
Linear unary operators
in process algebra

Linear unary operators
in process algebra

Academisch proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus

prof. dr. P. W. M. de Meijer
in het openbaar te verdedigen in de Aula der Universiteit

(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),
op maandag 1 juni 1992 te 10.30 uur

door Christiaan Verhoef

geboren te Kedichem

Promotor: Prof. dr. Jan Bergstra
Faculteit: Wiskunde en Informatica

Preface

This Thesis is devoted to the study of
linear unary operators in process algebra. The idea to do systematic research
on this subject came after finishing my first technical report [43]. In this report
we proposed a solution for a problem by means of an operator introduced in an
ad hoc way. The idea of solving a problem in this way is not very original. In
fact, people working in the field of process algebra are used to solve problems
in this manner. We decided that it was probably an interesting task to design
a unifying framework for such theories. At that time we had no idea of the
amount of work that accompanied this target. So it will be not very surprising
that we have not fulfilled our aims yet. Nonetheless, in this thesis a lot of work
has already been done. In the following section we will give an overview of
what can be expected.

Overview

In this section an overview of the contents of this thesis is given. A linear
unary operator is an operator that distributes over alternative composition.
Its domain and its image is the sort of processes. And, of course, a linear
unary operator takes one argument.

Chapter 1 provides a short and incomplete introduction to process algebra.
However, an elaborate “list” of linear unary operators can be found in this
chapter. After all, this thesis is about linear unary operators.

Chapter 2 can be seen as a case study concerning linear unary operators.
Nearly all the problems that can be thought of for the introduction of an
operator come into play in this chapter. A way to handle processes with parallel
input is treated in this chapter. To obtain this, a linear unary operator called
the register operator is proposed that can be seen as a “memory” that special
atomic actions can use to read or write data. It is shown that the register
operator distributes over the merge operator, which is an important result
for the applications. As an application we prove a correctness theorem on
palindrome recognition with the use of the register operator.

In the subsequent chapter 3 a first attempt is made in order to obtain
a uniform approach for the introduction of linear unary operators. For this
purpose a proof rule is proposed. In order to be able to reason in a comfortable
way about linear unary operators a second proof rule is added, as well. Stan-
dard facts such as termination and elimination are presented in this chapter.

v

Preface

A model for the theory without abstraction is given. General theorems on lin-
ear unary operators in which the proof rules have been used extensively form
an important part of this chapter. By a number of examples, originally treated
in different theories, it is shown that the proposed theory is unifying since they
can be handled with one theory. Finally, generalizations in order to be able to
incorporate more and more linear unary operators are briefly mentioned.

In chapter 4 one of the recommendations given in chapter 3 has been
worked out. In chapter 3 it was not yet possible to reason smoothly about the
class of projection operators, but in chapter 4 this is solved by generalizing
some aspects of chapter 3. Besides the two proof rules of chapter 3, we propose
a proof rule in order to be able to give inductive proofs. The termination,
elimination and the model without abstraction are not present in this chapter,
but they can be imitated effortlessly with the aid of the results in chapter 3.
However, a section on general theorems concerning linear unary operators is
included, in which theorems on projection operators form the main part. Then
a section follows in which the use of the third proof rule is shown. It is proved
that a fair FIFO queue satisfies a criterion for protocol correctness. The method
is applied to several alternating bit protocols with a time out that can take place
at any moment.

Acknowledgements

Writing a thesis is, in general, a hard and solitary job. The present thesis is not
an exception to this rule. Nevertheless, I want to emphasize that Jos Baeten
and Jan Bergstra gave me the tools that made the task of writing it feasible.
Jos gave me a problem which led to chapter 2 and Jan was always willing to
reflect my ideas in such a clear way that, thereafter, I really understood them.
These discussions, among others, led to chapters 3 and 4. Therefore, I am
grateful to both of them. I also consider the pleasant and scientific atmosphere
at the programming research group an important factor in the materialization
of this book. So I definitely want to thank all the members of the programming
research group of the University of Amsterdam!

Finally, I would like to thank Jan Bergstra for being a wonderful promotor,
Jos Baeten, Johan van Benthem, Jan Friso Groote and Paul Klint for their will-
ingness to be a member of the committee of graduation, Jos Baeten, Jan Friso
Groote and Eric Nieuwland for their meticulous reading of the penultimate
version of this thesis, Jan Friso Groote for recommending an epentheticum in
the form of remark (3.5.28) and Edward Pijpers for designing the cover.

vi

Contents

Preface v

Contents vii

1 Introduction 9

1.1 The signature and the axioms 9

1.2 Additional proof rules 12

1.3 Linear unary operators 14

1.4 Other operators 17

1.5 Conditional axioms 18

2 On the Register Operator 21

2.1 Introduction. 21

2.2 Definitions 22

2.3 Hermeneutics 28

2.4 Prerequisites 35

2.5 The main theorem 39

2.6 An Application 58

3 An Operator Definition Principle 69

3.1 Introduction 69

3.2 Definitions 71

3.3 Termination 80

3.4 Theorems 93

3.5 A Model 111

3.6 Applications. 135

3.7 Generalizations 146

3.8 Conclusions. 148

4 On Induction Principles 151

4.1 Introduction. 151

4.2 Definitions 153

4.3 Theorems 158

vii

Contents

4.4 Applications 170

4.5 Conclusions and further research. 241

Samenvatting 243

References. 247

Note

Chapter 1 is based on [15]. Chapters 2, 3 and 4 have been published as tech-
nical reports of the University of Amsterdam. Their references are respec-
tively [43], [41] and [42].

viii

Chapter 1

Introduction

IN this chapter we will provide a short introduction to the basic notions
that will be used in the rest of this thesis. In fact, the other chapters are

based on the algebraic theory ACPτ with projection operators. The acronym
stands for the Algebra of Communicating Processes with Abstraction and the
subscript τ is called Milner’s silent action [36]. The theory ACPτ was first
studied in [12]. Since then many extensions of this theory have been proposed.
These proposals often consist of the addition of a set of linear unary operators
to the axiomatic framework ACPτ . Since this thesis is about the systematic
research on linear unary operators, we will give in this chapter an overview of
a number of these operators. In addition, we will treat some extra features
such as the notion of a guarded recursive specification, the recursive definition
principle, the recursive specification principle and the approximation induction
principle (they are necessary if we want to deal with infinite processes). Finally,
we will include a section on conditional axioms.

Readers familiar with ACPτ might consider skipping this chapter, whereas
those not familiar with any kind of process algebra better can read an intro-
ductory text like [8], [26], [27], [36] or [37].

1.1. The signature and the axioms

In this section we will discuss the signature of ACPτ . The processes that we
will consider are capable of performing atomic actions, with the idealization
that the actions are events without positive duration in time. These actions
are denoted by a, b, c, . . . and the set of these actions is denoted by A. Besides
atomic actions there are also two so-called special constants in ACPτ : the
special constant δ or deadlock and τ or silent action. We can compose atomic
actions and special constants with several operators into composite processes.
We will discuss them hereinafter. There are five binary operators (they are all
infix):

merge: ‖ : P × P −→ P,

left-merge: : P × P −→ P,

9

Introduction: 1.1. The signature and the axioms

communication-merge: | : P × P −→ P,

sequential composition: · : P × P −→ P,

alternative composition: + : P × P −→ P.

For the communication-merge we have also a pre-defined binary function on Aδ

(= A ∪ {δ}), which is also denoted by |

| : Aδ ×Aδ −→ Aδ.

In fact, the theory ACPτ is parameterized with a set of atomic actions and this
binary communication function. Now we will discuss the unary operators. For
each subset H ⊆ A we have an encapsulation operator and for each I ⊆ A an
abstraction operator. We will call the set H the encapsulation set and for I we
will use the name abstraction set. For our purposes we will also need projection
operators so we will include them directly in the signature of ACPτ . They can
be found already in [9] and in process algebra we see them for the first time
in [14].

encapsulation operator: ∂H : P −→ P,

abstraction operator: τI : P −→ P,

projection operator: πn : P −→ P.

In fact, this concludes the discussion of the signature of ACPτ with projection
operators. But before we continue with the axioms we will informally give some
intuition about the meaning of the elements of the signature. We already men-
tioned that the atomic actions can be seen as events without positive duration
in time. The basic binary operations in process algebra are the alternative and
sequential composition or sum and product. We can interpret the sum a+ b as
the choice between a and b. We think of the product a · b as the process that
first performs the action a and then b. This means that the alternative compo-
sition is commutative, whereas the sequential composition is not commutative.
This will be reflected in the axiom system. We will discuss the special con-
stants. The process a · b performs two actions and then terminates successfully,
whereas the process a · b · δ will terminate unsuccessfully: after the execution
of the a and b the process wants to continue with another proper action but it
cannot. So we can see δ as inaction. Now we will discuss the silent step τ . The
process a · τ · b performs an a then does something that we can not observe and
then it will execute b and terminates successfully. We will see in the axioms
that this process will be the same as a · b.

Now we will discuss the other three binary operators. If x and y are
processes, their so-called parallel composition or merge x ‖ y is the process that
first chooses whether to do a step in x or in y or a communication and proceeds
as the parallel composition of the remainders of x and y. For describing the
operator ‖ we will use auxiliary binary operators and | with the interpretation
that x y is like x ‖ y albeit that the initial step is performed by x and

10

Introduction: 1.1. The signature and the axioms

for x | y yields that the initial step is a communication. For instance, if we
know that for the pre-defined communication function we have a | b = c we will
have a2 ‖ b = a · (a ‖ b) + b · a2 + c · a, in which a2 is an abbreviation for a · a.

A1 x+ y = y + x x · τ = x T1

A2 x+ (y + z) = (x+ y) + z τ · x+ x = x T2

A3 x+ x = x a(τ · x+ y) = a · (τ · x+ y) + a · x T3

A4 (x+ y) · z = x · z + y · z

A5 (x · y) · z = x · (y · z) πn(a) = a PR1

A6 x+ δ = x π1(a · x) = a PR2

A7 δ · x = δ πn+1(a · x) = a · πn(x) PR3

πn(x+ y) = πn(x) + πn(y) PR4

C1 a | b = b | a

C2 (a | b) | c = a | (b | c)

C3 δ | a = δ

CM1 x ‖ y = x y + y x+ x | y

CM2 a x = a · x τ x = τ · xTM1

CM3 (a · x) y = a · (x ‖ y) (τ · x) y = τ · (x ‖ y) TM2

CM4 (x+ y) z = x z + y z τ | x = δ TC1

CM5 (a · x) | b = (a | b) · x x | τ = δ TC2

CM6 a | (b · x) = (a | b) · x (τ · x) | y = x | y TC3

CM7 (a · x) | (b · y) = (a | b) · (x ‖ y) x | (τ · y) = x | y TC4

CM8 (x+ y) | z = x | z + y | z

CM9 x | (y + z) = x | y + x | z ∂H(τ) = τ DT

τI(τ) = τ TI1

D1 ∂H(a) = a, if a /∈ H τI(a) = a, if a /∈ I TI2

D2 ∂H(a) = δ, if a ∈ H τI(a) = δ, if a ∈ I TI3

D3 ∂H(x · y) = ∂H(x) · ∂H(y) τI(x · y) = τI(x) · τI(y) TI4

D4 ∂H(x+ y) = ∂H(x) + ∂H(y) τI(x+ y) = τI(x) + τI(y) TI5

Table 1.1. ACPτ .

Now we will discuss the unary operators. In ACPτ we have two of them:

11

Introduction: 1.1. The signature and the axioms

the encapsulation and the abstraction operator. The encapsulation operator is
an operator that renames the atomic actions listed in its encapsulation set H
into the special constant δ. It is needed for the removal of unsuccessful attempts
at communication. The encapsulation set is the set of such attempts. The
abstraction operator is also a renaming operator, albeit that the actions in
the abstraction set will be renamed into the silent action τ . This operator is
needed to hide internal communication. Now we will discuss the projections.
The nth projection πn(x) of a process x is the process x but cut off at level n.
So π2(a · b · c) = a · b. But π2(a · τ · c) = a · c. We see that τ has no depth. This
is because of the axioms that we have for τ .

We will enumerate the axioms of ACPτ with projection operators in ta-
ble 1.1; see page 11. In this table we will use the following notational conven-
tions: a, b and c are atomic actions or δ (we abbreviate Aδ = A ∪ {δ}); x, y
and z are processes; H, I ⊆ A and n ≥ 1.

1.2. Additional proof rules

In this section we will treat some additional proof rules with accompanying
definitions. They are the recursive definition principle RDP, the recursive
specification principle RSP, the approximation induction principle AIP and
Koomen’s fair abstraction rule KFAR. The principles RDP, RSP and AIP

have been studied in [17]. The first two are an indispensable tool in algebraic
verification techniques (see, for instance, [3] and [38]). The principle AIP

has mainly been used to extend results on closed terms to a bigger class of
terms. The proof rule KFAR has been introduced in process algebra for the
algebraic verification of communication protocols [17]. This rule originated
from a formula manipulation package that has been developed in [31].

Before we are in a position to formulate these principles we will need
some preliminary definitions. We will need the notion of a (guarded) recursive
specification. These notions are taken from [16], although the notion of a
guard already can be found in [14] in process algebra. We will begin with the
definition of a recursive specification.

Definition (1.2.1) Recursive Specifications(1.2.1)

Let X be a set of variables. A recursive specification E with variable set
X over ACPτ is a system of recursion equations with variables in X:

E = {x = tx(X) : x ∈ X}.

For all x ∈ X, we have that tx(X) is an ACPτ -term with variables in X.

12

Introduction: 1.2. Additional proof rules

Definition (1.2.2)

Let t be a term over ACPτ without the abstraction operator. Suppose
that in t a variable x occurs. We will call an occurrence of x in t guarded if
t has a subterm of the form a · s, in which a is an atomic action and s is a
term over ACPτ , which contains this occurrence of x. Otherwise we will call
the occurrence of x in t unguarded. We will call an ACPτ -term t without the
abstraction operator guarded if all occurrences of all variables in t are guarded.
Let E = {x = tx(X) : x ∈ X} be an abstraction-free recursive specification.
We will call E a guarded recursive specification if we can rewrite it to a recursive
specification E′ with the aid of the axioms and/or the aid of the specification E
itself in which all right-hand sides of the recursion equations of E ′ are guarded.
We will call E′ a completely guarded recursive specification.

Definition (1.2.3)

Let E = {x = tx(X) : x ∈ X} be a recursive specification. A solution
for E is a vector p = (px)x∈X , with px a process, such that for all x ∈ X
the following expressions are true statements: px = tx(p), in which tx(p) is
shorthand for: substitute for each occurrence of an element x ∈ X in tx(X)
the process px. We say that two solutions are equal if the components of the
vectors are equal: (px)x∈X = (qx)x∈X if and only if we have for each x ∈ X
that px = qx.

Principle (1.2.4) The Recursive Definition Principle(1.2.4)

Let E be a guarded recursive specification without the abstraction ope-
rator. Then there is a solution for E. We call this principle RDP. It is also
called RDP

−.

Principle (1.2.5) The Recursive Specification Principle(1.2.5)

Let E be an abstraction-free guarded recursive specification. Then there
is at most one solution for E. We call this principle RSP.

At this point we want to introduce the approximation induction principle.
This definition can be found in [17].

Principle (1.2.6) The Approximation Induction Principle(1.2.6)

Let x, y be ACPτ -terms. If we have for all n ≥ 1 that πn(x) = πn(y), then
we have x = y. We will abbreviate this principle by AIP.

Principle (1.2.7) Koomen’s Fair Abstraction Rule(1.2.7)

Let x1, . . . , xn and y1, . . . , yn be processes. Let I ⊆ A and suppose that
we have the following identities for these processes:

x1 = i1 · x2 + y1,

13

Introduction: 1.2. Additional proof rules

x2 = i2 · x3 + y2,

...

xn−1 = in−1 · xn + yn−1,

xn = in · x1 + yn,

with the following assumptions on the ij , (1 ≤ j ≤ n):

{τ} 6= {i1, . . . , in} ⊆ I ∪ {τ},

then we have:

τI(x) = τ ·
(
τI(y1) + τI(y2) + · · ·+ τI(yn)

)
.

We will refer to this principle by the abbreviation KFARn. If n = 1 we will
also use the acronym KFAR.

Remark (1.2.8)

If we use the combination of KFAR and AIP we will need a more restrictive
form of AIP. See for details section 3.2.

1.3. Linear unary operators

In this section we will give an overview of the most important linear unary
operators that have been introduced in process algebra. Linear stands for the
fact that these operators distribute over the alternative composition. So a
linear unary operator is just a unary operator that respects the alternative
composition. In the signature of ACPτ we have already seen two important
linear unary operators: the encapsulation operator and the abstraction opera-
tor. The linearity of these operators is expressed in the axioms D4 and TI4;
see table 1.1. We have also seen the projection operators. Strictly speaking
they do not belong to the signature of ACPτ but we included them since we
will need them in the subsequent chapters. Moreover, the axiom systems that
we will propose in other chapters will have more or less the same topology as
the system in table 1.1. Because of PR4 we see that this operator is linear,
as well. The operators that we will discuss in this section are the renaming
operators, the simple state operator and the generalized state operator. They
are important operators in process specification and verification techniques;
see [3] for a general reference. The renaming operators can be found for the
first time in process algebra in [4]. An improved version of these operators is
introduced in [40]. In [40] the renaming operators are used for the verification
of two communication protocols. In fact, renaming operators are common in
most concurrency theories, see, for example, [27] and [36]. The state operator
originated from [4] and has been used in process specification and verification

14

Introduction: 1.3. Linear unary operators

in [24] and [40]. The generalized state operator is also introduced in [4]. The
ideas behind this operator have been used in [39] to give a formal semantics
for the parallel-oriented language POOL.

Subsequently, we will enumerate the axioms concerning the renaming op-
erators. We will use the version that can be found in [40].

Definition (1.3.1) Renaming Operators(1.3.1)

Let f be a function from the set A of atomic actions to the set of atomic
actions joined with the set of special constants. Recall that the set of special
constants C = {δ, τ}. Then there is a linear unary operator ρf replacing
every occurrence of a constant a ∈ A by f(a). Such a linear unary operator
is called a renaming operator. The operator ρf can be defined by means of
the equations in table 1.2. In this table we have a ∈ A, γ ∈ C, id is the
identity function (id(a) = a for all a ∈ A) and ◦ is the composition of operators
so f ◦ g(x) = f

(
g(x)

)
, but we put f ◦ g(a) = g(a) if g(a) ∈ C.

ρf (γ) = γ RN1

ρf (a) = f(a) RN2

ρf (x+ y) = ρf (x) + ρf (y) RN3

ρf (x · y) = ρf (x) · ρf (y) RN4

ρid(x) = x RR1

ρf ◦ ρg(x) = ρf◦g(x) RR2

Table 1.2. Renaming operators.

More on renaming operators can be found in [4].

Now we will discuss the (simple) state operator. This operator has been
studied in [4]. In fact, the state operator is a generalized renaming operator,
a renaming with a memory. This operator is useful in describing processes
with an independent global state. It is useful for the translation of computer
programmes (in a higher order language) into process algebra [4].

Definition (1.3.2) The State Operator(1.3.2)

Let M and S be two given sets and let A be the set of atomic actions.
Recall that we use C = {δ, τ}. We assume all these sets to be distinct. Suppose
that we have two functions act , for action, and eff , for effect:

act : A×M × S −→ A ∪ C,

eff : A×M × S −→ S.

15

Introduction: 1.3. Linear unary operators

λm
s (γ) = γ SO1

λm
s (a) = a(m, s) SO2

λm
s (τ · x) = τ · λm

s (x) SO3

λm
s (a · x) = λm

s (a) · λm
s(m,a)(x) SO4

λm
s (x+ y) = λm

s (x) + λm
s (y) SO5

Table 1.3. State operator.

We will write a(m, s) for act(a,m, s) and s(m,a) for eff (a,m, s).
For m ∈ M and s ∈ S the linear unary operators λm

s are introduced in
table 1.3. In table 1.3 we have s ∈ S, m ∈ M , γ ∈ C, a ∈ A, and x, y are
arbitrary processes.

Remarks (1.3.3)

The set S can be thought of as the state space. The set M is the set of
objects. Usually we will talk about the state of a certain object, for instance,
if m represents a computer, s describes the contents of its memory and x is the
input (the programme) then λm

s (x) describes what happens when x is presented
to computerm in state s. The execution of an atomic action will affect a specific
state, which is reflected in the axioms SO2 and SO4; see table 1.3. We see that
the past tense of the atomic action a is a(m, s) and that the state s has been
changed to s(m,a); see SO4. We also see that special constants are invariant
under the application of the state operator; see SO1 (and SO3).

Now we will discuss the generalized state operator. This linear unary
operator is introduced in process algebra in [4], in which it has been used to
translate computer programmes into process algebra.

Definition (1.3.4) The Generalized State Operator(1.3.4)

We define the generalized state operator as follows. The function act does
not necessarily yield one element from A∪C, but a set of elements from it. We
will denote the power set of A∪C as follows: P(A∪C). Let M and S be two
given sets and let A be the set of atomic actions. We assume all these sets to
be distinct. Suppose that we have two functions act , for action, and eff , for
effect:

act : A×M × S −→P(A ∪ C),

eff : A×M × S × (A ∪ C) −→ S.

We will write a(m, s) for act(a,m, s) and s(m,a, b) for eff (a,m, s, b).
In table 1.4 we have s ∈ S, m ∈ M , γ ∈ C, a ∈ Aδ and x, y are arbitrary

processes. If a(m, s) = ∅ we will have Λm
s (a) = δ.

16

Introduction: 1.4. Other operators

Λm
s (γ) = γ GS1

Λm
s (a) =

∑

b∈a(m,s) b GS2

Λm
s (τ · x) = τ · Λm

s (x) GS3

Λm
s (a · x) = Λm

s (a) · Λm
s(m,a,b)(x) GS4

Λm
s (x+ y) = Λm

s (x) + Λm
s (y) GS5

Table 1.4. Generalized state operator.

1.4. Other operators

In this section we will mention briefly a number of unary operators that can
also be found in process algebra, albeit that they do not occur in the theory as
often as the operators that we discussed in section 1.3.

The first operator that we will mention is the so-called localization ope-
rator. We can think of this operator as the one that “localizes” a process to
certain actions, so that, in a context, typically a merge of communicating pro-
cesses, we can focus on some actions and abstract from others. This operator
can be found in [4] and can be seen as an operator that has been developed to
give a certain proof. The localization operator is linear and unary.

The next operator that we will mention is the process creation operator.
It can be found in [10] (another approach to process creation can be found
in [2]). The process creation operator is a linear unary operator and it is very
wild: atomic actions can be mapped to open terms. This operator has been
used to construct the sieve of Eratosthenes.

Finally, we will mention the priority operator. It has been introduced in
process algebra in [6]. The priority operator θ is a non-linear unary operator.
It is designed to be able to choose between two alternatives, such that the one
with the highest priority is chosed. Therefore, a partial ordering on the set A of
atomic actions is given. For example, if A = {a, b, c} and we have a < b, a < c
and b and c are not related, we have

θ(a+ b) = b,

θ(a+ c) = c,

θ(b+ c) = b+ c.

Since, we have for all a ∈ A : θ(a) = a we see at once that this operator
is not linear. This operator is useful in protocol verifications. In [40] the
priority operator has been used for the verification of the PAR-protocol. The
acronym PAR stands for Positive Acknowledgement with Retransmission.

17

Introduction: 1.5. Conditional axioms

1.5. Conditional axioms

In this section we will discuss some additional axioms; the so-called conditional
(alphabet) axioms. They are the subject of research in [5]. To formulate some
of the conditions, the notion of the alphabet of a process is needed. We can
think of this alphabet as the set of atomic actions that the process might
perform. For example, the alphabet of a+ b will be the set containing a and b.
It is known that the conditional axioms can be proved for closed terms, q.v. [5].
These axioms are an indispensable tool in algebraic verification techniques;
cf. [3] and, of course, [5]. We will only use conditional axioms in chapter 2.
The reason for mentioning them here is that we propose in chapter 3 an axiom
system in which it will be possible to deduce some of the conditional axioms.

Definition (1.5.1) Alphabet(1.5.1)

The alphabet α(x) of a process x is the set of atomic actions that can
be executed by x, so α(x) ⊆ A. The axioms are given in table 1.5. We use
the following notational conventions: a ∈ A, γ ∈ C and x and y are arbitrary
processes.

α(γ) = ∅ AB1

α(a) = {a} AB2

α(τ · x) = α(x) AB3

α(a · x) = {a} ∪ α(x) AB4

α(x+ y) = α(x) ∪ α(y) AB5

Table 1.5. Alphabet function.

α(x) =
⋃∞

n=1 α
(
πn(x)

)
AB6

α
(
τI(x)

)
= α(x) \ I AB7

Table 1.6. Extension to infinite processes.

The axioms in table 1.5 give us an inductive definition of α(x) on finite
terms. Since all finite projections of processes that can be specified with the aid
of a guarded recursive specification are closed terms [8], we can use axiom AB6
in table 1.6 to define the alphabet of this class of processes. We can extend
this to yet a bigger class with the aid of AB7.

18

Introduction: 1.5. Conditional axioms

α(x) |
(
α(y) ∩H

)
⊆ H =⇒ ∂H(x ‖ y) = ∂H

(
x ‖ ∂H(y)

)
CA1

α(x) |
(
α(y) ∩ I

)
= ∅ =⇒ τI(x ‖ y) = τI

(
x ‖ τI(y)

)
CA2

α(x) ∩H = ∅ =⇒ ∂H(x) = x CA3

α(x) ∩ I = ∅ =⇒ τI(x) = x CA4

H = H1 ∪H2 =⇒ ∂H(x) = ∂H1
◦ ∂H2

(x) CA5

I = I1 ∪ I2 =⇒ τI(x) = τI1
◦ τI2

(x) CA6

H ∩ I = ∅ =⇒ τI ◦ ∂H(x) = ∂H ◦ τI(x) CA7

Table 1.7. Conditional alphabet axioms.

The conditional alphabet axioms are defined in table 1.7. We will explain
the “bar” notation in that table. Let B,C ⊆ A. Then B | C is the set of all
the non-trivial communications:

B | C = {b | c : b ∈ B, c ∈ C} \ {δ}.

19

Chapter 2

On the Register Operator

THE main goal of this chapter is to introduce a formal notion for the parallel
notation of a process with parallel input. We use a special state operator:

the register operator. In this chapter it is our intention to stick as closely
as possible to the theory ACPτ and additional features. Nevertheless, it can
be seen as a case study for the subsequent chapters. There, we will develop
theories that will allow us to introduce operators like the register operator in
a comfortable way. As an application of the theory that we will present in this
chapter we will prove a result on systolic arrays.

2.1. Introduction

We will work within the axiomatic framework of ACPτ and the register opera-
tor. The axioms of ACPτ can be found in chapter 1. The register operator will
be discussed in this chapter. It is an instance of the state operator such that
it will distribute over the merge in the applications we are interested in.

