
will abbreviate this principle with AIP.

3. Termination

In this section we will prove the termination of a term rewriting system, associated with the axiom
system ACPτ,u. We will exclude the axioms of commutativity of the alternative composition (A1)
and the second and third τ -laws of Milner (T2–T3). First we will describe what exactly closed
ACPτ,u-terms are.

Definition (3.1)

A closed term, or a closed ACPτ,u-term, is a term without variables of sort P and without
variables of sort F .

Examples (3.2)

Suppose that we have just two atomic actions: A = {a, b}. We know that π1(a) is a closed term.
We can rewrite this closed term to a term in which no elements of sort F occur. We see at once
that π1(a) rewrites to a. Now let s be a function name. Consider the following linear functional
specification.

E(s) = {s(a) = b, s(b) = a} ∪ {s(a · x) = b · s(x), s(b · x) = a · s(x)}. (1)

It is clear that s(a3) is a closed term. We can also rewrite this term with the aid of the linear
functional specification E(N). It is immediately clear that s(a3) = b3.

Remark (3.3)

We see that we can write the closed ACPτ,u-terms, considered above, without constants of
sort F . This is what we want to prove. We will consider the term rewriting system associated with
ACPτ,u (see table 2) and we will also consider the equations of an arbitrary but fixed linear functional
specification as rewriting rules from left to right. Thereinafter, we will study the termination of this
whole system. The outline of this proof will be more or less the same as the proof of the termination
of ACPτ in appendix A of [6]. But we will use the lexicographical variant of the recursive path
ordering to prove the termination. The lexicographical variant of the recursive path ordering can be
found in [13]. A general reference to the subject of term rewriting is [12]. Another reference that
can be useful is [14]. The following definition is taken from [6], with some additions specific to the
present situation.
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Definition (3.4)

Let x and y be terms, let α ∈ A ∪ C and let f ∈ F . Then we define the weight of a closed term
as follows:

(i) |α| = 1,

(ii) |x ? y| = |x|+ |y| for ? = ·, ‖, , |,

(iii) |x+ y| = max{|x|, |y|},

(iv) |χ(f, x)| = |f(x)| = |x|.

Definition (3.5) The Partial Ordering of the Signature(3.5)

Because of problems with the reduction of the left-merge, the authors of [6] have introduced
infinitely many operators: the so-called ranked operators. The rank of an operator ‖, , | is the
weight of the subterm of which it is the leading operator. We will give the partial ordering of the
operators. Let m ≥ 1 and n ≥ 2.

‖n> n, |n n+1, |n+1>‖n χ, ‖n, n, |n> · > + πm+1 > πm.

Let N be a finite set of function names. The rank of a constant n ∈ N is the weight of the subterm
of which it is the leading operator. The set of these constants of rank k is denoted by Nk. The set
of all these ranked constants of sort F is simply the union of all the Nk. We will denote this set by
Nr =

⋃∞
k=1Nk. We will give the partial ordering of these constants of sort F :

∀nk,ml ∈ Nr : k > l =⇒ nk > ml.

For the remaining part of the signature we will define the partial ordering as follows. For all n ∈ Nr

and for all a ∈ A we have: n, |2> a > τ > δ. See figure 2 for a graphical representation of this
ordering.

+

·

χ

2 |2

‖2

3 |3

‖3

τ

δ

A

N1

N2

N3

π1

π2

π3

Figure 2. Visualization of the partial ordering.
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Definition (3.6)

For each closed ACPτ,u-term t we obtain the the ranked term tr by assigning to all operators
their rank.

Example (3.7)

Here we will use the constant s that we defined in equation (1). Let

t =
(

s(a) a · b
)

‖
(

τ · s(a · b) | s(a+ b) · a2
)

be a closed ACPτ,u-term. This term will be ranked as follows:

tr =
(

s1(a) 3 a · b
)

‖10
(

τ · s2(a · b) |7 s2(a+ b) · a2
)

. (2)

Definition (3.8)

Let D be the set of ranked closed ACPτ,u-terms. Let D∗ be D where some of the symbols may be
marked with an asterisk (∗). As an example let us take the ranked closed ACPτ,u-term tr considered
above in equation (2). Then we have that a typical element t∗r ∈ D

∗ is the following expression:

t∗r =
(

s∗1(a)
∗
3 a · b

∗
)

‖10
(

τ∗ · s2(a ·
∗ b) |7 s2(a

∗ + b) · a2
)

.

Definition (3.9)

We will define a reduction relation “→” on the set of marked ranked closed ACPτ,u-terms D∗

as follows. For the sake of simplicity we will use, for the moment, prefix notation for the operators.
Let H,G be function symbols occurring in the signature of ACPτ,u (with this, we also mean constants
such as atomic actions, δ, τ , or function names). Let s, t, t1, . . . , tk, s1, . . . , sl be elements of D∗.

(i) H(t1, . . . , tk)→ H∗(t1, . . . , tk), (k ≥ 0);

(ii) H∗(t1, . . . , tk)→ G
(

H∗(t1, . . . , tk), . . . , H∗(t1, . . . , tk)
)

, (H > G, k ≥ 0);

(iii) H∗(t1, . . . , tk)→ ti, (k ≥ 1, 1 ≤ i ≤ k);

(iv) H∗
(

t1, . . . , G(s1, . . . , sl), . . . , tk
)

→ H
(

t1, . . . , G
∗(s1, . . . , sl), . . . , tk

)

, (k ≥ 1, l ≥ 0);

(v) s→ t =⇒ H(. . . , s, . . .)→ H(. . . , t, . . .);

(vi) If t ≡ H∗
(

G(s1, . . . , sl), t2, . . . , tk
)

, then t→ H
(

G∗(s1, . . . , sl), t, . . . , t
)

, (k ≥ 1, l ≥ 0).

In which the ordering “>” on the signature of ACPτ,u is already defined in definition (3.5). We will
use the symbol “�” for the transitive closure of the above defined reduction relation.

Definition (3.10)

A partially ordered set (S,>) consists of a set and a transitive and irreflexive binary relation >
defined on the elements of S. Notice that asymmetry of such a strict partial ordering follows from
transitivity and irreflexivity. A partially ordered set (S,>) is said to be well-founded if there are no
infinite (strictly) descending sequences s1 > s2 > s3 > · · · of elements of S.

Definition (3.11)

A term rewriting system over a set of terms has the termination property, if no infinite derivations
are possible. A derivation is a sequence of rewrites.

It is known that the following theorem holds. See [12].

12
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(x+ y) + z → x+ (y + z) RA2 x · τ → x RT

x+ x→ x RA3

(x+ y) · z → x · z + y · z RA4 τ x→ τ · x RTM1

(x · y) · z → x · (y · z) RA5 (τ · x) y → τ · (x ‖ y) RTM2

x+ δ → x RA6 τ | x→ δ RTC1

δ · x→ δ RA7 x | τ → δ RTC2

(τ · x) | y → x | y RTC3

a | b→ ca,b RC x | (τ · y)→ x | y RTC4

x ‖ y → x y + (y x+ x | y) RCM1 χ(τI , a)→ a, if a /∈ I RTI1

a x→ a · x RCM2 χ(τI , a)→ τ, if a ∈ I RTI2

(a · x) y → a · (x ‖ y) RCM3 χ(τI , x · y)→ χ(τI , x) · χ(τI , y) RTI3

(x+ y) z → x z + y z RCM4

(a · x) | b→ (a | b) · x RCM5 χ(f ◦ g, x)→ χ
(

f, χ(g, x)
)

RXC1

a | (b · x)→ (a | b) · x RCM6 χ
(

(f ◦ g) ◦ h, x
)

→ χ
(

f ◦ (g ◦ h), x
)

RXC2

(a · x) | (b · y)→ (a | b) · (x ‖ y) RCM7 χ(f, γ)→ γ RX1

(x+ y) | z → x | z + y | z RCM8 χ(f, γ · x)→ γ · χ(f, x) RX2

x | (y + z)→ x | y + x | z RCM9 χ(f, x+ y)→ χ(f, x) + χ(f, y) RX3

χ(∂H , a)→ a, if a /∈ H RD1 χ(πn, a)→ a RPR1

χ(∂H , a)→ δ, if a ∈ H RD2 χ(π1, a · x)→ a RPR2

χ(∂H , x · y)→ χ(∂H , x) · χ(∂H , y) RD3 χ(πn+1, a · x)→ a · χ(πn, x) RPR3

Table 2. A term rewriting system associated with ACPτ,u.

Theorem (3.12) Dershowitz(3.12)

Let (Σ, R) be a term rewriting system with finitely many rewriting rules and let “>” be a well-
founded ordering on Σ. If s � t for each rewriting rule s → t ∈ R, then the term rewriting system
(Σ, R) has the termination property. Where the arrow in s → t is, of course, not the arrow that we
defined in definition (3.9), but ordinary notation for a rewriting rule.

At this point we are about to discuss the table of rewriting rules, associated with the axiom
system ACPτ,u. See table 2 at page 13. In this table, we use the same notational conventions as in
table 1. We have a rewriting rule “RC” instead of making rewriting rules of the axioms C1–C3 in ta-
ble 1. In fact, we describe in these axioms some properties of the predefined communication function.
We give in RC a “listing” of all the function applications, so we can rewrite the communication-merge
in case we have a term containing an expression a | b, with a, b ∈ Aδ( = A∪ δ). We have no rewriting
rules that correspond with the axioms T2–T3. We have done this because these axioms do not have
a clear direction: they can be used in both directions in order to simplify a certain term. Consider
the following reduction:

τ · (a+ b) + a = τ · (a+ b) + a+ b+ a

= τ · (a+ b) + a+ b

= τ · (a+ b).
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In this example, we use twice the second τ -law of Milner; in both directions. With the third τ -law
of Milner, the same difficulties arise.

Definition (3.13)

In remark (3.3) we already announced that we will add to the term rewriting system associated
with ACPτ,u, a finite set of rewrite rules. Thence, let N be a set of function names for a linear
functional specification E(N). Recall that E(N) is of the following form.

E(N) =
{

rn,a | n ∈ N, a ∈ A
}

∪
{

en,a | n ∈ N, a ∈ A
}

.

We will make this system of equations into a term rewriting system from the left to the right by
simply substituting for an equality sign = an arrow→ in the boundary conditions and the functional
equations. We will call the set of all these rules: the term rewriting system associated with the linear
functional specification E(N).

Theorem (3.14)

Let E(N) be a linear functional specification. The rewriting rules in table 2 on page 13 together
with the term rewriting system associated with the linear functional specification E(N) have the
termination property. See definition (3.11).

Proof. According to theorem (3.12), it is sufficient to prove, for each closed instance s → t of the
rewriting rules that s � t. Let us first take a closer look at the rewriting rule RA2. We will make
use of (vi).

(x+ y) + z � (x+ y) +∗ z

� (x+∗ y) +
(

(x+ y) +∗ z
)

� x+
(

(x+∗ y) + z
)

� x+ (y + z).

Now let us treat RA3.

x+ x � x+∗ x

� x.

This means that x+ x � x. Now · > + so we find for RA4:

(x+ y) · z � (x+ y) ·∗ z

� (x+ y) ·∗ z + (x+ y) ·∗ z

� (x+∗ y) · z + (x+∗ y) · z

� x · z + y · z.

Indeed, (x + y) · z � x · z + y · z. Now we will treat RA5. We will use (vi), too. In fact, this case is
proved analogously to RA2.

(x · y) · z � (x · y) ·∗ z

� (x ·∗ y) ·
(

(x · y) ·∗ z
)

� x ·
(

(x ·∗ y) · z
)

� x · (y · z).

So we see that (x · y) · z � x · (y · z). The rewrite rules RA6 and RA7 are proved exactly the same
as RA3. So let us verify RC. We make use of the fact that the communication-merge of rank two is

14
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greater than all atomic actions. Observe that we also have |2> δ. We are to show that a |2 b � ca,b,
with ca,b ∈ Aδ.

a |2 b � a |
∗
2 b

� ca,b.

Now let us take a closer look at the merge. First we will handle RCM1. Let |x| + |y| = n. Notice
that we are to show:

x ‖n y � x n y + (y n x+ x |n y).

We will make use of the fact that ‖n> + and that ‖n> n, |n.

x ‖n y � x ‖
∗
n y

� x ‖∗n y + x ‖∗n y

� x ‖∗n y + (x ‖∗n y + x ‖∗n y)

� (x ‖∗n y) n (x ‖∗n y) +
(

(x ‖∗n y) n (x ‖∗n y) + (x ‖∗n y) |n (x ‖∗n y)
)

� x n y + (y n x+ x |n y).

We will verify RCM2. Let |x| = n.

a n+1 x � a
∗
n+1 x

�
(

a ∗
n+1 x

)

·
(

a ∗
n+1 x

)

� a · x.

Now we will handle the case RCM3. We will make use of the ranking of the operators. Let |x|+|y| = n.
Then we easily find:

(a · x) n+1 y � (a · x) ∗
n+1 y

�
(

(a · x) ∗
n+1 y

)

·
(

(a · x) ∗
n+1 y

)

� (a · x) ·
(

(

(a · x) ∗
n+1 y

)

‖n
(

(a · x) ∗
n+1 y

)

)

� (a ·∗ x) ·
(

(a · x) ‖n y
)

� a ·
(

(a ·∗ x) ‖n y
)

� a · (x ‖n y).

We will consider RCM4. Let |x| + |y| + |z| = p, |x| + |z| = q and |y| + |z| = r. We want to deduce
that:

(x+ y) p z � x q z + y r z.

Now contemplate the following calculation.

(x+ y) p z � (x+ y) ∗
p z

�
(

(x+ y) ∗
p z

)

+
(

(x + y) ∗
p z

)

�
(

(x+∗ y) p z
)

+
(

(x+∗ y) p z
)

� x p z + y p z

� x ∗
p z + y ∗

p z

�
(

(x ∗
p z) q (x ∗

p z)
)

+
(

(y ∗
p z) r (y ∗

p z)
)

� x q z + y r z.
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Indeed, we find that (x+ y) p z � x q z + y r z. Let us take a look at RCM5. Let |x| = n. Then
we are to show: (a · x) |n+2 b � (a |2 b) · x. Consider thereunto the display below:

(a · x) |n+2 b � (a · x) |∗n+2 b

�
(

(a · x) |∗n+2 b
)

·
(

(a · x) |∗n+2 b
)

�
(

(a ·∗ x) |n+2 b
)

· (a · x)

� (a |n+2 b) · (a ·
∗ x)

� (a |∗n+2 b) · x

�
(

(a |∗n+2 b) |2 (a |∗n+2 b)
)

· x

� (a |2 b) · x.

The deduction for the rewriting rule RCM6 is the same as the deduction above. So let us verify
RCM7. Let |x|+ |y| = n.

(a · x) |n+2 (b · y) � (a · x) |∗n+2 (b · y)

�
(

(a · x) |∗n+2 (b · y)
)

·
(

(a · x) |∗n+2 (b · y)
)

�
(

(

(a · x) |∗n+2 (b · y)
)

|2
(

(a · x) |∗n+2 (b · y)
)

)

·
(

(

(a · x) |∗n+2 (b · y)
)

‖n
(

(a · x) |∗n+2 (b · y)
)

)

�
(

(a · x) |2 (b · y)
)

·
(

(a · x) ‖n (b · y)
)

�
(

(a ·∗ x) |2 (b ·∗ y)
)

·
(

(a ·∗ x) ‖n (b ·∗ y)
)

� (a |2 b) · (x ‖n y).

We will treat RCM8. Let p = |x| + |y| + |z|, q = |x| + |z| and r = |y| + |z|. Observe that we must
show that: (x+ y) |p z � x |q z + y |r z. Consider the following:

(x+ y) |p z � (x+ y) |∗p z

�
(

(x+ y) |∗p z
)

+
(

(x+ y) |∗p z
)

�
(

(x+∗ y) |p z
)

+
(

(x +∗ y) |p z
)

� x |p z + y |p z

� x |∗p z + y |∗p z

�
(

(x |∗p z) |q (x |∗p z)
)

+
(

(y |∗p z) |r (y |∗p z)
)

� x |q z + y |r z.

RCM9 is treated analogously. Let us calculate RD1 and RD2. This can be done in one calculation.
We will use the fact that for all atomic actions a ∈ A : a > δ.

χ(∂H , a) � χ
∗(∂H , a)

� a

� a∗

� δ.

We see that χ(∂H , a) � a � δ, so with this, we handled both RD1 and RD2. We will treat RD3.

χ(∂H , x · y) � χ
∗(∂H , x · y)

� χ∗(∂H , x · y) · χ
∗(∂H , x · y)

� χ(∂H , x ·
∗ y) · χ(∂H , x ·

∗ y)

� χ(∂H , x) · χ(∂H , y).

16



An Operator Definition Principle: 3. Termination

RT is proved just like, e.g., RA7. RTM1 goes like RCM2. RTM2 is as RCM3. Now we will show
RTC1. We will use that τ > δ. Let |x| = n.

τ |n+1 x � τ |
∗
n+1 x

� τ

� τ∗

� δ.

Of course RTC2 goes the same. We will show RTC3. Let n = |x|+ |y|.

(τ · x) |n+1 y � (τ · x) |∗n+1 y

� (τ ·∗ x) |n+1 y

� x |n+1 y

� x |∗n+1 y

�
(

x |∗n+1 y
)

|n
(

x |∗n+1 y
)

� x |n y.

So we find (τ · x) |n+1 y � x |n y. The proof of RTC4 is the same. RTI1–3 are proved in the same
way as RD1–3. Observe that we use that for all atomic actions a ∈ A : a > τ in RTI1–2. Let us take
RXC1. In this deduction we will make use of (vi) for the function symbol χ.

χ(f ◦ g, x) � χ∗(f ◦ g, x)

� χ
(

f ◦∗ g, χ∗(f ◦ g, x)
)

� χ
(

f, χ(f ◦∗ g, x)
)

� χ
(

f, χ(g, x)
)

.

To deduce the desired inequality for RXC2, we make use of (vi) for the function symbol ◦.

