
Science of Computer Programming 56 (2005) 275–313

www.elsevier.com/locate/scico

Quantitative aspects of outsourcing deals✩

C. Verhoef

Department of Mathematics and Computer Science, Free University of Amsterdam, De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

Received 22 October 2003; received in revised form 15 May 2004; accepted 25 August 2004
Available online 12 October 2004

Abstract

There are many goals for outsourcing information technology: for instance, cost reduction, speed
to market, quality improvement, or new business opportunities. Based on our real-world experience
in advising organizations with goal-driven outsourcing deals, we identified the most prominent
quantitative input needed to close such deals. These comprise what we namedthe five executive
issues enabling rational decision making. They concern cost, duration, risk, return, and financing
aspects of outsourcing. They add an important quantitativefinancial/economic dimension to the
decision making process. Based on inferred outcomes for the five executive issues, we address the
easily overlooked aspects of selecting partners, contracting, monitoring progress, and acceptance and
delivery conditions for contracts.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Outsourcing; Goalsourcing; Smartsourcing; Fastsourcing; Costsourcing; Offshore outsourcing;
Eastsourcing; Tasksourcing; Backsourcing; Insourcing; Scalesourcing; Profitsourcing; Activity-based cost
estimation; Total cost of ownership (TCO); Requirements creep risk; Time compression risk; Litigation risk;
Failure risk; Overtime risk; Deglubitor risk; Payback period risk

1. Introduction

Many organizations play with the idea to commission their IT activities to third parties.
This became known as outsourcing. Reasons to outsource are manifold. For instance,

✩ This research has partially been sponsored by the DutchMinistry of Economic Affairs via contract SENTER-
TSIT3018, project nameCALCE: Computer-aided Life Cycle Enabling of Software Assets.

E-mail address: x@cs.vu.nl.

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.08.003

http://www.elsevier.com/locate/scico

276 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

IT is not the core business, or there is a shortage of IT-developers, or the proper
competences are lacking, or in-house development costs are too high. But also union rights
can be an obstacle since in some countries they prevent you from making superfluous
programmers available to the industry (fire them) once the information technology
becomes operational. Or, the organizationcannot innovate since all their developers
have to maintain the aging legacy portfolio. Or the quality level of in-house developed
information technology is becoming unacceptable. Or due to a merger the new board of
directors concentrated the IT departments into a new separate organization outside the
merged company; sometimes in a joint venture with an existing IT service provider. An
example is the joint venture between ATOS Origin and Euronext: AtosEuronext. This was
a consequence of the merger of the Belgian, Dutch, and French stock-exchanges who
outsourced all their IT-activity to this new joint venture. Needless to say that there are
many more forms and reasons for outsourcing. The focus in this paper is the outsourcing
of tailor-made applications, so not infrastructure, networks, data centers, etc.

1.1. The in- and outsource cycle

Often the immediate cause of an outsourcing question can be traced back to what is
called thecomplexity catastrophe [7]. Business-critical parts of the IT-portfolio became
so complex that they arecausing all kinds of problems: operational problems, high costs,
stopped or stunted innovative power, or other causes. A commonly tried escape from the
complexity catastrophe is to abandon the old systems, and start with a clean slate. But
then you run the chance of falling prey to the so-callederror catastrophe [7]. In this error
catastrophe, the past is “buried” and all the knowledge that was built-up in the discarded IT-
systems is now lost. Sometimes organizations swing from the one extreme of complexity
to the other of error-proneness, by throwing their IT-problems over the fence to an IT
service provider who promised to clean up the mess. Although sometimes alongside the
systems also their support staff is outsourced, the business technologists hardly ever switch
jobs in such deals. The risk that the newly found partner is going to solve the wrong
problem then becomes realistic. Namely, all the errors that were made along the road that
led to the complexity catastrophe are made again. After the problems surface (deadlines
missed, wrong functionality, cost overruns, operational disasters, etc), executives realize
that outsourcing is not a panacea to solve all their IT-troubles, and a typical reaction is then
to backsource the IT.Backsourcing (alsocalledinsourcing) is to bring the outsourced IT
back in-house, because it is feltthat despite its problems, their IT-assets are better off in-
house than outsourced. Then the cycle starts again: sooner or later somehow the complexity
catastrophe is entered, and the temptation to throw the problem over the fence grows again.

1.2. Dangerous games

Swinging between the two extremes is not at all productive, and potentially jeopardizes
the survival of organizations. In some cases, significant amounts of money are involved in
outsourcing deals. This makes them endeavors with a high risk profile. For instance, in [42]
we can read that

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 277

The Rolls Royce deal with EDS was worth 45% of its market capitalization, while
the Sainsbury’s deal with Accenturewas17% of its market capitalization.

Indeed, such deals can directly affect share-holder value. And if the cost, duration, risk,
return, and financing of such deals are not properly addressed, it could lead to nose diving
stocks, loss of market share, or even bankruptcy if the decisions were taken “on the golf
course”. Financial news sources contain a flurry of articles testifying to this; we mention
just three recent ones:

• The Financial Times reported on March 26, 2003 that the ICI Group had a share price
drop of 39% in one day. They attributed this to the failure in its Dutch subsidiary
Quest to get the supply chain software to run correctly. Due to persistent late or missed
deliveries the largest customers went elsewhere [21].

• The Dutch version of the Financial Times reported on June 20, 2003 that Van
Heek-Tweka (textiles) filed for chapter 11 protection. The stock-exchange Euronext
suspended trading in this stock. This moratorium on payments was necessary since two
weeks earlier, its most important subsidiary went bankrupt. The major cause of the
bankruptcy was a failing IT-project. First ofall its costs ballooned, and second, this
system created havoc in the supply chain [9].

• A local stock market news service reported on June 26, 2003 that Hagemeyer
(B2B markets) suspended its implementation of the Global Hagemeyer Solution, for
establishing a single ICT-platform for all worldwide activities. Since after the system
went live in the UK, oneof their most important divisions went from86 million
positive, to 28 million negative. Moreover the market share went from 22% down to
18%. In Australia they will implement this system in a more evolutionary manner, and
in the United States they will not implement it at all. The total loss is not disclosed [4].

In [23], a systematic study was carried out where a sample of 150 press announcements
of IT-investments was related to the market value of the announcers (59 publicly
traded companies). A connection was found between such press announcements and the
organization’s market value. The cumulative abnormal return over a three-day period
around the investment announcement was measured. This return was negative. So these
announcements turned out to have a significant negative impact on the market value of
the firm [23]. We are not surprised by this, since IT is a production factor in many
organizations, so how you deal with IT affects your market value directly. If you announce
these investments in the press, they are usually significant, so the underlying information
technology is of considerable size. Risk of failure, cost overruns, time overruns, and
underdelivery of desired functionality are strongly connected to the size of software (we
will see this later on). And since 75% of the organizations have a completely immature
software process (CMM level 1) [30, p. 30], almost by definition such investments are
exposed to all these risks, resulting in a negative impact on the market value in the long
run. Apparently, the investor perceives such announcements not as a value creator, and we
think they are right about this. The examples we gave show some of the long-term impacts.
Apparently, keen investors do not wait, but react immediately, resulting in a negative impact
on the announcer’s market value.

278 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

Obviously, a more sophisticated strategy is necessary, since gambling with shareholder’s
capital puts sustainable growth and the continuity of the organization at risk. By now, the
shareholder is protected by the Sarbanes-Oxley Act of 2002—an act to protect investors
by improving the accuracy and reliability of corporate disclosures [60]. So there are plenty
of good reasons why you should get a hold onaccurate and reliable data to base your
IT-outsourcing decisions on.

1.3. Goalsourcing

Based on the in advance identified goals for outsourcing, a balanced relation with others
can emerge. Part of that relation is to ensure that the right responsibilities are taken care
of by the appropriate organizations. In particular all stakeholders should understand the
long-term consequences of the sometimes far reaching decisions. And a sound quantitative
financial/economic analysis is without doubt part of a careful decision process. Due to
earlier experienced problems, a mix of in-house work and outsourced activity becomes
more and more popular. These mixes are driven by a main goal, hence the name
goalsourcing (sometimes we see the synonymtasksourcing). The idea of goalsourcing is
that for a given goal, a mix of activities should be established so that parties perform only
those tasks that optimally serve the overall goal.

There are many ways to mix activities: perform activities in-house that you can do
fastest, and commission work to others that they can perform faster than you. This mix
can be calledfastsourcing: you maximize to speed-to-market. You can also optimize a mix
towards costs: do in-house what is cheapest, and outsource to others what they can do
cheaper. This is calledcostsourcing. A commonly used implementation for costsourcing is
to contract certain activities to low-wage countries. A popular name for this stems from the
USwhere programming was contracted to low-wage countries offshore of North America.
This implementation of costsourcing became known asoffshore outsourcing (in Western
Europe the termeastsourcing is used foroutsourcing to Eastern Europe). The idea behind
an IT-department that is placed outside an organization is to turn an internal cost center into
an external profit center: now you can offer your solution to other parties as well. Examples
are the just mentioned AtosEuronext, and Sabre. The first offers services to others than the
founding fathers of Euronext, and the latter—a joint venture between American Airlines
(AA) and IBM—handles the reservations of both AA and other airline companies. The goal
that such deals characterizes is to exploit the economies of scale, hence we sometimes refer
to it asscalesourcing, or the more tantalizing profitsourcing. Another mix isto optimize
towards quality: business-critical information technology thatneeds to satisfy particular
quality standards. This mix amounts to performing those activities in-house that are done
best, and commission to third parties those activities that others excel in. We call this
smartsourcing.

We like to stress that this paperis not a complete how-to guide for outsourcing issues.
Rather it serves as a complement to the aspects and issues that according to our experience
arenot on the radar of decision makers and their supporting staff. We will illustrate our
findings via a running example on smartsourcing. The results are applicable to many types
of outsourcing deals, and are not restricted to the running example.

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 279

1.4. Running example

The author advised several organizations about all kinds of outsourcing deals. This
paper brings together the experience gained, and the lessons learned during this field work.
For the sake of explanation we composed a running example containing the most prominent
quantitative aspects of outsourcing deals. Of course, we modified all the organization-
specific data to ensure strict anonymity of the involved organizations. Our running example
is a fictitious Federal Government Agency (FGA) that is going to modernize its operations,
and is in need for a new management information system supporting its core mission. We
call the system CMS, short for Core Mission System. Only very rough requirements and
a first sketch in charcoal of the functional specifications are to our avail for the CMS. Of
course, there are a number of existing systems that implement parts of the new functionality
but there are also new requirements. Despite the rather sketchy shape of our CMS, federal
politicians already know the date when the system becomes operational: this is part of
the Act that mandated construction of the new CMS. Since sensitive data is going to be
processed by this system, the FGA opted for a smartsourcing scenario.

1.5. Becoming a smart buyer

We provide insight into the five executive issues for this running example, so that you
can initiate, evaluate, and effectuate you own outsourcing deals by following a similar path.
Although the paper is written from the perspective of the problem-owner, both problem-
owners and IT-service providers should be in a position to migrate from naive decision
makers to realistic and rational negotiators in closing outsourcing deals, after studying our
results. Of course, the quantitative data cannot and should not replace the entire rationale
for decision making. Many other considerations shape this process, e.g., competitive edge,
market share, reputational risk, first/second mover advantage, deepness of your pockets,
and so on. The results reported on in this paper focus on a much needed, often neglected
dimension that can shed light on the five executive issues: cost duration, risk, return, and
financing ofoutsourcing deals.

1.5.1. Organization of the paper

The rest of this paper is organized as follows. First we discuss how to obtain more
information about one of the key indicators we need for our analysis: size information
of the information technology under consideration for outsourcing. After we collected
such information via various sources and methods, we interpret the information. Based
on our best estimate, we address cost aspects, schedule, and financing issues. Then we
address the topic of IT-risks both in a quantitative and a qualitative manner. Subsequently,
we assess the returnsprojected by the business, by comparing them to the estimated
development and operational costs. With all this information, we can turn our attention
to often neglected aspects of selection, contracting, monitoring and delivery. Finally we
summarize our conclusions.