In this section we will briefly discuss the structure of this chapter: in
section 2.2 most of the definitions needed are stated. In section 2.3 we give
three comprehensive examples in which we show how the register operator can
be used to obtain compact (and correct) specifications of processes with parallel
input. The second and third example deal with the “cells” of systolic arrays.
The following question about the register operator immediately arose: “Do we
have to eliminate the register operators in all the individual cells in order to
be able to prove correctness theorems on systolic arrays?” In the sequel of this
chapter we will answer this question in a negative way. Section 2.4 consists of
the prerequisites we need, to prove the main theorem that is stated and proved
in section 2.5. This theorem implies that the register operator distributes
over the merge if the individual processes only use their own registers. In
section 2.6 we will give, as an application of the theory, a correctness proof of
a theorem on palindrome recognition. This theorem states that we can deal
with sesquipedalian words if we simply merge sufficient palindrome recognizers
that can handle only two-letter words.

21

On the Register Operator: 2.2. Definitions

2.2. Definitions

Let us consider a collection of datum elements D and a process P with parallel
input of these datum elements. Let us add a datum element ⊥ ∈ D, denoting
a meaningless default. We define a partial ordering on D as follows:

if x, y ∈ D then x ≤ y ⇐⇒ x = y or x = ⊥.

Let t ∈ N and let R be the following collection:

R = { (d1, . . . , dt) : di ∈ D, and 1 ≤ i ≤ t, t ∈ N }.

Let {f1, . . . , fk} be the collection of functions of the following form that occur
in the data structure of the atomic actions of P :

fi : D ×D × · · · ×D
︸ ︷︷ ︸

ki times

−→ D.

Observe that {f1, . . . , fk} is never empty since id : D −→ D is always in
{f1, . . . , fk}, that is, if we have an atomic action s(d) then the function occur-
ring in it can be seen as id : s

(
id(d)

)
. Let [Dn −→ D] denote the collection of

all the functions with Dn as domain and D as range. We will give hereinafter
an inductive definition of a subset F of

⋃t
n=1 [Dn −→ D].

(i) f1, . . . , fk ∈ F

(ii) ∧ ∈ F

where ∧ is: if x, y ∈ D : x ∧ y = inf{x, y}

(iii) ∀ 1 ≤ k ≤ t∀ 1 ≤ i ≤ k : pk
i : Dk −→ D ∈ F,

where pk
i is: if (e1, . . . , ek) = ~e ∈ Dk, then pk

i (~e) = ei

(iv) ∀ d ∈ D ∀ 1 ≤ k ≤ t : d̂k : Dk −→ D ∈ F,

where d̂k is: ∀~e ∈ Dk : d̂k(~e) = d

(v) f : Dn −→ D, g1, . . . , gn : Dl −→ D ∈ F

=⇒ f(g1, . . . , gn) : Dl −→ D ∈ F

where f(g1, . . . , gn) is defined as follows:

if (e1, . . . , el) = ~e ∈ Dl, then f(g1, . . . , gn) = f
(
g1(~e), . . . , gn(~e)

)
.

In fact the notation of the constant functions and the projections is a little
unfathomable; so for the constant functions we prefer to use the constants
themselves, and for the projections we leave out the arity.
Let U be the following finite set:

U =
{
u1, . . . , un

}
∪

{
∆

}
.

22

On the Register Operator: 2.2. Definitions

Choose a function |: U2 −→ U which is commutative, associative, and defined
everywhere. Thus for all u, v, w ∈ U :

u | v ∈ U

u | ∆ = ∆

u | v = v | u

(u | v) | w = u | (v | w)

With this function we will define the communication function on the atomic
actions as follows. For all d, d′ ∈ D and for all u, v ∈ U we have:

u(d) | v(d′) = (u | v)(d ∧ d′).

In which we define for all u ∈ U : u(⊥) = δ. Furthermore we assume for all
d ∈ D that ∆(d) = δ. As an illustration consider the following. Suppose for
the moment that we deal with commonly used communication in ACP, then
we have say U = {r, s, c,∆} and | is defined as follows:

r | s = s | r = c,

and all the other combinations result in ∆. We will now verify that we have
read/send communication. For,

r(d) | s(d) = (r | s)(d ∧ d)

= c(d ∧ d)

= c(d)

All the other communications result in δ.

Let Nt = {1, 2, . . . , t} and r = (d1, . . . , dt) ∈ R. Define a function

↑ : R×Nt −→ D

by

r ↑ n = dn.

Let f ∈ F be a p-ary function and define a function

f(↑n1, . . . , ↑np) : R −→ D

by

r 7→ f(r ↑ n1, . . . , r ↑ np), for n1, . . . , np ∈ Nt.

Apparently there is also an output of P in which the parallel input of P is
being used in some way. In other words we want to store the input of P . For

23

On the Register Operator: 2.2. Definitions

this purpose we can define some new atomic actions. We will also need some
new atomic actions for reading the input, when we need that input. Below we
will list all the new atomic actions. First some notational machinery: a row of
elements n1, . . . , nk is represented by Nk, the row ↑n1, . . . , ↑nk is denoted by
↑ Nk, the row r ↑ n1, . . . , r ↑ nk by r ↑ Nk, and, provided that no confusion
arises, for {n1, . . . , nk} we simply write Nk instead of {Nk}.

We define U(D) = {u(d) | u ∈ U, d ∈ D }. Now let u(d) ∈ U(D), then for
all rows Nk needed, we define a new atom: u(d ↓ Nk). The intuition behind
this new action is as follows: r(d ↓ 1, 2) means that we read a d and afterwards
we want to store this d on the first and second position. We can do this with
the register operator. The collection of this type of atomic actions is denoted
by U(D ↓).

Let f ∈ F and u ∈ U , then for all the necessary rows Nk we define a new
atom: u

(
f(↑Nk)

)
and we denote the collection of all these atomic actions by

U(F). As an exemplification of this new atomic action, consider the following:
s
(
id(↑ 1)

)
. We want to sent a datum element, but in this phase we do not

know which one. With the aid of the register operator we can read what
datum element should be sent. In case we want to store the output directly we
have for all the necessary rows Ml an atom u

(
f(↑Nk) ↓Ml

)
and the collection

of all these atomic actions is denoted by U(F ↓). The meaning of this type
of atoms is the same as the former type. The only difference is that we can
store the datum in a possibly other register. After the actual definition of the
register operator we will illustrate how the last mentioned category of atomic
actions may be used, see example (2.2.1).

We have now made a collection of atomic actions

A = A′ ∪ U(D) ∪ U(D ↓) ∪ U(F) ∪ U(F ↓),

in which A′ is the collection of atomic actions that are not in

U(D) ∪ U(D ↓) ∪ U(F) ∪ U(F ↓).

We will extend the communication function | to this new set of atomic actions
A. Suppose that we have u | v = w for some u, v, w ∈ U . Henceforward we use
instead of (u | v)(d ∧ d) the formula w(d):

u(d) | v(d ↓Nk) = w(d ↓Nk)

u(d) | v
(
f(↑Nk)

)
= w

(
(d ∧ f)(↑Nk)

)

u(d) | v
(
f(↑Nk) ↓Ml

)
= w

(
(d ∧ f)(↑Nk) ↓Ml

)

u(d ↓Nk) | v(d ↓Ml) = w(d ↓Nk,Ml)

u(d ↓Nk) | v
(
f(↑Ml)

)

=

{

w
(
(d ∧ f)(↑Ml) ↓Nk

)
, if Nk ∩Ml = ∅;

δ, otherwise.

24

On the Register Operator: 2.2. Definitions

u(d ↓Nk) | v
(
f(↑Ml) ↓Pn

)

=

{

w
(
(d ∧ f)(↑Ml) ↓Nk, Pn

)
, if Nk ∩Ml = ∅;

δ, otherwise.

u
(
f(↑Nk)

)
| v

(
g(↑Ml)

)
= w

(
(f ′ ∧ g′)(↑Su)

)
(Nk ∪Ml = Su)

u
(
f(↑Nk)

)
| v

(
g(↑Ml) ↓Pn

)

=

{

w
(
(f ′ ∧ g′)(↑Su) ↓Pn

)
, if Nk ∩ Pn = ∅;

δ, otherwise.

u
(
f(↑Nk) ↓Pn

)
| v

(
g(↑Ml) ↓Qs

)

=

{

w
(
(f ′ ∧ g′)(↑Su) ↓Pn, Qs

)
, if Nk ∩Qs = Ml ∩ Pn = ∅;

δ, otherwise.

Now we will elucidate the “aggrandizement” of the communication function,
and—first of all—the meaning of d ∧ f and f ′ ∧ g′.

d ∧ f = d̂k ∧ f : Dk −→ D

and

f ′ ∧ g′ = f(pn1
, . . . , pnk

) ∧ g(pm1
, . . . , pml

) : Du −→ D

where
∣
∣Nk ∪Ml

∣
∣ = u, Nk ∪Ml = Su, and ps1

, . . . , psu
: Du −→ D.

The first communication is simple, e.g., if we have r(d) | s(d ↓ 1), we want to
be able to store d in a register on the first position after the communication
has taken place. Thence the resulting communication is c(d ↓ 1). In the second
formula we use “generic” communication. As an example we take

r(d) | s
(
id(↑ 1)

)
= c

(
d ∧ id(↑ 1)

)
.

If this communication takes place, we do not know what value the register
operator will contain on the first position. If it happens to be a d, we really
want this communication. If not, then c

(
d ∧ id(↑ 1)

)
should be δ. In the third

formula the only difference with the second is that, if we indeed have a d, we
want to store it in a possibly other register. The fourth formula is easy to
understand: if we have r(d ↓ 1) | s(d ↓ 2), we want to store the d on both
positions in the register. The fifth formula yields almost the same result as the
third, albeit we have made a restriction as to the registers that can be used.
For, if we should have r(d ↓ 1) | s

(
id(↑ 1)

)
, then we have a “timing” problem:

if the d is stored at position 1 in the register before it is read, we obtain, in
general, another answer, than if we first read the register and then store the
d at position 1. We do not have this problem in the third formula. For first
we must read what we have in the registers, and then we store the result. In
all the other formulas we state this sort of conditions for the same reason (we
will call them the register conditions for later reference). The sixth formula is

25

On the Register Operator: 2.2. Definitions

essentially the same as the fifth. In all the other formulas we have two atomic
actions that might communicate. And they do if it turns out that f and g
coincide if they are instantiated by the values of the current register, i.e., if
f(dn1

, . . . , dnk
) = g(dm1

, . . . , dml
). Below we will axiomatize what the register

operator is, and that the “past tense” of all these new atoms will be the old
atomic actions that we already had.
Now choose an r = (d1, . . . , dt) ∈ R. For such an r we will introduce a new
operator that we denote by [r]. With [r(Nk/d)] we mean [r], but on the ni-th
place a d instead of dni

, (1 ≤ i ≤ k). Below we will give a complete list of
axioms:

[r](γ) = γ

[r](γ · x) = γ · [r](x)

[r]
(
u(d ↓Nk)

)
= u(d)

[r]
(
u
(
f(↑Nk)

))
= u

(
f(r ↑ Nk)

)

[r]
(
u
(
f(↑Nk) ↓Ml

))
= u

(
f(r ↑ Nk)

)

[r](u(d ↓Nk) · x) = u(d) · [r(Nk/d)](x)

[r]
(
u
(
f(↑Nk)

)
· x

)
= u

(
f(r ↑ Nk)

)
· [r](x)

[r]
(
u
(
f(↑Nk) ↓Ml

)
· x

)
= u

(
f(r ↑ Nk)

)
· [r (Ml/f(r ↑ Nk))] (x)

For all other atomic actions we have:

[r](a) = a

[r](a · x) = a · [r](x)

And finally:

[r](x+ y) = [r](x) + [r](y).

Where γ is a special constant, e.g., δ or τ , x and y are arbitrary processes.

Example (2.2.1)

Consider the following guarded recursive specification:

E =
{
Y = Y (0), Y (n) = s(n+ 1) · Y (n+ 1)

∣
∣ n ∈ N

}
.

It will be clear that the following process is a solution for E:

∞∏

n=1

s(n) = s(1) · s(2) · s(3) · · · · .

Let f be the successor function on N. Define X ′ = s
(
f(↑ 1) ↓ 1

)
· X ′. Let

X = [0](X ′). We obviously have: X = Y . For, if we put

∀n ∈ N : Y (n) := [n](X ′),

26

On the Register Operator: 2.2. Definitions

then this system is also a solution for E. Thence, by RSP, we obtain

X = Y =

∞∏

n=1

s(n).

Observe that we introduced here infinitely many atomic actions. If we should
discuss this topic in detail, it would be better to define f on {0, 1, . . . , k − 1}
with f(k − 1) = 0. In that case we obtained:

X =

(k−1∏

i=0

s(i)

)ω

.

Remark (2.2.2)

In fact, the register operator is an instance of the state operator. For the
definition of the state operator we refer to chapter 1, but for a more concise
treatment we refer to [4]. The main difference here is that we denoted it by
[r] instead of λr. This information is redundant in order to understand the
theory presented in this chapter. However, for reasons of completeness we
will enumerate here the action function and the effect function of this state
operator.

Since there is only one object, we take M = {m}. For the state space S
we take the set R.

The action function:

u(d ↓Nk)(m, r) = u(d),

u
(
f(↑Nk)

)
(m, r) = u

(
f(r ↑ Nk)

)
,

u
(
f(↑Nk) ↓Ml

)
(m, r) = u

(
f(r ↑ Nk)

)
.

And for the other atomic actions a ∈ A we have:

a(m, r) = a.

The effect function:

r(m,u(d ↓Nk)) = r(Nk/d),

r
(
m,u

(
f(↑Nk) ↓Ml

))
= r

(
Ml/f(r ↑ Nk)

)
.

And otherwise:

r(m,a) = r.

27

On the Register Operator: 2.3. Hermeneutics

2.3. Hermeneutics

In this section we will explain the symbolism of the previous section by giving
three examples. Consider the following process P : first we want to read data
via channels 1 and 2 in an arbitrary order (parallel input). Afterwards we want
to send the sum of these datum elements—which itself is a datum element—
via channel 3. Then the process starts all over again. In [44] we see that such
processes are specified as follows:

P =
(∑

d∈D

r1(d)
∥
∥

∑

e∈D

r2(e)
)

· s3(d+ e) · P, (1)

although it is a well-known fact that this way of specifying is at least question-
able, for, the d in the sum is a bound variable. Hence we can rename this d
without changing the semantics of the formula. But the d in s3(d + e) is not
in the scope of the first sum.

Since we often have an interleaving merge this dubious way of specifying
the process P is said to be shorthand for

P =
∑

d∈D

r1(d) ·
∑

e∈D

r2(e) · s3(d+ e) · P

+
∑

e∈D

r2(e) ·
∑

d∈D

r1(d) · s3(d+ e) · P. (2)

Of course, we do not want to write down equation (2) if we mean equation (1)
all the time. We see that in equation (2) there are no parentheses to show
where the scopes of the sum signs end. Note that P is a process, so in P there
are no variables. This means that we can freely choose the position of these
delimiters:

P =
∑

d∈D

(

r1(d) ·
∑

e∈D

(
r2(e) · s3(d+ e)

))

· P

+
∑

e∈D

(

r2(e) ·
∑

d∈D

(
(r1(d) · s3(d+ e)

))

· P

=
∑

d∈D

(

r1(d) ·
∑

e∈D

(
r2(e) · s3(d+ e) · P

))

+
∑

e∈D

(

r2(e) ·
∑

d∈D

(
r1(d) · s3(d+ e) · P

))

.

(3)

This is an immediate consequence of the left distributivity of the sequential
composition.

We will show how we can adapt equation (1) such that the scope problem
is solved. Let f : D×D −→ D be the function that represents the sum of two
datum elements and assume for the set of atoms A the following:

{
ri(d ↓ i), ci(d ↓ i) | d ∈ D, i = 1, 2

}

∪
{
s3

(
f(↑ 1, ↑ 2)

)
, c3

(
(d ∧ f)(↑ 1, ↑ 2)

)
| d ∈ D

}
⊆ A.

28

On the Register Operator: 2.3. Hermeneutics

Consider the following specification:

X =
(∑

d∈D

r1(d ↓ 1)
∥
∥

∑

e∈D

r2(e ↓ 2)
)

· Y

Y = s3
(
f(↑ 1, ↑ 2)

)
·X

Theorem (2.3.1)

∀ [r] ∈ R : [r](X) = P.

Proof. Let [r] = [u, v] ∈ R be chosen arbitrarily. Since we have interleaving
we immediately see:

X =
∑

d∈D

r1(d ↓ 1) ·
∑

e∈D

r2(e ↓ 2) · Y +
∑

e∈D

r2(e ↓ 2) ·
∑

d∈D

r1(d ↓ 1) · Y.

Hence we get

[r](X) =
∑

d∈D

r1(d) · [d, v]
(∑

e∈D

r2(e ↓ 2) · Y
)

+
∑

e∈D

r2(e)[u, e]
(∑

d∈D

r1(d ↓ 1) · Y
)

=
∑

d∈D

r1(d) ·
∑

e∈D

r2(e)[d, e](Y)

+
∑

e∈D

r2(e) ·
∑

d∈D

r1(d)[d, e](Y). (4)

Now we are going to calculate [d, e](Y):

[d, e](Y) = [d, e]
(
s3

(
f(↑ 1, ↑ 2)

)
·X

)

= s3
(
f(d, e)

)
· [d, e](X)

= s3(d+ e) · [d, e](X). (5)

Combining the equations (4) and (5) we find thus:

[r](X) =
∑

d∈D

r1(d) ·
∑

e∈D

r2(e) · s3(d+ e) · [d, e](X)

+
∑

e∈D

r2(e) ·
∑

d∈D

r1(d) · s3(d+ e) · [d, e](X).
(6)

It is evident that [d, e](X) in the first term of (6) differs, in general, from
[d, e](X) in the second term of (6). To avoid possible ambiguity we will re-
name the bound variables d and e in the second part of the right-hand side of
equation (6), and so we obtain:

[r](X) =
∑

d∈D

r1(d) ·
∑

e∈D

r2(e) · s3(d+ e) · [d, e](X)

+
∑

g∈D

r2(g) ·
∑

f∈D

r1(f) · s3(f + g) · [f, g](X).
(7)

29

On the Register Operator: 2.3. Hermeneutics

Let us now index the set R by saying R =
{
rj | 1 ≤ j ≤ |D|2

}
. Define a

function
i : D ×D −→ N

|D|
2 by i(d, e) = j ⇐⇒ rj = [d, e].

Consider the guarded recursive specification E below:

E =
{

Xi =
∑

d∈D

(

r1(d) ·
∑

e∈D

(
r2(e) · s3(d+ e) ·Xi(d,e)

))

+
∑

g∈D

(

r2(g) ·
∑

f∈D

(
r1(f) · s3(f + g) ·Xi(f,g)

))
∣
∣
∣ 1 ≤ i ≤ |D|2

}

.

With the aid of the equalities in equation (3) we immediately see that, if we
put

P = Xi = Xi(d,e) = Xi(f,g) for all i ∈ N
|D|

2 ,

that P is a solution for E. However, if we put

Xi = [ri](X), Xi(d,e) = [d, e](X), and Xi(f,g) = [f, g](X) for all i ∈ N
|D|

2 ,

we find, because of equation (7), that this system is also a solution for E.
Hence, we can conclude now, with the aid of RSP, that [r](X) = P for all
r ∈ R. This proves 2.3.1.

Now we will consider another example that is known as an IPS cell. See,
e.g., [33]. For the sake of convenience we have somewhat simplified notations.
The specification of P ′ at present looks like this:

P ′ =
(∑

a∈D

r1(a)
∥
∥

∑

b∈D

r2(b)
∥
∥

∑

x∈D

r3(x)
)

·Q′(a, b, x)

Q′(a, b, x) =
(
s3(b) ‖ s2(x+ a · b)

)
· P ′.

(8)

Now we are going to eliminate the merge in the first equation of (8) in order
to achieve a correct specification of P ′:

P ′ =
∑

a∈D

r1(a) ·
(∑

b∈D

r2(b) ·
∑

x∈D

r3(x) ·Q
′(a, b, x)

+
∑

x∈D

r3(x) ·
∑

b∈D

r2(b) ·Q
′(a, b, x)

)

+
∑

b∈D

r2(b) ·
(∑

a∈D

r1(a) ·
∑

x∈D

r3(x) ·Q
′(a, b, x)

+
∑

x∈D

r3(x) ·
∑

a∈D

r1(a) ·Q
′(a, b, x)

)

+
∑

x∈D

r3(x) ·
(∑

a∈D

r1(a) ·
∑

b∈D

r2(b) ·Q
′(a, b, x)

+
∑

b∈D

r2(b) ·
∑

a∈D

r1(a) ·Q
′(a, b, x)

)

,

Q′(a, b, x) =
(
s3(b) ‖ s2(x+ a · b)

)
· P ′. (9)

30

On the Register Operator: 2.3. Hermeneutics

Let the function f be defined as follows:

f : D ×D ×D −→ D with f(a, b, x) = x+ a · b, for all a, b, x ∈ D.

In this example we also need the function id : D −→ D. Suppose now that the
following holds for the set A of atomic actions:

{
ri(d ↓ i)

∣
∣ d ∈ D, i = 1, 2, 3

}
∪

{
s3

(
id(↑ 2)

)
, s2

(
f(↑ 1, ↑ 2, ↑ 3)

)}
⊆ A.

Observe that we only listed the atomic actions needed for the specification
below. In fact we also introduced, by adding the aforementioned atoms, a
number of communication actions. Neither are these atoms necessary to give
a correct specification, nor do they occur in the correctness proof hereinafter.
Nevertheless we will now give an enumeration of all new atomic actions:

{
ri(d ↓ i), ci(d ↓ i)

∣
∣ d ∈ D, i = 1, 2, 3

}

∪
{
c3

(
(d ∧ id)(↑ 2)

)
, c3

(
(d ∧ id)(↑ 2) ↓ 1

) ∣
∣ d ∈ D

}

∪
{
c2

(
(d ∧ f)(↑ 1, ↑ 2, ↑ 3)

)
, c2

(
(d ∧ f)(↑ 1, ↑ 2, ↑ 3) ↓ 2

) ∣
∣ d ∈ D

}

∪
{
s3

(
id(↑ 2)

)
, s2

(
f(↑ 1, ↑ 2, ↑ 3)

)}
.

With these new atomic actions in view we can write down the following equa-
tions:

X ′ =
(∑

a∈D

r1(a ↓ 1)
∥
∥

∑

b∈D

r2(b ↓ 2)
∥
∥

∑

x∈D

r3(x ↓ 3)
)

· Y ′, (10)

Y ′ =
(

s3
(
id(↑ 2)

)
‖ s2

(
f(↑ 1, ↑ 2, ↑ 3)

))

·X ′.

Theorem (2.3.2)

∀ [r] ∈ R : [r](X ′) = P ′.

Proof. Let [r] = [u, v, w] ∈ R be chosen arbitrarily. Below we have eliminated
the merge in equation (10):

X ′ =
∑

a∈D

r1(a ↓ 1) ·
(∑

b∈D

r2(b ↓ 2) ·
∑

x∈D

r3(x ↓ 3) · Y ′

+
∑

x∈D

r3(x ↓ 3) ·
∑

b∈D

r2(b ↓ 2) · Y ′
)

+
∑

b∈D

r2(b ↓ 2) ·
(∑

a∈D

r1(a ↓ 1) ·
∑

x∈D

r3(x ↓ 3) · Y ′

+
∑

x∈D

r3(x ↓ 3) ·
∑

a∈D

r1(a ↓ 1) · Y ′
)

+
∑

x∈D

r3(x ↓ 3) ·
(∑

a∈D

r1(a ↓ 1) ·
∑

b∈D

r2(b ↓ 2) · Y ′

+
∑

b∈D

r2(b ↓ 2) ·
∑

a∈D

r1(a ↓ 1) · Y ′
)

.

31

On the Register Operator: 2.3. Hermeneutics

Hence if we apply [r] we obtain:

[r](X ′) =
∑

a∈D

r1(a) ·
(∑

b∈D

r2(b) ·
∑

x∈D

r3(x) · [a, b, x](Y
′)

+
∑

x∈D

r3(x) ·
∑

b∈D

r2(b) · [a, b, x](Y
′)
)

+
∑

b∈D

r2(b) ·
(∑

a∈D

r1(a) ·
∑

x∈D

r3(x) · [a, b, x](Y
′)

+
∑

x∈D

r3(x) ·
∑

a∈D

r1(a) · [a, b, x](Y
′)
)

+
∑

x∈D

r3(x) ·
(∑

a∈D

r1(a) ·
∑

b∈D

r2(b) · [a, b, x](Y
′)

+
∑

b∈D

r2(b) ·
∑

a∈D

r1(a) · [a, b, x](Y
′)
)

Let us now calculate [a, b, x](Y ′):

[a, b, x](Y ′) = [a, b, x]
(

s3
(
id(↑ 2)

)
· s2

(
f(↑ 1, ↑ 2, ↑ 3)

)
·X ′

+ s2
(
f(↑ 1, ↑ 2, ↑ 3)

)
· s3

(
id(↑ 2)

)
·X ′

)

= s3(b) · [a, b, x]
(
f(↑ 1, ↑ 2, ↑ 3)

)
·X ′

)

+ s2(x+ a · b) · [a, b, x]
(
s3

(
id(↑ 2)

)
·X ′

)

= s3(b) · s2(x+ a · b) · [a, b, x](X ′)

+ s2(x+ a · b) · s3(b) · [a, b, x](X
′)

=
(
s3(b) ‖ s2(x+ a · b)

)
· [a, b, x](X ′). (11)

Notice that we actually have computed one of the six possibilities. The others
are calculated analogously. However, to avoid ambiguity we will rename some
of the bound variables that occur in [r](X ′). This results in:

[r](X ′) =
∑

a∈D

r1(a) ·
(∑

b∈D

r2(b) ·
∑

x∈D

r3(x) · [a, b, x](Y
′)

+
∑

y∈D

r3(y) ·
∑

c∈D

r2(c) · [a, c, y](Y
′)
)

+
∑

e∈D

r2(e) ·
(∑

d∈D

r1(d) ·
∑

z∈D

r3(z) · [d, e, z](Y
′)

+
∑

t∈D

r3(t) ·
∑

f∈D

r1(f) · [f, e, t](Y ′)
)

+
∑

s∈D

r3(s) ·
(∑

g∈D

r1(g) ·
∑

h∈D

r2(h) · [g, h, s](Y
′)

32

On the Register Operator: 2.3. Hermeneutics

+
∑

m∈D

r2(m) ·
∑

l∈D

r1(l) · [l,m, s](Y
′)
)

. (12)

Let
{
rj

∣
∣ 1 ≤ j ≤ |D|3

}
be an indexation of the set R, and define:

i : D ×D ×D −→ N
|D|

3

with, for all d, e, f ∈ D,

i(d, e, f) = j ⇐⇒ rj = [d, e, f],

we can write down the following guarded recursive specification:

E′ =

{

X ′
i =

∑

a∈D

r1(a) ·
(∑

b∈D

r2(b) ·
∑

x∈D

r3(x)

·
(
s3(b) ‖ s2(x+ a · b)

)
·X ′

i(a,b,x)

+
∑

y∈D

r3(y) ·
∑

c∈D

r2(c) ·
(
s3(c) ‖ s2(y + a · c)

)
·X ′

i(a,c,y)

)

+
∑

e∈D

r2(e) ·
(∑

d∈D

r1(d) ·
∑

z∈D

r3(z) ·
(
s3(e) ‖ s2(z + d · e)

)
·X ′

i(d,e,z)

+
∑

t∈D

r3(t) ·
∑

f∈D

r1(f) ·
(
s3(e) ‖ s2(t+ f · e)

)
·X ′

i(f,e,t)

)

+
∑

s∈D

r3(s) ·
(∑

g∈D

r1(g) ·
∑

h∈D

r2(h) ·
(
s3(h) ‖ s2(s+ g · h)

)
·X ′

i(g,h,s)

+
∑

m∈D

r2(m) ·
∑

l∈D

r1(l)

·
(
s3(m) ‖ s2(s+ l ·m)

)
·X ′

i(l,m,s)

) ∣
∣
∣ 1 ≤ i ≤ |D|3

}

.