χ
(

(f ◦ g) ◦ h, x
)

� χ∗
(

(f ◦ g) ◦ h, x
)

� χ
(

(f ◦ g) ◦∗ h, x
)

� χ
(

(f ◦∗ g) ◦
(

(f ◦ g) ◦∗ h
)

, x
)

� χ
(

f ◦
(

(f ◦∗ g) ◦ h
)

, x
)

� χ
(

f ◦ (g ◦ h), x
)

.

The case RX1 is trivial. So let us treat RX2.

χ(f, γ · x) � χ∗(f, γ · x)

� χ∗(f, γ · x) · χ∗(f, γ · x)

� (γ · x) · χ(f, γ ·∗ x)

� (γ ·∗ x) · χ(f, x)

� γ · χ(f, x).

For RX3 we will make use of the fact that χ > +.

χ(f, x+ y) � χ∗(f, x+ y)

� χ∗(f, x+ y) + χ∗(f, x+ y)

� χ(f, x+∗ y) + χ(f, x+∗ y)

� χ(f, x) + χ(f, y).
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RPR1 goes like, e.g., RD1. Let us verify RPR2.

χ(π1, a · x) � χ
∗(π1, a · x)

� a · x

� a ·∗ x

� a.

For the verification of RPR3 we will use that πn+1 > πn.

χ(πn+1, a · x) � χ
∗(πn+1, a · x)

� χ∗(πn+1, a · x) · χ
∗(πn+1, a · x)

� (a · x) · χ(π∗
n+1, a · x)

� (a ·∗ x) · χ(πn, a · x)

� a · χ∗(πn, a · x)

� a · χ(πn, x)

Let us now take a boundary condition. Recall that we have introduced the rank of a function name,
thus for the boundary condition we are to show χ(n1, a) � b. We will make use of the fact that
n1 > b.

χ(n1, a) � χ
∗(n1, a)

� n1

� n∗
1

� b.

Indeed, we see that χ(n1, a) � b. Let us take a functional equation. Let |x| = p. We will show that
χ(np+1, a · x) � b · χ(mp, x).

χ(np+1, a · x) � χ
∗(np+1, a · x)

� χ∗(np+1, a · x) · χ
∗(np+1, a · x)

� np+1 · χ(np+1, a ·
∗ x)

� n∗
p+1 · χ(np+1, x)

� b · χ∗(np+1, x)

� b · χ(n∗
p+1, x)

� b · χ(mp, x).

And finally, we find χ(np+1, a · x) � b · χ(mp, x). This ends the proof of (3.14).

Remarks (3.15)

The partial ordering on the signature in [6] differs in two ways from the partial ordering that is
given in (3.5), or equivalently in figure 2. Firstly, we give the following ordering on atomic actions:
for all a ∈ A, we defined a > τ > δ. In [6], there is no ordering on the atomic actions, nor on δ or τ ,
whatsoever. The author did not succeed in proving that ∂H(a) � δ, τ | x � δ, x | τ � δ or τI (a) � τ ,
without some kind of ordering on the atomic actions. Secondly, in [6] there is no rewriting rule for
a | b, with a, b ∈ A \ {δ}. This is necessary in order to be able to prove an elimination result. This
is also stated in [6], but without a rewriting rule for a | b, this result in [6] is not entirely correct.

We have seen that this way of proving termination is highly usable in process algebra. For, the
method presented in [6], is generalized effortlessly to the present situation. Therefore, it is worthwhile
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investigating this method separately. However, we will not do that in this paper. For another way
of proving termination in process algebra we refer to [1].

Here we will discuss here an elimination theorem which states that we can eliminate in a closed
ACPτ,u-term all the operators that are not the alternative composition or the sequential composition.
In other words, we can rewrite each closed ACPτ,u-term to a BPAδ,τ -term. The acronym BPA stands
for basic process algebra. This system consists of the first five laws of PA, which has been studied
in [7]. The abbreviation PA stands for process algebra. The subscripts δ and τ , mean that the
axioms concerning those special constants are added to the theory BPA. A good general reference
to BPA, BPAδ,τ and PA is [5].

We will use the same notational conventions as before in table 1. For the axioms of BPAδ,τ , see
table 3 on page 19.

x+ y = y + x A1 x · τ = x T1

x+ (y + z) = (x+ y) + z A2 τ · x+ x = τ · x T2

x+ x = x A3 a · (τ · x+ y) = a · (τ · x+ y) + a · x T3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

Table 3. BPAδ,τ .

Lemma (3.16)

Let t be a closed BPAδ,τ -term. Let RA3–7 and RT from table 2 on page 13 be the term rewriting
system associated with BPAδ,τ , then we can rewrite the term t in one of the following forms:

u =



















a, with a ∈ A;
δ;
τ ;
a · v, with a ∈ Aδ and v a closed BPAδ,τ -term in normal form;
v + w, with v, w closed BPAδ,τ -terms in normal form.

Or, equivalently, there are closed BPAδ,τ -terms x1, . . . , xn, t1, . . . , tp and n, p ≥ 0 such that

u =

n
∑

i=1

ai · xi +

p
∑

k=1

τ · tk,

for certain atomic actions a1, . . . , an ∈ A.

Proof. This is a well-known fact. See, e.g., [5]. Note that we rewrite modulo A1 and A2. We did
not do that in theorem (3.14); we excluded the axiom A1 among others in there in order to be able
to use the method of the recursive path ordering.
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Theorem (3.17) The Elimination Theorem(3.17)

Let t be a closed ACPτ,u-term. Then there is a closed BPAδ,τ -term s, such that

ACPτ,u ` t = s.

Proof. Let N be the set of function names that occur in the closed ACPτ,u-term t. Rewrite this
term t with the aid of the term rewriting system in table 2 on page 13 and the term rewriting system
associated with E(N)* to a normal form. With the aid of theorem (3.14), we know that this is not
an infinite process, i.e., there is a finite row:

t = t0 → t1 → · · · → tn = s, (3)

and we cannot perform any rewriting rule on s. We see immediately that in s we have not a merge
operator, for otherwise we could apply RCM1. We will distinguish five cases. If in s occurs a function
name, a left-merge, a communication-merge, an encapsulation operator or an abstraction operator,
we will take a minimal subterm (in the sense of a minimal number of symbols), in which precisely
one of these operators occurs.

1 We have a minimal subterm of the form n(u), with n ∈ N and u a closed BPAδ,τ -term. Then
we know that u has one of the forms displayed in (3.16). If u = a, then we can use a boundary
condition: χ(n, a) → b, but this is in contradiction with the assumption that s is in normal
form. If u = δ or τ , we can apply RX1. If u = a · v, we can use a functional equation:
χ(n, a · v)→ b · χ(m, v). And if u = v + w, we can apply RX3.

2 We have a minimal subterm of the form u1 u2, with u1, u2 closed BPAδ,τ -terms. If u1 = a ∈ Aδ,
then we can apply RCM2. If u1 = τ , we can use RTM1. If u1 = a · v, we can use RCM3. If
u1 = v + w, then we can use RCM4.

3 We have a minimal subterm of the form u1 | u2 with u1, u2 closed BPAδ,τ -terms. If u1 = a ∈ A
or δ, then we may use RC or RCM6. If u1 = τ , we can apply RTC1. If u1 = a · v, we can use
RCM5 or RCM7 or RCM9 or RTC2. If u1 = v + w, we can use RCM8.

4 We have a minimal subterm of the form ∂H(u), with u a closed BPAδ,τ -term. If u = a ∈ A or
δ, we can apply RD1 or RD2. If u = τ , we can apply RDT. If u = a · v, we can use RD4 and, if
u = v + w, we can use RD3.

5 We have a minimal subterm of the form τI(u), with u a closed BPAδ,τ -term. This case is treated
exactly the same as the former case.

So in s a left-merge, a communication-merge, an encapsulation operator or an abstraction operator
cannot occur. Thus, s is a closed BPAδ,τ -term. If we replace the arrows by equality signs, in
equation (3), we obtain a proof in ACPτ,u of t = s. This will end the proof of (3.17).

Corollary (3.18)

Let t be a closed ACPτ,u-term. Then we can rewrite this term t into a closed term u which has
the following form:

u =
n

∑

i=1

ai · xi +

p
∑

k=1

τ · tk,

for closed BPAδ,τ -terms x1, . . . , xn, t1, . . . , tp, n, p ≥ 0 and certain a1, . . . , an ∈ A.

* see definition (3.13)
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4. Theorems

In several applications in which auxiliary linear unary operators have been used in the past, there was
a need to deduce some basic properties on these operators in order to be able to prove the desired
results. We can think of an application wherein the approximation induction principle is used to
establish a result. See definition (2.21) for the formulation of AIP. Therefore, we often need to know
whether or not this particular auxiliary operator commutes with the projection operators πn. In this
section we will prove that if f can be defined with the aid of a linear functional specification and,
if f is a concrete operator, then for all processes x that contain no τs, we have

πn ◦ f(x) = f ◦ πn(x).

See theorem (4.8) for details. Moreover, this yields that if we work in the axiom system ACPu (ACPu

is ACPτ,u without abstraction; see table 5 on page 39, section 5), all the linear unary operators that
can be defined with the aid of a linear functional specification, commute with the projection operators.
For in there all the operators and processes are both concrete.

Another thing that we might want to know is which processes are fixed points of such an operator.
We will prove two results on this. To formulate these theorems we will use the notion of stable atomic
actions (with respect to this operator). We call an atomic action stable with respect to f ∈ F if we
have for all x ∈ P that f(a ·x) = a · f(x), that is, if f meets such an atom, it will pass it and nothing
will change: neither the atomic action, nor the operator itself.

It is intuitively clear that, for instance, ρ◦ρ = ρ for a renaming operator that only renames a ∈ A
into b. This can be proved within the framework of ACPτ , for closed terms. But we actually feel
that this must be valid for open terms. With the aid of OSP, we can prove this for open terms. In
fact, we will prove some theorems on idempotent linear unary operators that can be defined with the
aid of a linear functional specification.

It is not only the case that we might want to know some basic facts about auxiliary unary
operators that we defined in the middle of a verification, but it can be the case that we want to
know something concerning operators that we already know. For instance, it is immediately clear
that τI ◦ τ{i} = τI , for all i ∈ I . Again it is already possible to prove this for closed terms within
ACPτ . With the aid of OSP it is very trivial to show that this is true in general. We see that the
operator τ{i} is absorbed by τI . We will define the notions of a left and right-absorber. We will prove
some theorems concerning this matter.

In [3] we can find conditional axioms. We will treat a theorem from which two of these axioms
follow immediately. Just another thing that can be of interest, is the question if a linear unary
operator commutes with the encapsulation operator, or with the abstraction operator. Or when do
we have that ∂H and τI commute? The latter question is also known as a conditional axiom. In
fact, we will prove this conditional axiom as a corollary of theorem (4.24), in which we give some
necessary conditions in a way that renaming operators commute. We extend this result to arbitrary
linear unary operators that can be defined with the aid of a linear functional specification. In these
theorems we will use the notion of stable atomic actions, too.

At last we will treat, for “historic” reasons, a theorem that gives the conditions such that

f ◦ g(x ‖ y) = f(x) ‖ g(y).

This theorem can be found in [2]. We included it, since it can be seen as one of the first theorems on
auxiliary linear unary operators. This theorem might look a bit strange at first sight, but when we
take f = g = ∂H , we find a very useful equation: ∂H(x ‖ y) = ∂H(x) ‖ ∂H(y), since ∂H is idempotent.
(Of course, we do have certain restrictions on x and y.)
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Definition (4.1)

Let x be a closed ACPτ,u-term and let a ∈ A. The alphabet of a process x is the set of atomic
actions that x can perform. We define inductively what the alphabet α(x) of this x is. If in x
occurs a constant of sort F , we will rewrite this term x with corollary (3.18) to a term x′ and we
define α(x) := α(x′). Now let x be a closed ACPτ,u-term without elements of sort F .

(i) α(δ) = α(τ) = ∅

(ii) α(a) = {a}

(iii) α(δ · x) = ∅

(iv) α(τ · x) = α(x)

(v) α(a · x) = {a} ∪ α(x)

(vi) α(x+ y) = α(x) ∪ α(y)

Now we have defined the alphabet for closed terms, we will define it for terms t, with the property

that πn(t) is a closed ACPτ,u-term.

(vii) α(t) =
⋃∞

n=1 α
(

πn(t)
)

This definition is taken from [3].

Definition (4.2)

Let f ∈ F be a unary operator. An atomic action a ∈ A is called stable (with respect to f), if
we have for all x ∈ P :

f(a · x) = a · f(x).

Otherwise, it is called unstable. The set of all stable atomic actions with respect to f is denoted:

S(f) =
{

a ∈ A
∣

∣ ∀x ∈ P : f(a · x) = a · f(x)
}

.

We will use the notation U(f) = A \ S(f) for the set of unstable atomic actions with respect to f .

Examples (4.3)

Let I ⊆ A. Then the set of unstable atomic actions of the abstraction operator is U(τI ) = I .
Let H ⊆ A. Then the set of unstable atomic actions of the encapsulation operator is U(∂H) = H .
Let n ≥ 1. Then the set of stable atomic actions of the projection operator is S(πn) = ∅.

Remark (4.4)

Let f ∈ F be a linear unary operator. Let a ∈ A be a stable atom with respect to f . Then we
find that f(a) = a. For consider the following:

f(a) = f(a · τ)

= a · f(τ)

= a · τ

= a.

Definition (4.5)

A process x ∈ P is called concrete, if it has the following form:

x =

n
∑

i=1

ai · xi +

m
∑

j=1

bj ,

for a1, . . . , an, b1, . . . , bm ∈ Aδ and x1, . . . , xn ∈ P have the same form as x, i.e., they can be denoted
without any τ .

22



An Operator Definition Principle: 4. Theorems

Theorem (4.6)

Let x be a concrete process, then for all n ≥ 1, we have that πn(x) is a closed ACPτ,u-term.

Proof. We will prove (4.6) with induction to n. We know that x is of the following form:

x =

n
∑

i=1

ai · xi +

m
∑

j=1

bj ,

and x1, . . . , xn are also concrete (by definition). Now let n = 1, then

π1(x) =

n
∑

i=1

ai +

m
∑

j=1

bj ,

and this is a closed term. Suppose that (4.6) is proved for n, then we prove it for n + 1. We know
that for all i = 1, . . . , n : πn(xi) = ti are closed terms, so we find for x:

πn+1(x) =

n
∑

i=1

ai · πn(xi) +

m
∑

j=1

bj

=

n
∑

i=1

ai · ti +

m
∑

j=1

bj ,

which is a closed ACPτ,u-term.

Remark (4.7)

Notice that we can define the alphabet of a concrete process with the aid of the former theorem,
for we defined the alphabet inductively on closed ACPτ,u-terms and the projections of concrete
processes are closed terms.

Theorem (4.8)

Let f ∈ F be a concrete linear unary operator that can be defined with a linear functional
specification (see definition (2.12) for the definition of a concrete operator). Let x be a concrete
process. Then we have for all n ≥ 1:

πn ◦ f(x) = f ◦ πn(x).

Proof. We will prove this theorem with induction to n. Recall that x has the following form:

x =
n

∑

i=1

ai · xi +
m

∑

j=1

bj ,

for certain concrete x1, . . . , xn. Let n = 1, then,

π1 ◦ f(x) =

n
∑

i=1

f(ai) +

m
∑

j=1

f(bj)

=

n
∑

i=1

f
(

π1(ai · xi)
)

+

m
∑

j=1

f
(

π1(bj)
)

= f ◦ π1(x).
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Suppose that (4.8) is valid for n, then we prove it for n+ 1. Observe that all g ∈ D(f) are concrete,
if f itself is concrete.

πn+1 ◦ f(x) =

n
∑

i=1

f(ai) · πn ◦ gi(xi) +

m
∑

j=1

πn+1 ◦ f(bj)

=

n
∑

i=1

f(ai) · gi ◦ πn(xi) +

m
∑

j=1

f(bj)

=

n
∑

i=1

f
(

ai · πn(xi)
)

+

m
∑

j=1

f
(

πn+1(bj)
)

= f ◦ πn+1(x).

Since gi ∈ D(f). This finishes the proof of theorem (4.8).

Lemma (4.9)

Let f ∈ F be a linear unary operator, not necessarily definable by a linear functional specification,
and let x be a closed ACPτ,u-term. Then we have the following:

α(x) ⊆ S(f) =⇒ f(x) = x.

Proof. We will prove (4.9) with induction to the number n of symbols of x. So let n = 1, then we
have three possibilities for x: x = a, x = δ, or x = τ . Because of X1, the latter two cases are proved
and, due to the fact that α(a) ⊆ S(f) and remark (4.4), we know that f(a) = a. Now let n > 1 and
suppose that (4.9) holds for all closed terms with their number of symbols < n. Because of (3.18),
we know that x has the following form:

x =

n
∑

i=1

ai · xi +

p
∑

k=1

τ · tk,

for closed ACPτ,u-terms x1, . . . , xn, t1, . . . , tp, n, p ≥ 0 and atomic actions a1, . . . , an ∈ A. Now we
see that ai ∈ α(x) ⊆ S(f), hence, f(ai · xi) = ai · f(xi), for 1 ≤ i ≤ n. Consider the following:

f(x) =

n
∑

i=1

f(ai · xi) +

p
∑

k=1

f(τ · tk)

=
n

∑

i=1

ai · f(xi) +

p
∑

k=1

τ · f(tk)

=

n
∑

i=1

ai · xi +

p
∑

k=1

τ · tk

= x.

Observe that we can use the induction hypothesis, since α(xi), α(tk) ⊆ α(x) ⊆ S(f). This ends the
proof of (4.9).

Theorem (4.10)

Let f ∈ F be a concrete linear unary operator that can be defined with a linear functional
specification and let x be a concrete process, and suppose that α(x) ⊆ S(f), then x is a fixed point
of f .

Proof. According to AIP it suffices to prove for all n ≥ 1:

πn ◦ f(x) = πn(x).