280 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

2. Collecting size information

First, we need to know more about the amount of IT that is subject to an outsourcing
deal. Namely, the amount of functionalityis the key from which you can derive the five
executive issues. The most reliable [37,36] metric for size is the function point [2,13,25,
15]. At this point you do not need to know what function points are exactly, just think of
them as a universal IT-currency converter, giving a synthetic measure of the size of the
software. For instance, it takes about 106.7 Cobol statements to construct 1 function point
of software. It takes 128 C statements for the same 1 function point [28]. Metrics derived
from function points are intuitive in economic analyses. For instance, the cost per function
point is comparable to the price per cubic meter for a civil construction. Also this is a
synthetic measure, since not all cubic meters are similar, but for economical analysis it is
perfect.

To outsource maintenance we need to know how much functionality is being
outsourced. This is best measured via source code analysis, with which an as accurate as
possible function point count of the existing IT-assets can be conducted. For instance via
statement counting and using the language specific factors (106.7, 128, . . .) to recover the
function point totals. In case of new development you use the requirements for a function
point analysis to obtain an idea of the size [15]. For our running example, the Core Mission
System (CMS) of the fictitious Federal Government Agency (FGA), several size estimates
were carried out.

2.1. Ball-park estimate

First of all, a fellow federal government agency is asked for advise. Make sure that
this friendly estimate is void of commercial bias, and purely technology-driven. Based on
similar efforts they already carried out, they came up with a ball-park estimate: between
7500 and 15000 function points. Although this is a very rough idea, it gives information:
we are talking a multi-million dollar investment here.

2.2. Measuring the bandwidth

After this first friendly advise, we probed a few outsourcers for an initial cost estimate
based on different pricing schemes. One scheme was to see what the minimal size would
be, another scheme gave an indication of the maximal size. We used the following pricing
schemes:

• Based on your idea of the number of function points, give us a price, and if it is going
to cost more, we will pay you additionally for that. For this extra cost, provide us with
a price per function point.

• Based on your idea of the number of function points, give us a fixed price, and if it is
going to cost more, bad luck for you.

We took the minimum of the answers on the first question, and the maximum of the
answers on the second question. This gave us a range between 6000 and 18000 function
points. For this estimate it is not necessary to insist on certified function point counting
specialists. You are not after the most accuratecounting, but assessing potential bandwidth.

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 281

2.2.1. Going Scrooge
Note that in some situations you cannot use this method openly: some countries have

regulations regarding public offerings that forbid measuring the bandwidth like this. Then
you can use shrewd tricks to obtain the bandwidth data. One simple trick is to commission
a potential outsourcer to carry out a function point analysis. Often such outsourcers are
doing other things for you already, so the next thing you do is to leak secret information
to these spies that one of the above pricing strategies is going to be in the public offering.
No one is ever going to file you a lawsuit if another pricing strategy is followed later
on, since officially they do not know about it.For people feeling a little uncomfortable
about manipulative methods, just remember that you are responsible for a multi-million
dollar deal and that government regulations are not always the most optimal way to close
them. We imagine that Ebenezer Scrooge, thecruel miser created by Charles Dickens in
A Christmas Carol could have invented this trick.

2.3. Indicative function point count

After these ball-park estimates, an independent certified function point analyst is hired
to carry out an indicative function point analysis. The documentation is not yet fit for
a detailed function point analysis. After going through the preliminary requirements
documents and the functional specifications a number of indicative estimates were made
using three indicative methods. One on the basis of data files (5239 FP), one based
by weighing the requirements (6700 FP), and an indication based on the functional
specifications (7692 FP). The average was taken: 6544 function points. The confidence
interval for each method was 50%, and for the average 30% was taken.

For our purpose it is not important what the technical details are that the certified
function point analyst used. For decision making it is important whether you can trust
the data and what to do and not to do with it.

2.4. Backfiring

Next, we made use of the fact that some functionality of the Core Mission System was
available in existing IT-assets within the FGA. Namely, parts of the work process were
already implemented using outdated technology marked for retirement after successful
implementation of the new CMS. The legacy systems that were identified for replacement
were counted using backfiring. A third party was hired to conduct this specialized task.
Basically, backfiring is counting the statements using an automated tool, and then using a
table with factors turning the statements into function points. If you find 1153 C statements,
using the benchmarked C-specific conversion factor of 128, this represents about 9 function
points of software. The accuracy of backfiring from logical statements is approximately
±20% [30, p. 79]. The outcome of this source code analysis gave us several totals for
statements in several languages, and a total of 6724 function points.

3. Interpreting the collected information

We have collected size information using different sources, different means, and for
different purposes. Now we are in a position to review and interpret the data. The ultimate

282 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

Table 1
Some indicative data on function point totals and confidence intervals

Method Min FP Max FP Final FP Confidence (%)

Friendly ball-park 7500 15000 N.A.a N.A.
Enemy ball-park 6000 18000 N.A. N.A.

Data files 2647 7940 5239 50
Requirements 3350 10050 6700 50
Process model 3846 11538 7692 50

Backfiring 5379 8068 6724 20

a N.A. = Not applicable.

goal is to come up with two data points: an indicative internal function point total and a
politically correct confidence interval. We summarized all the data points inTable 1.

3.1. Ball-park estimates

The function of both ball-park estimates is to develop an idea of the order of magnitude.
For now think of the bandwidth somewhere in between 6000 and 7500 at the minimal side,
and between 15000 and 18000 at the high side. No matter what the precise numbers are,
one thing is clear: the running example is clearly a major investment, and it is worth the
effort to invest in some more involved estimates. But these will cost you money. To give
you an idea, for the running example the effort for the function point analyst was about
50 h. The effort for backfiring is measured differently, but think in terms of a few dollar
cents per physical line of code.

3.2. Function point estimates

In government situations, it is a good idea to use certified analysts, since in case of
major failure, it might come to congressional hearings. And then you at least did everything
possible to obtain the best information. Moreover, in the United States, outsourcing deals
and their negotiations are subject to a law commonly known as TINA, which is the Truth
In Negotiations Act. TINA prescribes certified, calibrated, parametric techniques as a basis
for estimating everything necessary for acquisition, including information technology.
A complete handbook giving directions is available on the Internet [59]. Also, expect
counterchecks in the form of assessments of your plans by external advisors. So there
are plenty of reasons to buy the best knowledge available.

No matter how careful you are, also information from certified analysts or certified
estimating techniques is not flawless. In our case we found some counting errors,
scrutinized proprietary methods used in counterchecks, and cross-examined function point
analysts. Reviewing such documents almostalways surfaces a few major omissions—that
you cannot afford since you base all other estimates on function point totals.

We like to mention an error that is often made, but rarely recognized as such. So this
deserves further elaboration. The three different methods that were used were averaged,
and the aggregated confidence interval went from 50% to 30%. Although the 50%

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 283

confidence intervals were used in the report, we found out during our interview with the
specialist that this amount was the numerical representation of his feeling that it was an
unknown but probably large variation. Theproblems are summarized:

• you cannot take the average of the three methods;
• but even ifyou can, the error margin is not decreasing.

Let’s see how this works by transposing from the world of software size estimating to
the field of length determination for which many of us have more intuition. Suppose we
have three methods to estimate the distance between two points.

• A certain muscular tension in your legs represents approximately 1 m. Just walk the
distance, you count 1023 steps. Leading to 1023 m.

• Hop in a car, reset the day counter, and drive the distance, look at the day counter. It
shows983 m.

• Use a laser beam, and calculate the distance from the time it takes for the light to travel
back and forth. This leads to 981.04 m.

Question: would you take the average of the three methods for the best approximation
of the distance? Just the same, it is useless to average the outcomes for the three methods
that were used to calculate the size of the Core Mission System. You will take the most
accurate one, but since the confidence intervals are in fact unknown, you cannot.

Now the error margin. Suppose for a minute that you can average the three methods,
then the error margin is not diminishing. It stays the same: 50%. That is because there
is no margin decreasing effect in place. Such an effect can be accounted for when the
same method is applied repeatedly. For instance, repeat the walk 10000 times, and the
error margin will become smaller, and after infinite walks, it will approach the laser beam
measurement. But there is no repetitive effect in the function point estimates. So, do not
believe averages and diminishing variation unless it is absolutely clear that this makes
sense.

3.3. Backfiring estimate

From the backfiring estimate we learned that there are 6724 function points of software
in production. One possible way of interpreting this data point is to apply Kim Ross’s rule
of thumb, which is that the function point count of an upgraded system will be twice that
of the old one [53]. This amounts to 13448 function points.

3.4. Horse trading

With all the datapoints, and their interpretation, the final task is to come to a first
estimate that satisfies the following criteria:

• it is justifiable given the investigations,
• it has enough flexibility to manoeuvre within the own organization, when the project

scope changes.

This part is not mathematical but political. Depending on the status of a project, the
political volatility, and other soft aspects, itis customary to downplay or boost the numbers

284 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

that come out of a data collection exercise. For our running example, the final responsible
person is the Secretary under which the fictitious Federal Governmental Agency resorts.
Since money allocation for such a project cannot easily be changed when new information
necessitates this, you have to be careful with the numbers you disclose. In this case it was
decided to use a function point total that would give with a 30% confidence interval the
maximal total function point count (7692 FP) and round that to one digit significance. Then
this was rounded further to numbers with a preliminary feel. The outcome of this political
calculation was that the preliminary data to work with for the Core Mission System should
be 10K function points±25%. Of course this information is not broadcasted widely, but
used internally to base initial decision making on. This and other estimates are then used
to base more involved calculations on. Namely, to infer data for the five executive issues:
cost, duration, risk, return, and financing.

3.5. Dealing with arbitrary numbers

Some readers may think at this moment: but what if my estimate is not 10K but
some other number, for which no public benchmarks exist? Namely, for different sizes
of software the production rates can vary substantially and assignment scopes can differ a
little as well. Therefore,you cannot always apply a benchmark for one size to another size.
Here we show that if the numbers would have been different, we can obtain the desired
answers; this only takes a bit more work. Suppose our best estimate for the CMS is the
backfiring result: 6724 function points, plus or minus 20%. Suppose we need to know the
average work hours per function point for this size and its confidence interval. There are
two possibilities to answer this question:

• Use professional software cost estimation tools.
• Usepublic benchmarks, and statistical and mathematical techniques.

To answer our question using commercially available tools, we refer you to the vendors.
Incidentally, some large organizations use a combination of several commercial tools, in-
house developed tools, and statistical/mathematical analysis.

We will show how to answer the above question by doing the math. Although there
are no precise data points for 6724 function points in the public domain, we can infer
the numbers from public data. In [30, p. 191], we found that for in-house developed
MIS systems the average work hours per function point is 4.75 for 100 function point
systems, 13.93 for 1000 FP systems, and 38.41 for systems of 10000 function points.
We used standard parametric statistical techniques to fit a smooth curve through these
three benchmarks. Using an implementation in Splus [61,39] of a nonlinear least squares
regression algorithm [8,22,61,46], the three observations can be fitted to the following
curve:

hfp(f) = 0.6390553· f 0.4448014. (1)

In this equationhfp is short for hours per function point, andf is the amount of function
points. So for a given amount of function points,hfp returns the average work hours
per function point. This formula is not a perfect fit, but the residual sum of squares is
0.06508417 (zero would have been a perfect fit). Indeed,hfp(100) = 4.956115 which is

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 285

0.21 off the original data point,hfp(1000) = 13.802024, which is 0.15 besides the second
observation, and finallyhfp(10000) = 38.436534, which differs only 2.6% from the
original data point. So we can use formula (1) to answerour question: what is the average
work hours per function point for an MIS system of 6724 function points, plus or minus
20%? The answer ishfp(6724) = 32.21609. For the plus 20% we get:hfp(8068.8) =
34.93757, yielding+8.4476%. For the minus 20% we obtain:hfp(5379.2) = 29.17206,
which is −9.44878%. We used precise numbers here for people who want to check
our calculations, but for practical purposes they should be restricted to 3 significant
digits. However, you mustnot round the digits in formula (1) (or other statistically fitted
formulas), since these numbers approximate the observations as closely as possible. If we
round them, the relation is much less accurate.