It is obvious that, if we put for all i ∈ N
|D|

3 ,

P ′ = X ′
i = X ′

i(a,b,x) = X ′
i(a,c,y) = X ′

i(d,e,z) = X ′
i(f,e,t) = X ′

ig,h,s = X ′
i(l,m,s)

that P ′ is a solution for E′, because of the equations in (9). On the other hand,
however, if we put for all N

|D|
3 :

X ′
i = [ri](X

′)

X ′
i(a,b,x) = [a, b, x](X ′)

X ′
i(a,c,y) = [a, c, y](X ′)

X ′
i(d,e,z) = [d, e, z](X ′)

and

X ′
i(f,e,t) = [f, e, t](X ′)

X ′
i(g,h,s) = [g, h, s](X ′)

X ′
i(l,m,s) = [l,m, s](X ′)

,

33

On the Register Operator: 2.3. Hermeneutics

we immediately see, with (11) and (12), that this system is also a solution
for the guarded recursive specification E ′. Hence, with the use of RSP this
concludes the proof of 2.3.2.

We are now about to give a last example, which is not very difficult, but
we will need this example later on. In [44] we find in table 24 on page 135 a
specification in which occurs a process C ′

i(x). Below we see this specification
after we rid ourselves of all the superfluous notational ballast.

P ′′ = P ′′(x) =
(∑

y∈S

r2(y)
∥
∥

∑

v∈B

r1(v)
)

·Q′′(x, y, v) (13)

Q′′(x, y, v) =
(
s2

(
(x = y) & v

)
‖ s1(y)

)
· P ′′.

We will eliminate the merge in equation (13) in order to achieve a correct
specification. Thus we obtain:

P ′′ =
∑

y∈S

r2(y) ·
∑

v∈B

r1(v) ·Q
′′(x, y, v)

+
∑

v∈B

r1(v) ·
∑

y∈S

r2(y) ·Q
′′(x, y, v) (14)

Q′′(x, y, v) =
(
s2

(
(x = y) & v

)
‖ s1(y)

)
· P ′′. (15)

Clearly we have D := S ∪ B, with B := { true, false}. Let us now define a
function fx : D ×D −→ D by:

fx(b, y) =

{

true, if y ∈ S, b ∈ B, b = true & (x = y);
false, otherwise.

(16)

About the collection A of atomic actions we assume:
{
ri(d ↓ i) | d ∈ D, i = 1, 2

}
∪

{
s2

(
fx(↑ 1, ↑ 2)

)
, s1

(
id(↑ 2)

) }
⊆ A.

As before we only denoted the actions that we need in order to obtain the spec-
ification below. However, in the correctness proof on palindrome recognition
in section 2.6 (theorem (2.6.2)), we will see a communication between a “new”
atom and an “old” one. Thence, we will give all the new atomic actions in a
separate display:

{
ri(d ↓ i), ci(d ↓ i)

∣
∣ d ∈ D, i = 1, 2

}

∪
{
c2

(
(d ∧ fx)(↑ 1, ↑ 2)

)
, c2

(
(d ∧ fx)(↑ 1, ↑ 2) ↓ 2

) ∣
∣ d ∈ D

}

∪
{
c1

(
(d ∧ id)(↑ 2)

)
, c1

(
(d ∧ id)(↑ 2) ↓ 1

) ∣
∣ d ∈ D

}

∪
{
s2

(
fx(↑ 1, ↑ 2)

)
, s1

(
id(↑ 2)

) }
.

We are now in a position to write down the following specification:

X ′′ =
(∑

y∈S

r2(y ↓ 2)
∥
∥

∑

v∈B

r1(v ↓ 1)
)

· Y ′′ (17)

Y ′′ =
(
s2

(
fx(↑ 1, ↑ 2)

)
‖ s1

(
id(↑ 2)

))
·X ′′ (18)

34

On the Register Operator: 2.4. Prerequisites

Theorem (2.3.3)

∀ [r] ∈ R : ACP ` [r](X ′′) = P ′′.

Proof. Choose an [r] = [d, e] ∈ R. If we eliminate the merge in equation (17)
and apply [r] to it we immediately see that:

[r](X ′′) =
∑

y∈S

r2(y)·
∑

v∈B

r1(v)·[v, y](Y
′′)+

∑

v∈B

r1(v)·
∑

y∈S

r2(y)·[v, y](Y
′′). (19)

It is also easy to see that:

[v, y](Y ′′) =
(
s2

(
(x = y) & v

)
‖ s1(y)

)
· [v, y](X ′′). (20)

Hence after renaming several variables in (19), we eventually find combining
all with (20):

[r](X ′′) =
∑

y∈S

r2(y) ·
∑

v∈B

r1(v) ·
(
s2

(
(x = y) & v

)
‖ s1(y)

)
· [v, y](X ′′)

+
∑

w∈B

r1(w) ·
∑

z∈S

r2(z) ·
(
s2

(
(x = z) & w

)
‖ s1(z)

)
· [w, z](X ′′).

Let i be the function in the proof of theorem (2.3.1). Consider the guarded
recursive specification E′′ after this:

E′′ =
{

X ′′
i =

∑

y∈S

r2(y) ·
∑

v∈B

r1(v) ·
(
s2

(
(x = y) & v

)
‖ s1(y)

)
·X ′′

i(v,y)

+
∑

w∈B

r1(w) ·
∑

z∈S

r2(z) ·
(
s2

(
(x = z) & w

)
‖ s1(z)

)
·X ′′

i(w,z)

∣
∣ 1 ≤ i ≤ |D|2

}

.

Clearly, P ′′ is a solution for E′′, for, if we put for all i:

P = Xi = Xi(v,y) = Xi(w,z).

On the other hand it is immediately clear that, if we put for all i:

X ′′
i = [ri](X

′′), X ′′
i(v,y) = [v, y](X ′′), and X ′′

i(w,z) = [w, z](X ′′),

this system is also a solution for E′′. Therefore we can conclude with the aid
of RSP that [r](X ′′) = P ′′. This ends the proof of theorem 2.3.3.

2.4. Prerequisites

In this section we summarize some basic material with which the reader is
assumed to be more or less familiar, in case the theoremata below concern
closed terms (see, e.g., [15]). The difference here is that we prove these basic
facts for processes that are solutions of guarded recursive specifications.

35

On the Register Operator: 2.4. Prerequisites

Notation (2.4.1)

Let x be the solution of a guarded recursive specification E, then we write
x ∈ GRS.

Lemma (2.4.2)

For all x ∈ GRS the following holds:

∀n, k ≥ 1, πn ◦ πk(x) = πmin(n,k)(x).

Proof. We will prove the lemma with induction on n. Since x ∈ GRS, we
have, in accordance with proposition 5.7 on page 91 in [7]:

x =

n∑

i=1

aixi +

m∑

j=1

bj , with xi ∈ GRS.

Henceforth, we will use this proposition tacitly. So, if we apply π1 ◦ πk to this,
we see:

π1 ◦ πk(x) =

n∑

i=1

ai +

m∑

j=1

bj

= πmin(1,k)(x).

For the moment, take k = 1, and n ≥ 1 then:

πn ◦ π1(x) = πn

(n∑

i=1

ai +
m∑

j=1

bj

)

= πmin(n,1)(x).

Now, let n ≥ 2, k ≥ 2, and assume that 2.4.2 is correct up to n inclusive. Then:

πn+1 ◦ πk(x) =

n∑

i=1

aiπn−1 ◦ πk−1(xi) +

m∑

j=1

bj

=

n∑

i=1

aiπmin(n−1,k−1)(xi) +

m∑

j=1

bj (induction hypothesis)

=

n∑

i=1

πmin(n−1,k−1)+1(aixi) +

m∑

j=1

bj

= πmin(n,k)(x).

This proves 2.4.2.

36

On the Register Operator: 2.4. Prerequisites

Proposition (2.4.3)

For all x, y ∈ GRS the following holds:

(i) π1(x y) = π1(x)

(ii) ∀n ≥ 1,∀k ≥ n+ 1,∀l ≥ n : πn+1(x y) = πn+1

(
πk(x) πl(y)

)

(iii) ∀n ≥ 1,∀k, l ≥ n : πn(x | y) = πn

(
πk(x) | πl(y)

)

(iv) ∀n ≥ 1,∀k, l ≥ n : πn(x ‖ y) = πn

(
πk(x) ‖ πl(y)

)
.

Proof. The proof of (i) is trivial. We prove (ii), (iii), and (iv) with induction
on n. First take n = 1 and k, l ≥ 1, then:

π1

(
πk(x) πl(y)

) (i)
= π1 ◦ πk(x)(ii)

= πmin(1,k)(x) because of (2.4.2)

= π1(x)

(i)
= π1(x y).

Since x, y ∈ GRS, we have:

x =
n∑

i=1

aixi +
m∑

j=1

bj = x′ + x′′, y =

p
∑

s=1

csys +

q
∑

r=1

dr = y′ + y′′.

It is straightforward to see that:

π1

(
πk(x) | πl(y)

)
=

n,p
∑

i,r=1

ai | cr +

n,q
∑

i,s=1

ai | ds(iii)

+

m,p
∑

j,r=1

bj | cr +

m,q
∑

j,s=1

bj | ds

= π1(x | y).

Observe that we proved (ii) only under the assumption that k, l ≥ 1, so we
obtain:

π1

(
πk(x) ‖ πl(x)

)
= π1

(
πk(x) πl(x)

)
+ π1

(
πl(y) πk(x)

)
(iv)

+ π1

(
πk(x) | πl(x)

)

= π1

(
πk(x)

)
+ π1

(
πl(y)

)
+ π1(x | y)

= π1(x) + π1(y) + π1(x | y)

(i)
= π1(x y) + π1(y x) + π1(x | y)

= π1(x ‖ y)

37

On the Register Operator: 2.4. Prerequisites

Now, let n ≥ 1, and suppose that (ii), (iii), and (iv) have been proved up to
n inclusive. We will prove them for n+ 1. Take k, l ≥ n+ 1; then we see:

πn+1

(
πk(x) | πl(y)

)
= πn+1

(
πk(x′) | πl(y

′)
)

(iii)

+ πn+1

(
πk(x′) | πl(y

′′)
)

+ πn+1

(
πk(x′′) | πl(y

′)
)

+ πn+1

(
πk(x′′) | πl(y

′′)
)
.

We are now going to calculate the four terms of the equation above one at a
time:

πn+1

(
πk(x′) | πl(y

′)
)

= πn+1

(n∑

i=1

aiπk−1(xi)
∣
∣
∣

p
∑

r=1

πl−1(yj)
)

1

=

n,p
∑

i,r=1

(ai | cr)πn

(
πk−1(xi) ‖ πl−1(yj)

)

=

n,p
∑

i,r=1

(ai | cr)πn(xi ‖ yj)induction hypothesis

= πn+1(x
′ | y′),

πn+1

(
πk(x′) | πl(y

′′)
)

= πn+1

(n∑

i=1

aiπk−1(xi)
∣
∣
∣

q
∑

s=1

ds

)

2

=

n,q
∑

i,s=1

(ai | ds)πn ◦ πk−1(xi)

=

n,q
∑

i,s=1

(ai | ds)πmin(n,k−1)(xi)

= πn+1(x
′ | y′′),

πn+1

(
πk(x′′) | πl(y

′)
)

=

m,p
∑

j,r=1

(bj | ck)πn ◦ πl−1(yr)3

=

m,p
∑

j,r=1

(bj | ck)πn(yr)

= πn+1(x
′′ | y′),

πn+1

(
πk(x′′) | πl(y

′′)
)

=

m,q
∑

j,s=1

(bj | ds)4

= πn+1(x
′′ | y′′).

38

On the Register Operator: 2.5. The main theorem

Combining the equations 1–4 , we obtain the desired result for (iii). Now let
k ≥ n+ 2 and l ≥ n+ 1, then we can derive for (ii):

πn+1

(
πk(x) πl(y)

)
= πn+1

(n∑

i=1

ai

(
πk−1(xi) ‖ πl(y)

))

+
m∑

j=1

bjπn ◦ πl(y)

=

n∑

i=1

aiπn(xi ‖ y) +

m∑

j=1

bjπmin(n,l)(y) induction

= πn+1(x y).

Now we have proved (ii) and (iii) up to and including n+1. So we immediately
see that (iv) is also valid up to and including n+1. This ends the proof of 2.4.3.

Corollary (2.4.4)

For all x, y ∈ GRS and for all n ≥ 1, the following holds:

(i) πn(x | y) = πn

(
πn(x) | πn(y)

)

(ii) πn(x y) = πn

(
πn(x) πn(y)

)

(iii) πn(x ‖ y) = πn

(
πn(x) ‖ πn(y)

)

2.5. The main theorem

In this section we will prove the main theorem of this chapter. We will prove
the following. Suppose we have two processes x and y that can be specified
with the aid of a guarded recursive specification. Suppose that the registers
that occur in x and y are disjoint (this will be formalized with an auxiliary
operator later on). Then the register operator [r] distributes over the merge:

[r](x ‖ y) = [r](x) ‖ [r](y).

In [4] we can find a similar theorem stating that the simple state operator
distributes in certain circumstances over the merge. In that paper it is de-
manded that there is no communication, whereas we do not. Unfortunately,
the theorem in [4] does not hold but it can be repaired. See section 3.4 for a
counterexample and a modified version of the theorem.

Before we can state and prove the main theorem we will treat a number
of technicalities and we will define the notion of the registers that occur in a
process x.

Lemma (2.5.1)

∀x ∈ GRS, ∀r ∈ R, ∀n ≥ 1 : πn ◦ [r](x) = [r] ◦ πn(x).

39

On the Register Operator: 2.5. The main theorem

Proof. It is evident that 2.5.1 holds when x is just an atomic action. Recall
that the collection of atomic actions A is of the form:

A = A′ ∪ U(D) ∪ U(D ↓) ∪ U(F) ∪ U(F ↓).

We prove 2.5.1 with induction on n. Since x ∈ GRS we have, for some ai, bj ∈
A:

x =

n∑

i=1

aixi +

m∑

j=1

bj with xi ∈ GRS.

Now let n = 1, then:

π1 ◦ [r](x) =

n∑

i=1

π1

(
[r](ai)[ri](xi)

)
+

m∑

j=1

π1 ◦ [r](bj)

=

n∑

i=1

[r](ai) +

m∑

j=1

[r] ◦ π1(bj)

=

n∑

i=1

[r]
(
π1(aixi)

)
+

m∑

j=1

[r] ◦ π1(bj)

= [r] ◦ π1(x),

for certain [r1], . . . , [rn] ∈ R. Now, suppose that n > 1, and 2.5.1 is correct up
to n inclusive. Then we can easily see:

πn+1 ◦ [r](x) =

n∑

i=1

πn+1

(
[r](ai)[ri](xi)

)
+

m∑

j=1

πn+1 ◦ [r](bj)

=
n∑

i=1

[r](ai)πn ◦ [ri](xi) +
m∑

j=1

[r] ◦ πn+1(bj)

=
n∑

i=1

[r](ai)[ri] ◦ πn(xi) +
m∑

j=1

[r] ◦ πn+1(bj) induction

=

n∑

i=1

[r]
(
aiπn(xi)

)
+

m∑

j=1

[r] ◦ πn+1(bj)

=

n∑

i=1

[r] ◦ πn+1(aixi) +

m∑

j=1

[r] ◦ πn+1(bj)

= [r] ◦ πn+1(x).

This proves the Lemma.

40

On the Register Operator: 2.5. The main theorem

Definition (2.5.2)

Consider an element [r] ∈ R. A register is a natural number n that stands
for the nth position in the register operator [r]. Let x be a process in GRS.
Then we define reg(x) to be the collection of all the registers that occur in x.
The axiomatization of all this is as follows:

reg(a) = ∅ if a ∈ A′ ∪ U(D)

reg(γ) = ∅ where γ is a special constant

reg
(
u(d ↓Nk)

)
= Nk

reg
(
u
(
f(↑Nk)

))
= Nk

reg
(
u
(
f(↑Nk) ↓Ml

))
= Nk ∪Ml

reg(γ · x) = reg(x) if γ 6= δ

reg(δ · x) = ∅

reg(a · x) = reg(a) ∪ reg(x) if a 6= δ

reg(x+ y) = reg(x) ∪ reg(y)

and for infinite processes we add the following axiom:

reg(x) =

∞⋃

n=1

reg
(
πn(x)

)

These axioms do not tell us instantaneously how reg(x ‖ y) has to be
evaluated if x, y ∈ GRS. Below we will prove a lemma (see corollary (2.5.6)(iii))
that states that reg(x ‖ y) ⊆ reg(x) ∪ reg(y). In order to show the lemma, we
will first need some intermediate results.

Lemma (2.5.3)

Let x, y ∈ GRS, then the following holds:

∀l ≥ 1, ∀k (1 ≤ k ≤ l) : reg
(
πk(x)

)
⊆ reg

(
πl(x)

)
.

Proof. We prove this lemma with induction on l. If l = 1, then we have k = 1,
so there is nothing to prove. Now let l > 1, and 1 ≤ k ≤ l. As x ∈ GRS, we
have that:

x =

n∑

i=1

aixi +

m∑

j=1

bj .

First we consider the case k = 1:

reg
(
πk(x)

)
=

n⋃

i=1

reg(ai) ∪
m⋃

j=1

reg(bj)

⊆
n⋃

i=1

(

reg(ai) ∪ reg
(
πl−1(xi)

))

∪
m⋃

j=1

reg(bj)

= reg
(
πl(x)

)

41

On the Register Operator: 2.5. The main theorem

Now let 1 < k ≤ l, then we deduce:

reg
(
πk(x)

)
=

n⋃

i=1

reg(ai) ∪ reg
(
πk−1(xi)

)
∪

m⋃

j=1

reg(bj)

⊆
n⋃

i=1

reg(ai) ∪ reg
(
πl−1(xi)

)
∪

m⋃

j=1

reg(bj) induction

= reg
(
πl(x)

)

This finishes the proof of 2.5.3.

Lemma (2.5.4)

(i) ∀n ≥ 1,∀k ≥ n+ 1,∀l ≥ n reg
(
πn+1(x y)

)
⊆ reg

(
πk(x)

)
∪ reg

(
πl(y)

)

(ii) ∀n ≥ 1,∀k, l ≥ n reg
(
πn(x | y)

)
⊆ reg

(
πk(x)

)
∪ reg

(
πl(y)

)

(iii) ∀n ≥ 1,∀k, l ≥ n reg
(
πn(x ‖ y)

)
⊆ reg

(
πk(x)

)
∪ reg

(
πl(y)

)
.

Proof. We will verify 2.5.4 with induction on n. First we prove (i)–(iii) for
n = 1. Because of proposition (2.4.3)(i) and lemma (2.5.3), we immediately
see:

reg
(
π1(x y)

)
= reg

(
π1(x)

)

⊆ reg
(
πk(x)

)

⊆ reg
(
πk(x)

)
∪ reg

(
πl(x)

)

First we prove (ii) for atomic actions a, b ∈ A. Observe that (ii) has the
ensuing form:

reg(a | b) ⊆ reg(a) ∪ reg(b).

If a | b = δ, there is nothing to prove. Recall that the set of atoms consists of:
A = A′ ∪U(D)∪U(D ↓)∪U(F)∪U(F ↓). If a | b = c and c ∈ A′ ∪U(D), then
we obviously have reg(c) = ∅. So in this case there is nothing to prove either.
Now we will treat the verification of the nine remaining possibilities.

reg
(
u(d) | v(d ↓Nk)

)
= reg

(
w(d ↓Nk)

)
1

= ∅ ∪Nk

= reg
(
u(d)

)
∪ reg

(
v(d ↓Nk)

)

reg
(
u(d) | v

(
f(↑Nk)

))
= reg

(
w

(
(d ∧ f)(↑Nk)

))
2

= ∅ ∪Nk

= reg
(
u(d)

)
∪ reg

(
v
(
f(↑Nk)

))

reg
(
u(d) | v

(
f(↑Nk) ↓Ml

))
= reg

(
w

(
(d ∧ f)(↑Nk) ↓Ml

))
3

= ∅ ∪Nk ∪Ml

42

On the Register Operator: 2.5. The main theorem

= reg
(
u(d)

)
∪ reg

(
v
(
f(↑Nk) ↓Ml

))

reg
(
u(d ↓Nk) | v(d ↓Ml)

)
= reg

(
w(d ↓Nk,Ml)

)
4

= Nk ∪Ml

= reg
(
u(d ↓Nk)

)
∪ reg

(
v(d ↓Ml)

)

reg
(
u(d ↓Nk)

)
| v

(
f(↑Ml)

))
⊆ reg

(
w

(
(d ∧ f)(↑Ml) ↓Nk

))
5

= Nk ∪Ml

= reg
(
u(d ↓Nk)

)
∪ reg

(
v
(
f(↑Ml)

))

reg
(
u(d ↓Nk) | v

(
f(↑Ml) ↓Pn

))
⊆ reg

(
w

(
(d ∧ f)(↑Ml) ↓Nk, Pn

))
6

= Nk ∪ (Ml ∪ Pn)

= reg
(
u(d ↓Nk)

)

∪ reg
(
v
(
f(↑Ml) ↓Pn

))

(Su = Nk ∪Ml) :

reg
(
u
(
f(↑Nk)

)
| v

(
g(↑Ml)

))
= reg

(
w

(
(f ′ ∧ g′)(↑Su)

))
7

= Su

= Nk ∪Ml

= reg
(
u
(
f(↑Nk)

))

∪ reg
(
v
(
g(↑Ml)

))

reg
(
u
(
f(↑Nk)

)
| v

(
g(↑Ml) ↓Pn

))
⊆ reg

(
w

(
(f ′ ∧ g′)(↑Su) ↓Pn

))
8

= Nk ∪ (Ml ∪ Pn)

= reg
(
u
(
f(↑Nk)

))

∪ reg
(
v
(
g(↑Ml) ↓Pn

))

reg
(
u
(
f(↑Nk) ↓Pn

)
| v

(
g(↑Ml) ↓Qs

))
⊆ reg

(
w

(
(f ′ ∧ g′)(↑Su) ↓Pn, Qs

))
9

= (Nk ∪ Pn) ∪ (Ml ∪Qs)

= reg
(
u
(
f(↑Nk) ↓Pn

))

∪ reg
(
v
(
g(↑Ml) ↓Qs

))

Now it is also easy to see that (ii) is valid if n = 1, albeit we still have to
distinguish several cases. Because of the fact that x, y ∈ GRS, we have:

x =

n∑

i=1

aixi +

m∑

j=1

bj = x′ + x′′, y =

p
∑

s=1

csys +

q
∑

t=1

dt = y′ + y′′.

First we treat the situation that k = l = 1.

reg
(
π1(x | y)

)
=

n.p
⋃

i,s=1

reg(ai | cs) ∪

n,q
⋃

i,t=1

reg(ai | dt)

43

On the Register Operator: 2.5. The main theorem

∪

m,p
⋃

j,s=1

reg(bj | cs) ∪

m,q
⋃

j,t=1

reg(bj | dt)

⊆

n,p
⋃

i,s=1

(
reg(ai) ∪ reg(cs)

)
∪

n,q
⋃

i,t=1

(
reg(ai) ∪ reg(dt)

)

∪

n,p
⋃

j,s=1

(
reg(bj) ∪ reg(cs)

)
∪

m,q
⋃

j,t=1

(
reg(bj) ∪ reg(dt)

)

=

n⋃

i=1

reg(ai) ∪
m⋃

j=1

reg(bj) ∪

p
⋃

s=1

reg(cs) ∪

q
⋃

t=1

reg(dt)

=
n⋃

i=1

reg
(
π1(aixi)

)
∪

m⋃

j=1

reg
(
π1(bj)

)

∪

p
⋃

s=1

reg
(
π1(csys)

)
∪

q
⋃

t=1

reg
(
π1(dt)

)

= reg
(
π1(x)

)
∪ reg

(
π1(y)

)
.

Now we will handle the case k, l > 1. We already saw the first step of the
following display:

reg
(
π1(x | y)

)
⊆

n⋃

i=1

reg(ai) ∪
m⋃

j=1

reg(bj)

∪

p
⋃

s=1

reg(cs) ∪

q
⋃

t=1

reg(dt)

⊆
n⋃

i=1

reg
(
aiπk−1(xi)

)
∪

m⋃

j=1

reg
(
πk(bj)

)

∪

p
⋃

s=1

reg
(
csπl−1(ys)

)
∪

q
⋃

t=1

reg
(
πl(dt)

)

= reg
(
πk(x)

)
∪ reg

(
πl(y)

)
.

If we have k = 1 and l > 1 or k > 1 and l = 1, then we mix the deductions of
the former cases to prove the required property. With this we have finished (ii).
Now it is instantly clear that (iii) is valid if n = 1, so let n ≥ 1 and suppose
that 2.5.4 has been proved up to and including n. We fix arbitrarily chosen
k ≥ n+ 1 and l ≥ n.

reg
(
πn+1(x y)

)
=

n⋃

i=1

(

reg(ai) ∪ reg
(
πn(xi ‖ y)

))

44

On the Register Operator: 2.5. The main theorem

∪
m⋃

j=1

(

reg(bj) ∪ reg
(
πn(y)

))

Since k − 1 ≥ n and l ≥ n, we may use the induction hypothesis:

⊆
n⋃

i=1

(

reg(ai) ∪ reg
(
πk−1(xi)

)
∪ reg

(
πl(y)

))

∪
m⋃

j=1

(

reg(bj) ∪ reg
(
πn(y)

))

= reg
(
πk(x)

)
∪ reg

(
πl(y)

)
∪ reg

(
πn(y)

)
use (2.5.3)

= reg
(
πk(x)

)
∪ reg

(
πl(y)

)
.