Let n ≥ 1 be fixed. As both x and f are concrete, we know that πn ◦ f(x) = f ◦ πn(x) = f
(

πn(x)
)

.

With the aid of (4.6) and (4.9) we know that f
(

πn(x)
)

= πn(x), since

α
(

πn(x)
)

⊆
∞
⋃

i=1

α
(

πi(x)
)

= α(x) ⊆ S(f).

Thus, we see that x is a fixed point of f .
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Definition (4.11)

Let f ∈ F be a linear unary operator. If we have f 2 = f , we will call f idempotent.

Theorem (4.12)

Let f ∈ F be a renaming operator. Suppose that the following condition holds.

∀α ∈ f
(

U(f)
)

: f(α) = α,

then f is idempotent, that is, f2 = f .

Proof. Let n be a function name and consider the following linear functional specification.

E(n) =
{

n(a) = f(a) : a ∈ A
}

∪
{

n(a · x) = n(a) · n(x) : a ∈ A
}

.

We see immediately that f is a solution for this system. Now we will show that f 2 is also a solution
for it. Let a ∈ S(f), then we see that f 2(a) = a = f(a). Let a ∈ U(f), then we know that f(a) is a
fixed point of f . So we find again f 2(a) = f(a). Since f is a renaming, we find f 2(a·x) = f2(a)·f2(x).
We see that f2 is a solution for the linear functional specification E(n). But according to OSP, we
know that there is at most one solution, so we find f 2 = f . This ends the proof of (4.12).

Theorem (4.13)

Let f1 ∈ F be a linear unary operator that can be defined with the aid of a linear functional
specification. Let D(f1) = {f1, . . . , fk} be the set of derived operators. Let

σ : A× {1, . . . , k} −→ {1, . . . , k}

be defined as follows. If we have for all x ∈ P : fi(a · x) = fi(a) · fj(x), then we define σ(a, i) = j.
Suppose that the following conditions hold,

(i) ∀α ∈ fi

(

U(fi)
)

: fi(α) = α

(ii) σ(a, i) = σ
(

fi(a), i
)

then fi is idempotent, for all 1 ≤ i ≤ k.

Proof. Let N = {n1, . . . , nk} be a set of function names. Consider the following linear functional
specification.

E(N) =
{

ni(a) = fi(a) : a ∈ A, 1 ≤ i ≤ k
}

∪
{

ni(a · x) = ni(a) · nσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ k
}

.

It will be clear that f1, . . . , fk is a solution for this system of equations. We will show that f 2
1 , . . . , f

2
k

is also a solution for this system. Choose an i ∈ {1, . . . , k}. As in theorem (4.12), we see at once
that f2

i (a) = fi(a). We will handle the functional equations. Here, we will use the second condition.

f2
i (a · x) = fi

(

fi(a) · fσ(a,i)(x)
)

= f2
i (a) · fσ(fi(a),i) ◦ fσ(a,i)(x)

= f2
i (a) · f2

σ(a,i)(x).

With the aid of OSP, we see that f 2
i = fi, for all 1 ≤ i ≤ k. This will end the proof of (4.13).

Definition (4.14)

Let f, g ∈ F . If f ◦ g = g, we will call g a left-absorber for f ; if g ◦ f = g, we say that g is
a right-absorber for f . If g is a left-absorber and a right-absorber for f , we just say that g is an
absorber for f .
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Theorem (4.15) (Left-absorption)(4.15)

Let f, g ∈ F be renaming operators. If we have

S(g) ∪ g
(

U(g)
)

⊆ S(f) ∪ {δ, τ},

then g is a left-absorber for f .

Proof. We are to show that f ◦ g = g. Let n be a function name. Consider the following linear
functional specification.

E(n) =
{

n(a) = g(a) : a ∈ A
}

∪
{

n(a · x) = n(a) · n(x) : a ∈ A
}

.

We see immediately that g is a solution for E(n). It is very easy to deduce that f ◦g is also a solution
for it. Hence, with the aid of OSP, we find that f ◦ g = g, so g is a left-absorber for f . This will end
the proof of (4.15).

Theorem (4.16) (Left-absorption)(4.16)

Let f, g1 ∈ F . Suppose that f is a renaming operator and suppose that g1 can be defined with
the aid of a linear functional specification. Let D(g1) = {g1, . . . , gl} be the set of derived operators
of g1. Suppose that the following condition holds:

l
⋂

j=1

(

S(gj) ∪ gj

(

U(gj)
)

)

⊆ S(f) ∪ {δ, τ}.

Then all gj are left-absorbers for f .

Proof. LetN = {n1, . . . , nl} be a set of function names. Define a map ρ : A×{1, . . . , l} −→ {1 . . . , l}
as follows:

ρ(a, j) = k ⇐⇒ ∀x ∈ P : gj(a · x) = gj(a) · gk(x).

Consider the following linear functional specification.

E(N) =
{

nj(a) = gj(a) : a ∈ A, 1 ≤ j ≤ l
}

∪
{

nj(a · x) = nj(a) · nρ(a,j)(x) : a ∈ A, 1 ≤ j ≤ l
}

.

It will be clear that g1, . . . , gl is a solution for this system of equations. We will show that

f ◦ g1, . . . , f ◦ gl

is also a solution. It is very easy to see that f ◦ gj(a) = gj(a). Hence, all f ◦ gj satisfy the boundary
conditions of E(N). We will show that the functional equations are satisfied, as well.

f ◦ gj(a · x) = f
(

gj(a) · gρ(a,j)(x)
)

= f ◦ gj(a) · f ◦ gρ(a,j)(x).

We find thus, according to OSP, that f ◦ gj = gj , and all gj are left-absorbers for f . This ends the
proof.

Observe that in these two absorption theorems, we could have replaced the conditions respec-
tively by f ◦ g(a) = g(a) and f ◦ gj(a) = gj(a). We did not do that for orthogonality reasons: with
the conditions as they are, we can formulate the following generalization.
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Theorem (4.17) (Left-absorption)(4.17)

Let f1, g1 ∈ F be definable with the aid of linear functional specifications. Let their sets of
derived operators be as follows.

D(f1) = {f1, . . . , fk}, D(g1) = {g1, . . . , gl}.

Suppose that the following condition holds.

l
⋂

j=1

(

S(gj) ∪ gj

(

U(gj)
)

)

⊆
k

⋂

i=1

S(fi) ∪ {δ, τ}.

Then all gj are left-absorbers for all fi.

Proof. We will use the notations of (4.16). We must show that fi ◦ gj is a solution for E(N). First,
we will handle the boundary conditions. Fix 1 ≤ i ≤ k and 1 ≤ j ≤ l. First, let a ∈ S(gj), then we see
that a ∈ S(fi), so fi ◦ gj(a) = a = gj(a). Now suppose that a ∈ U(gj). If gj(a) = γ, with γ ∈ {δ, τ},
then we have

fi ◦ gj(a) = fi(γ)

= γ

= gj(a).

If gj(a) ∈ S(fi), then we find immediately that fi ◦ gj(a) = gj(a). Hence, the boundary conditions
are treated. Now we will handle the functional equations. We will only treat the case that a ∈ U(gj)
and gj(a) 6= γ. So gj(a) ∈ S(fi). We see that

fi ◦ gj(a · x) = fi

(

gj(a) · gρ(a,j)(x)
)

= fi ◦ gj(a) · fi ◦ gρ(a,j)(x).

Hence, we obtain with the aid of OSP that fi ◦ gj = gj for all i and j. This is what we wanted to
prove.

Theorem (4.18) (Right-absorption)(4.18)

Let f, g ∈ F be renaming operators. Suppose that

∀ a ∈ A : f ◦ g(a) = f(a),

then f is a right-absorber for g.

Proof. Let n be a function name. Consider the following linear functional specification.

E(n) =
{

n(a) = f(a) : a ∈ A
}

∪
{

n(a · x) = n(a) · n(x) : a ∈ A
}

.

We see that f is a solution for E(n). It is trivial to deduce that the same yields for f ◦ g, so with
OSP, we find that f ◦ g = f . This is what we wanted to prove.
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Theorem (4.19) (Right-absorption)(4.19)

Let f1, g ∈ F . Suppose that f1 is definable with the aid of a linear functional specification,
and let g be a renaming operator. Let D(f1) = {f1, . . . , fk} be the set of derived operators of f1.
Define σ : A× {1, . . . , k} −→ {1, . . . , k} as follows

σ(a, i) = j ⇐⇒ ∀x ∈ P : fi(a · x) = fi(a) · fj(x).

Suppose that the following conditions are valid.

(i) fi ◦ g(a) = fi(a), 1 ≤ i ≤ k, a ∈ A

(ii) σ
(

g(a), i
)

= σ(a, i), 1 ≤ i ≤ k, a ∈ A

Then all fi are right-absorbers for g.

Proof. Let N = {n1, . . . , nk} be a set of function names. Consider the linear functional specification
hereinafter.

E(N) =
{

ni(a) = fi(a) : a ∈ A, 1 ≤ i ≤ k
}

∪
{

ni(a · x) = ni(a) · nσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ k
}

.

We see that f1, . . . , fk is a solution for this system of equations. We will show that this is also valid
for fi ◦ g with 1 ≤ i ≤ k. Because of the first condition we will only have to treat the functional
equations.

fi ◦ g(a · x) = fi

(

g(a) · g(x)
)

= fi ◦ g(a) · fσ(g(a),i) ◦ g(x)

= fi ◦ g(a) · fσ(a,i) ◦ g(x).

Observe that we used the second condition. We find thus, with the aid of OSP that fi ◦ g = fi. This
is precisely what we wanted to prove.

Theorem (4.19) will not generalize any further. For, suppose that g ∈ F is also definable with
the aid of a linear functional specification and suppose that |D(g)| > 1. Then there is an atomic
action a ∈ A and a linear unary operator h ∈ D(g), such that for all x ∈ P : g(a · x) = g(a) · h(x).
But then we find with the second condition that fi ◦ g(a · x) = fi ◦ g(a) · fσ(a,i) ◦ h(x), but this
functional equation does not correspond with any of the functional equations in the linear functional
specification E(N) which defines f1, . . . , fk. So we find that fi ◦g is not a solution for it. It turns out
that the assumption that |D(g)| > 1 cannot hold. We find thus that g must be a renaming operator.

Theorem (4.20)

Let f, f1, . . . , fk be renaming operators. Suppose that the following holds:

∀ a ∈ A : f(a) = f1 ◦ f2 ◦ · · · ◦ fk(a)

then f = f1 ◦ f2 ◦ · · · ◦ fk.

Proof. Let n be a function name. Consider the following linear functional specification.

E(n) =
{

n(a) = f(a) : a ∈ A
}

∪
{

n(a · x) = n(a) · n(x) : a ∈ A
}

.

It will be clear that f is a solution for this system. But we also see that f1 ◦ f2 ◦ · · · ◦ fk is a solution
for it; so in accordance with OSP we may conclude that they are equal. This will end the proof
of (4.20).
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Corollary (4.21)

Let H1, H2 ⊆ A and let H = H1 ∪H2. Then we have ∂H = ∂H1
◦ ∂H2

.

Proof. It is trivial to verify that the conditions of theorem (4.20) are satisfied. With this, we
conclude the proof of (4.21).

Corollary (4.22)

Let I1, I2 ⊆ A and let I = I1 ∪ I2. Then we have τI = τI1 ◦ τI2 .

Proof. Trivial.

Remarks (4.23)

Both corollaries (4.21) and (4.22) are known as conditional axioms. We can find these axioms
among others in [3]. We see that it is very trivial to prove these statements, with this theory. But
in the setting of ACPτ it is only possible to prove these axioms for closed terms.

Theorem (4.24)

Let f, g ∈ F be renaming operators. Suppose that the following holds:

(i) S(f) ∪ S(g) = A,

(ii) f
(

U(f)
)

⊆ S(g) ∪ {δ, τ},

(iii) g
(

U(g)
)

⊆ S(f) ∪ {δ, τ},

then f and g commute, i.e., f ◦ g = g ◦ f .

Proof. Let n be a function name. Consider the linear functional specification E(n) below:

E(n) =
{

n(a) = a : a ∈ S(f) ∩ S(g)
}

∪
{

n(a) = f(a) : a ∈ S(g) \ S(f)
}

∪
{

n(a) = g(a) : a ∈ S(f) \ S(g)
}

∪
{

n(a · x) = n(a) · n(x) : a ∈ A
}

.

First, we will show that f ◦ g is a solution for the linear functional specification above. If a is in
S(f) ∩ S(g), then we see that f ◦ g(a) = a. Now let a ∈ S(g) \ S(f); then we see with (ii) that
f ◦ g(a) = f(a). Let a ∈ S(f) \ S(g); then we obtain with the aid of (iii) that f ◦ g(a) = g(a).
Finally, we take a ∈ A and x ∈ P ; then we easily find that f ◦ g(a · x) = f ◦ g(a) · f ◦ g(x). This
means that f ◦ g is a solution for the system E(n). We can also show that g ◦ f is a solution for the
linear functional specification above, so with the aid of OSP, we find that f ◦ g = g ◦ f . This ends
the proof of (4.24).

Corollary (4.25)

Let I,H ⊆ A. Suppose that I∩H = ∅. Then the encapsulation operator ∂H and the abstraction
operator τI commute.

Proof. We will verify the conditions of theorem (4.24). We know that S(∂H) = A \H and S(τI) =
A\ I , so because of the fact that I ∩H = ∅, we see immediately that (i) holds. We see that ∂H(H) =
{δ} ⊆ S(τI) ∪ {δ, τ}, so (ii) is valid. The same applies to (iii), thus, we may use theorem (4.24) and
we find that τI ◦ δH = δH ◦ τI . This ends the proof.

Remark (4.26)

Corollary (4.25) is also known as a conditional axiom. It can be found in [3]. In the setting
of ACPτ , it is possible to prove this for closed ACPτ -terms, but in the framework of ACPτ,u, it is
possible to prove this axiom for all processes.
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Theorem (4.27)

Let f ∈ F be a renaming operator. Let k1 ∈ F be a linear unary operator that can be
defined with the aid of a linear functional specification. Let the set of derived operators of k1 be
D(k1) = {k1, . . . , kl}. Suppose that the following holds:

(i) S(f) ∪
⋂l

i=1 S(ki) = A

(ii) f
(

U(f)
)

⊆
⋂l

i=1 S(ki) ∪ {δ, τ}

(iii)
⋃l

i=1 ki

(

U(ki)
)

⊆ S(f) ∪ {δ, τ}

then f and ki commute, i.e., for all i in {1, . . . , l}, we have: f ◦ ki = ki ◦ f .

Proof. Define a map σ : A×{1, . . . , l} −→ {1, . . . , l} as follows. Let a ∈ A and 1 ≤ i ≤ l be chosen.
We know that there is an operator kj ∈ D(k1), such that ki(a ·x) = b · kj(x), for a certain a ∈ A∪C.
Now we will define σ(a, i) = j. Let M = {m1, . . . ,ml} be a set of function names. Consider the

following linear functional specification. Let C =
⋂l

i=1 S(ki).

E(M) =
{

mi(a) = a : a ∈ S(f) ∩ C, 1 ≤ i ≤ l
}

∪
{

mi(a) = ki(a) : a ∈ S(f) \ C, 1 ≤ i ≤ l
}

∪
{

mi(a) = f(a) : a ∈ C \ S(f), 1 ≤ i ≤ l
}

∪
{

mi(a · x) = a ·mi(x) : a ∈ S(f) ∩ C, 1 ≤ i ≤ l
}

∪
{

mi(a · x) = ki(a) ·mσ(a,i)(x) : a ∈ S(f) \ C, 1 ≤ i ≤ l
}

∪
{

mi(a · x) = f(a) ·mi(x) : a ∈ C \ S(f), 1 ≤ i ≤ l
}

.

Let x ∈ P and i ∈ {1, . . . , l} be fixed. Let a ∈ S(f) ∩ C, then we see that ki ◦ f(a) = a and we see
that f ◦ ki(a) = a, too. Moreover, we see that

ki ◦ f(a · x) = a · ki ◦ f(x)

and

f ◦ ki(a · x) = a · f ◦ ki(x).

Now let a ∈ S(f) \ C. Then we also see that ki ◦ f(a) = ki(a), and we see that f ◦ ki(a) = ki(a),
because of (iii). Moreover, we see the following:

f ◦ ki(a · x) = f
(

ki(a) · kσ(a,i)(x)
)

= ki(a) · f ◦ kσ(a,i)(x)

and

ki ◦ f(a · x) = ki

(

a · f(x)
)

= ki(a) · kσ(a,i) ◦ f(x).

Now let a ∈ C \ S(f). Then we see that ki ◦ f(a) = f(a) and we see that f ◦ ki(a) = f(a). It is also
easy to see that

ki ◦ f(a · x) = ki

(

f(a) · f(x)
)

= f(a) · ki ◦ f(x)

and

f ◦ ki(a · x) = f
(

a · ki(x)
)

= f(a) · f ◦ ki(x),

since f is a renaming operator. Thus, we find that k1 ◦ f, . . . , kl ◦ f is a solution for the linear
functional specification above. But we also see that f ◦ k1, . . . , f ◦ kl is a solution for this system. So
with the aid of OSP, we may conclude that ki ◦ f = f ◦ ki. Herewith we end the proof of (4.27).
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Theorem (4.28)

Let f1, g1 ∈ F be linear unary operators that can be defined with the aid of linear functional
specifications. Let the sets of derived operators be given as follows:

D(f1) = {f1, . . . , fn},

D(g1) = {g1, . . . , gm}.

Suppose that the following holds:

(i)
⋂n

i=1 S(fi) ∪
⋂m

j=1 S(gj) = A

(ii)
⋃n

i=1 fi

(

U(fi)
)

⊆
⋂m

j=1 S(gj) ∪ {δ, τ}

(iii)
⋃m

j=1 gi

(

U(gi)
)

⊆
⋂n

i=1 S(fi) ∪ {δ, τ}

then all elements of the derived operator set D(f1) of f1, commute with all elements of the derived
operator set D(g1) of g1.