For completeness sake, we display our interactive dialog with Splus, the program that
we used to infer the coefficients of formula (1):

% Splus
S-PLUS : Copyright (c) 1988, 2000 MathSoft, Inc.
S : Copyright Lucent Technologies, Inc.
Version 6.0 Release 1 for Sun SPARC, SunOS 5.6 : 2000
Working data will be in /home/x/MySwork
> size <- c(100, 1000, 10000)
> hfp <- c(4.75, 13.95, 38.41)
> hfpdata <- data.frame(hfp=hfp, size=size)
> param(hfpdata, "a") <- 1
> param(hfpdata, "b") <- 1
> nls(hfp ~ a * size^b, data = hfpdata)
Residual sum of squares : 0.06508417
parameters:

a b
0.6390553 0.4448014

formula: hfp ~ a * size^b
3 observations
> q()
%

We explain this dialogline by line. First we start up the program from a Unix shell
(a command line interface). Then there are four lines of boilerplate output, concerning
copyrights, and the default location of working data. Then the program is ready for input
via its >-prompt. Onthat line we define a vectorsize containing the three function point
sizes (assignment is denoted with<-). In the next line we define a vectorhfp with the three
benchmarks for those sizes. Then we make a data frame to create a matrix of the 6 data
points. We add in the next two lines parametersa andb to the data frame, and we give them
a value. This value is a guess from our side. Then we use a built-in functionnls which
implements a nonlinear least squares algorithm. We presupposed that the relation between
average work hour per function point is a constant around the value of 1 times the size
in function points to the power of another constant around 1. As you can see, we need to
know in advance what function to expect, and moreover what coefficients to expect. After
our incantation, Splus outputs the residual sum of squares, the best possible values for the
parameters, the formula for which the fit was carried out, and the amount of observations

286 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

on which the relation is based. Since we are satisfied with these results, we quit Splus in
the last line, and we are back in the Unix shell.

Summarizing we assume a nice 10000 FP size which eases calculations. But you can
deal with other sizes as well, either using math or using commercially available software
cost estimation tools that hide the math for you.

4. Cost, duration, and financing

For thecalculations that follow we will fix a few parameters (that you can adapt to
your situation). We assume 200 working days per year, 8 h of paid working time per day,
but only 80%availability of these 8 h/day (which is 6.4 effective hours of working time).
Furthermore, we take $80 per hour for internal rates. We also assume from now on to
use the 10000 function point measure and the confidence interval of 25% for the running
example.

4.1. Different scenarios

Since we are interested in smartsourcing,we have to work out a few scenarios, and
decide which one is the best for a particular situation. Basically there are three types of
scenarios:

• What if we would do this project in-house? This is the extreme variant without any
outside involvement.

• What if we would outsource the project? This is the other extreme: no in-house
involvement is present.

• What if we would mix the two above, in other words, if we would smartsource the
project? This is the range in between the above two extremes.

4.2. In-house scenario: first cut

Most organizations do not have historical productivity data, but you need such data for
making cost calculations. We will use public benchmarks as a surrogate. We start with a
firstindication of the productivity of in-house developed management information systems,
denotedpi (the subscripti refers toin-house). This is the so-called productivity rate: the
amount of MIS development one can do in-house per month. We use the following formula
takenfrom [62, p.61, formula (46)]:

pi (f) = 1.627+ 38.373· e−0.06222733f 0.424459
. (2)

This formula takes an amount of function points,and returns the productivity according
to benchmark for that particular size. For a 10000 function point system, this amounts
to pi (10000) = 3.35 function points per staff month. But if we know the productivity, we
can calculate the cost with the following formula (taken from [62, p. 63, formula (48)]):

tcdi (f) = rw

12
· f

pi(f)
(3)

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 287

Table 2
Activity-based cost estimation for in-house development

Activities Ascope Prate Staff Effort Schedule Costa %

Requirements 400 73 25 137.5 5.50 1.46 3.7
Initial design 200 81 50 123.7 2.47 1.32 3.3
Detail design 200 61 50 165.0 3.30 1.76 4.4
Coding 150 15 67 687.5 10.31 7.33 18.3
Reuse acquisition 2000 808 5 12.4 2.47 0.13 0.3
Configuration mgt 1500 202 7 49.5 7.42 0.53 1.3
Documentation 1000 61 10 165.0 16.50 1.76 4.4
Unit testing 150 16 67 618.7 9.28 6.60 16.5
Function testing 150 19 67 538.0 8.07 5.74 14.3
System testing 150 20 67 495.0 7.42 5.28 13.2
Acceptance testing 400 28 25 353.6 14.14 3.77 9.4
Project mgt 1000 24 10 412.5 41.25 4.40 11.0

Aggregates 176 2.66 56.94 3758.5 66.00 40.0 100

a Cost in millions of dollars.

wherew = 200 is the number of working days per year andr = $640 the daily rate. For
our CMS example this amounts totcdi (10000) = $31.8 million.

The duration in calendar months for this project is calculated with yet another formula
takenfrom [62, p.62, formula (47)]:

di (f) = 175

pi (f)
(4)

where the number 175 [30, p. 185, Table 7.4] is the benchmarked assignment scope for
in-house MIS development. An assignment scope is the amount of software (measured in
function points) that you can assign to one person. This formula takes a number of function
points, and returns the schedule in calendar months:di (10000) = 52 months according to
benchmark.

4.3. In-house scenario: activity-based estimate

Now that we have an idea of the productivity and the inferred cost and duration, this
first impression justifies that we dig a little deeper, since the costs of this project are in the
tens of millions of dollars. To that end we perform an activity-based cost estimation (ABC
for short).

When we mix in-house development and outsourced development, we need to decide
on a number of activities, and who is going to do them. Most organizations do not have
historical data on IT-projects, and have an adhoc process for each project. So it is likely that
it is unknown what kind of major activities an in-house developed MIS project comprise.
So again we resort to public benchmarks as a surrogate.

Let us explainTable 2, which isadapted from [30, p.188–9, Table 7.5], that contains
such industry averages. The first column defines 12activities that are commonly carried out
during in-house MIS development. The second column contains benchmarked assignment
scopes for the given activities: for requirements engineering this is 400, and so on.

288 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

You can use it as follows: for a 10000 FP system, it takes 10000/400 = 25 people to do
requirements engineering. The third column contains benchmarked production rates.1 This
reflects the amount of work normally accomplished in a standard time period. The fourth
column calculates the amount of staff using the application size in function points and the
assignment scopes in column 2. In the fifth column the effort (in months) per activity is
calculated. This is being done by dividing the application size in function points by the
production rate. The sixth column calculates the schedule in months. Just divide effort by
staff, or equivalently assignment scope by production rate. Column 7 calculates the cost
per activity in millions of dollars. We did this by multiplying the monthly billing rate by
the effort. Column 8 shows the percentage of effort for each activity.

The last row differs from the other rows: it aggregates the column for the entire project.
We will explain how to calculate the aggregates. To calculate the overall assignment scope,
you cannot just take the average of column 2. An assignment scope is defined as the ratio
between size and staff needed for the activity. So we need to know the total number of staff
(column 4). For the total number of staff, it is also not a good idea to take the average of
column 4. Capers Jones gave the following trivial example to illustrate this issue [32]:

Suppose we have a small project where 1 person works for 1 month, and then hands
the project over to 3 otherpeople who work for 3 months. The schedule totals
4 calendar months and the effort totals 10 months. We have a total of 4 different
people involved, but if we divide 10 months of effort by 4 calendar months the
effective average staff is only 3.25 people.

Moreover if you take the average of the staff per activity, you end up with an average
of 2, which lacks physical semantics. Instead you can approximate total staff by averaging
the staff per central activity, while omitting the less effort consuming activities. In this
example we took the average of 6 central activities: detailed design, coding, unit testing,
functional testing, system testing, and acceptance testing.

Now that we have the aggregate for the average total staff we need for this project, we
can calculate the overall assignment scope: it is the total amount of function points, divided
by the total staff size, which turns out to be 176. Note that this assignment scope is almost
the benchmarked overall assignment scope for MIS development, which is 175 [30, p. 185,
Table 7.4]. The overall production rate is calculated by dividing the application size by the
total effort. The latter is found by summing the efforts per activity in column 5. The overall
schedule is found by dividing the total effort by the total number of staff. The total cost is
also a matter of adding up the cost per activity in column 7. The total percentage is found
in the same way.

Summarizing, we have an idea of the cost and duration if the project is done completely
in-house. Now we turn our attention to the other extreme.

4.4. Outsourced scenario: first cut

Analogously to getting a first impression of productivity, cost and duration of the
in-house development, we took some formulas from [62, p. 64, formulas (49–51)] for

1 We changed these to adapt for our 200 working days.

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 289

outsourced development:

po(f) = 2.63431+ 21.36569· e−0.01805819f 0.5248877
(5)

do(f) = 165

po(f)
(6)

tcdo(f) = rw

12
· f

po(f)
. (7)

We note that the subscripto stands foroutsourced. The formulas give us a productivity
rate of po(10000) = 4.84 function points per staff month, a schedule ofdo(10000) = 34
calendar months, and a total cost of $34.4 million. For the outsourcing fee we used a daily
rate of $1000, or $125 per hour. We kept the number of working days per year the same as
in-house:w = 200.

4.4.1. Offshore outsourcing
It becomes more and more popular to outsource certain kinds of IT activities to low-

wage countries. In some cases the hourly fee is only 20% of the internal fees, which comes
to $16 an hour. In that case, the total cost of development becomes $4.4 million. Offshore
outsourcing has its own overhead costs, such as much higher communication costs, think
of private satellite links. In addition the travel expenses will be much higher than for
local development. But also substantial additional quality assurance costs are common.
Sometimes an offshore team needs extensivetraining, incurring extra costs as well [38].
So, 30 million is not showing the actual cost savings, in practice this is disappointing,
and sometimes even more expensive. To give an idea, a cost saving of 35% was reported
on two offshore outsourced reengineering projects, where no full understanding of the
software was necessary. Substantial effort was put into improving the internal quality of
the software, so that it became more maintainable [11]. You cannot outsource every project
offshore, it requires special characteristics in order to be fit for offshore outsourcing. For
instance, firm requirements, which was thecase in the above reengineering examples.
But also clear goals are important, so that communication costs will not balloon, and
miscommunication will not put delivery of the right solution at risk. But having very
firm requirements in a development project, is like putting the cart before the horses: very
precise requirements with rigorous functional specifications are most of the work. Then
you can almost use an application generator to write the code. So cost savings is not the
best advisor when it comes to offshore outsourcing. If you decide on a cost-only basis,
there is a large chance that these lower costs are more than annihilated by the risks.

4.5. An ABC for the outsourced scenario

Now let’s do an ABC for the outsourcing case. As in the in-house case we base ourselves
on public benchmarks. We note that there is a chance that an outsourcer collected historical
data and can deliver internal benchmarkdata to make more accurate calculations. Of
course, the method stays the same, only the actual values differ. We summarized the typical
activities that outsourcers use inTable 3(adapted from [30, p. 270–1, Table 8.6]). There
are more activities done by outsourcers than by in-house MIS developers explaining the

290 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

Table 3
Activity-based cost estimation for outsourced development

Activities Ascope Prate Staff Effort Schedule Costa %

Requirements 500 669 20 145.6 7.28 2.43 5.5
Prototyping 2000 101 5 9.9 19.80 0.17 0.38
Architecture 2500 242 4 41.2 10.31 0.69 1.6
Initial design 250 61 40 165.0 4.12 2.75 6.3
Detail design 175 49 57 206.2 3.61 3.44 7.8
Design reviews 175 101 57 99.0 1.73 1.65 3.8
Coding 115 20 87 495.0 5.69 8.25 18.7
Reuse acquisition 2000 808 5 12.4 2.47 0.21 0.5
Code inspections 115 81 87 123.7 1.42 2.06 4.7
Configuration mgt 1500 404 67 24.7 3.71 0.41 0.9
Formal integration 2000 404 5 24.7 4.95 0.41 0.9
Documentation 1000 61 10 165.0 16.50 2.75 6.3
Unit testing 125 36 80 275.0 3.44 4.58 10.4
Function testing 150 48 67 206.2 3.09 3.44 7.8
Integration testing 150 61 67 165.0 2.47 2.75 6.3
System testing 200 81 50 123.7 2.47 2.06 4.7
Acceptance testing 300 121 33 82.5 2.47 1.38 3.1
Project mgt 1200 36 8 275.0 33.00 4.58 10.4

Aggregates 160 3.79 62.49 2640.1 42.25 44.0 100

a Cost in millions of dollars.

list of 18 activities. Also in this ABC we used $1000 for the daily rate, and 200 working
days per annum.