Now fix k, l ≥ n+ 1. Then we infer:

reg
(
πn+1(x | y)

)
= reg

(
πn+1(x

′ | y′)
)
∪ reg

(
πn+1(x

′ | y′′)
)

∪ reg
(
πn+1(x

′′ | y′)
)
∪ reg

(
πn+1(x

′′ | y′′)
)
.

We will handle these four terms one at a time:

reg
(
πn+1(x

′ | y′)
)

=

n,p
⋃

i,s=1

reg(ai | cs) ∪ reg
(
πn(xi ‖ ys)

)
1

As k − 1, l − 1 ≥ n, we can use induction:

⊆

n,p
⋃

i,s=1

reg(ai | cs) ∪ reg
(
πk−1(xi)

)
∪ reg

(
πl−1(ys)

)

⊆

n,p
⋃

i,s=1

reg(ai) ∪ reg(cs)

∪ reg
(
πk−1(xi)

)
∪ reg

(
πl−1(ys)

)

= reg
(
πk(x′)

)
∪ reg

(
πl(y

′)
)

reg
(
πn+1(x

′ | y′′)
)

=

n,q
⋃

i,t=1

reg(ai | dt) ∪ reg
(
πn(xi)

)
2

since k − 1 ≥ n, we can use lemma (2.5.3):

⊆

n,q
⋃

i,t=1

reg(ai | dt) ∪ reg
(
πk−1(xi)

)

⊆

n,q
⋃

i,t=1

reg(ai) ∪ reg(dt) ∪ reg
(
πk−1(xi)

)

=

n,q
⋃

i,t=1

reg(ai) ∪ reg
(
πl(dt)

)
∪ reg

(
πk−1(xi)

)

45

On the Register Operator: 2.5. The main theorem

= reg
(
πk(x′)

)
∪ reg

(
πl(y

′′)
)

3 This case is calculated in precisely the same way as the previous case.

reg
(
πn+1(x

′′ | y′′)
)

=

m,q
⋃

j,t=1

reg(bj | dt)4

⊆

m,q
⋃

j,t=1

reg(bj) ∪ reg(dt)

= reg
(
πk(x′′)

)
∪ reg

(
πl(y

′′)
)

Combining these four terms, we see that (ii) is now proved up to and including
n+1, too; and it will be at once clear that (iii) is also valid up to n+1 inclusive.
This ends the proof of 2.5.4.

Corollary (2.5.5)

For all x, y ∈ GRS and for all n ≥ 1, the following holds:

(i) reg
(
πn(x | y)

)
⊆ reg

(
πn(x)

)
∪ reg

(
πn(y)

)

(ii) reg
(
πn(x y)

)
⊆ reg

(
πn(x)

)
∪ reg

(
πn(y)

)

(iii) reg
(
πn(x ‖ y)

)
⊆ reg

(
πn(x)

)
∪ reg

(
πn(y)

)

Corollary (2.5.6)

For all x, y ∈ GRS, the following holds:

(i) reg(x | y) ⊆ reg(x) ∪ reg(y)

(ii) reg(x y) ⊆ reg(x) ∪ reg(y)

(iii) reg(x ‖ y) ⊆ reg(x) ∪ reg(y)

Proof. Let ? be the communication merge, the left-merge, or the merge. Then
we can derive:

reg(x ? y) =

∞⋃

n=1

reg
(
πn(x ? y)

)

⊆
∞⋃

n=1

reg
(
πn(x)

)
∪ reg

(
πn(y)

)

=

∞⋃

n=1

reg
(
πn(x)

)
∪

∞⋃

n=1

reg
(
πn(y)

)

= reg(x) ∪ reg(y).

This concludes the proof of 2.5.6.

46

On the Register Operator: 2.5. The main theorem

Lemma (2.5.7)

Let x ∈ GRS, then the following statements hold:

(i) reg
(
∂H(x)

)
⊆ reg(x)

(ii) reg
(
τI(x)

)
⊆ reg(x)

Proof. Because of the fact that reg(δ) = reg(τ) = ∅, the proof of (i) is anal-
ogous to the proof of (ii). Thence, we omit the proof of (ii). Let x ∈ GRS,
then we have:

x =
n∑

i=1

aixi +
m∑

j=1

bj ,

so we see:

reg
(
∂H(x)

)
=

⋃

ai /∈H

(
reg(ai) ∪ reg(xi)

)
∪

⋃

bj /∈H

reg(bj)

⊆
n⋃

i=1

(
reg(ai) ∪ reg(xi)

)
∪

m⋃

j=1

reg(bj)

= reg(x).

Herewith the proof of 2.5.7 is completed.

Proposition (2.5.8)

Let x ∈ GRS, and suppose that reg(x) = {n1, . . . , nk}. Let

[r] = [d1, . . . , dl] and [s] = [e1, . . . , en]

be register operators with l, n ≥ max{n1, . . . , nk}. If

dni
= eni

for 1 ≤ i ≤ k, then [r](x) = [s](x).

Proof. It is evident that the statement holds for atomic actions. Nevertheless,
as an example we will prove the case a ∈ U(F):

[r]
(
u
(
f(↑Ml)

))
= u

(
f(dm1

, . . . , dml
)
)

= u
(
f(em1

, . . . , eml
)
)

(
{m1, . . . ,ml} ⊆ reg(x)

)

= [s]
(
u
(
f(↑Ml)

))

Now we are going to prove for all [r] and [s] inR—with the properties mentioned
in the proposition—the following with induction on n:

∀n ≥ 1, we have πn ◦ [r](x) = πn ◦ [s](x). (1)

47

On the Register Operator: 2.5. The main theorem

Since x ∈ GRS, we have:

x =

n∑

i=1

aixi +

m∑

j=1

bj , with xi ∈ GRS.

First we prove (1) for n = 1:

π1 ◦ [r](x) =

n∑

i=1

[r](ai) +

m∑

j=1

[r](bj)

=

n∑

i=1

[s](ai) +

m∑

j=1

[s](bj)

= π1 ◦ [s](x).

Now suppose that (1) is true up to n inclusive, then we prove (1) for n+ 1:

On the one hand we can calculate:

πn+1 ◦ [r](x) =
n∑

i=1

[r](ai)πn ◦ [ri](xi) +
m∑

j=1

πn+1 ◦ [r](bj)

=
n∑

i=1

[s](ai)πn ◦ [ri](xi) +
m∑

j=1

πn+1 ◦ [s](bj),

and on the other hand:

πn+1 ◦ [s](x) =

n∑

i=1

πn+1 ◦ [s](aixi) +

m∑

j=1

πn+1 ◦ [s](bj)

=
n∑

i=1

[s](ai)πn ◦ [si](xi) +
m∑

j=1

πn+1 ◦ [s](bj),

for certain [ri], [si] ∈ R (1 ≤ i ≤ n). Hereinafter, we will verify that these pairs
of register operators satisfy the conditions of the proposition. Fix an i with

1 ≤ i ≤ n and let [ri] = [d
(i)
1 , . . . , d

(i)
l] and [si] = [e

(i)
1 , . . . , e

(i)
l]. Since reg(xi) =

{m1, . . . ,mt} ⊆ reg(x), we have l, n ≥ max{m1, . . . ,mt}. Subsequently we
verify the second condition. Choose a j with 1 ≤ j ≤ t. If mj /∈ reg(ai), then
nothing has been changed in this particular position in both [ri] and [si] and

then we unequivocally have d
(i)
mj = e

(i)
mj . So assume that mj ∈ reg(ai). Even in

this case there might be no changes at all, e.g., if ai = r
(
id(↑ mj)

)
. And we

obtain again d
(i)
mj = e

(i)
mj . Now let us additionally suppose that dmj

has been

changed to d′ = d
(i)
mj . Then emj

has been changed as well to d′ = e
(i)
mj . So

in this case, too, we obtain equality. Hence [ri] and [si] satisfy the required
conditions. Now we can use the induction hypothesis and we finally obtain
[ri](xi) = [si](xi). This proves (1), so with the aid of AIP we conclude the
proof of 2.5.8.

48

On the Register Operator: 2.5. The main theorem

Theorem (2.5.9)

Let x, y be closed ACP-terms. If reg(x) ∩ reg(y) = ∅, then the following

holds for all [r] ∈ R:

(i) [r](x y) = [r](x) [r](y),

(ii) [r](x | y) = [r](x) | [r](y),

(iii) [r](x ‖ y) = [r](x) ‖ [r](y).

Proof. We prove this theorem with induction on the sum n of the number of
symbols of x and y. So let us first consider the basis of our induction: the case
n = 2. Then x, y ∈ A.

[r](x y) = [r](x · y)(i)

= [r](x)[r′](y)for a certain [r′] ∈ R

= [r](x)[r](y)(2)

= [r](x) [r](y).

Equality (2) is obtained by proposition (2.5.8) and the fact that

reg(x) ∩ reg(y) = ∅.

For, we can freely change every register of [r′] that does not occur in reg(y).
But the only registers that could have been changed are registers in reg(x).
This means that we can use proposition (2.5.8) and we find: [r](y) = [r′](y).

Now we are going to prove the second claim of 2.5.9 for atomic actions.
Recall that we have several different atomic actions, so we have a lot of cases.
Even if we use the fact that for closed terms t and s we have s | t = t | s there
are still 15 possibilities. We choose an x five times, and we vary y for all the
cases:

1 x = a ∈ A′

1.1 [r](a | b) = [r](δ) = a | b = [r](a) | [r](b).

1.2 [r]
(
a | u(d)

)
= [r](δ) = a | u(d) = [r](a) | [r]

(
u(d)

)

1.3 [r]
(
a | u(d ↓Nk)

)
= δ = a | u(d) = [r](a) | [r]

(
u(d ↓Nk)

)

1.4 [r]
(
a | u

(
f(↑Nk)

))
= δ = a | u

(
f(dn1

, . . . , dnk
)
)

= [r](a) | [r]
(
u
(
f(↑Nk)

))

1.5 [r]
(
a | u

(
f(↑Nk) ↓Ml

))
= δ = a | u

(
f(dn1

, . . . , dnk
)
)

= [r](a) | [r]
(
u
(
f(↑Nk) ↓Ml

))

2 x = u(d) ∈ U(D)

2.1 y ∈ U(D)

2.1.1 [r]
(
u(d) | v(e)

)
= δ = u(d) | v(e) = [r]

(
u(d)

)
| [r]

(
v(e)

)

49

On the Register Operator: 2.5. The main theorem

2.1.2 [r]
(
u(d) | v(d)

)
= [r]

(
w(d)

)
= u(d) | v(d) = [r]

(
u(d)

)
| [r]

(
v(d)

)

We have seen that we subdivided 2.1 here. Henceforth, we will omit the first

subcase (2.1.1).

2.2 [r]
(
u(d) | v(d ↓Nk)

)
= [r]

(
w(d ↓Nk)

)
= w(d) = u(d) | v(d)

= [r]
(
u(d)

)
| [r]

(
v(d ↓Nk)

)

2.3 [r]
(
u(d) | v

(
f(↑Nk)

))
= [r]

(
w

(
(d ∧ f)(↑Nk)

))

=

{

w(d), if d = f(dn1
, . . . dnk

)
δ, otherwise

= u(d) | v
(
f(dn1

, . . . dnk
)
)

= [r]
(
u(d)

)
| [r]

(
v
(
f(↑Nk)

))

Notice that, because of reg(x) ∩ reg(y) = ∅, the communications satisfy the

register conditions (see section 2.2, page 25).

2.4 [r]
(
u(d) | v

(
f(↑Nk) ↓Ml

))
= [r]

(
w

(
(d ∧ f)(↑Nk) ↓Ml

))

=

{

w(d), if d = f(dn1
, . . . dnk

)
δ, otherwise

= u(d) | v
(
f(dn1

, . . . dnk
)
)

= [r]
(
u(d)

)
| [r]

(
v
(
f(↑Nk) ↓Ml

))

3 x = u(d ↓Nk) ∈ U(D ↓)

3.1 [r]
(
u(d ↓Nk) | v(d ↓Ml)

)
= [r]

(
w(d ↓Nk,Ml)

)

= w(d) = u(d) | v(d) = [r]
(
u(d ↓Nk)

)
| [r]

(
v(d ↓Ml)

)

3.2 [r]
(
u(d ↓Nk) | v

(
f(↑Ml)

))
= [r]

(
w

(
(d ∧ f)(↑Ml) ↓Nk

))

=

{

w(d), if d = f(dn1
, . . . , dnk

)
δ, otherwise.

= u(d) | v
(
f(dn1

, . . . , dnk
)
)

= [r]
(
u(d ↓Nk)

)
| [r]

(
v
(
f(↑Ml)

))

3.3 [r]
(
u(d ↓Nk) | v

(
f(↑Ml) ↓Pn

))
= [r]

(
w

(
(d ∧ f)(↑Ml) ↓Nk, Pn

))

=

{

w(d), if d = f(dn1
, . . . , dnk

)
δ, otherwise.

= u(d) | v
(
f(dn1

, . . . , dnk
)
)

= [r]
(
u(d ↓Nk)

)
| [r]

(
v
(
f(↑Ml) ↓Pn

))

4 x = u
(
f(↑Nk)

)
∈ U(F)

4.1 [r]
(
u
(
f(↑Nk)

)
| v

(
g(↑Ml)

))
= [r]

(
w

(
(f ′ ∧ g′)(↑Su)

))

=

{

w
(
f(dn1

, . . . , dnk
)
)
, if f(dn1

, . . . , dnk
) = g(dm1

, . . . , dml
)

δ, otherwise.

= u
(
f(dn1

, . . . , dnk
)
)
| v

(
g(dm1

, . . . , dml
)
)

= [r]
(
u
(
f(↑Nk)

))
| [r]

(
v
(
g(↑Ml)

))

50

On the Register Operator: 2.5. The main theorem

4.2 [r]
(
u
(
f(↑Nk)

)
| v

(
g(↑Ml) ↓Pn

))
= [r]

(
w

(
(f ′ ∧ g′)(↑Su) ↓Pn

))

=

{

w
(
f(dn1

, . . . , dnk
)
)
, if f(dn1

, . . . , dnk
) = g(dm1

, . . . , dml
)

δ, otherwise.

= u
(
f(dn1

, . . . , dnk
)
)
| v

(
g(dm1

, . . . , dml
)
)

= [r]
(
u
(
f(↑Nk)

))
| [r]

(
v
(
g(↑Ml) ↓Pn

))

5 x = u
(
f(↑Nk) ↓Pn

)
∈ U(F)

5.1 [r]
(
u
(
f(↑Nk) ↓Pn

)
| v

(
g(↑Ml) ↓Qs

))
= [r]

(
w

(
(f ′ ∧ g′)(↑Su) ↓Pn, Qs

))

=

{

w
(
f(dn1

, . . . , dnk
)
)
, if f(dn1

, . . . , dnk
) = g(dm1

, . . . , dml
)

δ, otherwise.

= u
(
f(dn1

, . . . , dnk
)
)
| v

(
g(dm1

, . . . , dml
)
)

= [r]
(
u
(
f(↑Nk) ↓Pn

))
| [r]

(
v
(
g(↑Ml) ↓Qs

))

Now we have exhaustively seen that (ii) holds for atomic actions. We
already proved that (i) is valid for atomic actions, so it is immediately clear
that (iii) also holds for atoms. Hence assume that 2.5.9 has been proved for
closed terms x and y with the sum of the number of symbols less than or equal
to n. Choose now closed terms x and y with the sum of the number of symbols
equal to n+ 1. Since x and y are closed terms we have:

x =

n∑

i=1

aixi +

m∑

j=1

bj = x′ + x′′, y =

p
∑

k=1

ckyk +

q
∑

l=1

dl = y′ + y′′.

for certain closed terms x1, . . . , xn, y1, . . . , yp. Now we calculate [r](x y):

[r](x y) =
n∑

i=1

[r](ai)[ri](xi ‖ y) +
m∑

j=1

[r](bj)[rj](y)

=

n∑

i=1

[r](ai) ·
(
[ri](xi) ‖ [ri](y)

)
+

m∑

j=1

[r](bj) [rj](y)(induction)

=

n∑

i=1

[r](ai)[ri](xi) [ri](y) +

m∑

j=1

[r](bj) [rj](y)

=

n∑

i=1

[r](aixi) [ri](y) +

m∑

j=1

[r](bj) [rj](y)

=

n∑

i=1

[r](aixi) [r](y) +

m∑

j=1

[r](bj) [r](y)(3)

= [r](x) [r](y).

51

On the Register Operator: 2.5. The main theorem

Notice that we have changed [ri] to [r] in the first term of (3), and [rj] to [r]
in the second term. We can this do because of:

reg(ai) ∩ reg(y) ⊆ reg(x) ∩ reg(y) = ∅, 1 ≤ i ≤ n

and

reg(bj) ∩ reg(y) ⊆ reg(x) ∩ reg(y) = ∅ 1 ≤ j ≤ m,

and proposition (2.5.8). In the sequel we will tacitly change registers as ex-
plained above. Now we calculate [r](x | y):

[r](x | y) = [r](x′ | y′) + [r](x′ | y′′) + [r](x′′ | y′) + [r](x′′ | y′′).

Below we will calculate these four terms one at a time:

[r](x′ | y′) =

n,p
∑

i,k=1

[r](ai | ck)[ri,k](xi ‖ yk)1

=

n,p
∑

i,k=1

[r](ai | ck)
(
[ri,k](xi) ‖ [ri,k](yk)

)
(induction)

=

n,p
∑

i,k=1

(
[r](ai) | [r](ck)

)(
[ri,k](xi) ‖ [ri,k](yk)

)

=

n,p
∑

i,k=1

[r](ai)[ri,k](xi) | [r](ck)[ri,k](yk)

=

n,p
∑

i,k=1

[r](ai)[ri](xi) | [r](ck)[rk](yk)

= [r](x′) | [r](y′).

[r](x′ | y′′) =

n,q
∑

i,l=1

[r](ai | dl)[ri,l](xi)2

=

n,q
∑

i,l=1

[r](ai | dl)[ri](xi)

=

n,q
∑

i,l=1

(
[r](ai) | [r](dl)

)
[ri](xi)

=

n,q
∑

i,l=1

[r](aixi) | [r](dl)

= [r](x′) | [r](y′′).

[r](x′′ | y′) =

m,p
∑

j,k=1

[r](bj | ck)[rj,k](yk)3

52

On the Register Operator: 2.5. The main theorem

=

m,p
∑

j,k=1

[r](bj | ck)[rk](yk)

=

m,p
∑

j,k=1

(
[r](bj) | [r](ck)

)
[rk](yk)

=

m,p
∑

j,k=1

[r](bj) | [r](ckyk)

= [r](x′′) | [r](y′).

[r](x′′ | y′′) =

m,q
∑

j,l=1

[r](bj | dl)4

=

m,q
∑

j,l=1

[r](bj) | [r](dl)

= [r](x′′) | [r](y′′).

If we combine these four equations we immediately see that (ii) is correct up
to and including n+ 1. We also proved that (i) is valid up to n+ 1 inclusive,
thus combining these results we obtain that (iii) is true up to n+ 1 inclusive.
This ends the proof of 2.5.9.

Lemma (2.5.10)

If x, y ∈ GRS then we have: x ‖ y ∈ GRS.

Proof. If we combine theorem 2.14 and proposition 2.15 in [44], the lemma
immediately follows. This finishes 2.5.10.

The main theorem (2.5.11)

Let n ≥ 1. If we have for x1, . . . , xn ∈ GRS:

∀i, j : 1 ≤ i < j ≤ n : reg(xi) ∩ reg(xj) = ∅,

then ∀[r] ∈ R : [r](x1 ‖ x2 ‖ · · · ‖ xn) = [r](x1) ‖ [r](x2) ‖ · · · ‖ [r](xn).

Proof. We prove 2.5.11 with induction on n. Let us first consider the case
n = 2: for x and y with the properties mentioned in 2.5.11, we are to show
[r](x ‖ y) = [r](x) ‖ [r](y). In order to prove this, it suffices to prove:

∀k ≥ 1 : πk ◦ [r](x ‖ y) = πk

(
[r](x) ‖ [r](y)

)
, (4)

because of AIP. We now will prove (4) below:

πk ◦ [r](x ‖ y) = [r] ◦ πk(x ‖ y) (2.5.1)

= [r] ◦ πk

(
πk(x) ‖ πk(y)

)
(2.4.4)(iii)

= πk ◦ [r]
(
πk(x) ‖ πk(y)

)
(2.5.1)

Observe that πk(x) and πk(y) are closed terms, so we can use here (2.5.9)

53

On the Register Operator: 2.5. The main theorem

= πk

(
[r] ◦ πk(x) ‖ [r] ◦ πk(y)

)

= πk

(
πk ◦ [r](x) ‖ πk ◦ [r](y)

)
(2.5.1)

= πk

(
[r](x) ‖ [r](y)

)
. (2.4.4)(iii)

We now finished the case n = 2. Suppose that 2.5.11 has been proved up to n
inclusive, then we prove it for n+ 1:

∀1 ≤ i ≤ n : reg(xi) ∩ reg(xn+1) = ∅ =⇒
(n⋃

i=1

reg(xi)
)

∩ reg(xn+1) = ∅.

Since, with induction, it follows easily from lemma (2.5.10), that the merge
of n processes, that are in GRS, is itself in GRS, we can use the induction
hypothesis below:

[r](x1 ‖ · · · ‖ xn+1) = [r]
(
(x1 ‖ · · · ‖ xn) ‖ xn+1

)

= [r](x1 ‖ · · · ‖ xn) ‖ [r](xn+1) (n = 2)

=
(
[r](x1) ‖ · · · ‖ [r](xn)

)
‖ [r](xn+1) induction

= [r](x1) ‖ · · · ‖ [r](xn+1).

This concludes the proof of 2.5.11.

At this point we need another result which states that if we alter the
positions of the registers in a process and simultaneously alter the contents of
the register operator, then we want this process to behave exactly the same.
As an example, consider the following process: [d]

(
r(↑ 1)

)
. Now we alter

the position of the register to the second position, and we also put the d on
this position: [d′, d]

(
r(↑ 2)

)
. If we eliminate the register operator in the first

expression, we obtain: r(d). If we do the same with the second expression then
we derive the same result. Below we will axiomatize these transformations on
registers operators and processes.

Definition (2.5.12)

Let x ∈ GRS. Suppose that we have a bijection σ between reg(x) and
M ⊂ N. Define a function hσ : A −→ A ∪ C as follows:

hσ

(
u(d ↓Nk)

)
= u

(
d ↓σ(Nk)

)

hσ

(
u
(
f(↑Nk)

))
= u

(
f
(
↑σ(Nk)

))

hσ

(
u
(
f(↑Nk) ↓Ml

))
= u

(
f
(
↑σ(Nk)

)
↓σ(Ml)

)
,

and for all the other atomic actions:

hσ(a) = a.

54

On the Register Operator: 2.5. The main theorem

Now we define ρhσ
to be the renaming belonging to hσ. For the sake of conve-

nience, we will enumerate hereinafter the relevant axioms for ρhσ
. The defini-

tion of a renaming operator can also be found in (1.3.1); see page 15.

ρhσ
(γ) = γ

ρhσ
(a) = hσ(a)

ρhσ
(x · y) = ρhσ

(x) · ρhσ
(y)

ρhσ
(x+ y) = ρhσ

(x) + ρhσ
(y)

Where a ∈ A, γ is a special constant, and x, y are processes.

Lemma (2.5.13)

Let ρhσ
be as in definition (2.5.12) above, then the following holds:

∀n ∈ N, ∀x ∈ GRS : ρhσ
◦ πn(x) = πn ◦ ρhσ

(x).

Proof. We will prove this statement with induction on n. First consider the
case n = 1:

recall that x =

n∑

i=1

aixi +

m∑

j=1

bj

ρhσ
◦ π1(x) = ρhσ

◦ π1

(n∑

i=1

aixi +

m∑

j=1

bj

)

=
n∑

i=1

ρhσ
(ai) +

m∑

j=1

ρhσ
(bj)

=

n∑

i=1

π1

(
ρhσ

(ai) · ρhσ
(xi)

)
+

m∑

j=1

π1 ◦ ρhσ
(bj)

= π1 ◦ ρhσ
(x).

Now assume 2.5.13 is correct up to n inclusive, then we prove it for n+ 1:

ρhσ
◦ πn+1(x) =

n∑

i=1

ρhσ
(ai) · ρhσ

◦ πn(xi) +
m∑

j=1

ρhσ
(bj)

=

n∑

i=1

ρhσ
(ai) · πn ◦ ρhσ

(xi) +

m∑

j=1

πn+1 ◦ ρhσ
(bj)

= πn+1 ◦ ρhσ
(x).

This ends the verification of 2.5.13.

55

On the Register Operator: 2.5. The main theorem

Proposition (2.5.14)

We use here the notations of definition (2.5.12). Let x ∈ GRS. Let

l ≥ max{y : y ∈ reg(x)}, n ≥ max{y : y ∈M}.

Let [r] = [d1, . . . , dl], [s] = [e1, . . . , en] ∈ R. Then we have:

∀y ∈ reg(x) : dy = eσ(y) =⇒ [r](x) = [s] ◦ ρhσ
(x).

Proof. First we show that 2.5.14 is correct for atomic actions: If a ∈ A′∪U(D),
then there is nothing to prove. Now we will handle the three remaining cases:

[r]
(
u(d ↓Nk)

)
= u(d)

= [s]
(
u
(
d ↓σ(Nk)

))

= [s] ◦ ρhσ

(
u(d ↓Nk)

)

[r]
(
u
(
f(↑Nk)

))
= u

(
f(dn1

, . . . , dnk
)
)

= u
(
f(dσ(n1), . . . , dσ(nk))

)

= [s]
(
u
(
f
(
↑σ(Nk)

)))

= [s] ◦ ρhσ

(
u
(
f(↑Nk)

))

[r]
(
u
(
f(↑Nk) ↓Ml

))
= u

(
f(dn1

, . . . , dnk
)
)

= u
(
f(dσ(n1), . . . , dσ(nk))

)

= [s]
(
u
(
f
(
↑σ(Nk)

)
↓σ(Ml)

))

= [s] ◦ ρhσ

(
u
(
f(↑Nk) ↓Ml

))
.

At this point, we will prove 2.5.14 for closed terms. We prove the statement
with induction on the number of symbols of x =

∑n
i=1 aixi +

∑m
j=1 bj .

On the one hand we have:

[r](x) =

n∑

i=1

[r](ai)[ri](xi) +

m∑

j=1

[r](bj),

and on the other hand we have:

[s] ◦ ρhσ
(x) =

n∑

i=1

[s] ◦ ρhσ
(ai)[si] ◦ ρhσ

(xi) +
m∑

j=1

[s] ◦ ρhσ
(bj)

=

n∑

i=1

[r](ai)[si] ◦ ρhσ
(xi) +

m∑

j=1

[r](bj)

Write [ri] = [d
(i)
1 , . . . , d

(i)
l] and [si] = [e

(i)
1 , . . . , e

(i)
n]. Now we show the following:

∀y ∈ reg(xi) : d(i)
y = e

(i)
σ(y).