Proof. Define two maps σ : A× {1, . . . , n} −→ {1, . . . , n} and ρ : A× {1, . . . ,m} −→ {1, . . . ,m} as
follows. Let a ∈ A and 1 ≤ i ≤ n be chosen. There is an fj ∈ D(f1) such that fi(a · x) = b · fj(x),
for a certain b ∈ A ∪ C. We define σ(a, i) = j. Now fix c ∈ A and 1 ≤ j ≤ m. We know that
there is a gk ∈ D(g1) such that gj(c · x) = d · gk(x) for a certain d ∈ A ∪ C. We define ρ(c, j) = k.
Let M = {mi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} be a set of function names. We will use the following
abbreviations:

S1 =

n
⋂

i=1

S(fi) and S2 =

m
⋂

j=1

S(gj).

Consider the linear functional specification hereinafter.

E(M) =
{

mi,j(a) = a : a ∈ S1 ∩ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

∪
{

mi,j(a) = gj(a) : a ∈ S1 \ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

∪
{

mi,j(a) = fi(a) : a ∈ S2 \ S1, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

∪
{

mi,j(a · x) = a ·mi,j(x) : a ∈ S1 ∩ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

∪
{

mi,j(a · x) = gj(a) ·mi,ρ(a,j)(x) : a ∈ S1 \ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

∪
{

mi,j(a · x) = fi(a) ·mσ(a,i),j(x) : a ∈ S2 \ S1, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

.

Let x ∈ P , 1 ≤ i ≤ n and 1 ≤ j ≤ m be fixed. Choose a ∈ S1 ∩ S2. We see immediately that
fi ◦ gj(a) = a = gj ◦ fi(a). It is also easy to see the following.

fi ◦ gj(a · x) = a · fi ◦ gj(x)

and

gj ◦ fi(a · x) = a · gj ◦ fi(x).

Now let a ∈ S1 \S2. Then it is easy to see that fi ◦ gj(a) = gj(a) = gj ◦ fi(a). It is also immediately
clear that

fi ◦ gj(a · x) = fi

(

gj(a) · gρ(a,j)(x)
)

= gj(a) · fi ◦ gρ(a,j)(x)

and

gj ◦ fi(a · x) = gj

(

a · fi(x)
)

= gj(a) · gρ(a,j) ◦ fi(x).
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Observe that we used here (iii). Finally let a ∈ S2 \ S1. We see that fi ◦ gj(a) = fi(a) = gj ◦ fi(a).
Moreover, using (ii), we find that

fi ◦ gj(a · x) = fi

(

a · gj(x)
)

= fi(a) · fσ(a,i) ◦ gj(x)

and

gj ◦ fi(a · x) = gj

(

fi(a) · fσ(a,i)(x)
)

= fi(a) · gj ◦ fσ(a,i)(x).

Thus, we find that {fi ◦ gj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a solution for E(M). But we also find that
{gj ◦ fi : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a solution for E(M). So with the use of OSP, we find that
fi ◦ gj = gj ◦ fi, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. This ends the proof of (4.28).

Theorem (4.29)

Suppose that there is no communication, that is, a | b = δ for all atomic actions a, b ∈ A. Let
f1, g1 ∈ F be definable with the aid of linear functional specifications. Let their sets of derived
operators be D(f1) = {f1, . . . , fn} and D(g1) = {g1, . . . , gm}. Let x, y be closed ACPτ,u-terms.
Suppose that the following conditions hold.

(i) α(x) ∪
⋃n

u=1 α
(

fu(x)
)

⊆
⋂m

v=1 S(gv)

(ii) α(y) ∪
⋃m

v=1 α
(

gv(y)
)

⊆
⋂n

u=1 S(fu)

Then we have for all 1 ≤ u ≤ n and 1 ≤ v ≤ m:

fu ◦ gv(x ‖ y) = fu(x) ‖ gv(y), (1)

fu ◦ gv(x y) = fu(x) gv(y). (2)

Proof. First we will show that equation (1) is correct. With that result we will prove equation (2).
Observe that this is not the “usual” order. This is caused by the fact that if we know that equation (2)
holds, we do not know that

fu ◦ gv(y x) = gv(y) fu(x).

We will prove (1) with induction to the sum n of the number of symbols of x and of y. First we will
consider the basis of our induction: n = 2. We will have four possibilities:

x = a, y = b x = a, y = τ x = τ, y = b x = y = τ,

with a, b ∈ Aδ . We will deduce only the first one. Let 1 ≤ u ≤ n and 1 ≤ v ≤ m be fixed. Consider
the following.

fu ◦ gv(a ‖ b) = fu ◦ gv(a · b) + fu ◦ gv(b · a)

= fu(a) · gv(b) + gv(b) · fu(a)

= fu(a) ‖ gv(b).

Now let n ≥ 2, and suppose that (1) is correct for n. We will prove it for n+ 1. Let x, y be chosen.
Recall that they can be written as BPAδ,τ -terms:

x =
∑

i

ai · xi +
∑

k

τ · tk,

y =
∑

j

bj · yj +
∑

l

τ · sl.
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Let ui be such that fu(ai · z) = fu(ai) · fui
(z) and let vj be such that gv(bj · z) = gv(bj) · gvj

(z).
Consider the calculation below.

fu ◦ gv(x ‖ y) =
∑

i

fu ◦ gv

(

ai · (xi ‖ y)
)

+
∑

k

τ · fu ◦ gv(tk ‖ y)

+
∑

j

fu ◦ gv

(

bj · (x ‖ yj)
)

+
∑

l

τ · fu ◦ gv(x ‖ sl)

=
∑

i

fu

(

ai · gv(xi ‖ y)
)

+
∑

k

τ · fu ◦ gv(tk ‖ y)

+
∑

j

fu

(

gv(bj) · gvj
(x ‖ yj)

)

+
∑

l

τ · fu ◦ gv(x ‖ sl)

=
∑

i

f(ai) · fui
◦ gv(xi ‖ y) +

∑

k

τ · fu ◦ gv(tk ‖ y)

+
∑

j

gv(bj) · fu ◦ gvj
(x ‖ yj) +

∑

l

τ · fu ◦ gv(x ‖ sl)

It will be clear that we may use the induction hypothesis four times.

=
∑

i

f(ai) ·
(

fui
(xi) ‖ gv(y)

)

+
∑

k

τ ·
(

fu(tk) ‖ gv(y)
)

+
∑

j

gv(bj) ·
(

gvj
(yj) ‖ fu(x)

)

+
∑

l

τ ·
(

gv(sl) ‖ fu(x)
)

= fu(x) gv(y) + gv(y) fu(x)

= fu(x) ‖ gv(y).

This will end the proof of equation (1). To deduce equation (2) we find immediately that

fu ◦ gv(x y) =
∑

i

fu(ai) · fui
◦ gv(xi ‖ y) +

∑

k

τfu ◦ gv(tk ‖ y).

With the aid of equation (1), we see that this yields

=
∑

i

fu(ai) ·
(

fui
(xi) ‖ gv(y)

)

+
∑

k

τ ·
(

fu(tk) ‖ gv(y)
)

= fu(x) gv(y).

This will end the proof of (4.29).

Remark (4.30)

We treated theorem (4.29), as it can be seen as one of the first theorems concerning linear unary
operators. It can be found in [2]. It is stated in terms of the so-called state operator and it uses the
notion of the alphabet of an object to give the necessary conditions. This theorem, however, as it is
stated in [2], is wrong. The definition of the alphabet of an object is “wrong”. Even if we adjust this
definition, the theorem still remains wrong. To exemplify this we will give hereinafter the definitions
needed to formulate this theorem. Subsequently, we will state it and comment it. We will not have
abstraction here, since it is not considered in [2]. The following definitions are taken from [2].
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Definitions (4.31)

Let M and S be two given sets (with M finite), so that the sets A,M and S are pairwise disjoint.
Suppose that two functions act and eff are given:

act : A×M × S → A,

eff : A×M × S → S.

We will write a(m, s) for act(a,m, s) and s(m, a) for eff (a,m, s). The defining axioms for the state

operator will follow now.

(i) λm
s (γ) = γ

(ii) λm
s (a) = a(m, s)

(iii) λm
s (γ · x) = γ · λm

s (x)

(iv) λm
s (a · x) = a(m, s) · λm

s(m,a)(x)

(v) λm
s (x + y) = λm

s (x) + λm
s (y)

Now we will give the definition of the alphabet α(m) of an object m ∈ M , as the set of all actions
that can be changed, so

α(m) = {a ∈ A | ∃s ∈ S : a(m, s) 6= a}.

The following is also copied from [2].

Theorem (4.32)

If there is no communication and α(x) ∩ α(m1) = α(y) ∩ α(m2) = ∅, then

λm1

s1
◦ λm2

s2
(x ‖ y) = λm1

s1
(x) ‖ λm2

s2
(y).

First of all we will show that this theorem is not correct. Let

M = {m,m′}, S = {s}, A = {a, b, c, d}.

We will give act and eff . We have c(m, s) = d and b(m′, s) = c. Further, nothing changes: x(m, s) =
x(m′, s) = x for x ∈ {a, d}. Observe that s(m,x) = s(m′, x) = s for all x ∈ A. The conditions
of (4.32) are satisfied for x = a and y = b:

α(a) ∩ α(m′) = {a} ∩ {b} = ∅,

α(b) ∩ α(m) = {b} ∩ {c} = ∅.

It is very easy to see that λm
s ◦ λ

m′

s (a ‖ b) = a ‖ d, but we also see that λm
s (a) ‖ λm′

s (b) = a ‖ c.

We will explain what is “wrong” with α(m), form ∈M . If we have the situation that a(m, s) = a,
we can still have s(m, a) 6= s. So this action has changed the operator. For the alphabet of an
object m ∈M we take the following set:

α(m) = {a ∈ A | ∃s ∈ S : a(m, s) 6= a} ∪ {a ∈ A | ∃t ∈ S : t(m, a) 6= t}.

With this definition the example presented above, is still a counterexample for (4.32). Observe that
we have the following:

α(m) =
⋃

s∈S

A \ S(λm
s ). (3)

Now if we adjust the conditions in (4.32), as is done below, we have a correct formulation of this
theorem.
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Theorem (4.33)

Let x, y be closed ACP-terms. Suppose that there is no communication. If we have for m1,m2

in M and s1, s2 in S the following
[

α(x) ∪
⋃

s∈S

α
(

λm1

s (x)
)

]

∩ α(m2) = ∅,

[

α(y) ∪
⋃

s∈S

α
(

λm2

s (y)
)

]

∩ α(m1) = ∅,

then we have for ? =‖, :
λm1

s1
◦ λm2

s2
(x ? y) = λm1

s1
(x) ? λm2

s2
(y).

Observe that the conditions here are more or less the same as in (4.29). In fact, the conditions in
here are stronger, since in general

{

t ∈ S : λm
t ∈ D(λm

s )
}

 S.

With the aid of equation (3), we transform easily from the “empty intersection conditions” to the
form in (4.29).

Proof. This is left to the reader.

5. A Model

In this section we will not construct a model for ACPτ,u, but we will “forget” about all the axioms
concerning τs. Instead, we will confine ourselves to an axiom system that is called ACPu. See table 5
on page 39. We will construct for ACPu the standard model of process algebra: the projective
limit model. We will do this by first making a row of finite models and after that constructing the
projective limit. We will prove for each finite model that it makes ACPu, RDP, RSP, AIP, EA,
ODP and OSP true. Then we will prove the same items for the projective limit, using the results
for the finite models. In fact, we show that the properties that are valid for the finite models are
preserved under projective limits. This is a subject of research in model theory and is known under
the name of “preservation theorems”. In [11] we find in exercise 5.2.25* a preservation theorem
concerning single-sorted projective limits. It says that a sentence ϕ is preserved under inverse limits
(= projective limits) if and only if ϕ is equivalent to a sentence of the form

n
∧

i=1

(∀x1, . . . , xs)
(

(∀y1, . . . , yt)ψi → θi

)

,

where ψi and θi are quantifier-free positive formulas. We will work out every proof since we have
two-sorted algebras, but it is the the author’s opinion, that it is worthwhile investigating many-
sorted inverse (and direct) limits separately in connection to preservation theorems such as the one
mentioned above. A general reference to many-sorted algebras is [16].

Definition (5.1)

Let G be the set of all closed terms over the theory T (see table 4). Let p be an element of G.
We define the following subset of G.

[p]n =
{

q ∈ G : T ` π′
n(q) = π′

n(p)
}

.

Now we define the set An to be the following.

An =
{

[p]n : p ∈ G
}

.

* This is not a note: the asterisk belongs to the name of the exercise.
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x+ y = y + x A1 ∂′H(a) = a, if a /∈ H D1′

x+ (y + z) = (x+ y) + z A2 ∂ ′
H(a) = δ, if a ∈ H D2′

x+ x = x A3 ∂′H(x · y) = ∂′H(x) · ∂′H (y) D3′

(x+ y) · z = x · z + y · z A4 ∂ ′H(x+ y) = ∂′H(x) + ∂′H (y) D4′

(x · y) · z = x · (y · z) A5

x+ δ = x A6 π′
k(a) = a PR1′

δ · x = δ A7 π′
1(a · x) = a PR2′

π′
k+1(a · x) = a · π′

k(x) PR3′

x ‖ y = x y + y x+ x | y CM1 π′
k(x+ y) = π′

k(x) + π′
k(y) PR4′

a x = a · x CM2

(a · x) y = a · (x ‖ y) CM3 a | b = b | a C1

(x+ y) z = x z + y z CM4 (a | b) | c = a | (b | c) C2

(a · x) | b = (a | b) · x CM5 δ | a = δ C3

a | (b · x) = (a | b) · x CM6

(a · x) | (b · y) = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

Table 4. An axiom system abbreviated by T .

Definition (5.2)

Let φ : An −→ An be a function. Suppose that we have for this function φ([δ]n) = [δ]n,
φ(x + y) = φ(x) + φ(y) for all x, y ∈ An and for all p ∈ G and l with 1 ≤ l ≤ n we have

φ
(

[p]n
)

= [q]n =⇒ φ
([

π′
l(p)

]

n

)

=
[

π′
l(q)

]

n
,

then we will call such a function a laminal function. We will use the abbreviation Hn for the set of
all laminal functions.

Definition (5.3)

Let p, q ∈ G. We will define here some operators. First the binary operators, with both
arguments in An.

[p]n ? [q]n = [p ? q]n, for ? = +, ·, ‖, , | .

Secondly the unary operators with their argument in An. Let k ≥ 1. Then we define the projection
operator πk : An −→ An to be πk

(

[p]n
)

=
[

π′
k(p)

]

n
. Now let H be a subset of the set of atomic

actions, then we define the encapsulation operator ∂H : An −→ An to be ∂H

(

[p]n
)

=
[

∂′H(p)
]

n
.
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Lemma (5.4)

Let x, y ∈ G. Let k, l ≥ 1. Let H ⊆ A. Then the following holds.

(i) π′
k ◦ π

′
l(x) = π′

min(k,l)(x)

(ii) π′
k ◦ ∂

′
H(x) = ∂′H ◦ π

′
k(x)

(iii) π′
k(x · y) = π′

k

(

π′
k(x) · π′

k(y)
)

(iv) π′
k(x | y) = π′

k

(

π′
k(x) | π′

k(y)
)

(v) π′
k(x y) = π′

k

(

π′
k(x) π′

k(y)
)

(vi) π′
k(x ‖ y) = π′

k

(

π′
k(x) ‖ π′

k(y)
)

Proof. Most of these properties have been proved in [18] for processes that can be defined with the
aid of a guarded recursive specification. The proof of (ii) is completely analogous to the proof of
theorem (4.8). This will end the proof of lemma (5.4).

Lemma (5.5)

The operations that we introduced in (5.3) are well-defined, i.e., the operators are independent
of the choice of the representatives.

Proof. Suppose that p′ ∈ [p]n and q′ ∈ [q]n. Then we obviously have:

π′
n(p′) = π′

n(p), and π′
n(q′) = π′

n(q).

Consider the following calculation:

π′
n(p′ + q′) = π′

n(p′) + π′
n(q′)

= π′
n(p) + π′

n(q)

= π′
n(p+ q).

Thus, we find that [p′ + q′]n = [p+ q]n and the alternative composition is independent of the choice
of the representatives. Now let ? = ·, ‖, or |. Then consider the following:

π′
n(p′ ? q′) = π′

n

(

π′
n(p′) ? π′

n(q′)
)

= π′
n

(

π′
n(p) ? π′

n(q)
)

= π′
n(p ? q).

Here, we make use of lemma (5.4). We will consider the unary operators that we introduced in (5.3).
Let p′ ∈ [p]n. Then we have for k ≥ 1:

π′
n ◦ π

′
k(p′) = π′

min(k,n)(p
′)

= π′
k ◦ π

′
n(p′)

= π′
k ◦ π

′
n(p)

= π′
min(k,n)(p)

= π′
n ◦ π

′
k(p).

Thus, we find T ` π′
n ◦ π

′
k(p′) = π′

n ◦ π
′
k(p). Let H ⊆ A and p′ ∈ [p]n. Then, we have the following.

π′
n ◦ ∂

′
H(p′) = ∂′H ◦ π

′
n(p′)

= ∂′H ◦ π
′
n(p)

= π′
n ◦ ∂

′
H(p).

So we see that T ` π′
n ◦ ∂

′
H(p′) = π′

n ◦ ∂
′
H(p); thus we find that ∂H

(

[p]n
)

= ∂H

(

[p′]n
)

. And we see
that all the operators that we introduced in (5.3) are well-defined. This ends the proof of our lemma.
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Lemma (5.6)

Let n ≥ 1. For all k ≥ 1 we have πk ∈ Hn. For all H ⊆ A we have ∂H ∈ Hn.

Proof. We are to show for these operators that they are laminal functions. For the definition of a
laminal function, see (5.2). Let n, k ≥ 1. It is evidently clear, that πk is the identity on [δ]n. The
same is valid for ∂H , for every subset H ⊆ A. Let [p]n, [q]n ∈ An and let φ be the projection operator,
or the encapsulation operator; and let φ′ be the acuted corresponding operator. Then consider the
following.