4.6. An ABC for smartsourcing

In a smartsourcing deal, the problem owner needs to have control over the project,
which means that when we look at the ABC for the outsourcing case, we should identify
activities that enable control. For instance, if you throw requirements engineering or project
management over the fence, are you still in control? The answer is: no. InTable 4we
summarized our ABC for a certain mix betweenin-house and outsourced activities, that
optimizes towards quality of the particularactivity. For instance, although outsourcers
have an assignment scope of 500 for requirements engineering, and in-house development
is 400, we still chose for in-house requirements engineering. The reason is that inside
the organization the businesslogic is known better than outside. As a consequence, the
requirements engineering activity takes more staff than if commissioned by an outsourcer.
This illustrates that a mix cannot be driven by too many (sometimes conflicting) goals.

4.7. Summary of the estimates

In the previous sections we calculated productivity, cost, and duration of in-house,
outsourced and smartsourced development. It will be clear that for the confidence interval
of 25%, we can reiterate all the calculations, so that we get a range instead of single values

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 291

Table 4
Activity-based cost estimation for smartsourced development

Activities I/Oa Ascope Prate Staff Effort Schedule Costb %

Requirements I 400 73 25 137.5 5.50 1.47 4.6
Prototyping O 2000 101 5 9.9 19.80 0.17 0.3
Architecture I 2500c 242 4 41.2 10.31 0.44 1.4
Initial design I 200 81 50 123.7 2.47 1.32 4.1
Detail design I 200 61 50 165.0 3.30 1.76 5.5
Design reviews O 175 101 57 99.0 1.73 1.65 3.3
Coding O 115 20 87 495.0 5.69 8.25 16.6
Reuse acq. O 2000 808 5 12.4 2.47 0.21 0.4
Code insp. O 115 81 87 123.7 1.42 2.06 4.1
Config mgt I 1500 202 67 49.5 7.42 0.53 1.7
Formal integr. O 2000 404 5 24.7 4.95 0.41 0.8
Documentation I 1000 61 10 165.0 16.50 1.76 5.5
Unit testing O 125 37 80 275.0 3.44 4.58 9.2
Function testing O 150 48 67 206.2 3.09 3.44 6.9
Integr. testing O 150 61 67 165.0 2.47 2.75 5.5
System testing O 200 81 50 123.7 2.47 2.063 4.1
Acc testing I 400 28 25 353.6 14.14 3.77 11.9
Project mgt I 1000 24 10 412.5 41.25 4.40 13.8

Aggregates N.A. 160 3.79 61.94 2982.8 48.16 41.0 100

a I = In-house, O= Outsourced.
b Cost in millions of dollars.
c No in-house benchmark available, we used the outsourced benchmark instead.

Table 5
Summary of key figures that resulted from our calculations

Estimate Prate Costa Schedule Cost/FP

In-house first cut 3.35 31.8 52 3180
Outsourced first cut 4.84 34.4 34 3440

In-house ABC 2.66 40.0 66 4000
Outsourced ABC 3.79 44.0 42 4400
Smartsourced ABC 3.35 41.0 48 4100

a Cost in millions of dollars.

(note that you need mathematical and statistical techniques or commercial software cost
estimation tools for that as we explained earlier).

If the investment is going to be substantial, managing the estimates with professional
tools and/or with a statistical analyst is paying off. Taking this very seriously will help in
addressing issues like counterchecks, litigation and/or congressional hearings, especially
in case of major problems. If it then turns out that you used indicative estimation methods
only, this could be seen as professional malpractice.

In Table 5, we summarized some key numbers. As can be seen fromTable 5, the
mix between in-house and outsourced development shows that the costs and schedules
of the smartsourcing scenario will be in between the extremes of in-house only or fully

292 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

outsourced development. So, it is not as cheap as an in-house development project, and not
as expensive as an outsourced project. This is due to the assignment scopes and production
rates. If these are different, then the combination can be more effective than one of the
extremes: for instance by combining activities in such a way that always the maximal
assignment scope is used, or the maximal production rate. Then you can mix for speed to
market (fastsourcing), or minimal cost (mostly offshore outsourcing). The smartsourcing
scenario is optimized to assure that certain quality standards are met, via taking control,
and determining the requirements.

4.8. Financing

For the estimates listed inTable 5we answer the financing question. Financing means
here the costs over time. For that we need to know what the cost allocation over time is for
typical IT-projects. One commonly used approximation for that is to assume that effort (this
can be cost, or person months) follows a so-called Rayleigh distribution [43–45,47,51,48].
It is of the following form:

cad(t) = ct

p2
· exp−

(
t2

2p2

)
. (8)

In display (8) cad is short for cost allocation for development,c is short for cost in
dollars, andp represents the month at which the project achieves its peak effort. Using
the rule of thumb that half the development time is the peak effort [6], we can plot cost
allocation curves for the development of an IT project. Let us plot the cost allocations for
the running example. We use the numbers for the three ABCs listed inTable 5.

In Fig. 1we depicted Eq. (8) for the outsourced, smartsourced, and the in-house scenario
for our 10K function point CMS. Indeed, the outsourced scenario is the fastest alternative,
but it comes at a somewhat higher cost, the in-house scenario is somewhat less costly,
but takes longer, and the smartsourced scenario is in between: not as rapid as outsourced,
but not as slow as in-house development. Also with respect to price this alternative is in
between: not as costly as the outsourced scenario, but more expensive than full in-house
development.

5. Risks

The estimates we have seen so far for cost, duration, and financing are just the
beginning. You should see them asrisk-free estimates, just like the risk-free rate for
financial investments. If everything is okay, and there are no risks that could jeopardize
the project, these are the estimates to base further negotiations on for your smartsourcing
projects. But there are risks, to which we turn our attention now. We will add to the risk-
free estimates the dimension of risk. There are many and diverse IT-risks, and we will deal
with the most prominent ones.

5.1. Requirements creep

Requirements creep is the risk thatafter the requirements document is finalized,
secondary requirements are added, and existing requirements are modified. Suppose they

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 293

Fig. 1. Visualizing the effort allocation over time for our running example.

would grow with only 1% per month. Let’s see how this impacts the amount of delivered
function points if the size after the requirements phase is 10000 FP. The creep-adjusted
application size is then 10000×1.0141 = 15037 FP, so after finalizing the requirements, the
software increases more than 50% in size (we assume 41 months of development after the
requirements are set). Of course, this has a major impact on cost, duration, and productivity,
up to the point that the system will never be finalized.

Using public benchmarks we can obtain an impression of the requirements creep
risk. Table 6 is composed from [29, p. 431, Table 17.4] and [26, Table 4] and shows
benchmarked monthly requirements creep rates in several industries. There is also public
information on the duration of the growth. We quote from [31]:

After the requirements are initially analyzed, the volume of new and changing
requirements will run between 1% and 3% of the original requirements every
month for as long as a year. The total volume of these secondary requirements can
exceed 50% of the initially defined requirements at the high end of the spectrum.
Creeping requirements in the range of 25% ofthe volume of original requirements
are common.

This gives us enough information to quantify the requirements creep risk for our Core
Mission System of the Federal Government Agency. Let us set the growth rate on 2.5%, and

294 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

Table 6
Benchmarked monthly requirements creep rates in various industries

Software type Monthly rate of requirements change (%)

Corporate contract or outsourced software 1.0
Information systems software 1.5
Systems software 2.0
Military software 2.0
Civilian government software 2.5
Commercial software 3.5

Table 7
Software project planned and actual schedules by size of project

Schedule (months) Project size (function points)

Average schedule <100 100–1000 1000–5000 >5000

Planned schedule 6 12 18 24
Actual schedule 6 16 24 36
Difference 0 4 6 12

the growth duration on 12 months. Then for a 10000 function point system we calculate:
10000× 1.02512 = 13448 FP. Does this lead to a longer schedule? The answer is yes, but
you cannot calculate this with our ABC benchmark calculations. Namely, the production
rate is depending on the size of the software system, and they are public for systems of
10000 function points, but not for 13448 FP. Soactually we need additional mathematical
and statistical methods (or commercial tools), but for an impression we can also use the
following trick.

5.1.1. A rule of thumb
We need to obtain a first impression of schedule slips. FromTable 7(taken from [27,

p. 4, Table 2]) we can see the planned versus actual schedules by size of project.
This implies that slips are common. And that for systems larger than 5000 FP, this slip

is 50% on average. Our ABC estimate for the smartsourcing case for the 10000 FP project
was 48 months. The above table suggests that we can estimate the schedule slip at 50% so
that the overtime-adjusted schedule becomes 48× 1.5 = 72 months.

5.1.2. Two extremes
So given this high delay, it is worthwhile to dive into different estimates a bit more.

Using formulas (2)–(7), we can quantify the differences if it were fully outsourced,
or projects done in-house entirely. This is not the real situation, but for obtaining an
impression of the risks it will do. We calculate the outcomes of the 6 formulas with
the creep-adjusted size of 13448 function points, and then we take the difference with
the original values for 10000 function points. We summarize the results inTable 8. This
exercise shows a decrease in productivity between 17 and 21%, due to the larger size of

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 295

Table 8
Quantifying requirements creep

Size Prate Costa Schedule Cost/FP

The in-house situation

Original estimate 10000 3.35 31.8 52 3180
Creep adjusted 13448 2.76 51.9 63 3859
Difference 3448 0.59 20.1 11 675
Percentages 35% 21% 63% 21% 21%

Theoutsourced situation

Original estimate 10000 4.84 34.1 34 3410
Creep adjusted 13448 4.14 54.1 40 4027
Difference 3448 0.70 19.7 6 583
Percentages 35% 17% 57% 17% 17%

The smartsourced situation

Original estimate 10000 2.49 41.0 48 4102
Creep adjusted 13448 N.A. 55.2 N.A. N.A.
Difference 3448 N.A. 14.1 N.A. N.A.
Percentages 35% N.A. 34% N.A. N.A.

a Cost in millions of dollars.

the project. It suggests an increase in schedule of the same amount, and a cost increase of
57–63%.

5.1.3. Smartsourced case
The above calculations have the disadvantage that we cannot see the impact on the

smartsourcing case. But they gave us insight that most likely there will be schedule delays,
productivity decrease and so on. If we conservatively assume that we stay as productive,
and can handle still the same amount of function points per activity, we can apply the
creep-adjusted size to our smartsourced ABC (displayed inTable 4). After processing the
program that implements the ABC with the creep-adjusted size of 13448 FP, we find for
the total cost: $55.2 million, which is 14.1 million more than the original, thus an increase
of 34%.

5.2. Requirements creep variations

Actually there is a difference between the requirements creep rates of in-house and
outsourced development. Recent benchmarks show that in-house requirements creep for
MIS projects is 1.2% and for outsourced projects it is 1.1% [31, pp. 186 and 269]. In
Table 2, we can see that after 5.50 months, the requirements are finalized, and the total
schedule is 66 months, so there is 60.5 months to grow at a monthly rate of 1.2%. This
leads to a size increase of 9157 FP, almost 100%. If we look at the outsourced situation, we
read fromTable 3that requirements engineering takes 7.28 months, so at a total schedule of
42.25 months, there is almost 35 months of growth. This leads to 4660 additional function
points, a little below 50%. It is instructive to see the dramatic differences. If you are a little

296 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

more productive, and at the same time manage requirements volatility a little bit better, this
has a very large impact on the requirements creep risk.