56

On the Register Operator: 2.5. The main theorem

If y /∈ reg(ai), then there is nothing to prove. Thus assume that y ∈ reg(ai).
Even in this situation there might be no changes at all, e.g., if only a register

is read. So let us moreover assume that dy is changed to d′ = d
(i)
y , then eσ(y)

is changed to d′ = e
(i)
σ(y) as well. This means that we may use the induction

hypothesis and we see:
[ri](xi) = [si] ◦ ρhσ

(xi).

Finally, let x ∈ GRS. Fix an n ∈ N, then it suffices to make the following
calculation:

πn ◦ [r](x) = [r] ◦ πn(x) (2.5.1)

= [s] ◦ ρhσ
◦ πn(x)

= [s] ◦ πn ◦ ρhσ
(x) (2.5.13)

= πn ◦ [s] ◦ ρhσ
(x). (2.5.1)

Herewith we ended the proof of the proposition.

Theorem (2.5.15)

Let notations be as in definition (2.5.12). For all x, y ∈ GRS the following

holds:

(i) ρhσ
(x y) = ρhσ

(x) ρhσ
(y)

(ii) ρhσ
(x | y) = ρhσ

(x) | ρhσ
(y)

(iii) ρhσ
(x ‖ y) = ρhσ

(x) ‖ ρhσ
(y).

Proof. First we prove 2.5.15 for closed terms. This we do with induction
on the sum of the number of symbols of x and y. The proof of (i) for atomic
actions is trivial. The same applies to the proof of (ii) for atomic actions, albeit
we have to distinguish a lot of cases. Due to the fact that ρhσ

distributes over
the alternative composition, the proof of (iii)—for atomic actions—is simple,
too. Now we prove the induction step for (i):

ρhσ
(x y) =

n∑

i=1

ρhσ
(ai) · ρhσ

(xi ‖ y) +

m∑

j=1

ρhσ
(bj) · ρhσ

(y)

=

n∑

i=1

ρhσ
(ai) ·

(
ρhσ

(xi) ‖ ρhσ
(y)

)
+

m∑

j=1

ρhσ
(bj) ρhσ

(y)

=

n∑

i=1

ρhσ
(aixi) ρhσ

(y) +

m∑

j=1

ρhσ
(bj) ρhσ

(y)

= ρhσ
(x) ρhσ

(y).

The verification of (ii):

ρhσ
(x | y) = ρhσ

(x′ | y′) + ρhσ
(x′ | y′′) + ρhσ

(x′′ | y′) + ρhσ
(x′′ | y′′)

As an example we treat the case ρhσ
(x′ | y′):

57

On the Register Operator: 2.5. The main theorem

ρhσ
(x′ | y′) =

n,p
∑

i,s=1

ρhσ
(ai | cs) · ρhσ

(xi ‖ ys)

=

n,p
∑

i,s=1

(
ρhσ

(ai) | ρhσ
(cs)

)
·
(
ρhσ

(xi) ‖ ρhσ
(ys)

)

=

n,p
∑

i,s=1

ρhσ
(aixi) | ρhσ

(csys)

= ρhσ
(x′) | ρhσ

(y′).

Using the aforecited distributivity again, the proof of (iii) is obvious. Now we
drop the assumption about x and y being closed terms. Let ? be the merge,
the left-merge, or the communication merge, then we calculate for each n ≥ 1:

πn ◦ ρhσ
(x ? y) = ρhσ

◦ πn(x ? y) (2.5.13)

= ρhσ
◦ πn

(
πn(x) ? πn(y)

)
(2.4.4)

= πn ◦ ρhσ

(
πn(x) ? πn(y)

)
(2.5.13)

Recall that πn(x) and πn(y) are closed terms, so we can apply 2.5.15.

= πn

(
ρhσ
◦ πn(x) ? ρhσ

◦ πn(y)
)

= πn

(
πn ◦ ρhσ

(x) ? πn ◦ ρhσ
(y)

)
(2.5.13)

= πn

(
ρhσ

(x) ? ρhσ
(y)

)
(2.4.4)

With the aid of AIP, we conclude this proof.

2.6. An Application

As an application of the theory that we treated so far, we discuss in this section
an elaborate example. We will give a formal proof of a theorem on palindrome
recognition (see section 5.1 theorem 5.1 in [44]). We do not intend to explain
the theory of systolic arrays, nor the intuition behind the specifications that
will be given hereinafter. We merely see the proof of this theorem as an appli-
cation of the register operator, not the implications of this theorem. For a full
explanation of the implications we advise the reader to read section 5.1 of [44].

Here is a copy of table 23 on page 135 from [44]:

PAL0(w) = s1(true) · PAL0(w)
(
|w| ≥ 0

)

PALk+1(ε) = sk+2(true) · PALk+1(ε)

+
∑

x∈S

rk+2(x) · sk+2(true) · PALk+1(x)

PALk+1(w) =
∑

x∈S

rk+2(x) · sk+2

(
ispal(x · w)

)

· PALk+1(x · w)
(
0 < |w| < 2(k + 1)

)

PALk+1(w) = δ
(
2(k + 1) ≤ |w|

)

58

On the Register Operator: 2.6. An Application

Where S is a finite set of symbols from which the input strings are built up. Now
|w| stands for the length of the string w. A predicate ispal is also used, with
strings of symbols as its domain which is true iff its argument is a palindrome.
Furthermore we have B := {true, false}. Now we will give hereinafter the
specification of a cell Ci as it appears in [44]:

Ci = si+1(true) · Ci +
∑

x∈S

ri+1(x) · si+1(true) · C ′
i(x)

C′
i(x) =

∑

y∈S

ri+1(y) ·
∑

v∈B

ri(v) · C
′′
i (x, y, v)

+
∑

v∈B

ri(v) ·
∑

y∈S

ri+1(y) · C
′′
i (x, y, v)

C′′
i (x, y, v) =

(
si+1

(
(x = y) & v

)
‖ si(y)

)
· C′

i(x)

TC = s1(true) · TC .

For the sake of clarity, we here eliminated the merge in the second equation,
in order to obtain directly the correct form of the specification. Consider the
case i = 1. If we compare the defining equations of C ′

1(x) with equations (14)
and (15) of section 2.3, we can conclude with the use of RSP, that P ′′ = C′

1(x).
This means that we have, because of theorem (2.3.3):

∀d, e ∈ D : [d, e](X ′′) = C′
1(x),

where X ′′ is defined in equations (17) and (18) of section 2.3. What we want to
do now, is to modify the specification of Ci by incorporating, in a notationally
correct way, the defining equations of X ′′ in the whole specification. Now let us
consider the result (where fx is the function that we defined in equation (16)
of section 2.3):

Xi = si+1(true) ·Xi +
∑

x∈S

ri+1(x) · si+1(true) ·Xi(x)

Xi(x) =
(∑

y∈S

ri+1(y ↓ 2i)
∥
∥

∑

v∈B

ri(v ↓ 2i− 1)
)

· Yi(x)

Yi(x) =
(
si+1

(
fx(↑ 2i− 1, ↑ 2i)

)
‖ si

(
id(↑ 2i)

))
·Xi(x)

TC = s1(true) · TC .

We have just seen that [d, e](X ′′) = [d, e]
(
X1(x)

)
= C′

1(x), and we also want,
of course, that the following holds:

∀d1, . . . , d2i ∈ D : [d1, . . . , d2i]
(
Xi(x)

)
= C′

i(x).

This we can obtain by direct calculation, as was done in section 2.3 for the
case i = 1, but we will prove this with the use of proposition (2.5.14). For,

59

On the Register Operator: 2.6. An Application

there is a bijection σ : reg
(
X1(x)

)
−→ reg

(
Xi(x)

)
defined by the following two

equations: σ(1) = 2i−1 and σ(2) = 2i. Let ρ be the renaming that transforms
C′

1(x) into C ′
i(x) (in fact r1 7→ ri, r2 7→ ri+1, s1 7→ si, s2 7→ si+1). Now we

can derive:

C′
i(x) = ρ

(
C′

1(x)
)

= [d, e] ◦ ρ
(
X1(x)

)
(2.3.3)

= [d1, . . . , d2i−2, d, e] ◦ ρhσ
◦ ρ

(
X1(x)

)
(2.5.14)

= [d1, . . . , d2i−2, d, e]
(
Xi(x)

)
.

Subsequently we want to characterize the systolic array from which we will

prove that it is bisimilar with PALk(ε).

The encapsulation set Hk of actions resulting in a deadlock is defined as

Hk =
{
si(x), ri(y)

∣
∣ x, y ∈ S and i < k + 1

}
,

and the abstraction set I of internal communication actions is defined as

I =
{
ci(x)

∣
∣ x ∈ S and i ∈ N

}
.

Define

M(k) =

{

τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ · · · ‖ X1 ‖ TC

)
, if k > 0;

TC , if k = 0

where

[r(k)] ∈ Rk =
{

[d1, . . . , d2k]
∣
∣ di ∈ D (:= S ∪B) for all 1 ≤ i ≤ 2k

}
.

Now we will show that the modified M(k) is in fact the same as the M(k)
that is defined in [44]. To avoid ambiguity, we write M ′(k) for the one that is
defined in [44]:

M ′(k) = tdk(Ck ‖ · · · ‖ C1 ‖ TC).

Observe that we have for each k > 0 : reg(Xi) ∩ reg(Xj) = ∅, for all i, j ∈ N
with 1 ≤ i < j ≤ k. This means that, because of theorem (2.5.11), the register
operator distributes over the merge. This yields:

M(k) = tdk
(
[r(k)](Xk) ‖ · · · ‖ [r(k)](X1) ‖ TC

)
.

We can now evaluate [r(k)](Xi) for all 1 ≤ i ≤ k:

[r(k)](Xi) = si+1(true)[r(k)](Xi) +
∑

x∈S

ri+1(x) · si+1(true)[r(k)]
(
Xi(x)

)
.

Above, we have just seen the following: [r(k)]
(
Xi(x)

)
= C′

i(x). Observe that we
have 2k registers instead of 2i. In this case we may also use proposition (2.5.14),
quod vide. Hence we have [r(k)](Xi) = Ci. Thus we find M ′(k) = M(k).

60

On the Register Operator: 2.6. An Application

Lemma (2.6.1)

Let [r(k)] = [d1, . . . , d2k−2, ispal(v), y] ∈ Rk. Then, ∀x, y ∈ S, ∀v ∈ S∗

such that |v| ≤ 2k − 1, we have:

τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)

=

{
τ · sk+1

(
ispal(y · v · x)

)
· PALk(y · v · x), if |v| < 2k − 2;

sk+1

(
ispal(y · v · x)

)
· PALk(y · v · x), if |v| = 2k − 1.

Proof. Let [s(k)] = [d1, . . . , d2k−2, w, z] ∈ Rk. We claim that the following
holds: ∀x, y ∈ S, ∀v ∈ S∗ with |v| ≤ 2k − 1:

τI ◦ ∂Hk
◦ [s(k)]

(
Xk(x) ‖ sk

(
ispal(v)

)
· PALk−1(v)

)
= τ · PALk(v · x).

Define

Q(w,z)(v, x)

=

{

τI ◦ ∂Hk
◦ [s(k)]

(
Xk(x) ‖ sk

(
ispal(v)

)
· PALk−1(v)

)
, if |v| ≤ 2k − 1;

δ, otherwise.

We use the following abbreviations:

[p(k)] = [d1, . . . , d2k−2, w, y]

[q(k)] = [d1, . . . , d2k−2, ispal(v), z]

First we work out Q(w,z)(v, x) for the case |v| ≤ 2k − 1:

Q(w,z)(v, x)

= τI ◦ ∂Hk
◦ [s(k)]

((∑

y∈S

rk+1(y ↓ 2k)
∥
∥

∑

u∈B

rk(u ↓ 2k − 1)
)

· Yk(x) ‖ sk

(
ispal(v)

)
· PALk−1(v)

)

= τI ◦ ∂Hk
◦ [s(k)]

(∑

y∈S

rk+1(y ↓ 2k)

·
(∑

u∈B

rk(u ↓ 2k − 1)Yk(x) ‖ sk

(
ispal(v)

)
PALk−1(v)

)

+ ck
(
ispal(v) ↓ 2k − 1

)
·
∑

z∈S

rk+1(z ↓ 2k)Yk(x) ‖ PALk−1(v)
)

=
∑

y∈S

rk+1(y)τI ◦ ∂Hk
◦ [p(k)]

(

ck
(
ispal(v) ↓ 2k − 1

)
·
(
Yk(x) ‖ PALk−1(v)

)

+ τ · τI ◦ ∂Hk
◦ [q(k)]

(∑

z∈S

rk+1(z ↓ 2k) ·
(
Yk(x) ‖ PALk−1(v)

)

61

On the Register Operator: 2.6. An Application

=
∑

y∈S

rk+1(y) · τ · τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)

+ τ ·
∑

y∈S

rk+1(y)τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)

= τ ·
∑

y∈S

rk+1(y)τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)
.

We will distinguish two subcases: |v| < 2k − 1:

τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)

= τI ◦ ∂Hk
◦ [r(k)]

((
sk+1

(
fx(↑ 2k − 1, ↑ 2k)

)
‖ sk

(
id(↑ 2k)

))

·Xk(x)
∥
∥ PALk−1(v)

)

= τI ◦ ∂Hk
◦ [r(k)]

(

sk+1

(
fx(↑ 2k − 1, ↑ 2k)

)
·
(
sk

(
id(↑ 2k)

)

·Xk(x) ‖ PALk−1(v)
)

+ sk

(
id(↑ 2k)

)
·
(
sk+1

(
fx(↑ 2k − 1, ↑ 2k)

)
·Xk(x) ‖ PALk−1(v)

)

+
∑

x∈S

rk(x)
(
sk

(
ispal(x · v)

)
· PALk(x · v) ‖ Yk(x)

)

+
∑

z∈S

ck
(
z ∧ id(↑ 2k)

)
·
(
sk

(
ispal(z · v)

)
· PALk−1(z · v)

‖ sk+1

(
fx(↑ 2k − 1, ↑ 2k)

)
·Xk(x)

)
)

= sk+1

(
(x = y) & ispal(v)

)
τI ◦ ∂Hk

◦ [r(k)]
(
sk

(
id(↑ 2k)

)

·Xk(x) ‖ PALk−1(v)
)

+ δ + τ · τI ◦ ∂Hk
◦ [r(k)]

(
sk+1

(
fx(↑ 2k − 1, ↑ 2k)

)

·Xk(x) ‖ sk

(
ispal(y · v)

)
· PALk−1(y · v)

)

= sk+1

(
(x = y) & ispal(v)

)
· τI ◦ ∂Hk

◦ [r(k)]
(∑

z∈S

ck
(
z ∧ id(↑ 2k)

)

·
(
Xk(x) ‖ sk

(
ispal(z · v)

)
· PALk−1(z · v)

))

+ τ · sk+1

(
(x = y) & ispal(v)

)

· τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ sk

(
ispal(y · v)

)
· PALk−1(y · v)

)

= sk+1

(
(x = y) & ispal(v)

)

· τ · τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ sk

(
ispal(y · v)

)
· PALk−1(y · v)

)

+ τ · sk+1

(
(x = y) & ispal(v)

)

· τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ sk

(
ispal(y · v)

)
· PALk−1(y · v)

)

62

On the Register Operator: 2.6. An Application

= τ · sk+1

(
(x = y) & ispal(v)

)

· τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ sk

(
ispal(y · v)

)
· PALk−1(y · v)

)

= τ · sk+1

(
(x = y) & ispal(v)

)
·Q(ispal(v),y)(y · v, x),

since |y · v| ≤ 2k − 1, if |v| < 2k − 1. Now we consider the case: |v| = 2k − 1.

τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)

= τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ δ

)

= τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) · δ

)

= τI ◦ ∂Hk
◦ [r(k)]

(
sk+1

(
fx(↑ 2k − 1, ↑ 2k)

)

· sk

(
id(↑ 2k)

)
· Yk(x) · δ

)
+ δ

= sk+1

(
(x = y) & ispal(v)

)
· δ

= sk+1

(
(x = y) & ispal(v)

)
·Q(ispal(v),y)(y · v, x).

Note that we have:

∀v ∈ S∗, |v| ≤ 2k − 1 : (x = y) & ispal(v) ⇐⇒ ispal(y · v · x),

so we find:

τI ◦ ∂Hk
◦ [r(k)]

(
Yk(x) ‖ PALk−1(v)

)

=

{
τ · sk+1

(
ispal(yvx)

)
·Q(ispal(v),y)(yv, x), if |v| < 2k − 1;

sk+1

(
ispal(yvx)

)
·Q(ispal(v),y)(yv, x), if |v| = 2k − 1.

After substitution we obtain for all v ∈ S∗ with |v| ≤ 2k − 1:

Q(w,z)(v, x) = τ ·
∑

y∈S

rk+1(y) · sk+1

(
ispal(yvx)

)
·Q(ispal(v),y)(yv, x).

Now consider the guarded recursive specification E below:

E =
{

T(w,z)(v, x) = τ ·
∑

y∈S

rk+1(y) · sk+1

(
ispal(yvx)

)
· T(ispal(v),y)(yv, x)

∣
∣ v ∈ S∗, |v| ≤ 2k − 1, w ∈ B, z, x ∈ S

}

We immediately see that Q(w,z)(v, x) is a solution for E. Now consider the
following:

τ ·
∑

y∈S

rk+1(y) · sk+1

(
ispal(yvx)

)
· τ · PALk(yvx)

= τ ·
∑

y∈S

rk+1(y) · sk+1

(
ispal(yvx)

)
· PALk(yvx)

= τ · PALk(vx).

63

On the Register Operator: 2.6. An Application

Thus we see, if we put

T(w,z)(v, x) = τ · PALk(vx)

then

T(ispal(v),y)(yv, x) = τ · PALk(yvx).

This solves the system E. By RSP we find that Q(w,z)(v, x) = τ · PALk(vx)
for all v ∈ S∗, |v| ≤ 2k − 1. This concludes the proof of the claim. Observe
that we herewith implicitly proved 2.6.1, too.

Theorem (2.6.2)

∀k ≥ 0 : M(k) = PALk(ε).

Proof. If k = 0 there is nothing to prove. So let us assume henceforth that
k > 0. We will first prove the following:

∀k > 0 : τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)
= PALk(ε). (1)

Below we will compute, for the left-hand side of (1), two more equations:

τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

= τI ◦ ∂Hk
◦ [r(k)]

(
Xk PALk−1(ε)

)

= sk+1(true) · τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

+
∑

x∈S

rk+1(x) · τI ◦ ∂Hk
◦ [r(k)]

(
sk+1(true)

·Xk(x) ‖ PALk−1(ε)
)

= sk+1(true) · τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

+
∑

x∈S

rk+1(x) · τI ◦ ∂Hk
◦ [r(k)]

(

sk+1(true)

·
(
Xk(x) ‖ PALk−1(ε)

))

= sk+1(true) · τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

+
∑

x∈S

rk+1(x) · sk+1(true)

· τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ PALk−1(ε)

)
, (2)

and

τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ PALk−1(ε)

)

= τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) PALk−1(ε) +Xk(x) | PALk−1(ε)

)

64

On the Register Operator: 2.6. An Application

= τI ◦ ∂Hk
◦ [r(k)]

(
∑

y∈S

rk+1(y ↓ 2k)

·
(∑

v∈B

rk(v ↓ 2k − 1) · Yk(x) ‖ PALk−1(ε)
)

+
∑

w∈B

rk(w ↓ 2k − 1) ·
(∑

z∈S

rk+1(z ↓ 2k) · Yk(x) ‖ PALk−1(ε)
)

+ ck(true ↓ 2k − 1) ·
(∑

z∈S

rk+1(z ↓ 2k) · Yk(x) ‖ PALk−1(ε)
))

=
∑

y∈S

rk+1(y)τI ◦ ∂Hk
◦ [p(k)]

(∑

v∈B

rk(v ↓ 2k − 1) · Yk(x) ‖ PALk−1(ε)
)

+ δ + τ · τI ◦ ∂Hk
◦ [q(k)]

(∑

z∈S

rk+1(z ↓ 2k) · Yk(x) ‖ PALk−1(ε)
)

=
∑

y∈S

rk+1(y)τI ◦ ∂Hk
◦ [p(k)]

(∑

v∈B

rk(v ↓ 2k − 1) · Yk(x) | PALk−1(ε)
)

+ τ · τI ◦ ∂Hk
◦ [q(k)]

(∑

z∈S

rk+1(z ↓ 2k) · Yk(x) PALk−1(ε)
)

=
∑

y∈S

rk+1(y) · τI ◦ ∂Hk
◦ [p(k)]

(

ck(true ↓ 2k − 1) ·
(
Yk(x) ‖ PALk−1(ε)

))

+ τ ·
∑

y∈S

rk+1(y) · τI ◦ ∂Hk
◦ [s(k)]

(
Yk(x) ‖ PALk−1(ε)

)
(3)

=
∑

y∈S

rk+1(y) · τ · τI ◦ ∂Hk
◦ [s(k)]

(
Yk(x) ‖ PALk−1(ε)

)

+ τ ·
∑

y∈S

rk+1(y) · τI ◦ ∂Hk
◦ [s(k)]

(
Yk(x) ‖ PALk−1(ε)

)

= τ ·
∑

y∈S

rk+1(y) · τI ◦ ∂Hk
◦ [s(k)]

(
Yk(x) ‖ PALk−1(ε)

)
(4)

Where for notational purpose we renamed in (3) the variable z. Furthermore
we used the abbreviations:

[r(k)] = [d1, . . . , d2k],

[p(k)] = [d1, . . . , d2k−1, y],

[q(k)] = [d1, . . . , d2k−2, true, d2k],

[s(k)] = [d1, . . . , d2k−2, true, y].

Recall that we have:

[s(k)] = [d1, . . . , d2k−2, true, y] = [d1, . . . , d2k−2, ispal(ε), y].

65

On the Register Operator: 2.6. An Application

So with lemma (2.6.1) and equation (4) we conclude

τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ PALk−1(ε)

)

= τ ·
∑

y∈S

rk+1(y)τI ◦ ∂Hk
◦ [s(k)]

(
Yk(x) ‖ PALk−1(ε)

)
(4)

= τ ·
∑

y∈S

rk+1(y)sk+1

(
ispal(y · ε · x)

)
PALk(y · ε · x) (2.6.1)

= τ ·
∑

y∈S

rk+1(y)sk+1

(
ispal(yx)

)
PALk(yx)

= τ · PALk(x).

This we may substitute in equation (2), and so we achieve:

τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

= sk+1(true)τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

+
∑

x∈S

rk+1(x) · sk+1(true) · τI ◦ ∂Hk
◦ [r(k)]

(
Xk(x) ‖ PALk−1(ε)

)

= sk+1(true)τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

+
∑

x∈S

rk+1(x) · sk+1(true) · PALk(x).

Consider the following guarded recursive specification E:

E =
{

Zk = sk+1(true) · Zk +
∑

x∈S

rk+1(x) · sk+1(true) · Zk(x)

Zk(w) =

{∑

x∈S rk+1(x) · sk+1

(
ispal(x · w)

)
· Zk(x · w), if 0 < |w| < 2k;

δ, otherwise.
∣
∣ w ∈ S∗, k > 0

}

If we put Zk = PALk(ε) and Zk(w) = PALk(w), then it is clear from the
defining equations of PALk, that PALk(ε) is a solution for E. If we put Zk =
τI ◦∂Hk

◦ [r(k)]
(
Xk ‖ PALk−1(ε)

)
and Zk(w) = PALk(w), it is evident from the

hereinbefore inferred equation, that this system also is a solution for E. Hence,
with RSP we conclude:

∀k > 0 : τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)
= PALk(ε).

This finishes the proof of claim (1). Now we find:

PALk(ε) = τI ◦ ∂Hk
◦ [r(k)]

(
Xk ‖ PALk−1(ε)

)

= tdk
(
[r(k)](Xk) ‖ PALk−1(ε)

)

66

On the Register Operator: 2.6. An Application

= tdk
(
[r(k)](Xk) ‖

(
τI ◦ ∂Hk−1

◦ [r(k−1)]
(
Xk−1 ‖ PALk−2(ε)

))

= tdk
(
[r(k)](Xk) ‖

(
tdk − 1

(
[r(k)]Xk−1 ‖ PALk−2(ε)

))

...

= tdk
(
[r(k)](Xk) ‖

(
tdk − 1

(
[r(k)](Xk−1)

‖ · · · td1
(
[r(k)](X1) ‖ PAL0(ε)

)
· · ·

))

= tdk
(
[r(k)](Xk) ‖

(
tdk − 1

(
[r(k)](Xk−1)

‖ · · · td1
(
[r(k)](X1) ‖ TC

)
· · ·

))

= tdk
(
Ck ‖

(
tdk − 1

(
Ck−1) ‖ · · · td1

(
C1) ‖ TC

)
· · ·

))
.

At this point we return to the original proof, so hereinafter we will copy out
the last piece. In this last piece of the proof we will make use of the so-
called conditional alphabet axioms. For the definition of an alphabet and the
conditional axioms we refer to section 1.5. It is easy to prove by induction,
that:

α(Ck)
∣
∣
(
α
(
M(k − 1)

)
∩Hk

)
= ∅,

α(Ck)
∣
∣
(
α
(
M(k − 1)

)
∩ I

)
= ∅.

So because of Hk−1 ⊆ Hk we find, using the conditional axioms CA1 and CA2
of table 1.7 (page 19):

tdk
(
tdk − 1

(
· · ·

(
td1(C1 ‖ TC)

)
· · ·

))

= τI ◦ · · · ◦ tdk ◦ · · · ◦ ∂H1

(
Ck ‖ · · · ‖ C1 ‖ TC

)

= tdk
(
Ck ‖ · · · ‖ C1 ‖ TC

)

= τI ◦ ∂Hk
◦ [r(k)](Xk ‖ · · · ‖ X1 ‖ TC)

= M(k).

This proves theorem 2.6.2.

Remark (2.6.3)

In the proof of theorem (2.6.2) we used axioms concerning abstraction.
This axiom is known as the second τ -law of Milner (T2). To prove equation (1),
however, we only used T2 in a context of the form

(
· · · a · (τ · x+ x) · · ·

)
,

which can be proved to be an instance of H2. Where H2 is as follows:

a
(
τ (y + z) + y

)
= a(y + z).

Thence, theorem (2.6.2) can be proved in ACP with branching bisimulation
(see [23]).