φ
(

[p]n + [q]n
)

= φ
(

[p+ q]n
)

=
[

φ′(p+ q)
]

n

=
[

φ′(p)
]

n
+

[

φ′(q)
]

n

= φ
(

[p]n
)

+ φ
(

[q]n
)

.

It follows immediately from lemma (5.4)(i) that πk is a laminal function. It follows at once from
lemma (5.4)(ii) that ∂H is a laminal function. This will end the proof of lemma (5.6).

Remark (5.7)

We know that |Hn| <∞, so {πk : k ≥ 1} must be finite. Let [p]n ∈ An. Because of lemma (5.4),
we can find the following for all k ≥ 0:

π′
n+k ◦ π

′
n(p) = π′

n(p).

Thus, we find πn+k

(

[p]n
)

= πn

(

[p]n
)

for all k ≥ 0 and [p]n ∈ An. Moreover, we see that πn+k is the
identity map for all k ≥ 0.

Definition (5.8)

We define χ : Hn×An −→ An as follows: χ(f, x) = f(x), for f ∈ Hn and x ∈ An. We define the
composition of functions ◦ : Hn×Hn −→ Hn as follows. Let (f, g) ∈ Hn×Hn, then f ◦g : An −→ An

is defined: f ◦ g(x) = f
(

g(x)
)

, for x ∈ An. It is easy to see that f ◦ g is indeed a laminal function.

Now we are in a position to give the following definition.

Definition (5.9)

Let Mn be the algebra that consists of the sets An and Hn, the operators +, ·, ‖, , |, χ, ◦ and
the constants [a]n ∈ An for all a ∈ A and the constants πk, ∂H ∈ Hn for every k ≥ 1 and H ⊆ A.

Theorem (5.10)

Let n ≥ 1, then we have Mn |= ACPu. See table 5 on page 39 for the axiom system ACPu.

Proof. We are to show that Mn models each axiom of ACPu. We will only sketch the proof, since
the other axioms are deduced in the same way as the examples below are proved. We will show that
Mn |= A4.

(

[p]n + [q]n
)

· [r]n =
(

[p+ q]n
)

· [r]n

=
[

(p+ q) · r
]

n

= [p · r + q · r]n

= [p · r]n + [q · r]n

= [p]n · [r]n + [q]n · [r]n.
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x+ y = y + x A1 ∂H(a) = a, if a /∈ H D1

x+ (y + z) = (x + y) + z A2 ∂H(a) = δ, if a ∈ H D2

x+ x = x A3 ∂H(x · y) = ∂H(x) · ∂H(y) D3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5 πn(a) = a PR1

x+ δ = x A6 π1(a · x) = a PR2

δ · x = δ A7 πn+1(a · x) = a · πn(x) PR3

x ‖ y = x y + y x+ x | y CM1 a | b = b | a C1

a x = a · x CM2 (a | b) | c = a | (b | c) C2

(a · x) y = a · (x ‖ y) CM3 δ | a = δ C3

(x+ y) z = x z + y z CM4

(a · x) | b = (a | b) · x CM5 χ(f ◦ g, x) = χ
(

f, χ(g, x)
)

XC1

a | (b · x) = (a | b) · x CM6 χ
(

(f ◦ g) ◦ h, x
)

= χ
(

f ◦ (g ◦ h), x
)

XC2

(a · x) | (b · y) = (a | b) · (x ‖ y) CM7 χ(f, γ) = γ X1

(x+ y) | z = x | z + y | z CM8 χ(f, γ · x) = γ · χ(f, x) X2

x | (y + z) = x | y + x | z CM9 χ(f, x+ y) = χ(f, x) + χ(f, y) X3

Table 5. ACPu.

Now we will infer Mn |= CM7.

(

[a]n · [p]n
) ∣

∣

(

[b]n · [q]n
)

= [a · p]n
∣

∣ [b · q]n

=
[

(a · p) | (b · q)
]

n

=
[

(a | b) · (p ‖ q)
]

n

= [a | b]n · [p ‖ q]n

=
(

[a]n
∣

∣ [b]n
)

·
(

[p]n
∥

∥ [q]n
)

.

We will prove Mn |= D3.

χ
(

∂H , [p]n + [q]n
)

= χ
(

∂H , [p+ q]n
)

= ∂H

(

[p+ q]n
)

=
[

∂′H(p+ q)
]

n

=
[

∂′H(p) + ∂′H(q)
]

n

=
[

∂′H(p)
]

n
+

[

∂′H(q)
]

n

= ∂H

(

[p]n
)

+ ∂H

(

[q]n
)

= χ
(

∂H , [p]n
)

+ χ
(

∂H , [q]n
)

.
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We will show Mn |= PR3. Let k ≥ 1.

χ
(

πk+1, [a]n · [p]n
)

= πk+1

(

[a · p]n
)

=
[

π′
k+1(a · p)

]

n

=
[

a · π′
k(p)

]

n

= [a]n ·
[

π′
k(p)

]

n

= [a]n · πk

(

[p]n
)

= [a]n · χ
(

πk , [p]n
)

.

Now we will prove XC1 and X2. Suppose that h, k ∈ Hn and x ∈ An.

χ(h ◦ k, x) = h ◦ k(x)

= χ
(

h, k(x)
)

= χ
(

h, χ(k, x)
)

.

Let h ∈ Hn and let [p]n ∈ An.

χ
(

h, [δ]n · [p]n
)

= h
(

[δ]n · [p]n
)

= h
(

[δ]n
)

= [δ]n

=
[

δ · χ
(

h, [p]n
)]

n

= [δ]n · χ
(

h, [p]n
)

.

This ends the sketch of the proof of (5.10).

(x+ y) + z → x+ (y + z) RA2 ∂ ′
H(a)→ a, if a /∈ H RD1′

x+ x→ x RA3 ∂′H(a)→ δ, if a ∈ H RD2′

(x+ y) · z → x · z + y · z RA4 ∂ ′
H(x · y)→ ∂′H(x) · ∂′H(y) RD3′

(x · y) · z → x · (y · z) RA5 ∂ ′H(x+ y)→ ∂′H(x) + ∂′H(y) RD4′

x+ δ → x RA6

δ · x→ δ RA7 π′
k(a)→ a RPR1′

π′
1(a · x)→ a RPR2′

x ‖ y → x y + (y x+ x | y) RCM1 π′
k+1(a · x)→ a · π′

k(x) RPR3′

a x→ a · x RCM2 π′
k(x+ y)→ π′

k(x) + π′
k(y) RPR4′

(a · x) y → a · (x ‖ y) RCM3

(x+ y) z → x z + y z RCM4 a | b→ ca,b RC

(a · x) | b→ (a | b) · x RCM5

a | (b · x)→ (a | b) · x RCM6

(a · x) | (b · y)→ (a | b) · (x ‖ y) RCM7

(x+ y) | z → x | z + y | z RCM8

x | (y + z)→ x | y + x | z RCM9

Table 6. A term rewriting system associated with the theory T .
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Lemma (5.11)

The term rewriting system of table 6 has the termination property*.

Proof. We will prove (5.11) in the same way as we proved (3.14). Firstly, we will give the partial
ordering of the signature. We will also use the ranked operators that we introduced in section 3.

‖n> n, |n>‖n−1, ‖n, n, |n> ·, ∂H , · > +, πn+1 > πn > ·, |2> A > δ.

We will use the lexicographical variant of the recursive path ordering, although we will need the
lexicographical status only for the alternative composition and for the sequential composition. We
are to show that for each rewriting rule s → t in table 6, s � t. For the symbol “�” we refer to
definition (3.9). The treatment of the cases RA2–RA7, RCM1–RCM9 and RC, is the same as in
theorem (3.14). The calculation of RPR1′ is trivial. Let us treat RPR2′.

π′
1(a · x) � π

′∗
1 (a · x)

� a · x

� a ·∗ x

� a.

Now we will handle RPR3′. Let k ≥ 1.

π′
k+1(a · x) � π

′∗
k+1(a · x)

� π′∗
k+1(a · x) · π

′∗
k+1(a · x)

� (a · x) · π′
k

(

π′∗
k+1(a · x)

)

� (a ·∗ x) · π′
k(a · x)

� a · π′∗
k (a · x)

� a · π′
k(a ·∗ x)

� a · π′
k(x).

Now we will discuss RPR4′. Let k ≥ 1.

π′
k(x+ y) � π′∗

k (x+ y)

� π′
k(x+ y) +∗ π′

k(x+ y)

� π′∗
k (x+ y) + π′∗

k (x+ y)

� π′
k(x+∗ y) + π′

k(x+∗ y)

� π′
k(x) + π′

k(y).

RD1–RD4 are proved in the same way as in theorem (3.14), albeit that we use ∂ ′
H in the partial

ordering instead of χ. This ends the proof of (5.11).

Lemma (5.12)

Let n ≥ 1 be chosen. Let p ∈ G be a closed term over the theory T . See (5.1) for the definition
of G. Then there is an element q ∈ G, such that [q]n = [p]n and T ` π′

n(q) = q. We will call q the
n-normal form of p.

Proof. Since p ∈ G is a closed T -term, π′
n(p) is also a closed T -term. With the aid of lemma (5.11),

we can rewrite this term to a term q ∈ G, which is in normal form. We know that T ` q = π′
n(p),

thus,

π′
n(q) = π′

n

(

π′
n(p)

)

= π′
n(p)

= q,

with the aid of lemma (5.4) and we also see that [q]n = [p]n. This ends the proof of (5.12).

* See definition (3.11)

41



An Operator Definition Principle: 5. A Model

Lemma (5.13)

Let p′, q′ ∈ G be closed terms and let p and q be their n-normal forms. Then we have the
following.

Mn |= p = q ⇐⇒ T ` p = q.

Proof. Let us assume that Mn |= p = q, with p and q n-normal forms. Then we find that T `
π′

n(p) = π′
n(q). But because of lemma (5.12), we have π′

n(p) = p and π′
n(q) = q. So we find T ` p = q.

Now let us assume that T ` p = q. Then we have a fortiori T ` π′
n(p) = π′

n(q). So [p]n = [q]n
and we find Mn |= p = q. This ends the proof of (5.13).

Epiphenomenon (5.14)

Let ai = |Ai| be the number of elements of the set Ai that we defined in (5.1) (i ≥ 1) and let
a0 = 0. Let u = |A|. Then we have the following recursive formula.

a0 = 0,

ai+1 = 2u·(1+ai).

Proof. We will give a sketch of the proof. Let i = 1. Because of axioms A3 and A6, we can make
the following different sums:

1 +

u
∑

i=1

(

u

i

)

= 1 + (2u − 1) = 2u = 2u·(1+a0).

Let i > 1. We will have u+ u · ai terms of which the first symbol (in prefix notation) is not a sum.
Thus, we obtain, just as above for i = 1, 2u·(1+ai) possibilities for the number of different sums that
we can make with these u · (1 + ai) terms of which the sums are built up.

Examples (5.15)

In table 7 we will give some figures that we have calculated with the aid of the formula of (5.14).
For instance, if we have two atomic actions, there are approximately 1.2 · 10617 elements in A3.

u 1 2 3 4 5 6

a1 2 4 8 16 32 64

a2 8 1024 1.3 · 108 2.9 · 1020 4.6 · 1049 2.5 · 10117

a3 512 1.2 · 10617 −* − − −

a4 2.6 · 10154 − − − − −

* (> 109999)

Table 7. Some calculations with (5.14).

Remark (5.16)

Let x be a variable. Let C[x] be a context of x, in which the occurrence of x is guarded. Then
we have for all k ≥ n:

π′
n+1

(

C[x]
)

= π′
n+1

(

C
[

π′
k(x)

])

.
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Theorem (5.17)

Let n ≥ 1, then we have Mn |= RDP,RSP.

Proof. Let V = {xα : α ∈ I} be a set of variables. Let

E(V ) =
{

xα = tα
(

(xβ)β∈I

)

: α ∈ I
}

be a guarded recursive specification. Without loss of generality, we may assume that E(V ) is com-
pletely guarded; see definition (2.15). We will prove (5.17) with induction to n. Thus, let n = 1. For
all α ∈ I , we calculate p1

α := π′
1(xα). This is a closed term over the theory T .

π′
1

(

tα
(

(p1
β)β

))

= π′
1

(

tα
(

(xβ)β

))

(1)

= π′
1(xα)

= π′
1 ◦ π

′
1(xα)

= π′
1(p

1
α).

In (1) we use the fact that π′
1(a·x) = π′

1(a·y) for all x and y in combination with the fact that E(V ) is
completely guarded. Henceforward, we will use this argument tacitly. So we see that (p1

α)α solves the
system E(V ) in M1. Now suppose that (qα)α also solves this system, i.e., π′

1(qα) = π′
1

(

tα
(

(qβ)β

))

.
Then we find the following:

π′
1(qα) = π′

1

(

tα
(

(qβ)β

))

= π′
1

(

tα
(

(xβ)β

))

= π′
1(xα)

= π′
1 ◦ π

′
1(xα)

= π′
1(p

1
α).

We see that the solution (qα)α is just the one that we have already constructed, so (p1
α)α is the

unique solution. Now we see that (5.17) is correct for n = 1. Let n ≥ 1 and suppose that (5.17) has
been proved for n. Let (pn

α)α be such that

T ` π′
n(pn

α) = π′
n

(

tα
(

(pn
β)β

))

.

Define pn+1
α := tα

(

(pn
β)β

)

. We will show that

π′
n+1(p

n+1
α ) = π′

n+1

(

tα
(

(pn+1
β )β

))

.

Consider thereunto the following.

π′
n+1(p

n+1
α ) = π′

n+1

(

tα
(

(pn
β)β

))

= π′
n+1

(

tα
((

π′
n(pn

β)
)

β

)

)

(2)

= π′
n+1

(

tα
(

π′
n

(

tβ
(

(pn
γ )γ

))

β

)

)

= π′
n+1

(

tα
(

tβ
(

(pn
γ )γ

)

β

)

)

= π′
n+1

(

tα
(

(pn+1
β )β

))

.

In equation (2), we use the fact that E(V ) is completely guarded and we use remark (5.16). In the
sequel of this proof, we will apply this argument tacitly. We find that (pn+1

α )α solves E(V ) in Mn+1.
Now we will show that this solution is unique. Let (qα)α be such that

T ` π′
n+1(qα) = π′

n+1

(

tα
(

(qβ)β

))

.
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Observe that the following holds.

π′
n(pn+1

α ) = π′
n

(

tα
(

(pn
β)β

))

= π′
n(pn

α). (3)

First, we will show that π′
n(qα) is a solution in Mn.

π′
n(qα) = π′

n ◦ π
′
n+1(qα)

= π′
n ◦ π

′
n+1

(

tα
(

(qβ)β

))

= π′
n

(

tα
(

(qβ)β

))

.

But in Mn the solution is unique, so we find with (3) that

π′
n(qα) = π′

n(pα) = π′
n(pn+1

α ).

Now we will show that π′
n+1(qα) = π′

n+1(p
n+1
α ).

π′
n+1(qα) = π′

n+1

(

tα
(

(qβ)β

))

= π′
n+1

(

tα
((

π′
n(qβ)

)

β

)

)

= π′
n+1

(

tα
((

π′
n(pn+1

β )
)

β

)

)

= π′
n+1

(

tα
(

(pn+1
β )β

))

= π′
n+1(p

n+1
α ).

This ends the proof of the theorem.

Theorem (5.18)

Let n ≥ 1, then Mn |= AIP.

Proof. Let x, y ∈ An. Suppose that for all k ≥ 1, we have πk(x) = πk(y). In particular we have
this for k = n. With the aid of remark (5.7), we find that πn = id , so we see that x = y. This will
end the proof of (5.18).

Lemma (5.19)

Let [p]n ∈ An. Then there are a1, . . . , as, b1, . . . , bt ∈ A ∪ {δ} and p1, . . . , ps ∈ G, such that

[p]n =

s
∑

j=1

[aj ]n · [pj ]n +

t
∑

k=1

[bk]n.

Proof. Let p be a closed term over the theory T . See table 4 on page 36. If we take a close look at
this axiom system, we see that this is in fact ACP with projections. From this system we know that
there are unique normal forms for all closed terms (see [5]). They have the desired form:

p =

s
∑

k=1

aj · pj +

t
∑

k=1

bk,

for certain a1, . . . , as, b1, . . . , bt ∈ A ∪ {δ} and closed terms p1, . . . , ps. Thus, we find

[p]n =

s
∑

j=1

[aj ]n · [pj ]n +

t
∑

k=1

[bk]n.

This ends the proof of the lemma.
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Theorem (5.20)

Let n ≥ 1, then Mn |= EA. See (2.1) for the definition of EA.

Proof. Since Hn is defined as a function space, we automatically have that for all f, g ∈ Hn : f = g,
if and only if we have for all x ∈ An : f(x) = g(x). This is what we wanted to prove.

Theorem (5.21)

Let n ≥ 1, then Mn |= ODP,OSP.

Proof. Fix an n ≥ 1. We will use the more explicit formulation of the definition of a linear functional
specification that we have already described in (2.3). Let M = {m1, . . . ,ml} be a set of function
names and let σ : A × {1, . . . , l} −→ {1, . . . , l} be a given map. Recall that the linear functional
specification E(M) has the following form:

E(M) =
{

mi(a) = a(i) : a ∈ A, 1 ≤ i ≤ l
}

∪
{

mi(a · x) = a(i) ·mσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ l
}

.