5.3. Time compression risks

Often a large system comes with a business need, and this need is translated into
a deadline. This deadline is often not a result of calculations based upon the set of
requirements, but usually based on something else: the next large trade-show, a fantasy
deadline like January 1st, or before Christmas, a regulatory date, etc. In the case of our
Core Mission System of the Federal Government Agency the reason is political. A law
is passed with a time line for implementation, determining the deadline of the CMS as
a consequence. It is hard to change this kind of decision making, but sometimes it is
necessary to mitigate what we call the time compression risk. Time compression of a
software project is trying to do more work in a time frame than you would normally do
from a pure technology viewpoint. We can quantify this risk using the following relation
betweentime and effort, which is taken from [50,49]:

e · d3.721 = constant (9)

where e stands for effort, andd is again theduration of a project. This law is not
theoretically derived, but rather statistically fit to eight sets of data points containing
historical information on comparable IT-development projects. The average value of the
power ratio for all eight sets is 3.721. The standard deviation is 0.215. The probability
that the true value of the ratio lies between3.5 and 4.5 is 84%. For more details we refer
to [50,49].

Eq. (9) indicates that when we try tocompress time just a little bit, thepressure
on the amount of effort increases drastically. This is similar to fluids, where a minimal
compression of its volume results in a significant increase of its pressure. Therefore, we
sometimes refer to Eq. (9) as thehydraulic software law. Let’s see what the impactis for
our running example. InTable 4we calculated that the smartsourced variant is going to
take2983.5 person months of effort, and the duration of the project is 48.16 months. With
these data points and Eq. (9) wecan calculate theconstant and use it to see what the effect
is of varying time. For our running example, the calculated schedule was much longer than
the deadline set by the politicians. Therefore, we used Eq. (9) to show the decision makers
the consequences of this difference in time.

In Table 9we quantified the time compression risk in terms of increased effort for a
given decrease in duration of the project. As can be seen, trying to do this project in 90%
of the schedule, yields an effort increase of 48%, and so on. Assuming that the effort
allocation over time of these IT-projects follows a Rayleigh curve, we can visualize the
allocation of FTEs over time inFig. 2. We use a slight variation of Eq. (8):

ead(t) = et

p2 · exp−
(

t2

2p2

)
(10)

wheree is the effort in person-months,ead is short for effort allocation for development.
The other notations used in Eq. (10) are equal to that of Eq. (8). The solidly displayed
curve inFig. 2 is the same as the dotted smartsourced curve ofFig. 1. This risk-free curve

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 297

Table 9
Quantifying time compression risks

Characterization Duration Schedule Effort Effort
decrease increase

Normal duration 48.2 N.A. 2983 N.A.
Slightly compressed 43.3 0.9 4415 1.48
Moderately compressed 38.5 0.8 6843 2.29
Significantly compressed 33.7 0.7 11246 3.77
Heavily compressed 28.9 0.6 19958 6.69
Death march 24.1 0.5 39333 13.19

Fig. 2. Visualizing the effort increase for various schedule compressions.

seems almost flat compared to the risk-adjusted curves, where more time compression is
reflected in huge increases in effort allocation over time.

The regulatory deadline of our running example was determined by law, and this obliged
the schedule to be 26 months instead of 48.16 months, which was estimated for the
smartsourcing case. This led to an effort increase of a factor 9.9, which is somewhere
between a heavily compressed project and a death march project [64]. Based on the risk-
adjusted estimates where we only took the time compression risk into account, the political

298 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

deadline was changed to a morerealistic deadline, that would not lead to an unacceptable
cost-increase due to time compression.

5.4. Failures and challenges

Not every IT-project is finalized in due time, at the estimated cost, giving you the desired
functionality. In fact, large software projects fail more often than they succeed. In the initial
phase there is not much data so it is hard to quantify the risk of failure, or the risk that the
project is going to be seriously challenged. Still, an important early indicator is project
size. When the size of a planned software system is substantial, so is the chance on failure
and serious cost and time overruns.

In order to obtain an impression for such risks we quantify them by giving a chance
of failure for a given size in function points. The following formulas are taken from [62,
pp. 45–6, formulas (28) and (30)]:

cf i (f) = 0.4805538·
(
1 − exp

(
−0.007488905· f 0.587375

))
(11)

cf o(f) = 0.3300779·
(
1 − exp

(
−0.003296665· f 0.6784296

))
. (12)

Formulas (11) and (12) both take a function point total as input and both return a number
between zero and one as an output. If youmultiply that number by 100% you obtain
a percentage indicating the chance of failure according to benchmark. Formula (11) is
geared towards in-house development of MIS software systems (hence the subscripti) and
formula (12) is based on benchmark data for outsourced development (expressed with the
subscripto). Using formulas (11) and (12), we can calculate that for our 10000 function
point CMS, the chance of failure when developed in-house is 39% and when outsourced
it is 27%. For the mixed case, there is no public benchmark data present, so there is no
easy way to quantify the risk of failure as a function of the size of the IT-project. The
smartsourced scenario does not need to have a risk between 27 and 39%. For, the additional
cross-organizational communication to support the mix could increase the risk outside the
rangeof the two calculated risks. Still, the numbers for the extreme cases give us some
indication of theorder of magnitude on the risk of failure.

Apart from the chance on failures, there is thechance on overtime projects. Also for this
there are two formulas (taken from [62, p. 48, formulas (32) and (34)]):

cli (f) = 0.3672107·
(
1 − exp

(
−0.01527202· f 0.5535625

))
(13)

clo(f) = 0.4018422·
(
1 − exp

(
−0.009922029· f 0.5657454

))
. (14)

For both formulas (13) and (14), we can calculate that the chance on delivering
the project much too late is a little over33.7% for in-house development, and a little
under 33.7% for outsourced development. Again, for the mixed case there is no public
benchmark data known, so there is no easy formula giving an indication. We will use the
numbers we have found as order of magnitude indicators.

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 299

Table 10
Approximate distribution of US outsource results after 24 months

Results Outsource arrangements (%)

Both parties generally satisfied 70
Some dissatisfaction by client or vendor 15
Dissolution of agreement planned 10
Litigation between client and contractor probable 4
Litigation between client and contractor in progress 1

Table 11
Software project outcome by size of project

Project outcome Project size expressed in function points
<100 (%) 100–1000 (%) 1000–5000 (%) >5000 (%)

Canceled 3 7 13 24
Late by>12 months 1 10 12 18
Late by>6 months 9 24 35 37
Approximately on-time 72 53 37 20
Earlier than expected 15 6 3 1

5.5. Litigation risks

In any outsourcing context, there is a contract and therefore the potential to file a lawsuit
in case of unacceptable dissatisfaction by eitherthe offeror or the offeree. For instance if
the offeree doesnot control requirements creep, the offeror is not able to deliver on time.
In case of a fixed price contract, it is then possible that some party files a lawsuit. Or,
if an offeror bids too low and in the end things turn out to be much more expensive, a
dissatisfied client can file a lawsuit. For the CMS this can be done via TINA,2 if there is a
strong suspicion that the offeror was not honest during the negotiations. Often, out of court
settlements are the outcome of a litigation conflict, to prevent information on the ins and
outs of the problems to become publicly known. Nevertheless there is some information
available that gives you an idea in an early phase: before you are closing the smartsourcing
deal.

Table 10is taken from [31, Table 1]. It shows the chance of litigation after 24 months in
outsourcing contexts in the United States. For a start, after 24 months about 10% has the
plan to dissolve the agreement, 4% deems it probable that litigation is going to take place
and in 1% of the cases thisis already taking place.

For our running 10000 function point example,we set the chance on litigation at 15%
or less. The reasons for this are the alarming numbers we found for failures and challenged
projects in the 10K function point range.

Table 11 taken from [26, Table 1] shows a detailed picture of the landscape of
challenged and cancelled IT projects where outsourcing played a role. This table clearly

2 The TruthIn Negotiations Act.

300 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

shows that for projects larger than 5000 FP, which is the case for our example system,
adequate delivery will only occur within 21% of the cases. The cancellation risk is about
24%, and the risk on overtime or very late delivery is substantial: 55% chance on 6 months
late, or more. These percentages have the same order of magnitude as the ones we found
using formulas (11)–(14).

Analogies also help to obtain an idea of failure and overtime risks. For instance, suppose
that our Core Mission System of the Federal Government Agency resembles an IT-project
that is known to have failed. Giving the stakeholders a concrete case to ponder on helps
to induce an active role with respect to appropriate risk management. Here’s a textbook
failure that could have happened to our CMS had it been similar to a medical transaction
system. We quote a small news flash from the American Hospital Association about the
resemblant IT-project [1]:

Health Care Financing Administration (HCFA) officials got a bipartisan tongue-
lashing for wasting $80 million on a computer system that was supposed to
improve the accuracy of Medicare payments.As conceived by HCFA, the Medicare
Transaction System (MTS) would have consolidated the eight existing Medicare
claims-processing systems into a single, national system. HCFA terminated a
contract in August with GTE Government Systems to complete the project, after
a string of delays and cost overruns. When the contract was signed in 1994, Health
and Human Services Secretary Donna Shalala proclaimed that MTS would move
Medicare from the “era of the quill pen to the era of the superelectronic highway”.
American Hospital Association Washington Counsel Mary Grealy found it ironic
that the financing administrations defense for the MTS missteps centered on the
complexities of the Medicare claims system. For years providers have bemoaned the
myriad Medicare reimbursement rules they must follow to avoid allegations of fraud.
“Its unfair to claim billing errors as fraud, and the problems with MTS demonstrate
the complexities facing providers”, she said.

This makes the risks much more vivid than our dry numbers. For an abundance of
examples of great failures, computer calamities, and software runaway projects we refer to
thebooks of Robert Glass [18,17,19].

So, using the quantitative data about litigation chances, failure/challenge data from
various sources, and comparisons with resembling cases, the FGA got the right mind-set
for proactive risk management on their CMS. Not only did we set the litigation chance
on 15% max, but also the change on failure on at least 25% if no precautions were taken.
These precautions were to dive further into the risks, by way of a workshop, the creation
of a risk management plan, and taking preventive measures.

5.6. Risk Assessment Workshop

To obtain a more qualitative view of the risks of a large IT-project, it is worthwhile to
organize a Risk Assessment Workshop (RAW). In the RAW the focus should be on the
factors that are known to influence thesuccess of software development. There are two
short lists that can steer the RAW. One list comprises 12 characteristics that successful IT-
projects share. They are found by Jones who argues that although there are many and

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 301

diverse ways to screw up an IT-project, only a few paths lead to successfulsoftware.
Successful projects, all share the following 12 essential attributes [27]:

• effective project planning
• effective project cost estimating
• effective project measurements
• effective project milestone tracking
• effective project quality control
• effective project change management
• effective development processes
• effective communications
• capable project managers
• capable technical personnel
• significant useof specialists
• substantial volumes of reusable material

Jones notes that no matter the country, no matter the type of software, the above 12
characteristics tend to be found with successfullarge software systems in all places where
large IT-systems are built. So this list could serve as a yardstick to see how successful the
current set up of your IT-project is.

While Jones’ characteristics are extracted from successfulprojects, the other list is based
on all kinds of projects (canceled, challenged, and successful). It is the Chaos 10 that stems
from Standish Group [56–58]. The Chaos 10 not only comes with a list of subjects but also
with a weighted score.

• executive support (18)
• user involvement (16)
• experienced project manager (14)
• clear business objectives (12)
• minimized scope (10)
• standard software infrastructure (8)
• firm basicrequirements (6)
• formal methodology (6)
• reliable estimates (5)
• other (5)

The idea is simple: the more points you score, the lower your project risk. Looking into
the 12 plus 10 characteristics can further substantiate or disprove the relevant IT-risks. A
few were already addressed in a purely quantitative manner. Apart from those types of risk
(failure, challenge, time compression, etc), there are other types of risk. We list the most
prominent types that should be considered in the RAW:

• technology risk (i.e. the risk of adopting a technology which, for one reason or another,
could turn out to be inappropriate)

• synergy risk (the extent to which the project will benefit other projects, business units,
or other business)

302 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

• alignment risk (the extent to which the project is aligned with the overall mission of the
organization)

• organizational risk (the risk that the currentorganizational structure will be affected
by the type of IT system that is to be implemented. This could entail costs which are
difficult to foresee at the outset. At the simplest level, this might entail significant staff
training, for example.)