67

Chapter 3

An Operator Definition Principle

IN a first attempt to bring some structure in the use of linear unary operators
in process algebra, we propose two principles, in order to obtain a uniform

approach for the introduction of these operators. For this we will use the no-
tion of a linear functional specification that consists of functional equations
and boundary conditions; the operator definition principle states that such a
system has a solution. Furthermore, we define an operator specification princi-
ple; this principle states that a linear functional specification has at most one
solution. Examples to demonstrate the usage of the two principles are given.
We can think of the use of auxiliary operators in verifications, specifications,
or a combination of both. Although these specific operators are, in general,
not usable in another context, there is a need for auxiliary operators that can
be defined as we wish. Moreover, we will need even more complicated auxil-
iary linear unary operators in the future, and therefore, a more sophisticated
definition of a linear functional specification. So, suggestions to generalize this
concept are given, too.

3.1. Introduction

We will consider in this chapter the algebra of communicating processes
with abstraction and linear unary operators (ACPτ,u). We will introduce
ACPτ,u as an extension of ACPτ , the algebra of communicating processes with
abstraction, which was first studied in [12]. For a short introduction to ACPτ

we refer to chapter 1. Hereinafter, we will give an overview of what can be
expected in the subsequent sections and we will give some motivation for the
theory that will be presented in this chapter.

In section 3.2 we will give the signature and the axioms of ACPτ,u. Fur-
thermore, we will formulate the operator definition principle and the operator
specification principle in terms of solutions for linear functional specifications.
In ACPτ,u, we will have two sorts: the sort of processes and the sort of linear
unary operators. In the sort of processes we will have the “usual” constants:
the atomic actions and the special constants. In the sort of linear unary opera-
tors the constants will be the projection operators, the encapsulation operator

69

An Operator Definition Principle: 3.1. Introduction

and the abstraction operator. It can be found that, with the aid of this theory,
we can introduce the latter two operators. We still added them to the set of
constants, since they are not auxiliary: with these operators we want to for-
mulate other axioms. We can mention here KFARn; see definition (1.2.7) and
conditional axioms; see section 1.5. The same yields for the projection opera-
tors: we formulate the approximation induction principle with them. So, even
in a generalized version of this theory in which we can specify the projection
operators (see section 3.8), we want to have these operators as constants. We
will redefine certain items that are already known in ACPτ , for instance, the
notion of a guard and of a guarded recursive specification; see section 1.2. This
will be done in definition (3.2.15). We will give a motivation on the alterations
that we made to these notions. We will introduce two more principles: the
recursive definition principle (RDP) and the recursive specification principle
(RSP). These principles can be found in section 1.2. We will also introduce
a more restrictive form of the approximation induction principle (AIP

−). We
will repeat these notions, since they use the definition of a guarded recursive
specification; and it is this definition that will be not the same as the one in
chapter 1.

In section 3.3 we will prove the termination of the system that we in-
troduced in section 3.2 by means of a method that is called the recursive path
ordering. In [12] this method is used to prove the termination of a term rewrite
system for ACPτ . We will use the same method to prove the termination of
a term rewrite system for ACPτ,u. We will explain this method and we will
give all the necessary definitions. Thereinafter, we will prove an elimination re-
sult, which states that every closed ACPτ,u-term can be rewritten into a closed
BPAδ,τ -term; see table 3.3 on page 91.

In section 3.4 we will introduce some more concepts that are necessary
in order to state general theorems concerning linear unary operators, which
can be defined with the aid of linear functional specifications. In this section
it will become clear that with this theory we do not longer have to prove for
each auxiliary linear unary operator separately that it has certain properties:
it will be sufficient to verify that this operator satisfies the conditions stated
in these general theorems in order to know that it has the desired properties.
We attempted to handle a great variety of subjects. But it will be far from
complete. Many questions could be asked, and answered, on the subject of
linear unary operators. For instance, we want to know what processes are
fixed points of a linear unary operator, or: “When do linear unary operators
commute?” Just to mention a few.

In section 3.5 we will construct a model for ACPu. This is the axiom
system ACPτ,u, but without abstraction. We did this because we wanted to
construct what is called the standard model of process algebra, that is, the

70

An Operator Definition Principle: 3.2. Definitions

inverse or projective limit model. Moreover, it is a well-known fact that the
combination of the projective limit model with the concept of abstraction is
very problematic. We will prove that a desired property (such as RDP, or OSP)
is valid for the elements of the inverse system and we use this to prove that it is
preserved by taking the inverse limit. We think that some of these proofs can
be shortened by using so-called preservation theorems on inverse limits, but
since the theory on preservation theorems is only developed for single-sorted
algebras, we will give direct proofs.

In section 3.6 we will apply the theory by giving some examples of verifi-
cations and specifications with the aid of auxiliary linear unary operators. We
will also see that this theory is used to prove certain properties of operators
that we already know. For instance, if we have the abstraction operator τI

(this operator renames all the atomic actions that are in the subset I ⊆ A into
the silent step τ), then we immediately “feel” that τI ◦τI must be τI . With the
aid of OSP it is, actually, very trivial to prove this. It turns out that, with the
aid of the general theorems in section 3.4, it will be sufficient to verify that τ 2

I

and τI are the same on the set of atomic actions in order to conclude that they
are equal.

In section 3.7 we will give some suggestions how we can generalize this
theory in order to be able to describe more (auxiliary) linear unary operators.
Such as the projection operators or the generalized state operator, just to
mention a few.

In section 3.8 we will emphasize that this theory can be the beginning of
the unification of all the theories, built up from ACP or ACPτ and, in addition,
a number of auxiliary linear unary operators.

3.2. Definitions

In this section we will consider the algebra of communicating processes with
abstraction and linear unary operators. We will use the following notation
for this system: ACPτ,u. First, we will give a graphical representation of the
signature of ACPτ,u in figure 3.1. Subsequently, we will enumerate the same
signature in a more textual way.

A, δ, τ

P χ F

∂H , τI , π1, π2, π3, . . .

‖, , |,+, · · ◦ ·

Figure 3.1. Graphical representation of the signature.

71

An Operator Definition Principle: 3.2. Definitions

First, we consider the sort P of processes. We have a set of constants
A, or atomic actions. Each a ∈ A is a constant in P . We have also two
special constants in P : δ or deadlock, and τ or silent step. Consider the binary
operators (they are all infix operators):

merge: ‖ : P × P −→ P,

left-merge: : P × P −→ P,

communication-merge: | : P × P −→ P,

sequential composition: · : P × P −→ P,

alternative composition: + : P × P −→ P.

Now we consider the sort F of linear unary operators. For each I ⊆ A we have
a constant τI ∈ F , which is called the abstraction operator. For each H ⊆ A we
have a constant ∂H in F . This constant is called the encapsulation operator.
For each n ≥ 1 we have a constant πn ∈ F . The constant πn is called the (nth)
projection operator. There is one binary operation with both arguments of
sort F ; it is the composition of functions: ◦ : F × F −→ F . Finally, we
have a binary operation χ : F × P −→ P . This operator can be called the
application operator. This concludes our discussion on the signature of ACPτ,u.
Hereinafter, we will give the axiom system of ACPτ,u in table 3.1 on page 73. In
this table we use the following notational conventions: a, b, c are atomic actions
or δ (we abbreviate Aδ = A∪ {δ}); x, y, z are processes; γ is a special constant
(we use C = {δ, τ} for the set of special constants); n ≥ 1, and finally, f, g and
h are linear unary operators.

At this point we will formulate an extensionality axiom which states: func-
tions that behave the same on all processes are indeed the same. We will not
use the axiom in this chapter but we added it since there is no reason not to
have it.

Axiom (3.2.1) Extensionality(3.2.1)

Let f and g be linear unary operators. If for all x ∈ P : χ(f, x) = χ(g, x),
then f = g. We will use the abbreviation EA for this axiom.

Definition (3.2.2)

Let N be a finite set of function names. A linear functional specification
E(N) for N is a set of the following form:

E(N) =
{
rn,a | n ∈ N, a ∈ A

}
∪

{
en,a | n ∈ N, a ∈ A

}
. (1)

Both rn,a and en,a are equations. Let a ∈ A and n ∈ N be fixed. Then we
define the two equations rn,a and en,a for this particular pair (n, a). The first
equation rn,a is called a boundary condition and has the following form: there
is an element b ∈ A ∪ C such that

rn,a ≡ χ(n, a) = b.

72

An Operator Definition Principle: 3.2. Definitions

A1 x+ y = y + x x · τ = x T1

A2 x+ (y + z) = (x+ y) + z τ · x+ x = x T2

A3 x+ x = x a(τ · x+ y) = a · (τ · x+ y) + a · x T3

A4 (x+ y) · z = x · z + y · z

A5 (x · y) · z = x · (y · z) τ x = τ · xTM1

A6 x+ δ = x (τ · x) y = τ · (x ‖ y) TM2

A7 δ · x = δ τ | x = δ TC1

x | τ = δ TC2

C1 a | b = b | a (τ · x) | y = x | y TC3

C2 (a | b) | c = a | (b | c) x | (τ · y) = x | y TC4

C3 δ | a = δ

χ(τI , a) = a, if a /∈ I TI1

CM1 x ‖ y = x y + y x+ x | y χ(τI , a) = τ, if a ∈ I TI2

CM2 a x = a · x χ(τI , x · y) = χ(τI , x) · χ(τI , y) TI3

CM3 (a · x) y = a · (x ‖ y)

CM4 (x+ y) z = x z + y z χ(f ◦ g, x) = χ
(
f, χ(g, x)

)
XC1

CM5 (a · x) | b = (a | b) · x χ
(
(f ◦ g) ◦ h, x

)
= χ

(
f ◦ (g ◦ h), x

)
XC2

CM6 a | (b · x) = (a | b) · x

CM7 (a · x) | (b · y) = (a | b) · (x ‖ y) χ(f, γ) = γ X1

CM8 (x+ y) | z = x | z + y | z χ(f, γ · x) = γ · χ(f, x) X2

CM9 x | (y + z) = x | y + x | z χ(f, x+ y) = χ(f, x) + χ(f, y) X3

D1 χ(∂H , a) = a, if a /∈ H χ(πn, a) = a PR1

D2 χ(∂H , a) = δ, if a ∈ H χ(π1, a · x) = a PR2

D3 χ(∂H , x · y) = χ(∂H , x) · χ(∂H , y) χ(πn+1, a · x) = a · χ(πn, x) PR3

Table 3.1. ACPτ,u.

The second equation en,a is called a (linear) functional equation and it is of the
following form:

en,a ≡ χ(n, a · x) = b · χ(m,x) for one m ∈ N.

Examples of linear functional specifications can be found in remarks (3.2.11)
and (3.2.19). Furthermore, if the set of function names contains only one

73

An Operator Definition Principle: 3.2. Definitions

element , say n, we will omit the braces in the notation of (1): we will write
E(n) instead of E({n}).

Remark (3.2.3)

We will give a more explicit formulation of the definition of a linear func-
tional specification. Let N = {n1, . . . , nk} be a set of function names. Let
σ : A× {1, . . . , k} −→ {1, . . . , k} be a map. Now we define a linear functional
specification to be the following:

E(N) =
{
ni(a) = a(i) : a ∈ A, 1 ≤ i ≤ k

}

∪
{
ni(a · x) = a(i) · nσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ k

}
,

with a(i) ∈ A∪{δ, τ}. It will be clear that this formulation of a linear functional
equation is equivalent to definition (3.2.2).

We will now formulate two principles which say something about the so-
lutions for this sort of equational systems: the operator definition principle
(ODP) and the operator specification principle (OSP). But first, we will need
a definition to map the function names into the set of linear unary operators.

Definition (3.2.4)

We will call a mapping ϕ : N −→ F a valuation for N .

Principle (3.2.5) The Operator Definition Principle(3.2.5)

Let E(N) be a linear functional specification for a set of function names N .
Then the following holds: there is a valuation ϕ for N which solves the system
of equations E(N). We will use the compact notation ODP for this principle.

Principle (3.2.6) The Operator Specification Principle(3.2.6)

Let E(N) be a linear functional specification for a set of function names N .
Then there is at most one valuation ϕ for N such that ϕ solves the system of
equations E(N). We will use the compact notation OSP.

Remarks (3.2.7)

See remarks (3.2.11) and (3.2.19) for examples of the use of both principles
ODP and OSP. Henceforth, we will use for the expression χ(f, x), with f ∈ F
and x ∈ P , the more usual notation f(x), provided that no confusion can arise.
If n is a function name we will use this convention, too. If we have specified the
boundary conditions of a certain function name n and we want this function
name to respect the sequential composition, we will abbreviate this by stating
the functional equation for n as follows:

n(a · x) = n(a) · n(x)

instead of reiterating the results of n(a) for each a ∈ A. Examples of linear
functional specifications in which a function name distributes over the sequen-
tial composition can be found in remark (3.2.11) and in section 3.6.

74

An Operator Definition Principle: 3.2. Definitions

Definition (3.2.8)

Let f ∈ F be a linear unary operator. We will define a subset D(f) ⊆ F

as the smallest set satisfying:

(i) f ∈ D(f)

(ii)
(
g ∈ F, a ∈ A, b ∈ A ∪ {τ}, ∀x ∈ P : f(a · x) = b · g(x)

)
=⇒ g ∈ D(f)

(iii) h ∈ D(g), g ∈ D(f) =⇒ h ∈ D(f).

We will call D(f) the set of derived operators of f .

Remarks (3.2.9)

We will calculate here for a number of linear unary operators, their sets
of derived operators. We will start with π3. Because of condition (i), we see
that π3 ∈ D(π3). We know that for all a ∈ A, x ∈ P : π3(a · x) = a · π2(x). So
we find with (ii) that π2 ∈ D(π3). We also know that π2(a · x) = a · π1(x) for
all a ∈ A and x ∈ P ; thus we find with (ii) that π1 ∈ D(π2). And with the aid
of (iii) we see that π1 ∈ D(π3). Observe that we do not have constant linear
unary operators. For, let c : P −→ P be as follows. For all x ∈ P : c(x) = c,
with c ∈ P . Suppose that c ∈ F , then we know that c(δ) = δ, because of X1.
So we find that c = δ. But on the other hand we know that c(τ) = τ , so we
see that c = τ . Since δ 6= τ we see that the assumption that c ∈ F cannot
hold. So in particular, we do not have in F a linear unary operator `, with for
all x ∈ P : `(x) = τ . We know that π1(a · x) = a = a · τ = a · `(x). But ` /∈ F .
So we find that D(π1) = {π1}. We thus obtain D(π3) = {π1, π2, π3}. It is
very easy to deduce that D(πn) = {π1, . . . , πn}, for n ≥ 1. The facts that
D(τI) = {τI} and D(∂H) = {∂H} are also easy to verify. In remark (3.2.19)
we have two linear unary operators µ and ν. It is immediately clear that
D(µ) = D(ν) = {µ, ν} q.v..

We left out δ in the conditions of definition (3.2.8)(ii). We did that since
we otherwise would have D(∂H) = F if H 6= ∅. For, we find for all f ∈ F :

∂H(h · x) = δ = δ · f(x).

This would imply that f ∈ D(∂H), thus: F = D(∂H). Without the δ we
find D(∂H) = {∂H}. And this is exactly what it should be: the set of all the
operators that ∂H can become after “passing” the right atomic actions.

Definition (3.2.10)

Let f ∈ F be a linear unary operator, which can be defined with the aid
of a linear functional specification. If |D(f)| = 1 we will call f a (linear unary)
renaming operator.

75

An Operator Definition Principle: 3.2. Definitions

Remark (3.2.11)

We will repeat the definition of the renaming operator as it is stated in
chapter 1, in order to make a comparison with the renaming operators that we
defined hereinbefore in definition (3.2.10). Let f : A −→ A ∪ C be a function.
Define an operator ρf as follows.

(i) ρf (γ) = γ

(ii) ρf (a) = f(a)

(iii) ρf (x · y) = ρf (x) · ρf (y)

(iv) ρf (x+ y) = ρf (x) + ρf (y)

Consider the linear functional specification E(r) for the singleton of function
names {r}.

E(r) =
{
r(a) = f(a) : a ∈ A

}

∪
{
r(a · x) = r(a) · r(x) : a ∈ A

}
.

According to ODP there is a valuation ϕ : {r} −→ F which solves the system of
equations E(r). Let us say ϕ(r) = ρ. It is evident that |D(ρ)| = 1; so we know,
by definition, that ρ is a renaming operator. We also see that ρf is a solution
for this system: ρf (a) = f(a) and ρf (a · x) = ρf (a) · ρf (x). But according to
OSP, there is at most one solution, so thus we find: ρf = ρ. We have seen that
the “old” renaming operators can be defined in terms of the “new” ones. In
fact, these definitions are equivalent, since a linear functional specification that
defines a renaming operator can only be of the form that E(r) has.

Definition (3.2.12)

A linear unary operator f ∈ F is called an abstracting operator if there
is a linear unary operator g ∈ D(f), such that g(a) = τ , for some a ∈ A.
Otherwise, f ∈ F is called a concrete operator. Observe that the abstraction
operator τI ∈ F is an abstracting operator (if I 6= ∅).

Example (3.2.13)

Let µ, ν be the linear unary operators considered in (3.2.19). We already
saw in (3.2.9) that µ is an element ofD(ν). In the linear functional specification,
which defined both operators we can see that µ(i) = τ , so ν is an abstracting
operator.

Subsequently, we will introduce two more principles: the recursive defini-
tion principle (RDP) and the recursive specification principle (RSP). (They
can be found in chapter 1 but we will define their accompanying notions slightly
differently.) For these principles, we need the notion of a (guarded) recursive
specification. These notions are taken from [16], although the notion of a
guard can already be found in [14] in process algebra. The definitions of such
specifications are given hereinafter.

76

An Operator Definition Principle: 3.2. Definitions

Definition (3.2.14)

Let X be a set of variables. A recursive specification E with variable set
X over ACPτ,u is a system of recursion equations with variables in X:

E = {x = tx(X) : x ∈ X}.

For all x ∈ X, we have that tx(X) is an ACPτ,u-term with variables from the
set X.

Definition (3.2.15)

Let t be a term over ACPτ,u without abstracting operators. Suppose that
in t a variable x occurs. We will call an occurrence of x in t guarded if t
has a subterm of the form a · s, in which a is an atomic action and s is a
term over ACPτ,u, which contains this occurrence of x. Otherwise we will
call the occurrence of x in t unguarded. We will call an ACPτ,u-term t without
abstracting operators guarded if all occurrences of all variables in t are guarded.
Let E = {x = tx(X) : x ∈ X} be a recursive specification without abstracting
operators. We will call E a guarded recursive specification if we can rewrite it
to a recursive specification E′ with the aid of the axioms and/or the aid of the
specification E itself in which all right-hand sides of the recursion equations of
E′ are guarded. We will call E′ a completely guarded recursive specification.

Definition (3.2.16)

Let E = {x = tx(X) : x ∈ X} be a recursive specification. A solution
for E is a vector p = (px)x∈X , with px ∈ P for all x ∈ X, such that for all
x ∈ X the following expressions are true statements: px = tx(p), in which tx(p)
is shorthand for: substitute for each occurrence of an element x ∈ X in tx(X)
the process px. We say that two solutions are equal if the components of the
vectors are equal: (px)x∈X = (qx)x∈X if and only if we have for each x ∈ X
that px = qx.

Principle (3.2.17) The Recursive Definition Principle(3.2.17)

LetE be a guarded recursive specification in the sense of definition (3.2.15).
Then there is a solution for E. We will call this RDP but mostly it is
called RDP

−.

Principle (3.2.18) The Recursive Specification Principle(3.2.18)

LetE be a guarded recursive specification in the sense of definition (3.2.15).
Then there is at most one solution for E.

77

An Operator Definition Principle: 3.2. Definitions

Remark (3.2.19)

Now we will explain why we have excluded all abstracting operators in
definition (3.2.15). First, we will show that we have to exclude the abstraction
operator itself. Consider the following recursive specification:

E =
{
x = i · τ{j}(y), y = j · τ{i}(x)

}
.

Let there be an atomic action a ∈ A\{i, j}, then it is easy to see that (i·an, j·an)
is a solution for E, for each n ≥ 1. This means that we have to exclude the
abstraction operator since RSP cannot be valid. The abstracting operators are
of our next concern: with the aid of ODP it is very easy to make operators that
behave like the abstraction operator. Consider the following linear functional
specification for the set of names N = {n,m}.

E(N) =
{
n(i) = j, n(j) = i

}

∪
{
n(a) = a : a ∈ A \ {i, j}

}

∪
{
m(i) = τ,m(j) = τ

}

∪
{
m(a) = a : a ∈ A \ {i, j}

}

∪
{
n(i · x) = j ·m(x), n(j · x) = i ·m(x)

}

∪
{
n(a · x) = a · n(x) : a ∈ A \ {i, j}

}

∪
{
m(i · x) = τ · n(x),m(j · x) = τ · n(x)

}

∪
{
m(a · x) = a ·m(x) : a ∈ A \ {i, j}

}
.

According to ODP, there is a valuation ϕ : N −→ F , which solves the sys-
tem E(N). And by OSP there is at most one such a solution, so we can give
these linear unary operators a name. Let us say, ϕ(n) = ν and ϕ(m) = µ. Now
consider the guarded recursive specification below:

E =
{
x = i · ν(y), y = j · ν(x)

}
.

Observe that we can prove the following for ν with induction on k:

ν(ak) = ak,

ν(ik) = j[
k+1

2],

ν(jk) = i[
k+1

2].

Now it is easy to see that (i2 · an, j2 · an) is a solution for this system E, for
some a ∈ A \ {i, j} and n ∈ N. For:

i · ν(y) = i · ν(j2 · an)

= i2 · µ(j · an)

= i2 · τ · ν(an)

= i2 · an

= x.

78

An Operator Definition Principle: 3.2. Definitions

The calculation that j ·ν(x) = y, is proved as above. This means that we found
more than one solution for the guarded recursive specification above; hence, we
have to exclude the abstracting operators, too, in the definition of a guarded
recursive specification.

Observation (3.2.20)

In the above, we have just seen that if we want to use ACPτ with renaming
operators as they are defined in [40], we have to adjust the definition of a
guarded recursive specification. For, we have to, at the least, exclude all the
renaming operators ρ, such that ρ(a) = τ , for some atomic action a ∈ A in the
definition of a guarded recursive specification.

Subsequently we will introduce a more restrictive version of the approxi-
mation induction principle that is called AIP

−. We will base ourselves on an
idea that can be found in [21] but we will use a more simple version of AIP

−

than the one proposed in [21].

Principle (3.2.21) The Approximation Induction Principle(3.2.21)

Let x, y be ACPτ,u-terms. If we have for all n ≥ 1 : πn(x) = πn(y)
and we have that x or y can be specified with the aid of a guarded recursive
specification in the sense of definition (3.2.15), we have x = y.

Remark (3.2.22)

At present, we are able to explain why we demanded that x or y can be
specified with the aid of a guarded recursive specification. It was pointed out
in [21] that

ACP + RDP + AIP + CA + KFAR ` τ = τ + τ · δ. (2)

In other words the combination of these axioms is inconsistent. To solve
this problem a more restrictive form of the approximation induction princi-
ple (AIP

−) is proposed there. We will use this idea in a simplified way: we
require that x or y can be specified with the aid of a guarded recursive specifi-
cation. The abbreviation CA stands for conditional axioms; they can be found
in section 1.5. We will recall the particular conditional axiom CA6 that has
been used to prove equation (2):

∀J1, J2 ⊆ A =⇒ τJ1
◦ τJ2

= τJ1∪J2
.

With the aid of OSP it is very easy to prove this axiom. This will be done in
corollary (3.4.25).

79

An Operator Definition Principle: 3.3. Termination

3.3. Termination

In this section we will prove the termination of a term rewriting system, asso-
ciated with the axiom system ACPτ,u. We will exclude the axioms of commu-
tativity of the alternative composition (A1) and the second and third τ -laws of
Milner (T2–T3). First we will describe what exactly are closed ACPτ,u-terms.

Definition (3.3.1)

A closed term, or a closed ACPτ,u-term, is a term without variables of
sort P and without variables of sort F .

Examples (3.3.2)

Suppose that we have just two atomic actions: A = {a, b}. We know
that π1(a) is a closed term. We can rewrite this closed term to a term in which
no elements of sort F occur. We see at once that π1(a) rewrites to a. Now let s
be a function name. Consider the following linear functional specification.

E(s) = {s(a) = b, s(b) = a}

∪ {s(a · x) = b · s(x), s(b · x) = a · s(x)}. (1)

It is clear that s(a3) is a closed term. We can also rewrite this term with the
aid of the linear functional specification E(N). It is immediately clear that
s(a3) = b3.

Remark (3.3.3)

We see that we can write the closed ACPτ,u-terms, considered above, with-
out constants of sort F . This is what we want to prove. We will consider the
term rewriting system associated with ACPτ,u (see table 3.2) and we will also
consider the equations of an arbitrary but fixed linear functional specification
as rewriting rules from left to right. Thereinafter, we will study the termina-
tion of this whole system. The outline of this proof will be more or less the
same as the proof of the termination of ACPτ in appendix A of [12]. However,
we will use the lexicographical variant of the recursive path ordering to prove
the termination. The lexicographical variant of the recursive path ordering can
be found in [28]. A general reference to the subject of term rewriting is [20].
Another reference that can be useful is [30]. The following definition is taken
from [12], with some additions specific to the present situation.

Definition (3.3.4)

Let x and y be terms, let α ∈ A ∪ C and let f ∈ F . Then we define the
weight of a closed term as follows:

(i) |α| = 1,

(ii) |x ? y| = |x|+ |y| for ? = ·, ‖, , |,

(iii) |x+ y| = max{|x|, |y|},

(iv) |χ(f, x)| = |f(x)| = |x|.

80

An Operator Definition Principle: 3.3. Termination

Definition (3.3.5) The Partial Ordering of the Signature(3.3.5)

Because of problems with the reduction of the left-merge, the authors
of [12] have introduced infinitely many operators: the so-called ranked opera-
tors. The rank of an operator ‖, , | is the weight of the subterm of which it is
the leading operator. We will give the partial ordering of the operators. Let
m ≥ 1 and n ≥ 2.

‖n> n, |n n+1, |n+1>‖n χ, ‖n, n, |n> · > + πm+1 > πm.

Let N be a finite set of function names. The rank of a constant n ∈ N
is the weight of the subterm of which it is the leading operator. The set
of these constants of rank k is denoted by Nk. The set of all these ranked
constants of sort F is simply the union of all the Nk. We will denote this
set by Nr =

⋃∞
k=1Nk. We will give the partial ordering of these constants of

sort F :
∀nk,ml ∈ Nr : k > l =⇒ nk > ml.

For the remaining part of the signature we will define the partial ordering as
follows. For all n ∈ Nr and for all a ∈ A we have: n, |2> a > τ > δ. See
figure 3.2 for a graphical representation of this ordering.

Definition (3.3.6)

For each closed ACPτ,u-term t we obtain the ranked term tr by assigning
to all operators their rank.