First we will prove that there is a valuation ϕ : M −→ Hn, which solves the system of equa-
tions E(M). See section 2 for the definition of a valuation. It suffices to show that there are
µ1, . . . , µl ∈ Hn such that

µi

(

[a]n
)

=
[

a(i)
]

n
, (4)

µi

(

[a]n · [p]n
)

=
[

a(i)
]

n
· µσ(a,i)

(

[p]n
)

. (5)

(So we can take ϕ(mi) := µi.) Let [p]n ∈ An, then there are a1, . . . , as, b1, . . . , bt ∈ A ∪ {δ} and
p1, . . . , ps ∈ G such that

[p]n =

s
∑

j=1

[aj ]n · [pj ]n +

t
∑

k=1

[bk]n, (6)

according to lemma (5.19). Let µ1
i : An −→ An be defined as follows:

µ1
i

(

[δ]n
)

= [δ]n,

µ1
i

(

[p]n
)

=

s
∑

j=1

[

a
(i)
j

]

n
+

t
∑

k=1

[

b
(i)
k

]

n
.

It consists of straightforward calculation to show that µ1
i ∈ Hn. Let 1 ≤ r < n. Suppose that

µr
i ∈ Hn, for all 1 ≤ i ≤ l, then we define

µr+1
i : An −→ An

to be the identity on [δ]n and for [p]n ∈ An

µr+1
i

(

[p]n
)

=

s
∑

j=1

[

a
(i)
j

]

n
· µr

σ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n
.

We will show that µr+1
i ∈ Hn. It is trivial to prove that µr+1

i distributes over the alternative
composition. Let [p]n ∈ An be as in equation (6). Let µr

σ(aj ,i)

(

[pj ]n
)

= [qj ]n. Furthermore, let

q =

s
∑

j=1

a
(i)
j · qj +

t
∑

k=1

b
(i)
k .
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Then we see that µr+1
i

(

[p]n
)

= [q]n. We will prove for all v, with 1 ≤ v ≤ n that

µr+1
i

([

π′
v(p)

]

n

)

=
[

π′
v(q)

]

n
. (7)

If v = 1, we see immediately that equation (7) is valid. Now suppose that 1 < v ≤ n, then consider
the subsequent deduction.

µr+1
i

([

π′
v(p)

]

n

)

=

s
∑

j=1

[

a
(i)
j

]

n
· µr

σ(aj ,i)

([

π′
v−1(pj)

]

n

)

+

t
∑

k=1

[

b
(i)
k

]

n

=
s

∑

j=1

[

a
(i)
j

]

n
·
[

π′
v−1(qj)

]

n
+

t
∑

k=1

[

b
(i)
k

]

n

=
[

π′
v(q)

]

n
.

This shows that µr+1
i is a laminal function. We will prove a technical result on these laminal functions.

πn−r ◦ µ
n−r
i = πn−r ◦ µ

n−r+1
i , 1 ≤ i ≤ l, 1 ≤ r ≤ n− 1. (8)

We will prove (8) first for r = n − 1. Let [p]n ∈ An be as in equation (6). Consider the calculation
hereinafter.

π1 ◦ µ
2
i

(

[p]n
)

= π1

(

s
∑

j=1

[

a
(i)
j

]

n
· µ1

σ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n

)

=
s

∑

j=1

[

a
(i)
j

]

n
+

t
∑

k=1

[

b
(i)
k

]

n

= π1

(

s
∑

j=1

[

a
(i)
j

]

n
+

t
∑

k=1

[

b
(i)
k

]

n

)

= π1 ◦ µ
1
i

(

[p]n
)

.

So for r = n− 1 we see that (8) is correct. Suppose that (8) has been verified for 1 < r ≤ n− 1. We
will prove it for r − 1. Let [p]n ∈ An be as in equation (6). Consider the following.

πn−r+1 ◦ µ
n−r+1
i

(

[p]n
)

= πn−r+1

(

s
∑

j=1

[

a
(i)
j

]

n
· µn−r

σ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n

)

=
s

∑

j=1

[

a
(i)
j

]

n
· πn−r ◦ µ

n−r
σ(aj ,i)

(

[pj ]n
)

+
t

∑

k=1

[

b
(i)
k

]

n

=

s
∑

j=1

[

a
(i)
j

]

n
· πn−r ◦ µ

n−r+1
σ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n

= πn−r+1

(

s
∑

j=1

[

a
(i)
j

]

n
· µn−r+1

σ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n

)

= πn−r+1 ◦ µ
n−r+2
i

(

[p]n
)

.

This will end the verification of (8). In particular, we find that (8) is valid for r = 1. Thus, we obtain
the following formula:

πn−1 ◦ µ
n−1
i = πn−1 ◦ µ

n
i . (9)
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Define µi = µn
i ∈ Hn for 1 ≤ i ≤ l. We claim that these functions satisfy equations (4) and (5). It

will be clear that
µi

(

[a]n
)

=
[

a(i)
]

n
,

for all 1 ≤ i ≤ l, so we see that µ1, . . . , µl satisfy the boundary conditions of E(M), i.e., equation (4).
Now let us take a look at the functional equations of E(M), or equivalently, equation (5). Let
i ∈ {1, . . . , l} be fixed.

µi

(

[a]n · [p]n
)

= µn
i

(

[a]n · [p]n
)

= πn ◦ µ
n
i

(

[a]n · [p]n
)

see remark (5.7)

= πn

(

[

a(i)
]

n
· µn−1

σ(a,i)

(

[p]n
)

)

=
[

a(i)
]

n
· πn−1 ◦ µ

n−1
σ(a,i)

(

[p]n
)

=
[

a(i)
]

n
· πn−1 ◦ µ

n
σ(a,i)

(

[p]n
)

because of (9)

= πn

(

[

a(i)
]

n
· µn

σ(a,i)

(

[p]n
)

)

=
[

a(i)
]

n
· µσ(a,i)

(

[p]n
)

.

This will end the proof of the existential part of (5.21). Now we will prove the uniqueness part:
Mn |= OSP. Suppose that there is also a valuation φ : M −→ Hn, which solves the system of
equations E(M). Let φ(mi) := νi for all i. Then we have for all i ∈ {1, . . . , l}

νi

(

[a]n
)

=
[

a(i)
]

n
,

νi

(

[a]n · [p]n
)

=
[

a(i)
]

n
· νσ(a,i)

(

[p]n
)

.

In order to verify that µi = νi (for all i), we will prove the following:

πr ◦ νi = µr
i , 1 ≤ r ≤ n, 1 ≤ i ≤ l. (10)

We will prove (10) with induction to r. Let [p]n ∈ An be as in equation (6). Let r = 1 and let
i ∈ {1, . . . , l}, then we see the following

π1 ◦ νi

(

[p]n
)

= π1

(

s
∑

j=1

[

a
(i)
j

]

n
· νσ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n

)

=

s
∑

j=1

[

a
(i)
j

]

n
+

t
∑

k=1

[

b
(i)
k

]

n

= µ1
i

(

[p]n
)

.

Thus, (10) is correct for r = 1. Now suppose that (10) is valid for 1 ≤ r < n, then we prove it for
r + 1. Let [p]n ∈ An be as in equation (6).

πr+1 ◦ νi

(

[p]n
)

=

s
∑

j=1

[

a
(i)
j

]

n
· πr ◦ νσ(aj ,i)

(

[pj ]n
)

+

t
∑

k=1

[

b
(i)
k

]

n

=
s

∑

j=1

[

a
(i)
j

]

n
· µr

σ(aj ,i)

(

[pj ]n
)

+
t

∑

k=1

[

b
(i)
k

]

n

= µr+1
i

(

[p]n
)

.

This proves (10). In particular we find that (10) is valid for r = n. If we combine this with the fact
that πn is the identity map—see remark (5.7)—we find for all 1 ≤ i ≤ l that νi = πn ◦ νi = µn

i = µi.
This will end the verification of the uniqueness part and therewith the proof of (5.21).
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Construction (5.22)

We will construct the projective limit of the models Mn. Thereunto we need to define mappings
κn : Mn+1 −→Mn, for all n ≥ 1 as follows. First we will define

κn : An+1 −→ An.

Let [p]n+1 ∈ An+1, then we define κn

(

[p]n+1

)

= [p]n. Now we will define

κn : Hn+1 −→ Hn.

Let f be an element of Hn+1. We define

κn(f) : An −→ An

to be the following map. Let [p]n be in An, then κn(f)
(

[p]n
)

= κn ◦f
([

π′
n(p)

]

n+1

)

. It is obvious that

κn(f) is well-defined. So let us verify that κn(f) is an element of Hn. First we are to show that κn(f)
is an laminal function. It is evident that κn

(

[δ]n
)

= [δ]n. To verify that κn(f) distributes over the
alternative composition, we will need the fact that κn distributes over the alternative composition.
Both proofs are trivial. The following remains to be shown. Let [p]n be in An. Suppose that
f
([

π′
n(p)

]

n+1

)

= [q]n+1. Then it is clear that κn(f)
(

[p]n
)

= [q]n. We will prove that for all 1 ≤ l ≤ n
we have:

κn(f)
([

π′
l(p)

]

n

)

=
[

π′
l(q)

]

n
.

Consider the calculation hereinafter.

κn(f)
([

π′
l(p)

]

n

)

= κn ◦ f
([

π′
n ◦ π

′
l(p)

]

n+1

)

= κn ◦ f
([

π′
l ◦ π

′
n(p)

]

n+1

)

= κn

([

π′
l(q)

]

n+1

)

(since f ∈ Hn+1)

=
[

π′
l(q)

]

n
.

So we find that κn(f) ∈ Hn. Now we will show that κn : Mn+1 −→Mn is a homomorphism, that is, it
distributes over all the operations. Recall that there are seven operations: the merge, the left-merge,
the communication-merge, the alternative composition, the sequential composition, the composition
of functions and the application function. Let ? be one of ‖, , |,+ or ·. Then we are to show that
κn(x ? y) = κn(x) ? κn(y), for all x, y ∈ An+1. This is trivial. We will show that κn distributes over
the composition of functions. Let f, g ∈ Hn+1. Let [p]n be in An. Let g

([

π′
n(p)

]

n+1

)

= [r]n+1 and

let f
(

[r]n+1

)

= [q]n+1. Now contemplate the following.

κn(f ◦ g)
(

[p]n
)

= κn ◦ (f ◦ g)
([

π′
n(p)

]

n+1

)

= κn

(

f
(

[r]n+1

))

= [q]n

= κn

([

π′
n(q)

]

n+1

)

= κn

(

f
([

π′
n(r)

]

n+1

))

= κn(f)
(

[r]n
)

= κn(f)
(

κn

(

[r]n+1

))

= κn(f)
(

κn

(

g
([

π′
n(p)

]

n+1

))

)

= κn(f) ◦ κn(g)
(

[p]n
)

.
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Now we will show that κn distributes over the application function χ. Let f ∈ Hn+1 and let [p]n+1

be in An+1. Suppose that f
(

[p]n+1

)

= [q]n+1. Consider the following:

κn

(

χ
(

f, [p]n+1

))

= κn

(

[q]n+1

)

= [q]n

= κn

([

π′
n(q)

]

n+1

)

= κn ◦ f
([

π′
n(p)

]

n+1

)

= κn(f)
(

[p]n
)

= χ
(

κn(f), κn

(

[p]n+1

))

.

We constructed thus a row
M1

κ1←−M2
κ2←−M3

κ3←−M4 ←− . . . (11)

of models with homomorphisms between them. With this row, we will construct the inverse limit M
∞.

Let A∞ and H∞ be as follows:

A∞ =
{

(xn)n

∣

∣ xn ∈ An, κn(xn+1) = xn

}

,

H∞ =
{

(fn)n

∣

∣ fn ∈ Hn, κn(fn+1) = fn

}

.

We will call the elements of these sets projective rows. We will define the operations hereinafter. Let
? be one of ‖, , |,+ or ·. Let (xn)n, (yn)n ∈ A

∞. Then we define ? to be

(xn)n ? (yn)n = (xn ? yn)n.

It is obvious that (xn?yn)n ∈ A∞. Now we will define the composition of functions. Let (fn)n, (gn)n ∈
H∞. Then we define

(fn)n ◦ (gn)n = (fn ◦ gn)n.

From the fact that κn is a homomorphism it follows immediately that (fn ◦ gn)n ∈ H∞. Finally, we
define the application function. Let (fn)n ∈ H∞ and let (xn)n be in A∞. Then we define χ to be

χ
(

(fn)n, (xn)n

)

=
(

χ(fn, xn)
)

n
.

It will be clear that
(

χ(fn, xn)
)

n
∈ A∞. Now we will define constants of sort H∞. Firstly we

will introduce the encapsulation operator. To prevent any confusion we will label the encapsulation
operators in all setsHn as follows: ∂n

H ∈ Hn. We define the encapsulation operator to be ∂H = (∂n
H )n.

We will illustrate that ∂H ∈ H∞. For every component of the encapsulation operator, we have of
course ∂n

H ∈ Hn. It remains thus to prove that ∂H is a projective row. Let thereunto [p]n be in An.
We easily deduce the following:

κn(∂n+1
H )

(

[p]n
)

= κn ◦ ∂
n+1
H

([

π′
n(p)

]

n+1

)

=
[

∂′H ◦ π
′
n(p)

]

n

= ∂n
H

(

[p]n
)

.

So we find that κn(∂n+1
H ) = ∂n

H . Secondly we will introduce for all k ≥ 1, the projection operators.
We will label the projections in the sets Hn just as above: πn

k ∈ Hn. Now we define the projection
operator to be πk = (πn

k )n. We will show that this projection is an element of H∞. The first
condition is satisfied by definition, so let us verify that (πn

k )n is a projective row. Let [p]n be in An.
Then it is easy to see the following:

κn(πn+1
k )

(

[p]n
)

=
[

π′
k ◦ π

′
n(p)

]

n

= πn
k

(

[p]n
)

.
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And we find κn(πn+1
k ) = πn

k . At this point, we will introduce constants in A∞. Let a be an atomic
action. Then we define a row

(

[a]n
)

n
. We see immediately, by definition, that this row is in A∞.

Now let M
∞ be the algebra that consists of the sets A∞ and H∞, the operators +, ·, ‖, , |, χ and

◦, and the constants
(

[a]n
)

n
∈ A∞ for all a ∈ A and the constants πk, ∂H ∈ H∞, for all k ≥ 1 and

H ⊆ A. We will define the projections

ζn : M
∞ −→Mn

as follows. ζn(x) = xn, and ζ(f) = fn if x = (xn)n and f = (fn)n. It is very easy to see that
for all n ≥ 1, we have κn ◦ ζn+1 = ζn. It is a well-known fact that such a construction forms the
projective or inverse limit. We find thus that M

∞ is the projective limit of the row in expression (11).

Theorem (5.23)

M
∞ |= ACPu.

See table 5 on page 39 for the axioms of ACPu.

Proof. We know from theorem (5.10) that for all n ≥ 1 : Mn |= ACPu. Forasmuch as the operations
on M

∞ are defined component by component, we see at once that M
∞ |= ACPu. This will end the

proof of (5.23).

Theorem (5.24)

M
∞ |= RDP,RSP.

Proof. We will use the notations that we have already introduced in theorem (5.17). So let

V = {xα : α ∈ I}

be a set of variables and let

E(V ) =
{

xα = tα
(

(xβ)β∈I

)

: α ∈ I
}

be a guarded recursive specification. Without loss of generality, we may assume that E(V ) is com-
pletely guarded; see definition (2.15). For all n ≥ 1 we have constructed in theorem (5.17) a solution
([pn

α])α for E(V ) in Mn. We claim that
(

[pn
α]n

)

n
is an element of A∞ for all α ∈ I . This follows

immediately from the following:

κn

([

pn+1
α

]

n+1

)

=
[

pn+1
α

]

n

=
[

π′
n(pn+1

α )
]

n

=
[

π′
n(pn

α)
]

n
see (3)

= [pn
α]n.

We are to verify that for all α ∈ I :
(

[pn
α]n

)

n
=

([

tα(pn
β)β

]

n

)

n
. But we know from the proof of

theorem (5.17) that for all n ≥ 1 we have [pn
α]n =

[

tα(pn
β)β

]

n
; so we see that M

∞ |= RDP, too. Now

suppose that for all α ∈ I we have
(

[qn
α]n

)

n
=

([

tα(qn
β )β

]

n

)

n
. Let n ≥ 1 be fixed. Since RSP is valid

in Mn, we see that [qn
α]n = [pn

α]n, so we also find
(

[pn
α]n

)

n
=

(

[qn
α]n

)

n
and M

∞ |= RSP. This ends
the proof of theorem (5.24).

50



An Operator Definition Principle: 5. A Model

Theorem (5.25)

M
∞ |= AIP.

Proof. Let (xn)n, (yn)n ∈ A∞. Suppose that for all k ≥ 1, we have πk

(

(xn)n

)

= πk

(

(yn)n

)

. Then
we find for all n, k ≥ 1

πk(xn) = πk(yn).

Now fix an n ≥ 1; we know that Mn |= AIP, so we find xn = yn. But this is valid for all n ≥ 1 and
we find thus (xn)n = (yn)n. This is precisely what we wanted to prove.

Theorem (5.26)

M
∞ |= EA.

Proof. Since H∞ is a function space, we immediately have this property. See also the proof of (5.20).

Theorem (5.27)

M
∞ |= ODP,OSP.

Proof. We will modify the notations of theorem (5.21) slightly. In there we defined a sequence of
elements

µr
1, . . . , µ

r
l ∈ Hn

for a fixed n ≥ 1 and 1 ≤ r ≤ n. We will give this sequence of elements an extra label as follows:

µn,r
1 , . . . , µn,r

l ∈ Hn.

We define for all i with 1 ≤ i ≤ l the row µi to be (µn,n
i )n. We claim that

µ1, . . . , µl ∈ H
∞. (12)

To prove (12) we fix an i with 1 ≤ i ≤ l. By definition, we see that for all n ≥ 1 we have µn,n
i ∈ Hn,

so we have to verify that µi is a projective row, that is, we are to show that for all n ≥ 1

κn(µn+1,n+1
i ) = µn,n

i . (13)

First, we will treat the case n = 1. Let [p]1 be as in equation (6) of theorem (5.21). It is very easy
to see that

κ1(µ
2,2
1 )

(

[p]1
)

=

s
∑

j=1

[

a
(i)
j

]

1
+

t
∑

k=1

[

b
(i)
k

]

1

= µ1,1
1

(

[p]1
)

.