• aqualitative view on size risk (we already pointed to the quantitative side of the riskiness
of IT projects increasing with the size of the project. Larger projects have a higher risk
of not being completed; and larger projects have a higher chance of experiencing cost
overruns.)

The outcome of a risk assessment workshop is a list of issues determining the risk-
profile of the IT-project. Depending on the seriousness of the resulting risk-profile,
the business-criticality of the necessary IT-system, an appropriate strategy towards risk
management is developed. This can range from a paragraph on risks in the project plan
to a full-blown risk management handbook. Mostlarge business-critical IT projects that
contain an outsource component, benefit from a plan on how to backsource the outsourced
activities if necessary.

In the case of our example Core Mission System, the RAW confirmed the quantitative
findings. The time compression risk was taken care of by a significant deadline extension.
The requirements creep risk was harder to address since the regulations were not stable
yet, so internal documents were produced tocapture the scope of increments in which
the system would be constructed. To mitigate this risk, a formal change control board
was established, with members from highest management. Furthermore, a sophisticated
fallback scenario was planned in case the new system would fail to become operational.
Key was to cherish the existing systems as if there were no new initiative so that they could
stay in place in case of disaster. This served as a two-edged sword: the geriatric care for
the old systems revealed crucial business-knowledge that was needed in the new system as
well. But also reusable parts were identified in this manner.

5.6.1. Small risks, small impact?
As you can see, all the risks were seriously addressed. The reason for this is as

follows. Although we discussed the risks as separate entities, they often materialize in
combinations. For instance, if you have a contract with a firm deadline, and you did
not mitigate a small requirements creep risk, your IT-investment will be exposed to a
time compression risk that can blow up the project enormously because of “software
hydraulics”. This in turn will increase the litigation risk, since the software is going to
be a lot more expensive than negotiated in the contracts (thus an increase in the risk
on challenged projects). Therefore, you should also address IT-risks that you perceive as
relatively small on their own, since in combination, they can turn out to be show stoppers.

5.6.2. Deglubitor risk
A maxim contributed to Tiberius goes like this: a good shepherd shears his flock, not

flays them. Or in Latin: boni pastoris est tondere pecus non deglubere, hence the ancient
name deglubitor for the occupation of a flayer. The better you are aware of the cost,
duration, risk, return, and financing aspects of IT-outsourcing deals, the larger the risk

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 303

that a subcontractor cannot make a too high price. But this should not lead to a price
that is lower than healthy. Because this puts the deal at considerable risk. For, you can
turn out to be a bad shepherd, by skinning the subcontractor, leading to a failed project
since the subcontractor cannot deliver at a too low price. Alexander Rinnooy Kan (board
member and CIO of ING Group) gave an example of this risk during a keynote speech at
the IEEE International Conference of Software Maintenance [33]. He told the audience that
in the 1990s ING Group made such a good deal with an outsourcer, that the subcontractor
requested to dissolve the contract only one year after closing the deal. The reason was that
they could not deliver the service at the negotiated price. Obviously, such deals are not in
the interest of both parties.So, as a problem-owner seeking anoutside party to help you
with an IT-investment, practice Tiberius’ maxim, and be the shepherd, not the deglubitor.

6. Returns

Calculating potential returns is not a matter of counting function points, filling out a
few spread sheets, and voilà you know the return on investment (ROI). There must be a
business case for the proposed investment, and thus data on the expected return. We want
to find out as soon as possible whether it makes sense to invest or not. For an elaborate
treatmentof how to quantify the value of IT-investments we refer to [63]. For the sake of
simplicity, we assume for our example that the returns are more or less obvious. Namely,
in thecase of our example system, it was calculated that the new system would save around
$333 million. Let’s see whether investing makes sense given the development costs, and
the future costs while the system is in operation.

It is hard to predict the operational costswhile nothing is operational yet, but using a
few benchmarks, it is possible to get an idea. The following formula (a modest variation
of [62, formula (11)]) is easily derived from a few public benchmarks:

mco(f) = wr

750
· f 1.25. (15)

Formula (15) takes the function point totalf , and returns theminimal operational costs
in dollars during the entire operational lifetime (r is the daily burdened rate again,w the
number of working days per annum). So the amount of money should be seen as a minimal
cost, since no functional enhancements are included in this cost bucket. This formula is
based on the life-expectancy benchmarkf 0.25 = y [24, p. 419] and an assignment scope
of 750 [28, p. 203] to keep systems up and running. They stands for operational years. So
according to public benchmark, a system off function points isf 0.25 years in operation.
The annual cost of one person to keep it operational isr · w dollar and we needf/750 of
them. Multiplication of these factors leads to formula (15). So for our CMS the minimal
cost of operationmco(10000) = $26million (assuming 200 working days per year, and a
daily rate of $1000). The development costs were estimated at $41 million, which leads to
a minimal TCO of $67 million. Indeed, according to these figures, a little under 40% of
this minimal TCO is spent on keeping the systemoperational. We note that this is indeed
rather conservative, since according to many studies [14,5,10,40,52,6,20,28,49,41] carried
out over many decades, percentages between 50 and 80% devoted to post-release costs are
reported. Let us, next to this conservative estimate, give an estimate at the other end of the

304 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

spectrum. Suppose that the development costs form 20% of TCO. Then the remaining 80%
amounts to about $165 million, and TCO is about $205 million.

The business case of our example CMS was made prior to its development plan and was
estimated to save a third of a billion dollar US, so the $67 million minimal TCO looks then
like a viable option, since the net savings are substantial. At the high end, the $205 million
leads to savings of more than$125 million over the entire lifetime of the investment,
which is 10 years in operation. This still has a positive ROI, but the payback period of
this investment is rather long. Let’s give an impression of this period: we assume 48.16
months as the investment period (coinciding with the development schedule). We assume
that after this investment time our earningsstart. Suppose that this is 33.3 million per year
(in ten years this is the one-third of a billion dollar). We have to earn the development
costs, which is about 41 million, and the operational costs ($165 million in ten years). If
this is also spent at an annual rate of 16.5 million, our net income is expected to be 16.8
million per year. It takes 2.44 years to accumulate $41 million. Under these assumptions,
the payback period is 6.45 year (2.44 year plus 48.16 months). For simplicity’s sake, we
did not take monetary inflation, or the cost of capital into account, but this effect leads to an
even longer payback period, since dollars tend to deflate. So it is safe to assume a payback
period of at least 6.5 years.

If the projected return is lower than in our case, you must account for monetary
inflation since in the worst-case scenario the payback period may turn out to be longer
than the lifespan of the investment, and/or the net return may turn out to be negative. An
important indication of a highly probable underperforming IT-investment is a too long
payback period. If it takes many years before an investment generates value, the business
has probably changed so much that significant modifications to the original ideas are due
before the break-even point. This change induces an additional investment, and potentially
vaporizes the originally projected benefits. This is what we call thepayback period risk.

7. Selection, monitoring, and delivery

In this phase, enough information is present on cost, duration, risk, return and financing
of your outsourcing deal to decide whether or not to prepare a Request For Information
(RFI) or a Request For Proposal (RFP). If you decide to continue, you still need to gain
additional qualitative insight in the proposed IT-investment. Let’s suppose that the CMS
is a go: the budgets are allocated, the deadlines are set to appropriate dates, independent
counterchecks did not reveal skeletons in the closet, a plan B is made in case of failure, etc.
Now you need to select contractor(s), prepare a contract, and monitor the work once it is in
progress. Also, you have to set the criteriaunder which you agree to accept the delivered
information technology. In this section we will address issues that are often overlooked in
this phase. We recall that we do not attempt to be complete, but to be complimentary.

7.1. Selection

In addition to the common activities for selecting contractors, it is good to realize that
there are a few things at your disposal that can improve the selection process significantly.
For a start,you easily fall prey to comparing contractors on a cost-only basis. While cost

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 305

is important, it should not be treated separate from, say, open standards, or quality. We
deal with open standards and vendor-locking first, and then with quality-driven assessment
techniques.

7.1.1. Open standards
Sometimes a contractor comes with a very competitive bid. Then often, the underlying

reason is that they already have a lot of technology in place to rapidly deliver the
desired functionality. When this is the case, fourth generation languages, domain specific
languages, and their application generators usually play a role. The advantage of such
tools and techniques is that you can address the problems in a special language, and can
deliver function points at high speed. The disadvantage of it, is that the technology is often
proprietary, not complying to open standards, and unstable.

• Proprietary means here that the skills necessary for implementation depend on
specialized knowledge of a language and tools that only a few people master.

• For such languages and tools, there is a large risk that they are not going to be an ISO
standard, or adopted widely by other vendors. When other tools change, most likely
other’s vendor-specific idiosyncrasieswill not be taken into account, which does not
happen with open standards.

• Finally, with unstable we mean: requests for change by their current clients are often
solved by adapting the domain specific language or the tools, to align even better with
the newly discovered business needs. This implies that you have to migrate your code-
base to the new version, or that your own additions (via a preprocessor) need to be
weeded out, and there is more extra work.

So, if you choose now for a cheaper solution, it can turn out to be an expensive solution
later on: when the underlyingtechnology changes, or whenyou need additional changes
and are locked in, so you can no longer negotiate a fair price when the license date is due.

7.1.2. Analyze the contractor
Another often overlooked issue is the risk that the contractor is acquired by others. Does

the company exist to assist in solving your problems or are the owners trying to get rich via
your problems, and hope to be taken over for a good bid by a larger company? Especially,
when relatively small companies are doing well using fairly innovative technology, the
larger companies see their particular marketshare stunt. One policy to deal with this, is
that the larger company acquires the rising star, but only to retire the promising technology.
Thereby, the larger companies secure the investment in their own solution (software,
education, people). The customers of the innovator find themselves suddenly in the middle
of a legacy crisis. They can be saviored from this crisis by the acquiring company who
will be glad to facilitate a migration from the new technology they just retired to their
own product. After all, they acquired people understanding the newly retired technology
as well, and often they have experienced people knowing how to migrate from another
solution to theirs.

A rule of thumb is here that you should only engage in proprietary technology if you can
afford to acquire the company yourself if necessary, and if this obviously pays off in the
end. Apay now, or pay later analysis is necessary when you are seriously considering this

306 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

option. In all other cases we recommend not to base your competitive edge on proprietary
chips, homegrown operating systems, nonstandard development tools, exotic languages,
fancy 4GLs, and other proprietary technology [54]. Developing IT-policy guidelines to
understand vendor-locking risks for your information assets is crucial when solutions are
critically dependent on purchased information technology.

7.1.3. Qualitative comparisons
The blueprint of an IT-system is its software architecture. It comprises the main

components, their interrelations, and the constraints on them. This blueprint can help when
you are selecting among the organizations tendering on your RFI or RFP. For instance,
if a project is subject to military standards, it should comply with the C4ISR software
architecture guidelines [12] (C4ISR stands for Command, Control, Communications,
Computers, Intelligence Surveillance, and Reconnaissance). But how do you know that
this is being taken care of? How can you be assured that this is part of the actual plans?
And, how do you know that this is in line with your own enterprise architecture? For such
questions, several tools exist to help you with the answers. We mention a few:

• SAAM: Software Architecture Analysis Method [3, Chapter 9]. SAAM is used to
analyze a software architecture to check whether it satisfies certain properties. You can
use this to analyze whether the selected contractor is going to address the important
quality attributes of your IT-investment. For instance, maintainability, portability,
modularity, reusability, reliability, performance,security, viral protection, usability,
privacy, etc. In addition, when business goals change, you can obtain insight about the
impact it has on those quality attributes via the software architecture. SAAM assesses
which software architecture is most likely to address your needs for the operational
period.