Example (3.3.7)

Here we will use the constant s that we defined in equation (1). Let

t =
(
s(a) a · b

)
‖

(
τ · s(a · b) | s(a+ b) · a2

)

be a closed ACPτ,u-term. This term will be ranked as follows:

tr =
(
s1(a) 3 a · b

)
‖10

(
τ · s2(a · b) |7 s2(a+ b) · a2

)
. (2)

Definition (3.3.8)

Let D be the set of ranked closed ACPτ,u-terms. Let D∗ be D where some
of the symbols may be marked with an asterisk (∗). As an example let us take
the ranked closed ACPτ,u-term tr considered above in equation (2). Then we
have that a typical element t∗r ∈ D

∗ is the following expression:

t∗r =
(
s∗1(a)

∗
3 a · b

∗
)
‖10

(
τ∗ · s2(a ·

∗ b) |7 s2(a
∗ + b) · a2

)
.

81

An Operator Definition Principle: 3.3. Termination

+

·

χ

2 |2

‖2

3 |3

‖3

τ

δ

A

N1

N2

N3

π1

π2

π3

Figure 3.2. Visualization of the partial ordering.

Definition (3.3.9)

We will define a reduction relation “→” on the set of marked ranked closed
ACPτ,u-terms D∗ as follows. For the sake of simplicity we will use, for the mo-
ment, prefix notation for the operators. LetH,G be function symbols occurring
in the signature of ACPτ,u (with this, we also mean constants such as atomic
actions, δ, τ , or function names). Let s, t, t1, . . . , tk, s1, . . . , sl be elements ofD∗.

(i) H(t1, . . . , tk)→ H∗(t1, . . . , tk), (k ≥ 0)

(ii) H∗(t1, . . . , tk)→ G
(
H∗(t1, . . . , tk), . . . ,H∗(t1, . . . , tk)

)

(H > G, k ≥ 0)

(iii) H∗(t1, . . . , tk)→ ti, (k ≥ 1, 1 ≤ i ≤ k)

(iv) H∗
(
t1, . . . , G(s1, . . . , sl), . . . , tk

)
→ H

(
t1, . . . , G

∗(s1, . . . , sl), . . . , tk
)

(k ≥ 1, l ≥ 0)

(v) s→ t =⇒ H(. . . , s, . . .)→ H(. . . , t, . . .)

(vi) If t ≡ H∗
(
G(s1, . . . , sl), t2, . . . , tk

)
, then t→ H

(
G∗(s1, . . . , sl), t, . . . , t

)

82

An Operator Definition Principle: 3.3. Termination

(k ≥ 1, l ≥ 0).

In which the ordering “>” on the signature of ACPτ,u is already defined in
definition (3.3.5). We will use the symbol “�” for the transitive closure of the
above defined reduction relation.

RA2 (x+ y) + z → x+ (y + z) x · τ → x RT

RA3 x+ x→ x

RA4 (x+ y) · z → x · z + y · z τ x→ τ · xRTM1

RA5 (x · y) · z → x · (y · z) (τ · x) y → τ · (x ‖ y) RTM2

RA6 x+ δ → x τ | x→ δ RTC1

RA7 δ · x→ δ x | τ → δ RTC2

(τ · x) | y → x | y RTC3

RC a | b→ ca,b x | (τ · y)→ x | y RTC4

RCM1 x ‖ y → x y + (y x+ x | y) χ(τI , a)→ a, if a /∈ I RTI1

RCM2 a x→ a · x χ(τI , a)→ τ, if a ∈ I RTI2

RCM3 (a · x) y → a · (x ‖ y) χ(τI , x · y)→ χ(τI , x) · χ(τI , y) RTI3

RCM4 (x+ y) z → x z + y z

RCM5 (a · x) | b→ (a | b) · x χ(f ◦ g, x)→ χ
(
f, χ(g, x)

)
RXC1

RCM6 a | (b · x)→ (a | b) · x χ
(
(f ◦ g) ◦ h, x

)
→ χ

(
f ◦ (g ◦ h), x

)
RXC2

RCM7 (a · x) | (b · y)→ (a | b) · (x ‖ y) χ(f, γ)→ γ RX1

RCM8 (x+ y) | z → x | z + y | z χ(f, γ · x)→ γ · χ(f, x) RX2

RCM9 x | (y + z)→ x | y + x | z χ(f, x+ y)→ χ(f, x) + χ(f, y) RX3

RD1 χ(∂H , a)→ a, if a /∈ H χ(πn, a)→ a RPR1

RD2 χ(∂H , a)→ δ, if a ∈ H χ(π1, a · x)→ a RPR2

RD3 χ(∂H , x · y)→ χ(∂H , x) · χ(∂H , y) χ(πn+1, a · x)→ a · χ(πn, x) RPR3

Table 3.2. A term rewriting system associated with ACPτ,u.

Definition (3.3.10)

A partially ordered set (S,>) consists of a set and a transitive and ir-
reflexive binary relation > defined on the elements of S. Notice that asymme-
try of such a strict partial ordering follows from transitivity and irreflexivity.
A partially ordered set (S,>) is said to be well-founded if there are no infinite
(strictly) descending sequences s1 > s2 > s3 > · · · of elements of S.

83

An Operator Definition Principle: 3.3. Termination

Definition (3.3.11)

A term rewriting system over a set of terms has the termination property,
if no infinite derivations are possible. A derivation is a sequence of rewrites.

It is known that the following theorem holds. See [20].

Theorem (3.3.12) Dershowitz(3.3.12)

Let (Σ, R) be a term rewriting system with finitely many rewriting rules
and let “>” be a well-founded ordering on Σ. If s � t for each rewriting
rule s → t ∈ R, then the term rewriting system (Σ, R) has the termination
property. Where the arrow in s→ t is, of course, not the arrow that we defined
in definition (3.3.9), but ordinary notation for a rewriting rule.

At this point we are about to discuss the table of rewriting rules, associated
with the axiom system ACPτ,u. See table 3.2 at page 83. In this table, we use
the same notational conventions as in table 3.1. We have a rewriting rule “RC”
instead of making rewriting rules of the axioms C1–C3 in table 3.1. In fact,
we describe in these axioms some properties of the predefined communication
function. We give in RC a “listing” of all the function applications, so we
can rewrite the communication-merge in case we have a term containing an
expression a | b, with a, b ∈ Aδ(= A ∪ δ). We have no rewriting rules that
correspond to the axioms T2–T3. We have done this because these axioms
do not have a clear direction: they can be used in both directions in order to
simplify a certain term. Consider the following reduction:

τ · (a+ b) + a = τ · (a+ b) + a+ b+ a

= τ · (a+ b) + a+ b

= τ · (a+ b).

In this example, we use twice the second τ -law of Milner; in both directions.
With the third τ -law of Milner, the same difficulty arises.

Definition (3.3.13)

In remark (3.3.3) we already announced that we will add to the term
rewriting system associated with ACPτ,u, a finite set of rewrite rules. Thence,
let N be a set of function names for a linear functional specification E(N).
Recall that E(N) is of the following form.

E(N) =
{
rn,a | n ∈ N, a ∈ A

}
∪

{
en,a | n ∈ N, a ∈ A

}
.

We will make this system of equations into a term rewriting system from left to
right by simply substituting for an equality sign = an arrow→ in the boundary
conditions and the functional equations. We will call the set of all these rules:
the term rewriting system associated with the linear functional specification
E(N).

84

An Operator Definition Principle: 3.3. Termination

Theorem (3.3.14)

Let E(N) be a linear functional specification. The rewriting rules in ta-
ble 3.2 on page 83 together with the term rewriting system associated with
the linear functional specification E(N) have the termination property. See
definition (3.3.11).

Proof. According to theorem (3.3.12), it is sufficient to prove, for each closed
instance s→ t of the rewriting rules that s � t. Let us first take a closer look
at the rewriting rule RA2. We will make use of (vi).

(x+ y) + z � (x+ y) +∗ z

� (x+∗ y) +
(
(x+ y) +∗ z

)

� x+
(
(x+∗ y) + z

)

� x+ (y + z).

Now let us treat RA3.

x+ x � x+∗ x

� x.

This means that x+ x � x. Now · > + so we find for RA4:

(x+ y) · z � (x+ y) ·∗ z

� (x+ y) ·∗ z + (x+ y) ·∗ z

� (x+∗ y) · z + (x+∗ y) · z

� x · z + y · z.

Indeed, (x+ y) · z � x · z+ y · z. Now we will treat RA5. We will use (vi), too.
In fact, this case is proved analogously to RA2.

(x · y) · z � (x · y) ·∗ z

� (x ·∗ y) ·
(
(x · y) ·∗ z

)

� x ·
(
(x ·∗ y) · z

)

� x · (y · z).

So we see that (x ·y) ·z � x · (y ·z). The rewrite rules RA6 and RA7 are proved
exactly the same as RA3. So let us verify RC. We make use of the fact that the
communication-merge of rank two is greater than all atomic actions. Observe
that we also have |2> δ. We are to show that a |2 b � ca,b, with ca,b ∈ Aδ.

a |2 b � a |
∗
2 b

� ca,b.

85

An Operator Definition Principle: 3.3. Termination

Now let us take a closer look at the merge. First we will handle RCM1. Let
|x|+ |y| = n. Notice that we are to show:

x ‖n y � x n y + (y n x+ x |n y).

We will make use of the fact that ‖n> + and that ‖n> n, |n.

x ‖n y � x ‖
∗
n y

� x ‖∗n y + x ‖∗n y

� x ‖∗n y + (x ‖∗n y + x ‖∗n y)

� (x ‖∗n y) n (x ‖∗n y) +
(
(x ‖∗n y) n (x ‖∗n y) + (x ‖∗n y) |n (x ‖∗n y)

)

� x n y + (y n x+ x |n y).

We will verify RCM2. Let |x| = n.

a n+1 x � a
∗
n+1 x

�
(
a ∗

n+1 x
)
·
(
a ∗

n+1 x
)

� a · x.

Now we will handle the case RCM3. We will make use of the ranking of the
operators. Let |x|+ |y| = n. Then we easily find:

(a · x) n+1 y � (a · x) ∗
n+1 y

�
(
(a · x) ∗

n+1 y
)
·
(
(a · x) ∗

n+1 y
)

� (a · x) ·
((

(a · x) ∗
n+1 y

)
‖n

(
(a · x) ∗

n+1 y
))

� (a ·∗ x) ·
(
(a · x) ‖n y

)

� a ·
(
(a ·∗ x) ‖n y

)

� a · (x ‖n y).

We will consider RCM4. Let |x|+ |y|+ |z| = p, |x|+ |z| = q and |y|+ |z| = r.
We want to deduce that:

(x+ y) p z � x q z + y r z.

Now contemplate the following calculation.

(x+ y) p z � (x+ y) ∗
p z

�
(
(x+ y) ∗

p z
)

+
(
(x+ y) ∗

p z
)

�
(
(x+∗ y) p z

)
+

(
(x+∗ y) p z

)

� x p z + y p z

� x ∗
p z + y ∗

p z

�
(
(x ∗

p z) q (x ∗
p z)

)
+

(
(y ∗

p z) r (y ∗
p z)

)

� x q z + y r z.

86

An Operator Definition Principle: 3.3. Termination

Indeed, we find that (x + y) p z � x q z + y r z. Let us take a look at
RCM5. Let |x| = n. Then we are to show: (a ·x) |n+2 b � (a |2 b) ·x. Consider
thereto the display below:

(a · x) |n+2 b � (a · x) |∗n+2 b

�
(
(a · x) |∗n+2 b

)
·
(
(a · x) |∗n+2 b

)

�
(
(a ·∗ x) |n+2 b

)
· (a · x)

� (a |n+2 b) · (a ·
∗ x)

� (a |∗n+2 b) · x

�
(
(a |∗n+2 b) |2 (a |∗n+2 b)

)
· x

� (a |2 b) · x.

The deduction for the rewriting rule RCM6 is the same as the deduction above.
So let us verify RCM7. Let |x|+ |y| = n.

(a · x) |n+2 (b · y) � (a · x) |∗n+2 (b · y)

�
(
(a · x) |∗n+2 (b · y)

)
·
(
(a · x) |∗n+2 (b · y)

)

�
((

(a · x) |∗n+2 (b · y)
)
|2

(
(a · x) |∗n+2 (b · y)

))

·
((

(a · x) |∗n+2 (b · y)
)
‖n

(
(a · x) |∗n+2 (b · y)

))

�
(
(a · x) |2 (b · y)

)
·
(
(a · x) ‖n (b · y)

)

�
(
(a ·∗ x) |2 (b ·∗ y)

)
·
(
(a ·∗ x) ‖n (b ·∗ y)

)

� (a |2 b) · (x ‖n y).

We will treat RCM8. Let p = |x| + |y| + |z|, q = |x| + |z| and r = |y| + |z|.
Observe that we must show that: (x + y) |p z � x |q z + y |r z. Consider the
following:

(x+ y) |p z � (x+ y) |∗p z

�
(
(x+ y) |∗p z

)
+

(
(x+ y) |∗p z

)

�
(
(x+∗ y) |p z

)
+

(
(x+∗ y) |p z

)

� x |p z + y |p z

� x |∗p z + y |∗p z

�
(
(x |∗p z) |q (x |∗p z)

)
+

(
(y |∗p z) |r (y |∗p z)

)

� x |q z + y |r z.

RCM9 is treated analogously. Let us calculate RD1 and RD2. This can be done
in one calculation. We will use the fact that for all atomic actions a ∈ A : a > δ.

χ(∂H , a) � χ
∗(∂H , a)

� a

� a∗

� δ.

87

An Operator Definition Principle: 3.3. Termination

We see that χ(∂H , a) � a � δ, so with this, we handled both RD1 and RD2.
We will treat RD3.

χ(∂H , x · y) � χ
∗(∂H , x · y)

� χ∗(∂H , x · y) · χ
∗(∂H , x · y)

� χ(∂H , x ·
∗ y) · χ(∂H , x ·

∗ y)

� χ(∂H , x) · χ(∂H , y).

RT is proved just like, e.g., RA7. RTM1 goes like RCM2. RTM2 is as RCM3.
Now we will show RTC1. We will use that τ > δ. Let |x| = n.

τ |n+1 x � τ |
∗
n+1 x

� τ

� τ∗

� δ.

Of course RTC2 goes the same. We will show RTC3. Let n = |x|+ |y|.

(τ · x) |n+1 y � (τ · x) |∗n+1 y

� (τ ·∗ x) |n+1 y

� x |n+1 y

� x |∗n+1 y

�
(
x |∗n+1 y

)
|n

(
x |∗n+1 y

)

� x |n y.

So we find (τ · x) |n+1 y � x |n y. The proof of RTC4 is the same. RTI1–3
are proved in the same way as RD1–3. Observe that we use that for all atomic
actions a ∈ A : a > τ in RTI1–2. Let us take RXC1. In this deduction we will
make use of (vi) for the function symbol χ.

χ(f ◦ g, x) � χ∗(f ◦ g, x)

� χ
(
f ◦∗ g, χ∗(f ◦ g, x)

)

� χ
(
f, χ(f ◦∗ g, x)

)

� χ
(
f, χ(g, x)

)
.

To deduce the desired inequality for RXC2, we make use of (vi) for the function
symbol ◦.

χ
(
(f ◦ g) ◦ h, x

)
� χ∗

(
(f ◦ g) ◦ h, x

)

� χ
(
(f ◦ g) ◦∗ h, x

)

� χ
(
(f ◦∗ g) ◦

(
(f ◦ g) ◦∗ h

)
, x

)

� χ
(
f ◦

(
(f ◦∗ g) ◦ h

)
, x

)

� χ
(
f ◦ (g ◦ h), x

)
.

88

An Operator Definition Principle: 3.3. Termination

The case RX1 is trivial. So let us treat RX2.

χ(f, γ · x) � χ∗(f, γ · x)

� χ∗(f, γ · x) · χ∗(f, γ · x)

� (γ · x) · χ(f, γ ·∗ x)

� (γ ·∗ x) · χ(f, x)

� γ · χ(f, x).

For RX3 we will make use of the fact that χ > +.

χ(f, x+ y) � χ∗(f, x+ y)

� χ∗(f, x+ y) + χ∗(f, x+ y)

� χ(f, x+∗ y) + χ(f, x+∗ y)

� χ(f, x) + χ(f, y).

RPR1 goes like, e.g., RD1. Let us verify RPR2.

χ(π1, a · x) � χ
∗(π1, a · x)

� a · x

� a ·∗ x

� a.

For the verification of RPR3 we will use that πn+1 > πn.

χ(πn+1, a · x) � χ
∗(πn+1, a · x)

� χ∗(πn+1, a · x) · χ
∗(πn+1, a · x)

� (a · x) · χ(π∗
n+1, a · x)

� (a ·∗ x) · χ(πn, a · x)

� a · χ∗(πn, a · x)

� a · χ(πn, x)

Let us now take a boundary condition. Recall that we have introduced the rank
of a function name, thus for the boundary condition we are to show χ(n1, a) � b.
We will make use of the fact that n1 > b.

χ(n1, a) � χ
∗(n1, a)

� n1

� n∗1
� b.

89

An Operator Definition Principle: 3.3. Termination

Indeed, we see that χ(n1, a) � b. Let us take a functional equation. Let |x| = p.
We will show that χ(np+1, a · x) � b · χ(mp, x).

χ(np+1, a · x) � χ
∗(np+1, a · x)

� χ∗(np+1, a · x) · χ
∗(np+1, a · x)

� np+1 · χ(np+1, a ·
∗ x)

� n∗p+1 · χ(np+1, x)

� b · χ∗(np+1, x)

� b · χ(n∗p+1, x)

� b · χ(mp, x).

And finally, we find χ(np+1, a · x) � b ·χ(mp, x). This ends the proof of 3.3.14.

Remarks (3.3.15)

The partial ordering on the signature in [12] differs in two ways from the
partial ordering that is given in (3.3.5), or equivalently in figure 3.2. Firstly,
we give the following ordering on atomic actions: for all a ∈ A, we defined
a > τ > δ. In [12], there is no ordering on the atomic actions, nor on δ or τ ,
whatsoever. The author did not succeed in proving that ∂H(a) � δ, τ | x � δ,
x | τ � δ or τI(a) � τ , without some kind of ordering on the atomic actions.
Secondly, in [12] there is no rewriting rule for a | b, with a, b ∈ A \ {δ}. This
is necessary in order to be able to prove an elimination result. This is also
stated in [12], but without a rewriting rule for a | b, this result in [12] is not
entirely correct.

We have seen that this way of proving termination is highly usable in
process algebra. For, the method presented in [12], is generalized effortlessly
to the present situation. Therefore, it is worthwhile investigating this method
separately. However, we will not do that in this thesis. For another way of
proving termination in process algebra we refer to [1].

Here we will discuss an elimination theorem which states that we can
eliminate in a closed ACPτ,u-term all the operators that are not the alternative
composition or the sequential composition. In other words, we can rewrite
each closed ACPτ,u-term to a BPAδ,τ -term. The acronym BPA stands for
basic process algebra. This system consists of the first five laws of PA, which
has been studied in [14]. The abbreviation PA stands for process algebra. The
subscripts δ and τ , mean that the axioms concerning those special constants
are added to the theory BPA. A good general reference to BPA, BPAδ,τ and
PA is [8].

We will use the same notational conventions as before in table 3.1. For
the axioms of BPAδ,τ , see table 3.3 on page 91.

90

An Operator Definition Principle: 3.3. Termination

A1 x+ y = y + x x · τ = xT1

A2 x+ (y + z) = (x+ y) + z τ · x+ x = τ · xT2

A3 x+ x = x a · (τ · x+ y) = a · (τ · x+ y) + a · xT3

A4 (x+ y) · z = x · z + y · z

A5 (x · y) · z = x · (y · z)

A6 x+ δ = x

A7 δ · x = δ

Table 3.3. BPAδ,τ .

Lemma (3.3.16)

Let t be a closed BPAδ,τ -term. Let RA3–7 and RT from table 3.2 on
page 83 be the term rewriting system associated with BPAδ,τ , then we can
rewrite the term t in one of the following forms:

u =







a, with a ∈ A;
δ;
τ ;
a · v, with a ∈ Aτ and v a closed BPAδ,τ -term in normal form;
v + w, with v,w closed BPAδ,τ -terms in normal form.

Or, equivalently, there are closed BPAδ,τ -terms x1, . . . , xn, t1, . . . , tp such that

u =
n∑

i=1

ai · xi +

p
∑

k=1

τ · tk,

for certain atomic actions a1, . . . , an ∈ A and n, p ≥ 0.

Proof. This is a well-known fact. See, e.g., [8]. Note that we rewrite mod-
ulo A1 and A2. We did not do that in theorem (3.3.14); we excluded the
axiom A1 among others in there in order to be able to use the method of the
recursive path ordering.

Theorem (3.3.17) The Elimination Theorem(3.3.17)

Let t be a closed ACPτ,u-term. Then there is a closed BPAδ,τ -term s, such
that

ACPτ,u ` t = s.

Proof. Let N be the set of function names that occur in the closed ACPτ,u-
term t. Rewrite this term t with the aid of the term rewriting system in table 3.2

91

An Operator Definition Principle: 3.3. Termination

on page 83 and the term rewriting system associated with E(N)* to a normal
form. With the aid of theorem (3.3.14), we know that this is not an infinite
process, i.e., there is a finite row:

t = t0 → t1 → · · · → tn = s, (3)

and we cannot perform any rewriting rule on s. We immediately see that
in s we have not a merge operator, for otherwise we could apply RCM1. We
will distinguish five cases. If in s occurs a function name, a left-merge, a
communication-merge, an encapsulation operator or an abstraction operator,
we will take a minimal subterm (in the sense of a minimal number of symbols),
in which precisely one of these operators occurs.

1 We have a minimal subterm of the form n(u), with n ∈ N and u a
closed BPAδ,τ -term. Then we know that u has one of the forms displayed
in (3.3.16). If u = a, then we can use a boundary condition: χ(n, a) → b,
but this is in contradiction with the assumption that s is in normal form.
If u = δ or τ , we can apply RX1. If u = a · v, we can use a functional
equation: χ(n, a · v)→ b · χ(m, v). And if u = v + w, we can apply RX3.

2 We have a minimal subterm of the form u1 u2, with u1, u2 closed BPAδ,τ -
terms. If u1 = a ∈ Aδ, then we can apply RCM2. If u1 = τ , we can use
RTM1. If u1 = a · v, we can use RCM3. If u1 = v + w, then we can use
RCM4.

3 We have a minimal subterm of the form u1 | u2 with u1, u2 closed BPAδ,τ -
terms. If u1 = a ∈ A or δ, then we may use RC, RCM6 or RCM9. If
u1 = τ , we can apply RTC1. If u1 = a · v, we can use RCM5 or RCM7 or
RCM9 or RTC2. If u1 = v + w, we can use RCM8.

4 We have a minimal subterm of the form ∂H(u), with u a closed BPAδ,τ -
term. If u = a ∈ A or δ, we can apply RD1 or RD2. If u = τ , we can
apply RDT. If u = a · v, we can use RD4 and, if u = v + w, we can use
RD3.

5 We have a minimal subterm of the form τI(u), with u a closed BPAδ,τ -
term. This case is treated exactly the same as the former case.

So in s a left-merge, a communication-merge, an encapsulation operator or
an abstraction operator cannot occur. Thus, s is a closed BPAδ,τ -term. If
we replace the arrows by equality signs, in equation (3), we obtain a proof in
ACPτ,u of t = s. This will end the proof of 3.3.17.

Corollary (3.3.18)

Let t be a closed ACPτ,u-term. Then we can rewrite this term t into a
closed term u which has the following form:

u =

n∑

i=1

ai · xi +

p
∑

k=1

τ · tk,

* see definition (3.3.13)

92

An Operator Definition Principle: 3.4. Theorems

for certain closed BPAδ,τ -terms x1, . . . , xn, t1, . . . , tp with n, p ≥ 0 and certain
a1, . . . , an ∈ A.

3.4. Theorems

In several applications in which auxiliary linear unary operators have been used
in the past, there was a need to deduce some basic properties of these operators
in order to be able to prove the desired results. We can think of an application
wherein the approximation induction principle is used to establish a result. See
definition (1.2.6) for the formulation of AIP. Therefore, we often need to know
whether or not this particular auxiliary operator commutes with the projection
operators πn. In this section we will prove that if f can be defined with the
aid of a linear functional specification and, if f is a concrete operator, then for
all processes x that contain no τs, we have

πn ◦ f(x) = f ◦ πn(x).

See theorem (3.4.8) for details. Moreover, this yields that if we work in the
axiom system ACPu (ACPu is ACPτ,u without abstraction; see table 3.5 on
page 115, section 3.5), all the linear unary operators that can be defined with
the aid of a linear functional specification, commute with the projection oper-
ators. For, in that case all the operators and processes are both concrete.

Another thing that we might want to know is which processes are fixed
points of such an operator. We will prove two results about this. To formulate
these theorems we will use the notion of stable atomic actions (with respect to
this operator). We call an atomic action stable with respect to f ∈ F if we have
for all x ∈ P that f(a · x) = a · f(x), that is, if f meets such an atom, it will
pass it and nothing will change: neither the atomic action, nor the operator
itself.

It is intuitively clear that, for instance, ρ ◦ ρ = ρ for a renaming operator
that only renames a ∈ A into b. This can be proved within the framework of
ACPτ , for closed terms. But we actually feel that this must be valid for open
terms. With the aid of OSP, we can prove this for open terms. In fact, we will
prove some theorems on idempotent linear unary operators that can be defined
with the aid of a linear functional specification.

It is not only the case that we might want to know some basic facts about
auxiliary unary operators that we defined in the middle of a verification, but
it can be the case that we want to know something concerning operators that
we already know. For instance, it is immediately clear that τI ◦ τ{i} = τI ,
for all i ∈ I. Again it is already possible to prove this for closed terms within
ACPτ . With the aid of OSP it is very trivial to show that this is true in general.

93

An Operator Definition Principle: 3.4. Theorems

We see that the operator τ{i} is absorbed by τI . We will define the notions of a
left and right-absorber. We will prove some theorems concerning this matter.

In [5] we can find conditional axioms. They are of great interest for al-
gebraic verification techniques. We have listed these conditional axioms in
section 1.5. We will treat a theorem from which two of these axioms follow
immediately; namely CA5 and CA6. Just another thing that can be of inter-
est, is the question if a linear unary operator commutes with the encapsulation
operator, or with the abstraction operator. Or when do we have that ∂H and
τI commute? The latter question is also known as a conditional axiom CA7. In
fact, we will prove this conditional axiom CA7 as a corollary of theorem (3.4.24),
in which we give some necessary conditions in a way that renaming operators
commute. We extend this result to arbitrary linear unary operators that can
be defined with the aid of a linear functional specification. In these theorems
we will use the notion of stable atomic actions, too.

Finally, we will treat, for “historic” reasons, a theorem that gives the
conditions such that

f ◦ g(x ‖ y) = f(x) ‖ g(y).

This theorem can be found in [4]. We included it, since it can be seen as one
of the first general theorems on auxiliary linear unary operators. This theorem
might look a bit strange at first sight, but when we take f = g = ∂H , we find a
very useful equation: ∂H(x ‖ y) = ∂H(x) ‖ ∂H(y), since ∂H is idempotent. (Of
course, we do have certain restrictions on x and y.)