Now let henceforward n > 1. In order to verify (13) we will need the following intermediate result.
For all 1 ≤ i ≤ l and for all 1 ≤ r ≤ n, we have

κn(µn+1,r
i ) = µn,r

i . (14)

Let r = 1 and let 1 ≤ i ≤ l be chosen. Let [p]n ∈ An be as in equation (6). Consider the following.

κn(µn+1,1
i )

(

[p]n
)

= κn ◦ µ
n+1,1
i

([

π′
n(p)

]

n+1

)

=

s
∑

j=1

[

a
(i)
j

]

n
+

t
∑

k=1

[

b
(i)
k

]

n

= µn,1
1

(

[p]n
)

.
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Now let 1 ≤ r < n and suppose that (14) is proved up to and including r. We will prove it for r+ 1.

κn(µn+1,r+1
i )

(

[p]n
)

= κn ◦ µ
n+1,r+1
i

([

π′
n(p)

]

n+1

)

=

s
∑

j=1

[

a
(i)
j

]

n
· κn(µn+1,r

σ(aj ,i))
([

π′
n−1(pj)

]

n

)

+

t
∑

k=1

[

b
(i)
k

]

n

=

s
∑

j=1

[

a
(i)
j

]

n
· µn,r

σ(aj ,i)

([

π′
n−1(pj)

]

n

)

+

t
∑

k=1

[

b
(i)
k

]

n

= µn,r+1
i

([

π′
n(p)

]

n

)

= µn,r+1
i

(

[p]n
)

.

This ends the proof of (14). In particular, we find for r = n

κn(µn+1,n
i ) = µn,n

i . (15)

Now we will verify that equation (13) is valid. Let [p]n still be as in equation (6). We will calculate
the left-hand side of equation (13).

κn(µn+1,n+1
i )

(

[p]n
)

=

s
∑

j=1

[

a
(i)
j

]

n
· κn(µn+1,n

σ(aj ,i))
([

π′
n−1(pj)

]

n

)

+

t
∑

k=1

[

b
(i)
k

]

n

=

s
∑

j=1

[

a
(i)
j

]

n
· µn,n

σ(aj ,i)

([

π′
n−1(pj)

]

n

)

+

t
∑

k=1

[

b
(i)
k

]

n
. with (15)

We know that all µn,n
i satisfy equations (4) and (5) of theorem (5.21). So we find for the right-hand

side of equation (13):

µn,n
i

(

[p]n
)

= µn,n
i

([

π′
n(p)

]

n

)

=

s
∑

j=1

[

a
(i)
j

]

n
· µn,n

σ(aj ,i)

([

π′
n−1(pj)

]

n

)

+

t
∑

k=1

[

b
(i)
k

]

n
,

and therewith we deduced that µi ∈ H∞. In order to prove the existential part of the theorem, i.e.,
M

∞ |= ODP, it suffices to show that for µ1, . . . , µl the following two equations hold.

µi

(

([a]n)n

)

=
([

a(i)
]

n

)

n
,

µi

(

([a]n)n · (xn)n

)

=
([

a(i)
]

n

)

n
· µσ(a,i)

(

(xn)n

)

,

in which a ∈ A and (xn)n ∈ H∞. This is trivial. We find thus that M
∞ |= ODP. Now we will

prove the uniqueness part. Suppose that ν1, . . . , νl ∈ H∞ solves the system E(M) in M
∞, too.

With νi = (νn
i )n. Let p ∈ G. It is easy to infer that for all n ≥ 1 we have

νn
i

(

[a]n
)

=
[

a(i)
]

n
,

νn
i

(

[a]n · [p]n
)

=
[

a(i)
]

n
· νn

σ(a,i)

(

[p]n
)

.

But because of theorem (5.21), we know that νn
i = µn,n

i . So we find νi = (νn
i )n = (µn,n

i )n = µi. So
M

∞ |= OSP. This will finish the proof of (5.27).
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6. Applications

In this section we will apply the theory ACPτ,u on the one hand, by proving a number of basic
adversaria in a “new” way. By this we mean an enumeration of straightforward non-related results
(at first sight) that are already known. The main difference here is that we will use ACPτ,u to prove
these theorems. In fact, the correlation between these results is the use of auxiliary linear unary
operators in order to prove them. On the other hand, it is not only customary to use auxiliary
linear unary operators in verifications, but also in specifications. So we will give some examples
of specifications with the aid of such auxiliary operators, too, in which we will use ODP and OSP

to introduce the operators needed for the specification. In practice it is a combination of both:
specification with the aid of linear unary operators in order to be able to give a verification.

The first example in using an auxiliary operator is a proof that KFAR1 =⇒ KFAR2. This
theorem can be found in [17]. In this example, we will use linear unary operators in the body of the
proof. But first we have to know the meaning of KFARi for i = 1, 2. Therefore, we will need the
definition below. This definition is taken from [10].

Principle (6.1) Koomen’s Fair Abstraction Rule(6.1)

Let x1, . . . , xn and y1, . . . , yn be in P . Let I ⊆ A and suppose that we have the following
identities for these processes:

x1 = i1 · x2 + y1,

x2 = i2 · x3 + y2,

...

xn−1 = in−1 · xn + yn−1,

xn = in · x1 + yn,

with the following assumptions on the ij , (1 ≤ j ≤ n): {τ} 6= {i1, . . . , in} ⊆ I ∪ {τ}, then we have:

τI (x) = τ ·
(

τI(y1) + τI (y2) + · · ·+ τI (yn)
)

.

We will refer to this principle with the abbreviation KFARn.

Theorem (6.2)

Suppose that KFAR1 holds, then we can derive that KFAR2 holds.

Proof. We will prove this theorem only in the following case. Let u and v be closed terms. Let
i ∈ I and j ∈ I be internal atomic actions (I ⊆ A). Let x and y be processes such that the following
holds:

x = i · y + u,

y = j · x+ v.

We are to show:
τI(x) = τ · τI (u+ v).

We will use the following abbreviations: u′ = τ{i}(u) and v′ = τ{i}(v). Consider the guarded recursive
specification E1 below:

E1 =
{

x1 = τ · y1 + u′, y1 = j · x1 + v′
}

.

(At this point we already see why we consider the closed term case only: the specification E1 must
be without the abstraction operator. Although u′ and v′ are abbreviations in which the abstraction
operator occurs, they are closed terms, so we can eliminate the τ{i} with the axioms concerning the
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abstraction operator. Hence, we should consider a completely equivalent guarded recursive specifica-
tion E′

1 without the abstraction operator. We will not do so. If we want to prove the general case, we
will probably need the notion of guarded recursive specifications with parameters. Then the closed
terms u and v can be interpreted as auxiliary processes that are parameters of a guarded recursive
specification. The processes u′ and v′ are in that case just other parameters, hence, we still have a
guarded recursive specification without the abstraction operator. The concept of guarded recursive
specifications with parameters, can be found in [15].)

It is very easy to see that the conditions of theorem (4.12) are satisfied, so we see that τ{i}

is idempotent. This can be used to see that the unique solution of E1 is
(

τ{i}(x), τ{i}(y)
)

. We
will use the fact that τ{i} is idempotent tacitly in the sequel. Now consider the guarded recursive
specification E2:

E2 =
{

x2 = i · y2 + u′ + v′, y2 = j · x2 + v′
}

.

Let (x2, y2) be the solution of E2. Then it is clear that we have the following for τ{i}(y2) and τ{i}(x2):

τ{i}(y2) = j · τ{i}(x2) + v′

and

τ{i}(x2) = τ · τ{i}(y2) + u′ + v′

= τ · τ{i}(y2) + τ{i}(y2) + u′ + v′

= τ · τ{i}(y2) + j · τ{i}(x2) + v′ + v′ + u′

= τ · τ{i}(y2) + j · τ{i}(x2) + v′ + u′

= τ · τ{i}(y2) + τ{i}(y2) + u′

= τ · τ{i}(y2) + u′.

Hence,
(

τ{i}(x2), τ{i}(y2)
)

is also a solution for the guarded recursive specification E1, so by RSP we
obtain: τ{i}(x2) = τ{i}(x). With the aid of (4.18), it is easy to see that τI is a right-absorber for τ{i},
that is, we know that τI ◦ τ{i} = τI . Thus, we achieve:

τI (x2) = τI ◦ τ{i}(x2)

= τI ◦ τ{i}(x)

= τI(x). (1)

Now consider the guarded recursive specifications E3 and E4:

E3 =
{

x3 = i · y3 + u′′ + v′′, y3 = τ · x3 + u′′ + v′′
}

,

E4 =
{

x4 = i · y4 + u′ + v′, y4 = j · x4 + u′ + v′
}

.

We used above the abbreviations τ{i,j}(u) = u′′ and τ{i,j}(v) = v′′. With the aid of corollary (4.22)
it is is immediately clear that τ{j} ◦ τ{i} = τ{i,j}. Now we can derive:

τ{j}(x2) = i · τ{j}(y2) + u′′ + v′′

and

τ{j}(y2) = τ · τ{j}(x2) + v′′

= τ · τ{j}(x2) + τ{j}(x2) + v′′

= τ · τ{j}(x2) + i · τ{j}(y2) + u′′ + v′′ + v′′

= τ · τ{j}(x2) + i · τ{j}(y2) + u′′ + v′′ + u′′ + v′′

= τ · τ{j}(x2) + τ{j}(x2) + u′′ + v′′

= τ · τ{j}(x2) + u′′ + v′′.

54



An Operator Definition Principle: 6. Applications

We see that
(

τ{j}(x2), τ{j}(y2)
)

is a solution for E3. For the solution (x4, y4) of E4 we can deduce
easily:

τ{j}(x4) = i · τ{j}(y4) + u′′ + v′′

and

τ{j}(y4) = τ · τ{j}(x4) + u′′ + v′′.

Now we see that
(

τ{j}(x4), τ{j}(y4)
)

is also a solution for E3. Hence, by RSP we obtain τ{j}(x4) =
τ{j}(x2). Completely analogous to the calculation of equation (1), we find:

τI(x4) = τI(x2). (2)

Observe that we use here (4.18) since we use that τI is a right-absorber for τ{j}. Consider the guarded
recursive specifications E5 and E6:

E5 =
{

x5 = j · x5 + u′ + v′
}

,

E6 =
{

x6 = j · y6 + u′ + v′, y6 = j · x6 + u′ + v′
}

.

At this point we want to introduce a linear unary operator. Let n be a function name. Consider the
linear functional specification below:

E(n) =
{

n(a) = a
∣

∣ a ∈ A \ {i}
}

∪ {n(i) = j}

∪
{

n(a · x) = n(a) · n(x) | a ∈ A
}

.

With the aid of ODP we know that there is a valuation ϕ which solves this specification. Let us say
ϕ(n) = ρ ∈ F . With the aid of theorem (4.15), we find that τ{i} is a left-absorber for ρ. So for the
solution (x4, y4) of E4, we can derive:

ρ(x4) = j · ρ(y4) + u′ + v′,

ρ(y4) = j · ρ(x4) + u′ + v′.

So we see that
(

ρ(x4), ρ(y4)
)

is a solution for E6. On the other hand, if we interchange the order of

the equations above, we see that
(

ρ(y4), ρ(x4)
)

is a solution for E6, thus, with the aid of RSP, we
obtain ρ(x4) = ρ(y4). In particular we find:

ρ(x4) = j · ρ(x4) + u′ + v′.

Hence, ρ(x4) is a solution for E5. Let x5 be the solution for E5, then we obtain by RSP ρ(x4) = x5.
We will use theorem (4.18) to see that τI is a right-absorber for ρ. We will use this fact in the
calculation hereinafter. On the one hand we have:

τI(x5) = τI ◦ ρ(x4)

= τI(x4)

= τI(x2) because of (2)

= τI(x). because of (1)

And on the other hand we may apply KFAR1 to the equation x5 = j · x5 + u′ + v′. This gives the

following: (notice that we use the fact that τI is a right-absorber for τ{i})

τI(x5) = τ · τI(u
′ + v′)

= τ ·
(

τI ◦ τ{i}(u) + τI ◦ τ{i}(v)
)

= τ ·
(

τI(u) + τI(v)
)

= τ · τI(u+ v).

Combining these two inferences, we conclude the proof of (6.2).

In our next example, we will give a recursive specification of a queue Q over a data set D with
input channel 1 and output channel 2. We suppose that the data set D contains more than one
datum (see figure 3).
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1
Q

2

Figure 3. A queue Q with input channel 1 and output channel 2.

It is known that an infinite guarded recursive specification of Q can be given by the equations
hereinafter:

Q = Qλ =
∑

d∈D

r1(d) ·Qd, (3)

Qσ∗d = s2(d) ·Qσ +
∑

e∈D

r1(e) ·Qe∗σ∗d, (4)

for any word σ ∈ D∗ and any d ∈ D. Here, we use λ ∈ D∗ for the empty word. The asterisk (∗) stands
for the concatenation of words. It is known that there is no finite guarded recursive specification
over ACP which defines the process Q. It is also known that the queue can be specified with the
aid of a finite guarded recursive specification, if we allow certain auxiliary linear unary operators
(renaming operators). Both results can be found in [2]. Below we will state the latter theorem in
terms of ACPτ,u.

Theorem (6.3)

The queue is definable by a finite guarded recursive specification in ACPτ,u.

Proof. Suppose that we have for the set A of atomic actions

{r1(d), s2(d), l(d), u(d) : d ∈ D} ⊆ A.

Let the communication function be given as follows:

∀ d ∈ D : l(d) | l(d) = u(d),

and all the other communications result in δ. Consider the following linear functional specification
for the set of function names N = {n,m}:

E(N) =
{

n
(

u(d)
)

= s2(d) : d ∈ D
}

∪
{

n
(

l(d)
)

= δ : d ∈ D
}

∪
{

n(a) = a : a ∈ A \
(

u(D) ∪ l(D)
) }

∪
{

m
(

s2(d)
)

= l(d) : d ∈ D
}

∪
{

m(a) = a : a ∈ A \ s2(D)
}

∪
{

f(a · x) = f(a) · f(x)
∣

∣ f ∈ N, a ∈ A
}

.

We used above the following abbreviations: u(D) = {u(d) : d ∈ D}, l(D) = {l(d) : d ∈ D} and
s2(D) = {s2(d) : d ∈ D}. According to ODP, there is a valuation ϕ : N −→ F . Let us say
ϕ(n) = ν ∈ F and ϕ(m) = µ ∈ F . Consider the following finite guarded recursive specification:

R =
∑

d∈D

r1(d) · ν
(

µ(R) ‖ s2(d) · Z
)

,

Z =
∑

d∈D

l(d) · Z.

Now let σ ∈ D∗, then we define the process Rσ inductively as displayed below:

Rλ = R,

Rσ∗d = ν
(

µ(Rσ) ‖ s2(d) · Z
)

.
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At this point, we will prove the following claim:

Rσ = ν
(

µ(Rσ) ‖ Z
)

. (5)

We will verify this by showing that both left and right-hand side of equation (5) are solutions for the
same guarded recursive specification and then we will apply RSP. In order to prove this, we need
another intermediate result:

∀σ ∈ D∗, ∀ d ∈ D : ν
(

µ(Rσ) s2(d) · Z
)

=
∑

e∈D

r1(e) ·Re∗σ∗d. (6)

We will prove (6) with induction to the length of the word σ. First let d ∈ D be arbitrarily chosen
and let σ = λ. Consider the following calculation:

ν
(

µ(Rλ) s2(d) · Z
)

= ν
(

∑

e∈D

r1(e) · µ(Re) s2(d) · Z
)

=
∑

e∈D

r1(e) · ν
(

µ(Re∗λ) ‖ s2(d) · Z
)

=
∑

e∈D

r1(e) ·Re∗λ∗d.

Hence, for σ = λ equation (6) is proved. Now let d ∈ D and let σ = ρ ∗ f ∈ D∗ for some f ∈ D, such
that equation (6) is proved for ρ ∈ D∗. We show that (6) holds for σ:

ν
(

µ(Rσ) s2(d) · Z
)

= ν
(

µ ◦ ν
(

µ(Rρ) ‖ s2(f) · Z
)

s2(d) · Z
)

= ν
(

µ ◦ ν
(

µ(Rρ) s2(f) · Z
)

s2(d) · Z
)

+ ν
(

µ ◦ ν
(

s2(f) · Z µ(Rρ)
)

s2(d) · Z
)

= ν
(

µ ◦ ν
(

µ(Rρ) s2(f) · Z
)

s2(d) · Z
)

+ δ

= ν
(

µ
(

∑

e∈D

r1(e) · Re∗ρ∗f

)

s2(d) · Z
)

=
∑

e∈D

r1(e) · ν
(

µ(Re∗σ) ‖ s2(d) · Z
)

=
∑

e∈D

r1(e) ·Re∗σ∗d.

This ends the proof of our intermediate result stated in (6). Let us now calculate the left-hand side
of equation (5), first we take σ = λ:

Rλ = R

=
∑

d∈D

r1(d) · ν
(

µ(Rλ) ‖ s2(d) · Z
)

=
∑

d∈D

r1(d) · ν
(

µ(R) ‖ s2(d) · Z
)

=
∑

d∈D

r1(d) · Rd.

Now we will drop the assumption of σ being the empty word.
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Rσ∗d = ν
(

µ(Rσ) ‖ s2(d) · Z
)

= ν
(

µ(Rσ) s2(d) · Z
)

+ s2(d) · ν
(

µ(Rσ) ‖ Z
)

=
∑

e∈D

r1(e) · Re∗σ∗d + s2(d) · ν
(

µ(Rσ) ‖ Z
)

. (7)

Consider the guarded recursive specification G below:

G =

{

Xλ =
∑

d∈D

r1(d) ·Xd,

Xσ∗d =
∑

e∈D

r1(e) ·Xe∗σ∗d + ν
(

µ(Xσ) ‖ Z
)

∣

∣

∣
d ∈ D, σ ∈ D∗

}

.