• ATAM: Archit ecture Trade-off Analysis Method [35]. Of course, some of the
quality attributes will conflict: reliability will affect performance, security affects
maintainability, and so on. ATAM helps you toprioritize the quality attributes for your
IT-investment, and it can be used to verify whether the contractor is going to set the
same priorities.

• CBAM: Cost-BenefitAnalysis Method [34]. Not only after the requirements are
completely set, but also beforehand, the stakeholders will want to include many and
diverse features in their IT-investment. With CBAM you gain insight in how much
of those are realistic, given the budget. You can use CBAM to figure out whether the
contractor is planning to implement such unrealistic features.

• SACAM: Software Architecture Comparison Analysis Method [55]. SACAM is a
qualitative method to compare software architectures of different candidates among
each other, and to compare your own software architecture with that of a candidate.
It will help during the selection process to add the dimension of quality to the often
cost-only comparisons.

Of course, you cannot ask others to tender on an IT-investment if you have no idea at
all about the functionality you wish to outsource. Therefore, it is recommended to utilize
the above tools alsoduring the process of shaping the ideas. When the time has come to

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 307

select among promising candidates, you can use the tools again but then in the outsourcing
context, and SACAM in particular is designed with that in mind.

7.2. Contracting and monitoring

Suppose you made a selection, then the next thing you need is a contract. This contract
should contain quantitative aspects thatcan be objectively measured for monitoring
progress, and to base delivery criteria on.

Therefore, you need to collect metric information during and after delivery. Intuitively,
it is clear that during development the number of pre-delivery defects should decrease
the more we enter the delivery date. Or, the test-case volume should give an idea of
how much functionality is being implemented, how fast it is implemented, and whether
the testing phase is taken serious at all. The spending rate provides insight whether or
not this conforms to the planned spending patterns. For instance, if there is a higher
spending rate in the early phases, this is a signal that the estimated total investment
cost is too low [16]. Intermediate function point counts provide insight in issues like
the severity of requirements creep, but also consolidateearlier indicative estimates. We
experienced problematic situations where, after a first estimate, no additional estimations
were performed, causing unpleasant surprises in the end. Most contracts do not contain
explicit clauses on defect tracking, requirements creep, test-case volumes, intermediate
size analyses, etc. We recall that this is not a complete guide to contract management, but
we discuss some often overlooked aspects of it.

Of course, the rigor of a contract depends on the five executive issues: if low cost, and no
risk is at stake, there is no need for top heavy contracts. In our running example the CMS
we are dealing with a significant investment pertaining risks that need to be addressed in
the contract.

Historic information characterizing success and failureof outsourcing projects can
help. Although publicly accessible information on this topic is rather scarce, Capers Jones
published important patterns of (un)successful projects [27,31]. In the 10000 function point
range, he came up with the following quantitative data. Successful outsourcing deals are
characterized by the following values:

• less than 1% monthly requirements changes after the requirements phase

• less than 5.0 defects per function point in total volume

• more than 65% defect removal efficiency before testing begins

• more than 94% defect removal efficiency before delivery

The defect removal efficiency is the percentage of software errors that is found and
removed before delivery. Unsuccessful projects in the 10000 function point class usually
are characterized by different values for the same metrics:

• more than 2% monthly requirements change after the requirements phase

• more than 6.0 defects per function point in total volume

• less than 35% defect removal efficiency before testing begins

• less than 85% defect removal efficiency before delivery

308 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

Of course, it takes experience and effort to measure these indicators, and it does not
mean that you can forget about other methods to track progress and to trace potential
problems. But if this kind of metric requirement is lacking in your Master Service Level
Agreement (MSLA), and is notproperly instantiated with actual values in individual
statements of work (SOW), there is no objective way to monitor progress, let alone to
detect problems in an early phase. Depending on the five executive issues, we recommend
a list of measurements like the four by Jones in the MSLA, and that in each individual
SOW actual values will be negotiated that candiffer per SOW. For instance, if the financial
penalties on failing to deliver according to the preset values are substantial, all parties want
to prevent that incorrect measurement canoccur. For a large SOWthis could imply that
a trusted third party shall measure the indicators.From Jones’ 4 key indicators, the first
is straightforward to measure. This amounts to several function point counts, from which
the compound monthly growth rate can be calculated: the requirements creep. We devote a
separate section to aspects concerning defects, since it is less clear how to deal with them.

7.3. Defects

In order to obtain realistic contracts, it is a good idea to gain insight in the amount of
defects that are usually delivered according to benchmarked data. Before we dive into this
issue, we give an example outside the software world.

When in the Netherlands a new storm surge barrier was planned by the national
government, they required that the barrier should have a fail rate of one in ten thousand.
This meant that the barrier may stay open 1 in 10000 cases whereas it should have been
closed. Or it closes 1 in 10000 times while it wasnot necessary. This requirement reflects
the feeling that each victim is one too many, but for a contract it boils down to the
question whether or notthis is a realistic requirement. To detect this, a comparison with
the reliability of using the ejection seat among F-16 pilots was made. It turned out that
this was in the order of magnitude of one in a thousand. So pilots erroneously eject 1 in
1000 cases, and fail to eject when they should have with the same ratio. This benchmark
illustrated that the original requirement had to be replaced by a more realistic one.

In the world of software we see similar unrealistic requirements, like bug-free software,
24/7 uptime, and so on. An availabilityof 99.9999% for the delivered system is a
requirement of which the feasibility is easily assessed. There are 31536000 s in one year,
and this availability leads to a down time of 31.536 s/annum. This is less than a minute.
Is that with or without software updates? Is that with or without hardware maintenance?
Is it really necessary to have this 24/7 uptime? Or is a little less ambitious requirement
also in order? For instance, one company required that the intranet site for their ex patriots
had a 24/7 uptime. This requirement was altered to a morerealistic one, given the business
criticality of the software, and the prohibitively high costs of this requirement.

While some of the demands incontracts can be easily corrected using common sense,
the aspect of defects is harder to address. Thedefect potential is the sum of errors that
potentially occurs in five major categories: the requirements, the design, the source code,
the documentation, and in incorrectly repaired errors (this is also called a bad fix). The
defect potential in the United States is 5 defects per function point.Table 12, taken
from [28, p. 338], shows a distribution of this number over the five major categories, plus

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 309

Table 12
US averages for software defect potentials and defect removal efficiency

Defect origins Defect potentials Removal efficiency (%) Delivered defects

Requirements 1.00 77 0.23
Design 1.25 85 0.19
Coding 1.75 95 0.09
Documents 0.60 80 0.12
Bad fixes 0.40 70 0.12

Total 5.00 85 0.75

Table 13
Defect potential for a 10000 function point system and its creep-adjusted size

Defect origins Defects for 10000 FP Creep adjusted 13448 FP

Requirements 10000 13448
Design 12500 16810
Coding 17500 23534
Documents 6000 8068
Bad fixes 4000 5379

Total 50000 67240

their removal efficiency. What we see immediately is that there is for each function point,
the potential for one requirements error (seeTable 13for our running example). Of course,
77% is found according toTable 12, and they will not all be of the highest severity class.
But according to benchmark for a 10K FP systemthe average number of high-severity
defects is 1593 [30, p. 191], which is 15%. For these 15% delivered severe defects very
high repair costs are due, plus the damage to business-critical data, or the failure to serve
your customers. So it is crucial to know about this potential, and more importantly, how to
diminish it.

Alternatively, as a rule of thumb you can estimate the defect potential with the following
formula [28, p.196]. For a given system off function points, the defect potentialp is
estimated viaf 1.25 = p. For our CMS this implies a defect potential of 100000, and
144817 for the creep-adjusted size. Using the average of 85% defect removal efficiency,
wefind 15000 to 22446 delivered defects.

So it is an idea to put in the contract that a certain defect removal efficiency should be
reached. We know that the average defect removal efficiency is about 85% (seeTable 12).
In order to satisfy predefined levels of defect removal efficiency, an appropriate mix of
defect removal and defect prevention methods needs to be applied during development.
Examples are inspections of all major deliverables: requirements, designs, code, and test
cases. Moreover, a variety of different testing methods can help. As a rule of thumb
each separate software testing step finds and removes 30% of the errors [28, p. 198].
Another rule of thumb is that a formal design inspection will find and remove 65% of
the bugs present, and each formal code inspection will find and remove 60% of the

310 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

present bugs [28, p. 199]. So in order to enforce 95% defect removal efficiency, you can
oblige the outsourcer to conduct the mix that should lead to this efficiency. For instance, if
you only test, and do not use inspections, about 11 stages of testing are necessary before a
cumulative defect removal efficiency above 95% is possible, consuming about 50% of the
total development effort [28, p. 557]. If you do use formal design and code inspections,
you can achieve such efficiency levels with less impact on the total effort. And you can
control that by demanding high pre-test removal efficiency levels.

Suppose you would not take preventive action to address the delivered defect risk. Let’s
look at the impact for our running example. We zoom in on the latest benchmarks for
that. According to [30, p. 191], for a 10000 FP MIS project, the defect potential is 5.90
defects per function point. The defect removal efficiency is 82%. This leads to 10620
defects. According to benchmark, it takesf/750 = n staff members to keep a system
of f function points operational. This amounts to 13 to 17 people, using the 10000 and
the creep-adjusted 13448 function points. They have to solve the majority of the 10620
delivered defects. Using the simple rule of thumb that a maintenance programmer repairs
about 8 post-release defects per month [28, p. 199], they can repair between 1279 and
1721 bugs per year (for the original and creep-adjusted function point totals). Then it takes
about 8.3 years to repair the defects (in both cases). Of course, not all errors are repaired,
but some arequite expensive, in particular the requirement and design errors. These latent
errors will go unnoticed until the operational phase, and some of them need proper repair,
with all the consequences.

Summarizing, you need to exploit a contract to enforce defect removal activities, to
enforce several testing stages, and to set numerical values on the four key indicators so that
the risks are balanced with respect to the investment you are going to engage in. Research
showed that for outsourced software that ends up in court litigation because of suspiciously
low quality levels, the number of testing stages is around three, and formal inspections are
not used at all [28, pp. 549–550]. Performing 3 testing stages accumulates to an aggregate
defect removal efficiency of about 70% [28, p. 557]. Translated in contract language, such
levels are almost an assurance for litigation conflicts.

7.4. Delivery

Suppose that you dealt with the contracting and monitoring issues. The metrics are
now an integral part of the contracts. By monitoring the indicators the foundation to base
the acceptance criteria of the end-product on are firmly grounded. A mistake that is often
made, is to base the delivery conditions on a so-called production-acceptance test: if it
passes the tests when it is installed in the production environment, we accept it.Table 14,
takenfrom [31, Table 9], shows why this is a mistake: only between 25 and 35% of the
defects are detected during acceptance testing. So it is not the proper criterion to base
acceptance of the delivered information technology on.

But sinceyou are now well prepared, you will not make such errors anymore. Instead
you took care of these risks in the contracting phase, and assessed the key indicators while
development was in progress, so that unpleasant surprises cannot spoil smooth delivery.
Of course, these quantitative aspects of delivery criteria are no replacement for proper
management, they just add to it.

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 311

Table 14
Software defect removal efficiency ranges

Defect removal activity Ranges of defect efficiency (%)

Informal design reviews 25–40
Formal design inspections 45–65
Informal code reviews 20–35
Formal code inspections 45–70
Unit test 15–50
New function test 20–35
Regression test 15–30
Integration test 25–40
Performance test 20–40
System test 25–55
Acceptance test (1 client) 25–35
Low-volumebeta test (<10 clients) 25–40
High-volumebeta test (>1000 clients) 60–85

8. Conclusions

In this paper we have given a set of formulas, rules, guidelines, tricks, and rules of
thumb, to come to grips with what we call the five executive issues. Namely, the costs of
IT systems, the duration of their construction, the risks involved, the potential returns, and
their financing over time. We discussed these quantitative aspects in the context of closing
outsourcing deals for information technology. We identified several types of outsourcing,
all driven by specific goals, such as optimizing to speed, cost, quality, control, economies
of scale, and so on. To illustrate the closing of outsourcing deals, we treated a running
example based on our real-world experience with such deals optimized to quality. For this
smartsourcing example we dealt with the five executive issues. Based on the outcomes,
we illustrated how to proceed with the quantitative side of the selection process, contract
management, monitoring progress, and delivery criteria. The material in this paper serves
to add a quantitative dimension to the already complex problem of making the business
case for outsourcing. And as a final piece of advise, whatever the outsourcing occasion:
never outsource your brains.

References

[1] AHA News, HCFA in hot seat, October 6, 1997. 2002 version available via,http://www.ahanews.com.
[2] A.J. Albrecht, Measuring application development productivity, in: Proceedings of the Joint

SHARE/GUIDE/IBM Application Development Symposium, 1979, pp. 83–92.
[3] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-Wesley, 1998.
[4] Betten Beurs Media, Hagemeyer zet wereldwijde uitrol MOVEX-systeem even stop (Hagemeyer stops

worldwide implementation of MOVEX-system). Published via email on June 26, 2003 (in Dutch).
[5] B.W. Boehm, Software engineering, IEEE Transactions on Computers C-25 (1976) 1226–1241.
[6] B. Boehm, Software Engineering Economics, Prentice Hall, 1981.
[7] S.L. Brown, K.M. Eisenhardt, Competing on the Edge—Strategy as Structured Chaos, Harvard Business

School Press, 1998.
[8] J.M. Chambers, T.J. Hastie (Eds.), Statistical Models in S, Wadsworth & Brooks/Cole, Pacific Grove, CA,

1992.

http://www.ahanews.com

312 C. Verhoef / Science of Computer Programming 56 (2005) 275–313

[9] Financieel Dagblad, Lot Van Heek-Tweka aan zijden draad (Destiny Van Heek-Tweka hangs by a thin
thread), in: Financieel Dagblad, June 20, 2003 (in Dutch).

[10] E.B. Daly, Management of software engineering, IEEE Transactions on Software Engineering SE-3 (3)
(1977) 229–242.

[11] G. Dedene, J.-P. De Vreese, Realities of off-shore reengineering, IEEE Software 7 (1) (1995) 35–45.
[12] Department of Defense, C4ISR Architecture Working GroupFinal Report, 1998, Available via

http://www.defenselink.mil/c3i/org/cio/i3/AWG_Digital_Library/pdfdocs/fnlrprt.pdf(Current August
2003).

[13] J.B. Dreger, Function Point Analysis, Prentice Hall, 1989.
[14] J.L. Elshoff, An analysis of some commercial PL/I programs, IEEE Transactions on Software Engineering

SE-2 (2) (1976) 113–120.
[15] D. Garmus, D. Herron, Function Point Analysis—Measurement Practices for Successful Software Projects,

Addison-Wesley, 2001.
[16] P.R. Garvey, Probability Methods for Cost Uncertainty Analysis—A Systems Engineering Perspective,

Marcel Dekker Inc., 2000.
[17] R.L. Glass, Computing Calamities—Lessons Learned From Products, Projects, and Companies that Failed,

Prentice Hall, 1998.
[18] R.L. Glass, Software Runaways—Lessons Learnedfrom Massive Software Project Failures, Prentice Hall,

1998.
[19] R.L. Glass, ComputingFailure.com—War Stories from the Electronic Revolution, Prentice Hall, 2001.
[20] M. Hanna, Maintenance burden beggingfor a remedy, in: Datamation, 1993, pp. 53–63.
[21] C. Harris, Big questions for ICI posed by quest unit, in: Financial Times, 2003.
[22] S. Huet, M.-A. Gruet, Stastical Tools for NonlinearRegression—A Practical Guide with S-Plus Examples,

Springer Verlag, 1996.
[23] S.D. Hunter, Information technology, organizational learning, and the market value of the firm, Journal of

Information Technology Theory and Application 5 (1) (2003) 1–28.
[24] C. Jones, Assessment and Control of Software Risks, Prentice-Hall, 1994.
[25] C. Jones, Applied Software Measurement: Assuring Productivity and Quality, 2nd ed., McGraw-Hill, 1996.
[26] C. Jones, Conflict and Litigation Between Software Clients and Developers, 1996, Version 1—March 4.

(Technical note).
[27] C. Jones, Patterns of Software Systems Failure and Success, International Thomsom Computer Press, 1996.
[28] C. Jones, Estimating Software Costs, McGraw-Hill, 1998.
[29] C. Jones, The Year 2000 Software Problem—Quantifying the Costs and Assessing the Consequences,

Addison-Wesley, 1998.
[30] C. Jones, Software Assessments, Benchmarks, and Best Practices, Information Technology Series, Addison-

Wesley, 2000.
[31] C. Jones, Conflict and Litigation Between Software Clients and Developers, 2001, Version 10—April 13.

(Technical note).
[32] C. Jones, Personal communication, January 2003.
[33] A.R. Kan, Managing a multi-billion dollar IT budget, in: S.L. Pfleeger, C. Verhoef, H. van Vliet (Eds.),

Proceedings of the International Conference on Software Maintenance, ICSM’2003, IEEE Computer
Society Press, 2003, p. 2.

[34] R. Kazman, J. Asundi, M. Klein, Making architecture design decisions: An economic approach, Technical
Report CMU/SEI-2002-TR-035, Software Engineering Institute, 2002.

[35] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, The architecture tradeoff analysis
method, Technical Report CMU/SEI-98-TR-008, Software Engineering Institute, 1998.

[36] C.F. Kemerer, Reliability of function points measurement—a field experiment, Communications of the
ACM 36 (2) (1993) 85–97.

[37] C.F. Kemerer, B.S. Porter, Improving the reliability of function point measurement: an empirical study,
IEEE Transactions on Software Engineering SE-18 (11) (1992) 1011–1024.

[38] W. Kobitzsch, D. Rombach, R.L. Feldmann, Outsourcing in India, IEEE Software 12 (2) (2001) 78–86.
[39] A. Krause, M. Olson, Basics of S and S-Plus, 2nd ed., Springer Verlag, 2000.
[40] B.P. Lientz, E.B. Swanson, Software Maintenance Management—A Study of the Maintenance of Computer

Application Software in 487 Data ProcessingOrganizations, Addison-Wesley, Reading MA, 1980.

http://www.defenselink.mil/c3i/org/cio/i3/AWG_Digital_Library/pdfdocs/fnlrprt.pdf

C. Verhoef / Science of Computer Programming 56 (2005) 275–313 313

[41] S. McConnell, Rapid Development, Microsoft Press, 1996.
[42] A. McCue, Shareholder militancy puts IT outsourcing under microscope—Institutional investors concerned

about risks involved in huge deals, 2003,
http://www.silicon.com/news/500021-500001/1/5673.html?nl=3Dd20030821(Current August 2003).

[43] P.V. Norden, Curve fitting for a model of applied research and development scheduling, IBM Journal of
Research and Development 2 (3) (1958).

[44] P.V. Norden, Useful tools for project management, in: B.V. Dean (Ed.), Operations Research in Research
and Development, Wiley & Sons, 1963.

[45] P.V. Norden, Useful tools for project management, in: M.K. Starr (Ed.), Management of Production, Penguin
Books, 1970, pp. 71–101.

[46] J.C. Pinheiro, D.M. Bates, Mixed-Effects Models in S and S-PLUS, Springer Verlag, 2000.
[47] L.H. Putnam, A macro-estimation methodologyfor software development, in: Proceedings IEEE

COMPCON 76 Fall, IEEE Computer Society Press, 1976, pp. 138–143.
[48] L.H. Putnam, A general empirical solution to the macro software sizing and estimating problem, IEEE

Transactions on Software Engineering SE-4 (4) (1978) 345–361.
[49] L.H. Putnam, W. Myers, Measures for Excellence—Reliable Software on Time, Within Budget, Yourdon

Press Computing Series, 1992.
[50] L.H. Putnam, D.T. Putnam, A data verification of the software fourth power trade-off law, in: Proceedings of

the International Society of Parametric Analysts—Sixth Annual Conference, vol. III(I), 1984, pp. 443–471.
[51] L.H. Putnam, R.W. Wolverton, Quantitative management: software cost estimating, in: Proceedings of the

IEEE Computer Society First Computer Software and Applications Conference, COMPSAC 77, IEEE
Computer Society Press, 1977, pp. 8–11.

[52] J. Reutter, Maintenance is a management problem and a programmer’sopportunity, in: A. Orden, M. Evens
(Eds.), 1981 National Computer Conference, AFIPS Conference Proceedings, vol. 50, AFIPS Press,
Arlington, VA, 1981, pp. 343–347.

[53] B. Roberts, Ratings game, CIO Magazine, 2000, Available via
http://www.cio.com/archive/101500_rating.html.

[54] T.D. Steiner, D.B. Teixeira, Technology in Banking—Creating Value and Destroying Profits, Irwin,
McGraw-Hill, 1990.

[55] C. Stoermer, F. Bachmann, C. Verhoef, SACAM: The software architecture comparison analysis method,
Technical Report CMU/SEI-2003-TR-006, Software Engineering Institute, 2003.

[56] The Standish Group, CHAOS, 1995, Retrievable via
http://standishgroup.com/visitor/chaos.htm(Current February 2001).

[57] The Standish Group, CHAOS: A Recipe for Success, 1999, Retrievable via
http://www.pm2go.com/sample_research/chaos1998.pdf(Current August 2003).

[58] The Standish Group, EXTREME CHAOS, 2001, Purchase via
https://secure.standishgroup.com/reports/reports.php.

[59] United States Government, Joint Industry/Government Parametric Estimating Handbook, 1999, Available
via http://www.ispa-cost.org/PEIWeb/finaled.zip(Current August 2003).

[60] United States Government, Sarbanes-Oxley Act of 2002, 2002, Available via
http://news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf(Current August 2003).

[61] W.N. Venables, B.D. Ripley, Modern Applied Statistics with S-PLUS, 3rd ed., Springer Verlag, 1999.
[62] C. Verhoef, Quantitative IT portfolio management, Science of Computer Programming 45 (1) (2002) 1–96.
[63] C. Verhoef, Quantifying the value of IT-investments, Science of Computer Programming (2004) (in press),

doi:10.1016/j.scico.2004.08.004, Available via:http://www.cs.vu.nl/∼x/val/val.pdf.
[64] E. Yourdon, Death March—The Complete Software Developer’s Guide to Surviving ‘Mission Impossible’

Projects, Prentice-Hall, 1997.

http://www.silicon.com/news/500021-500001/1/5673.html?nl=3Dd20030821
http://www.cio.com/archive/{101500}_rating.html
http://standishgroup.com/visitor/chaos.htm
http://www.pm2go.com/sample_research/chaos1998.pdf
http://secure.standishgroup.com/reports/reports.php
http://www.ispa-cost.org/PEIWeb/finaled.zip
http://news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf
http://dx.doi.org/doi:10.1016/j.scico.2004.08.004
http://www.cs.vu.nl/~x/val/val.pdf

	Quantitative aspects of outsourcing deals
	Introduction
	The in- and outsource cycle
	Dangerous games
	Goalsourcing
	Running example
	Becoming a smart buyer
	Organization of the paper

	Collecting size information
	Ball-park estimate
	Measuring the bandwidth
	Going Scrooge

	Indicative function point count
	Backfiring

	Interpreting the collected information
	Ball-park estimates
	Function point estimates
	Backfiring estimate
	Horse trading
	Dealing with arbitrary numbers

	Cost, duration, and financing
	Different scenarios
	In-house scenario: first cut
	In-house scenario: activity-based estimate
	Outsourced scenario: first cut
	Offshore outsourcing

	An ABC for the outsourced scenario
	An ABC for smartsourcing
	Summary of the estimates
	Financing

	Risks
	Requirements creep
	A rule of thumb
	Two extremes
	Smartsourced case

	Requirements creep variations
	Time compression risks
	Failures and challenges
	Litigation risks
	Risk Assessment Workshop
	Small risks, small impact?
	Deglubitor risk

	Returns
	Selection, monitoring, and delivery
	Selection
	Open standards
	Analyze the contractor
	Qualitative comparisons

	Contracting and monitoring
	Defects
	Delivery

	Conclusions
	References