Then it is obvious that, if we putXσ = Rσ for all σ ∈ D∗, this system is a solution forG. Observe that
the linear unary operators, appearing in the guarded recursive specification G, are concrete operators;
confer remark (2.19). Now we will prove that the right-hand side of equation (5) is also a solution
for the specification G. Therefore, we will introduce one more abbreviation: Sσ = ν

(

µ(Rσ) ‖ Z
)

.
Consider the calculation below for Sλ:

Sλ = ν
(

µ(Rλ) Z
)

= ν
(

µ
(

∑

d∈D

r1(d) · ν
(

µ(Rλ) ‖ s2(d) · Z
)

)

Z
)

= ν
(

∑

d∈D

r1(d) · µ ◦ ν
(

µ(Rλ) ‖ s2(d) · Z
)

Z
)

=
∑

d∈D

r1(d) · ν
(

µ ◦ ν
(

µ(Rλ) ‖ s2(d) · Z
)

‖ Z
)

=
∑

d∈D

r1(d) · ν
(

µ(Rd) ‖ Z
)

=
∑

d∈D

r1(d) · Sd.

Now we calculate Sσ∗d:

Sσ∗d = ν
(

µ(Rσ∗d) ‖ Z
)

=
∑

e∈D

r1(e) · ν
(

µ(Re∗σ∗d) ‖ Z
)

+ s2(d) · ν
(

µ(Sσ) ‖ Z
)

because of (7)

=
∑

e∈D

r1(e) · Se∗σ∗d + s2(d) · ν
(

µ(Sσ) ‖ Z
)

It is clear that, if we put for all σ ∈ D∗ : Xσ = Sσ , this system is also a solution for G. Hence, by
RSP, we conclude the proof of equation (5). Now we find for the defining equations for Rσ:

Rλ =
∑

d∈D

r1(d) ·Rd,

Rσ∗d =
∑

e∈D

r1(d) ·Re∗σ∗d + s2(d) ·Rσ .

But these are the defining equations of the process Q = Qλ; see equations (3) and (4). Thus, again
using RSP, we obtain Q = Rλ. This ends the proof of (6.3).

At this point, we will give an example in which we use the operator definition principle in order
to specify a communication network. In [2] this particular example is specified with an auxiliary
operator, which is called the localization operator. In fact, this is the composition of a renaming
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operator and an abstraction operator. We will handle this in a slightly other way. We will combine
three operators in one linear unary operator instead of two: a renaming operator (which is the
auxiliary part), an abstraction operator and an encapsulation operator. In this network, we will have
an environment E, a sender S and a receiver R. We will have four channels 1–4. We will depict this
network in figure 4.

S
2

3
R

E

1 4

Figure 4. A communication network.

Let D be a finite set of data and let ack /∈ D be an acknowledgement. We will give the recursive
equations for the sender S and the receiver R.

S =
∑

d∈D

r1(d) · s2(d) · r3(ack ) · s1(ack ) · S,

R =
∑

d∈D

r2(d) · s4(d) · s3(ack ) · R.

The sender and the receiver both communicate with the environment via channels 1 and 4. The
environment E can send data along 1, receive an ack along 1, or receive data along 4. Thus, we can
put for the recursive specification for E:

E =
(

∑

d∈D

s1(d) +
∑

d∈D

r4(d) + r1(ack )
)

· E.

The behaviour of the environment is that we first must have an s1(d), then an r1(d), then an r4(d)
and then an r1(ack ) before the next s1(e) can follow. This ordering of atomic actions is not expressed
in the definition of E. We will use an auxiliary linear unary operator to express this behaviour. We
assume for the set of atomic actions A the following:

A =
{

ri(d), si(d), ci(d) : d ∈ D, i = 1, 2, 4
}

∪
{

ri(ack ), si(ack ), ci(ack ) : i = 1, 3
}

.

Next we will give, for a function name n, the following linear functional specification:

E(n) =
{

n
(

ri(x)
)

= n
(

si(x)
)

= δ
∣

∣ i = 1, 2, 4, x ∈ D ∪ {ack}
}

∪
{

n
(

c1(x)
)

= s1(x)
∣

∣ x ∈ D ∪ {ack}
}

∪
{

n
(

c2(d)
)

= τ
∣

∣ d ∈ D
}

∪
{

n
(

c4(d)
)

= r4(d)
∣

∣ d ∈ D
}

∪ {n
(

c3(ack )
)

= τ}

∪
{

n(a · x) = n(a) · n(x)
∣

∣ a ∈ A
}

.

With the aid of ODP, we know that there is a valuation ϕ that solves this system. Let us say
ϕ(n) = ν ∈ F (notice that this linear unary operator is an example of an abstracting operator).
We can now state the following theorem in which we will use the notations that we have introduced
above. This theorem says that we will obtain the actions of E in the right order.
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Theorem (6.4)

ν(E ‖ S ‖ R) =
∑

d∈D

s1(d) · r4(d) · r1(ack ) · ν(E ‖ S ‖ R).

Proof. This consists of the following straightforward calculation:

ν(E ‖ S ‖ R) = ν
(

(E | S) R
)

=
∑

d∈D

s1(d) · ν
(

s2(d) · r3(ack ) · s1(ack ) · S ‖ E ‖ R
)

=
∑

d∈D

s1(d) · ν
((

s2(d) · r3(ack ) · s1(ack ) · S | R
)

E
)

=
∑

d∈D

s1(d) · τ · ν
(

s4(d) · s3(ack ) ·R ‖ r3(ack ) · s1(ack ) · S ‖ E
)

=
∑

d∈D

s1(d) · ν
((

s4(d) · s3(ack ) · R | E
)

r3(ack ) · s1(ack ) · S
)

=
∑

d∈D

s1(d) · r4(d) · ν
(

s3(ack ) ·R ‖ E ‖ r3(ack ) · s1(ack ) · S
)

=
∑

d∈D

s1(d) · r4(d) · ν
((

s3(ack ) ·R | r3(ack ) · s1(ack ) · S
)

E
)

=
∑

d∈D

s1(d) · r4(d) · τ · ν
(

R ‖ s1(ack ) · S ‖ E
)

=
∑

d∈D

s1(d) · r4(d) · ν
((

E | s1(ack ) · S
)

R
)

=
∑

d∈D

s1(d) · r4(d) · s1(ack ) · ν(E ‖ S ‖ R).

In the next example, we will describe a process P , which can be in different states. Suppose we
have a finite data set D consisting of two elements 0 and 1. We have two input channels, 1 and 2,
and one output channel 3. The process P reads in an arbitrary order the data of the input channels 1
and 2 and sends along channel 3 the sum of these data modulo 2 (and then it starts all over again).
We can think of P as a simulation of a(n) xor-port with the aid of process algebra. We will depict
this process in figure 5.

P
1

2

3

Figure 5. Simulation of a(n) xor-port.

We will first describe the process P without the merge. We assume that we have the following set of
atomic actions:

A = {r′i(j) : i = 1, 2 j = 0, 1} ∪ {t}

∪ {ri(j) : i = 1, 2 j = 0, 1} ∪ {s3(j) : j = 0, 1}

= {r′i(j) : i = 1, 2 j = 0, 1} ∪ {t} ∪B,
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with B = {ri(j) : i = 1, 2 j = 0, 1} ∪ {s3(j) : j = 0, 1}. Consider the recursive specification of the
process P below:

P =
∑

i=0,1

r1(i) ·
∑

j=0,1

r2(j) · s3(i+ j mod 2) · P

+
∑

l=0,1

r2(l) ·
∑

k=0,1

r1(k) · s3(k + l mod 2) · P.

The problem with this specification is that we actually want to denote this process with a merge.
For it has parallel input. But if we do so, we will obtain difficulties with the scope of the sum signs.
We could write the specification above as follows:

P =
(

∑

i=0,1

r1(i)
∥

∥

∑

j=0,1

r2(j)
)

· s3(i+ j mod 2) · P.

Since the variable i under the first sum sign is bounded, we can alter it without changing the meaning
of the sum. But the i that occurs in the send action will remain the same. So the meaning of the
entire formula will change. We will use an auxiliary unary operator to solve this problem. Let
N = {nk,l : k, l = 0, 1} be a set of function names. Let E(N) be the following linear functional
specification.

E(N) =
{

nk,l

(

r′i(j)
)

= ri(j) : j, k, l = 0, 1 i = 1, 2
}

∪
{

nk,l(t) = s3(k + l mod 2) : k, l = 0, 1
}

∪ {n(a) = a : a ∈ B}

∪
{

nk,l

(

r′1(j) · x
)

= r1(j) · nj,l(x) : j, k, l = 0, 1
}

∪
{

nk,l

(

r′2(j) · x
)

= r2(j) · nk,j(x) : j, k, l = 0, 1
}

∪
{

nk,l(t · x) = s3(k + l mod 2) · n0,0(x) : k, l = 0, 1
}

∪ {nk,l(a · x) = a · nk,l(x) : a ∈ B k, l = 0, 1}.

With the aid of ODP, we know that there is a valuation ϕ : N −→ F which solves this system. Let
us say ϕ(nk,l) = νk,l ∈ F with k, l ∈ {0, 1}. Subsequently, we will give a specification of a process X .

X =
(

∑

i=0,1

r′1(i)
∥

∥

∑

j=0,1

r′2(j)
)

· t ·X.

With the notations that we have introduced above we can now state the following theorem.

Theorem (6.5)

ν0,0(X) = P.

Proof. Consider the following calculation.

ν0,0(X) = ν0,0

(

∑

i=0,1

r′1(i) ·
∑

j=0,1

r′2(j) · t ·X
)

+ ν0,0

(

∑

l=0,1

r′2(l) ·
∑

k=0,1

r′1(k) · t ·X
)

=
∑

i=0,1

r1(i) · νi,0

(

∑

j=0,1

r′2(j) · t ·X
)

+
∑

l=0,1

r2(l) · ν0,l

(

∑

k=0,1

r′1(k) · t ·X
)
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=
∑

i=0,1

r1(i) ·
∑

j=0,1

·νi,j(t ·X)

+
∑

l=0,1

r2(l) ·
∑

k=0,1

r1(k) · νk,l(t ·X)

=
∑

i=0,1

r1(i) ·
∑

j=0,1

·s3(i+ j mod 2) · ν0,0(X)

+
∑

l=0,1

r2(l) ·
∑

k=0,1

r1(k) · s3(k + l mod 2) · ν0,0(X).

With the aid of RSP we see that ν0,0(X) = P . This will end the verification of theorem (6.5).

7. Generalizations

In this section we will mention briefly some generalizations of this theory. In particular, we will point
out that the definition of a linear functional specification can be generalized easily such that, with
the aid of ODP and OSP, we can introduce more linear unary operators. The first generalization
that can be thought of is an “exit” possibility. That is, we allow functional equations of the following
type:

f(a · x) = f(a).

Then we are able to specify (operators that behave like) the projection operators, with the aid of a
linear functional specification. The second generalization that we can think of is that we have more
“liberal” boundary conditions: we would sometimes send an atomic action to a closed term. To exem-
plify this, we will give hereinafter a definition of a linear functional specification that accommodates
both generalizations.

Definition (7.1)

Let N be a set of function names. A linear functional specification E(N) for N is a set of the
following form:

E(N) = {rn,a : n ∈ N, a ∈ A} ∪ {en,a : n ∈ N, a ∈ A}. (1)

Both rn,a and en,a are equations. Now fix an a ∈ A and an n ∈ N , then we will define the two
equations rn,a and en,a for the pair (n, a). The first equation rn,a is called a boundary condition and
has the following form: there are closed terms {tk : k ∈ K} and {sl : l ∈ L} without linear unary
operators, for certain finite disjoint sets K and L, such that

rn,a ≡ χ(n, a) =
∑

k∈K

tk +
∑

l∈L

sl. (2)

The equation en,a is called a linear functional equation and it is of the following form:

en,a ≡ χ(n, a · x) =
∑

k∈K

tk · χ(nk, x) +
∑

l∈L

sl, (3)

in which {nk : k ∈ K} ⊆ N . If K = ∅, we omit the first sum sign in both equations (2) and (3) and
if L = ∅, we leave out the second sum sign in (2) and (3).

It will be clear that this definition is a generalization of definition (2.2), for let L = ∅ (this
disables the “exit” possibility), let |K| = 1 and let the closed term tk ∈ A ∪ {δ, τ}.
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Since, for the generalized state operator*, we have

Λm
s (a) =

∑

b∈a(m,s)

b,

we see that we can specify this operator with a linear functional specification of definition (7.1).
We will not need the “exit” possibility here. With this definition, we can also prove theorems on
projection operators for open terms. One can think of the following theorem:

Theorem (7.2)

Let n ≥ 1. Let H ⊆ A. Then πn ◦ ∂H = ∂H ◦ πn.

Proof. We will make use of the exit possibility here. Let M = {m1, . . . ,mn} be a set of function
names. Consider the following linear functional specification.

E(M) =
{

mi(a) = a : a ∈ A \H, 1 ≤ i ≤ n
}

∪
{

mi(a) = δ : a ∈ H, 1 ≤ i ≤ n
}

∪
{

m1(a · x) = m1(a) : a ∈ A
}

∪
{

mi+1(a · x) = mi+1(a) ·mi(x) : a ∈ A, 1 ≤ i < n
}

.

It will be clear that both πi ◦ ∂H and ∂H ◦ πi (1 ≤ i ≤ n) are solutions for this system of equa-
tions E(M), so with the aid of OSP, we conclude that, in particular, ∂H ◦ πn = πn ◦ ∂H . This will
end the proof of (7.2).

It is also possible to consider operators f : P −→ Q. Where we have a binary operator “+” on
the elements of Q. If we take, for example, Q = 2A we can define the binary operator + to be the
union of sets. We must change the definition of a linear functional specification in a radical way. For
we might want to have functional equations that look like

f(a · x) = f(a) + f(x).

Examples of such operators are: the trace operator and the alphabet of a process, which can be found
in [2]. An example of an auxiliary operator of this “type” can be found in [18]. It is the collection
of all the registers that occur in a process x and it is abbreviated: reg(x). We will not discuss this
type of generalization any further.

Concluding, we can say that the notion of a linear functional specification can be generalized
easily, such that we can handle more and more linear unary operators.

* see [2]
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8. Conclusions

In this paper we have presented a way to introduce auxiliary linear unary operators. Moreover,
ACPτ,u is a first attempt to unify many other axiom systems. In section 6, all the examples were
originally specified in different axiom systems. While in this paper, these examples are studied in
ACPτ,u.

The first example concerning KFARn, was specified in ACPτ with renaming operators. This
example showed us that the principles ODP and OSP were not only used to specify an auxiliary
linear unary operator in order to give a verification, but we also employed it indirectly: we intensively
referred to some (absorption) theorems that were proved, using the principles ODP and OSP. Another
matter that we discovered in studying this example, was that the notion of a guarded recursive
specification had to be adapted; see for details remark (2.19).

The second example was specified in ACP with renaming operators. These renaming operators
were more “elementary” than the renaming operators that were defined in [17]. A remarkable fact is
that in this example we find linear unary operators inside a guarded recursive specification. As they
are so-called concrete operators, they are of no harm in the guarded recursive specification.

The next example uses ACP with the localization operator. It is an operator that consists of
two parts: there is an encapsulation part and there is an auxiliary part. The localization operator
is in fact the composition of a renaming operator and an encapsulation operator. We treated this
operator in a slightly different way: we made an auxiliary operator with three components; besides
the two mentioned hereinbefore, we adapted an abstraction part, too. This is done to create an
example of an abstracting operator and to make things a little more compact.

The last example was originally specified in ACPτ and the register operator (see [18]). To
shorten the proof of theorem (6.5), we simplified the situation somewhat: we “reset” the xor-port
each time after it sent the output along channel 3.

Theorem (4.29) was originally formulated with the aid of ACP with the (single) state operator,
as can be seen in the remark subsequent to this theorem. We formulate and prove it, in ACPτ,u.

We find thus that ACPτ,u with of course ODP and OSP, is a theory that handles all these
different cases. So it can be seen as a theory that unifies the other theories. We are not ready,
however, since there are examples of auxiliary linear unary operators that we cannot describe with
this theory yet. We can mention the generalized state operator here. The main reason for this “lack”,
is the definition of a linear functional specification. We kept this definition as simple as possible for
heuristic reasons.

A matter that we did not discuss here is the research on non-linear unary operators, such as
the priority operator; see [4]. It is the the author’s opinion that it is worthwhile doing some further
investigations on both linear and non-linear unary operators.
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10. Index

In this section we will provide a short index. We will refer to the actual definition of a concept
and not to the “informal” introducing text that often precedes it. Definitions given on the fly are
included, too.

absorber 26 linear functional specification 5
abstracting operator 8 localization operator 59
abstraction operator 5 merge 5
ACPτ,u 4 ODP 7
ACPu 40 operator definition principle 7
AIP 10 operator specification principle 7
alphabet of a concrete process 23 OSP 7
alphabet of a process 22 partially ordered set 13
alphabet of an object 35 projection operator 5
alternative composition 5 projective limit 49
apply function 5 projective row 50
approximation induction principle 10 queue 56
boundary condition 5 rank of a constant 11
BPAδ,τ 19 rank of an operator 11
closed term 10 ranked term 12
communication network 59 RDP 9
communication-merge 5 recursion equations 8
completely guarded recursive specification 9 recursive definition principle 9
composition of functions 5 recursive specification 8
concrete operator 8 recursive specification principle 9
concrete process 23 reduction relation 12
conditional axiom 30 register operator 65
deadlock 5 renaming operator 8
Dershowitz 14 right-absorber 26
EA 5 RSP 9
encapsulation operator 5 sequential composition 5
extensionality 5 set of derived operators 7
function names 5 silent step 5
functional equation 5 special constants 5
generalized state operator 64 stable 22
guarded 9 state operator 35
guarded recursive specification 9 termination property 14
homomorphism 49 unguarded 9
idempotent 25 unstable 22
KFARn 54 valuation 7
Koomen’s fair abstraction rule 54 weight of a closed term 11
laminal function 37 well-defined 38
left-absorber 26 well-founded 13
left-merge 5 xor-port 61
linear functional equation 5
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