Hereinafter, we will define the notion of the alphabet of a process, which
can be found in [5]. In section 1.5 we already defined this notion. However, we
have to adapt this definition to the present situation.

Definition (3.4.1)

Let x be a closed ACPτ,u-term and let a ∈ A. The alphabet of a process x
is the set of atomic actions that x can perform. We define inductively what the
alphabet α(x) of this x is. If in x occurs a constant of sort F , we will rewrite
this term x with corollary (3.3.18) to a term x′ without constants of sort F and
we define α(x) := α(x′). Now let x be a closed ACPτ,u-term without elements
of sort F .

(i) α(δ) = α(τ) = ∅

(ii) α(a) = {a}

(iii) α(δ · x) = ∅

(iv) α(τ · x) = α(x)

(v) α(a · x) = {a} ∪ α(x)

(vi) α(x + y) = α(x) ∪ α(y)

94

An Operator Definition Principle: 3.4. Theorems

Now we have defined the alphabet for closed terms, we will define it for terms t,

with the property that πn(t) is a closed ACPτ,u-term.

(vii) α(t) =
⋃∞

n=1 α
(
πn(t)

)

Definition (3.4.2)

Let f ∈ F be a unary operator. An atomic action a ∈ A is called stable
(with respect to f), if we have for all x ∈ P :

f(a · x) = a · f(x).

Otherwise, it is called unstable. The set of all stable atomic actions with respect
to f is denoted:

S(f) =
{
a ∈ A

∣
∣ ∀x ∈ P : f(a · x) = a · f(x)

}
.

We will use the notation U(f) = A\S(f) for the set of unstable atomic actions
with respect to f .

Examples (3.4.3)

Let I ⊆ A. Then the set of unstable atomic actions of the abstraction
operator is U(τI) = I. Let H ⊆ A. Then the set of unstable atomic actions of
the encapsulation operator is U(∂H) = H. Let n ≥ 1. Then the set of stable
atomic actions of the projection operator is S(πn) = ∅.

Remark (3.4.4)

Let f ∈ F be a linear unary operator. Let a ∈ A be a stable atom with
respect to f . Then we find that f(a) = a. For consider the following:

f(a) = f(a · τ)

= a · f(τ)

= a · τ

= a.

Definition (3.4.5)

A process x ∈ P is called concrete, if it has the following form:

x =
n∑

i=1

ai · xi +
m∑

j=1

bj ,

for a1, . . . , an, b1, . . . , bm ∈ Aδ and x1, . . . , xn ∈ P are concrete.

95

An Operator Definition Principle: 3.4. Theorems

Theorem (3.4.6)

Let x be a concrete process, then for all n ≥ 1, we have that πn(x) is a
closed ACPτ,u-term.

Proof. We will prove 3.4.6 with induction on n. We know that x is of the
following form:

x =

n∑

i=1

ai · xi +

m∑

j=1

bj ,

and x1, . . . , xn are also concrete (by definition). Now let n = 1, then

π1(x) =

n∑

i=1

ai +

m∑

j=1

bj ,

and this is a closed term. Suppose that 3.4.6 is proved for n, then we prove it
for n + 1. We know that for all i = 1, . . . , n : πn(xi) = ti are closed terms, so
we find for x:

πn+1(x) =

n∑

i=1

ai · πn(xi) +

m∑

j=1

bj

=

n∑

i=1

ai · ti +

m∑

j=1

bj ,

which is a closed ACPτ,u-term.

Remark (3.4.7)

Notice that we can define the alphabet of a concrete process with the
aid of the former theorem, for we defined the alphabet inductively on closed
ACPτ,u-terms and the projections of concrete processes are closed terms.

Theorem (3.4.8)

Let f ∈ F be a concrete linear unary operator that can be defined with
a linear functional specification (see definition (3.2.12) for the definition of a
concrete operator). Let x be a concrete process. Then we have for all n ≥ 1:

πn ◦ f(x) = f ◦ πn(x).

Proof. We will prove this theorem with induction on n. Recall that x has the
following form:

x =

n∑

i=1

ai · xi +

m∑

j=1

bj ,

96

An Operator Definition Principle: 3.4. Theorems

for certain concrete x1, . . . , xn. Let n = 1, then,

π1 ◦ f(x) =
n∑

i=1

f(ai) +
m∑

j=1

f(bj)

=
n∑

i=1

f
(
π1(ai · xi)

)
+

m∑

j=1

f
(
π1(bj)

)

= f ◦ π1(x).

Suppose that 3.4.8 is valid for n, then we prove it for n + 1. Observe that all
g ∈ D(f) are concrete, if f itself is concrete.

πn+1 ◦ f(x) =

n∑

i=1

f(ai) · πn ◦ gi(xi) +

m∑

j=1

πn+1 ◦ f(bj)

=

n∑

i=1

f(ai) · gi ◦ πn(xi) +

m∑

j=1

f(bj)

=
n∑

i=1

f
(
ai · πn(xi)

)
+

m∑

j=1

f
(
πn+1(bj)

)

= f ◦ πn+1(x).

Since gi ∈ D(f). This finishes the proof of theorem 3.4.8.

Lemma (3.4.9)

Let f ∈ F be a linear unary operator, not necessarily definable by a linear
functional specification, and let x be a closed ACPτ,u-term. Then we have the
following:

α(x) ⊆ S(f) =⇒ f(x) = x.

Proof. We will prove 3.4.9 with induction on the number n of symbols of
x. So let n = 1, then we have three possibilities for x: x = a, x = δ, or
x = τ . Because of X1, the latter two cases are proved and, due to the fact that
α(a) ⊆ S(f) and remark (3.4.4), we know that f(a) = a. Now let n > 1 and
suppose that 3.4.9 holds for all closed terms with their number of symbols < n.
Because of (3.3.18), we know that x has the following form:

x =

n∑

i=1

ai · xi +

p
∑

k=1

τ · tk,

for closed ACPτ,u-terms x1, . . . , xn, t1, . . . , tp, n, p ≥ 0 and atomic actions
a1, . . . , an ∈ A. Now we see that ai ∈ α(x) ⊆ S(f), hence, f(ai ·xi) = ai ·f(xi),

97

An Operator Definition Principle: 3.4. Theorems

for 1 ≤ i ≤ n. Consider the following:

f(x) =

n∑

i=1

f(ai · xi) +

p
∑

k=1

f(τ · tk)

=

n∑

i=1

ai · f(xi) +

p
∑

k=1

τ · f(tk)

=

n∑

i=1

ai · xi +

p
∑

k=1

τ · tk

= x.

Observe that we can use the induction hypothesis, since

α(xi), α(tk) ⊆ α(x) ⊆ S(f).

This ends the proof of 3.4.9.

Theorem (3.4.10)

Let f ∈ F be a concrete linear unary operator that can be defined with
a linear functional specification and let x be a concrete process, and suppose
that α(x) ⊆ S(f), then x is a fixed point of f .

Proof. According to AIP it suffices to prove for all n ≥ 1:

πn ◦ f(x) = πn(x).

Let n ≥ 1 be fixed. As both x and f are concrete, we know that

πn ◦ f(x) = f ◦ πn(x) = f
(
πn(x)

)
.

With the aid of (3.4.6) and (3.4.9) we know that f
(
πn(x)

)
= πn(x), since

α
(
πn(x)

)
⊆

∞⋃

i=1

α
(
πi(x)

)
= α(x) ⊆ S(f).

Thus, we see that x is a fixed point of f .

Definition (3.4.11)

Let f ∈ F be a linear unary operator. If we have f 2 = f , we will call f
idempotent.

98

An Operator Definition Principle: 3.4. Theorems

Theorem (3.4.12)

Let f ∈ F be a renaming operator. Suppose that the following condition
holds.

∀α ∈ f
(
U(f)

)
: f(α) = α,

then f is idempotent, that is, f2 = f .

Proof. Let n be a function name and consider the following linear functional
specification.

E(n) =
{
n(a) = f(a) : a ∈ A

}

∪
{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

We immediately see that f is a solution for this system. Now we will show
that f2 is also a solution for it. Let a ∈ S(f), then we see that f 2(a) = a = f(a).
Let a ∈ U(f), then we know that f(a) is a fixed point of f . So we find
again f2(a) = f(a). Since f is a renaming, we find f 2(a · x) = f2(a) · f2(x).
We see that f2 is a solution for the linear functional specification E(n). But
according to OSP, we know that there is at most one solution, so we find f 2 = f .
This ends the proof of 3.4.12.

Theorem (3.4.13)

Let f1 ∈ F be a linear unary operator that can be defined with the aid of
a linear functional specification. Let D(f1) = {f1, . . . , fk} be the set of derived
operators. Let

σ : A× {1, . . . , k} −→ {1, . . . , k}

be defined as follows. If we have for all x ∈ P : fi(a · x) = fi(a) · fj(x), then
we define σ(a, i) = j. Suppose that the following conditions hold,

(i) ∀α ∈ fi

(
U(fi)

)
: fi(α) = α

(ii) σ(a, i) = σ
(
fi(a), i

)

then fi is idempotent, for all 1 ≤ i ≤ k.

Proof. Let N = {n1, . . . , nk} be a set of function names. Consider the follow-
ing linear functional specification.

E(N) =
{
ni(a) = fi(a) : a ∈ A, 1 ≤ i ≤ k

}

∪
{
ni(a · x) = ni(a) · nσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ k

}
.

It will be clear that f1, . . . , fk is a solution for this system of equations. We will
show that f2

1 , . . . , f
2
k is also a solution for this system. Choose an i ∈ {1, . . . , k}.

As in theorem (3.4.12), we see at once that f 2
i (a) = fi(a). We will handle the

functional equations. Here, we will use the second condition.

f2
i (a · x) = fi

(
fi(a) · fσ(a,i)(x)

)

= f2
i (a) · fσ(fi(a),i) ◦ fσ(a,i)(x)

= f2
i (a) · f2

σ(a,i)(x).

99

An Operator Definition Principle: 3.4. Theorems

With the aid of OSP, we see that f2
i = fi, for all 1 ≤ i ≤ k. This will end the

proof of 3.4.13.

Definition (3.4.14)

Let f, g ∈ F . If f ◦g = g, we will call g a left-absorber for f ; if g◦f = g, we
say that g is a right-absorber for f . If g is a left-absorber and a right-absorber
for f , we just say that g is an absorber for f .

Theorem (3.4.15) (Left-absorption)(3.4.15)

Let f, g ∈ F be renaming operators. If we have

S(g) ∪ g
(
U(g)

)
⊆ S(f) ∪ {δ, τ},

then g is a left-absorber for f .

Proof. We are to show that f ◦ g = g. Let n be a function name. Consider
the following linear functional specification.

E(n) =
{
n(a) = g(a) : a ∈ A

}
∪

{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

We immediately see that g is a solution for E(n). It is very easy to deduce
that f◦g is also a solution for it. Hence, with the aid of OSP, we find that f◦g =
g, so g is a left-absorber for f . This will end the proof of 3.4.15.

Theorem (3.4.16) (Left-absorption)(3.4.16)

Let f, g1 ∈ F . Suppose that f is a renaming operator and suppose that g1
can be defined with the aid of a linear functional specification. Let D(g1) =
{g1, . . . , gl} be the set of derived operators of g1. Suppose that the following
condition holds:

l⋂

j=1

(

S(gj) ∪ gj

(
U(gj)

))

⊆ S(f) ∪ {δ, τ}.

Then all gj are left-absorbers for f .

Proof. Let N = {n1, . . . , nl} be a set of function names. Define a map

ρ : A× {1, . . . , l} −→ {1 . . . , l}

as follows:

ρ(a, j) = k ⇐⇒ ∀x ∈ P : gj(a · x) = gj(a) · gk(x).

Consider the following linear functional specification.

E(N) =
{
nj(a) = gj(a) : a ∈ A, 1 ≤ j ≤ l

}

∪
{
nj(a · x) = nj(a) · nρ(a,j)(x) : a ∈ A, 1 ≤ j ≤ l

}
.

100

An Operator Definition Principle: 3.4. Theorems

It will be clear that g1, . . . , gl is a solution for this system of equations. We
will show that

f ◦ g1, . . . , f ◦ gl

is also a solution. It is very easy to see that f ◦ gj(a) = gj(a). Hence, all f ◦ gj

satisfy the boundary conditions of E(N). We will show that the functional
equations are satisfied, as well.

f ◦ gj(a · x) = f
(
gj(a) · gρ(a,j)(x)

)

= f ◦ gj(a) · f ◦ gρ(a,j)(x).

We find thus, according to OSP, that f ◦ gj = gj , and all gj are left-absorbers
for f . This ends the proof.

Observe that in these two absorption theorems, we could have replaced
the conditions respectively by f ◦ g(a) = g(a) and f ◦ gj(a) = gj(a). We did
not do that for orthogonality reasons: with the conditions as they are, we can
formulate the following generalization.

Theorem (3.4.17) (Left-absorption)(3.4.17)

Let f1, g1 ∈ F be definable with the aid of linear functional specifications.
Let their sets of derived operators be as follows.

D(f1) = {f1, . . . , fk}, D(g1) = {g1, . . . , gl}.

Suppose that the following condition holds.
l⋂

j=1

(

S(gj) ∪ gj

(
U(gj)

))

⊆
k⋂

i=1

S(fi) ∪ {δ, τ}.

Then all gj are left-absorbers for all fi.

Proof. We will use the notations of (3.4.16). We must show that fi ◦ gj is a
solution forE(N). First, we will handle the boundary conditions. Fix 1 ≤ i ≤ k
and 1 ≤ j ≤ l. First, let a ∈ S(gj), then we see that a ∈ S(fi), so fi ◦ gj(a) =
a = gj(a). Now suppose that a ∈ U(gj). If gj(a) = γ, with γ ∈ {δ, τ}, then we
have

fi ◦ gj(a) = fi(γ)

= γ

= gj(a).

If gj(a) ∈ S(fi), then we find immediately that fi ◦ gj(a) = gj(a). Hence, the
boundary conditions are treated. Now we will handle the functional equations.
We will only treat the case that a ∈ U(gj) and gj(a) 6= γ. So gj(a) ∈ S(fi).
We see that

fi ◦ gj(a · x) = fi

(
gj(a) · gρ(a,j)(x)

)

= fi ◦ gj(a) · fi ◦ gρ(a,j)(x).

Hence, we obtain with the aid of OSP that fi ◦ gj = gj for all i and j. This is
what we wanted to prove.

101

An Operator Definition Principle: 3.4. Theorems

Theorem (3.4.18) (Right-absorption)(3.4.18)

Let f, g ∈ F be renaming operators. Suppose that

∀ a ∈ A : f ◦ g(a) = f(a),

then f is a right-absorber for g.

Proof. Let n be a function name. Consider the following linear functional
specification.

E(n) =
{
n(a) = f(a) : a ∈ A

}
∪

{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

We see that f is a solution for E(n). It is trivial to deduce that the same holds
for f ◦g, so with OSP, we find that f ◦g = f . This is what we wanted to prove.

Theorem (3.4.19) (Right-absorption)(3.4.19)

Let f1, g ∈ F . Suppose that f1 is definable with the aid of a linear func-
tional specification, and let g be a renaming operator. Let D(f1) = {f1, . . . , fk}
be the set of derived operators of f1. Define σ : A × {1, . . . , k} −→ {1, . . . , k}
as follows

σ(a, i) = j ⇐⇒ ∀x ∈ P : fi(a · x) = fi(a) · fj(x).

Suppose that the following conditions are valid.

(i) fi ◦ g(a) = fi(a), 1 ≤ i ≤ k, a ∈ A

(ii) σ
(
g(a), i

)
= σ(a, i), 1 ≤ i ≤ k, a ∈ A

Then all fi are right-absorbers for g.

Proof. Let N = {n1, . . . , nk} be a set of function names. Consider the linear
functional specification hereinafter.

E(N) =
{
ni(a) = fi(a) : a ∈ A, 1 ≤ i ≤ k

}

∪
{
ni(a · x) = ni(a) · nσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ k

}
.

We see that f1, . . . , fk is a solution for this system of equations. We will show
that this is also valid for fi ◦ g with 1 ≤ i ≤ k. Because of the first condition
we will only have to treat the functional equations.

fi ◦ g(a · x) = fi

(
g(a) · g(x)

)

= fi ◦ g(a) · fσ(g(a),i) ◦ g(x)

= fi ◦ g(a) · fσ(a,i) ◦ g(x).

Observe that we used the second condition. We find thus, with the aid of OSP

that fi ◦ g = fi. This is precisely what we wanted to prove.

102

An Operator Definition Principle: 3.4. Theorems

Theorem 3.4.19 will not generalize any further. For, suppose that g ∈ F
is also definable with the aid of a linear functional specification and suppose
that |D(g)| > 1. Then there is an atomic action a ∈ A and a linear unary
operator h ∈ D(g), such that for all x ∈ P : g(a · x) = g(a) · h(x). But then
we find with the second condition that fi ◦ g(a · x) = fi ◦ g(a) · fσ(a,i) ◦ h(x),
but this functional equation does not correspond with any of the functional
equations in the linear functional specification E(N) which defines f1, . . . , fk.
So we find that fi ◦ g is not a solution for it. It turns out that the assumption
that |D(g)| > 1 cannot hold. We find thus that g must be a renaming operator.

Theorem (3.4.20)

Let f, f1, . . . , fk be renaming operators. Suppose that the following holds:

∀ a ∈ A : f(a) = f1 ◦ f2 ◦ · · · ◦ fk(a)

then f = f1 ◦ f2 ◦ · · · ◦ fk.

Proof. Let n be a function name. Consider the following linear functional
specification.

E(n) =
{
n(a) = f(a) : a ∈ A

}
∪

{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

It will be clear that f is a solution for this system. But we also see that

f1 ◦ f2 ◦ · · · ◦ fk

is a solution for it; so in accordance with OSP we may conclude that they are
equal. This will end the proof of 3.4.20.

Corollary (3.4.21)

Let H1,H2 ⊆ A and let H = H1 ∪H2. Then we have ∂H = ∂H1
◦ ∂H2

.

Proof. It is trivial to verify that the conditions of theorem (3.4.20) are satis-
fied. With this, we conclude the proof of 3.4.21.

Corollary (3.4.22)

Let I1, I2 ⊆ A and let I = I1 ∪ I2. Then we have τI = τI1
◦ τI2

.

Proof. Trivial.

Remarks (3.4.23)

Both corollaries (3.4.21) and (3.4.22) are known as conditional axioms; see
section 1.5. We see that it is very trivial to prove these statements, with this
theory. In the setting of ACPτ it is only possible to prove these axioms for
closed terms.

103

An Operator Definition Principle: 3.4. Theorems

Theorem (3.4.24)

Let f, g ∈ F be renaming operators. Suppose that the following holds:

(i) S(f) ∪ S(g) = A,

(ii) f
(
U(f)

)
⊆ S(g) ∪ {δ, τ},

(iii) g
(
U(g)

)
⊆ S(f) ∪ {δ, τ},

then f and g commute, i.e., f ◦ g = g ◦ f .

Proof. Let n be a function name. Consider the linear functional specification
E(n) below:

E(n) =
{
n(a) = a : a ∈ S(f) ∩ S(g)

}

∪
{
n(a) = f(a) : a ∈ S(g) \ S(f)

}

∪
{
n(a) = g(a) : a ∈ S(f) \ S(g)

}

∪
{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

First, we will show that f ◦ g is a solution for the linear functional specification
above. If a is in S(f)∩S(g), then we see that f ◦g(a) = a. Let a ∈ S(g)\S(f);
then we see with (ii) that f ◦ g(a) = f(a). Let a ∈ S(f) \S(g); then we obtain
with the aid of (iii) that f ◦ g(a) = g(a). Finally, we take a ∈ A and x ∈ P ;
then we easily find that f ◦ g(a · x) = f ◦ g(a) · f ◦ g(x). This means that f ◦ g
is a solution for the system E(n). We can also show that g ◦ f is a solution for
the linear functional specification above, so with the aid of OSP, we find that
f ◦ g = g ◦ f . This ends the proof of 3.4.24.

Corollary (3.4.25)

Let I,H ⊆ A. Suppose that I ∩H = ∅. Then the encapsulation operator
∂H and the abstraction operator τI commute.

Proof. We will verify the conditions of theorem (3.4.24). We know that
S(∂H) = A \ H and S(τI) = A \ I, so because of the fact that I ∩ H = ∅,
we immediately see that (i) holds. We see that ∂H(H) = {δ} ⊆ S(τI) ∪ {δ, τ},
so (ii) is valid. The same applies to (iii), thus, we may use theorem (3.4.24)
and we find that τI ◦ δH = δH ◦ τI . This ends the proof.

Remark (3.4.26)

Corollary (3.4.25) is also known as a conditional axiom; see section 1.5. In
the setting of ACPτ , it is possible to prove this for closed ACPτ -terms, but in
the framework of ACPτ,u, it is possible to prove this axiom for all processes.

104

An Operator Definition Principle: 3.4. Theorems

Theorem (3.4.27)

Let f ∈ F be a renaming operator. Let k1 ∈ F be a linear unary operator
that can be defined with the aid of a linear functional specification. Let the set
of derived operators of k1 be D(k1) = {k1, . . . , kl}. Suppose that the following
holds:

(i) S(f) ∪
⋂l

i=1 S(ki) = A

(ii) f
(
U(f)

)
⊆

⋂l
i=1 S(ki) ∪ {δ, τ}

(iii)
⋃l

i=1 ki

(
U(ki)

)
⊆ S(f) ∪ {δ, τ}

then f and ki commute, i.e., for all i in {1, . . . , l}, we have: f ◦ ki = ki ◦ f .

Proof. Define a map σ : A×{1, . . . , l} −→ {1, . . . , l} as follows. Let a ∈ A and
1 ≤ i ≤ l be chosen. We know that there is an operator kj ∈ D(k1), such that
ki(a ·x) = b ·kj(x), for a certain a ∈ A∪C. Now we will define σ(a, i) = j. Let
M = {m1, . . . ,ml} be a set of function names. Consider the following linear

functional specification. Let C =
⋂l

i=1 S(ki).

E(M) =
{
mi(a) = a : a ∈ S(f) ∩ C, 1 ≤ i ≤ l

}

∪
{
mi(a) = ki(a) : a ∈ S(f) \ C, 1 ≤ i ≤ l

}

∪
{
mi(a) = f(a) : a ∈ C \ S(f), 1 ≤ i ≤ l

}

∪
{
mi(a · x) = a ·mi(x) : a ∈ S(f) ∩ C, 1 ≤ i ≤ l

}

∪
{
mi(a · x) = ki(a) ·mσ(a,i)(x) : a ∈ S(f) \ C, 1 ≤ i ≤ l

}

∪
{
mi(a · x) = f(a) ·mi(x) : a ∈ C \ S(f), 1 ≤ i ≤ l

}
.

Let x ∈ P and i ∈ {1, . . . , l} be fixed. Let a ∈ S(f) ∩ C, then we see that
ki ◦ f(a) = a and we see that f ◦ ki(a) = a, too. Moreover, we see that

ki ◦ f(a · x) = a · ki ◦ f(x)

and

f ◦ ki(a · x) = a · f ◦ ki(x).

Now let a ∈ S(f) \C. Then we also see that ki ◦ f(a) = ki(a), and we see that
f ◦ ki(a) = ki(a), because of (iii). Moreover, we see the following:

f ◦ ki(a · x) = f
(
ki(a) · kσ(a,i)(x)

)

= ki(a) · f ◦ kσ(a,i)(x)

and

ki ◦ f(a · x) = ki

(
a · f(x)

)

= ki(a) · kσ(a,i) ◦ f(x).

105

An Operator Definition Principle: 3.4. Theorems

Now let a ∈ C \ S(f). Then we see that ki ◦ f(a) = f(a) and we see that
f ◦ ki(a) = f(a). It is also easy to see that

ki ◦ f(a · x) = ki

(
f(a) · f(x)

)

= f(a) · ki ◦ f(x)

and

f ◦ ki(a · x) = f
(
a · ki(x)

)

= f(a) · f ◦ ki(x),

since f is a renaming operator. Thus, we find that k1 ◦f, . . . , kl ◦f is a solution
for the linear functional specification above. But we also see that f◦k1, . . . , f◦kl

is a solution for this system. So with the aid of OSP, we may conclude that
ki ◦ f = f ◦ ki. Herewith we end the proof of 3.4.27.

Theorem (3.4.28)

Let f1, g1 ∈ F be linear unary operators that can be defined with the aid
of linear functional specifications. Let the sets of derived operators be given as
follows:

D(f1) = {f1, . . . , fn},

D(g1) = {g1, . . . , gm}.

Suppose that the following holds:

(i)
⋂n

i=1 S(fi) ∪
⋂m

j=1 S(gj) = A

(ii)
⋃n

i=1 fi

(
U(fi)

)
⊆

⋂m
j=1 S(gj) ∪ {δ, τ}

(iii)
⋃m

j=1 gi

(
U(gi)

)
⊆

⋂n
i=1 S(fi) ∪ {δ, τ}

then all elements of the derived operator set D(f1) of f1, commute with all
elements of the derived operator set D(g1) of g1.

Proof. Define two maps

σ : A× {1, . . . , n} −→ {1, . . . , n}

ρ : A× {1, . . . ,m} −→ {1, . . . ,m}

as follows. Let a ∈ A and 1 ≤ i ≤ n be chosen. There is an fj ∈ D(f1)
such that fi(a · x) = b · fj(x), for a certain b ∈ A ∪ C. We define σ(a, i) = j.
Now fix c ∈ A and 1 ≤ j ≤ m. We know that there is a gk ∈ D(g1) such
that gj(c · x) = d · gk(x) for a certain d ∈ A ∪ C. We define ρ(c, j) = k. Let
M = {mi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} be a set of function names. We will use
the following abbreviations:

S1 =

n⋂

i=1

S(fi) and S2 =

m⋂

j=1

S(gj).

106

An Operator Definition Principle: 3.4. Theorems

Consider the linear functional specification hereinafter.

E(M) =
{
mi,j(a) = a : a ∈ S1 ∩ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

∪
{
mi,j(a) = gj(a) : a ∈ S1 \ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

∪
{
mi,j(a) = fi(a) : a ∈ S2 \ S1, 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

∪
{
mi,j(a · x) = a ·mi,j(x) : a ∈ S1 ∩ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

∪
{
mi,j(a · x) = gj(a) ·mi,ρ(a,j)(x)

: a ∈ S1 \ S2, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

∪
{
mi,j(a · x) = fi(a) ·mσ(a,i),j(x)

: a ∈ S2 \ S1, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
.

Let x ∈ P , 1 ≤ i ≤ n and 1 ≤ j ≤ m be fixed. Choose a ∈ S1 ∩ S2. We
immediately see that fi ◦ gj(a) = a = gj ◦ fi(a). It is also easy to see the
following.

fi ◦ gj(a · x) = a · fi ◦ gj(x)

and

gj ◦ fi(a · x) = a · gj ◦ fi(x).

Now let a ∈ S1 \ S2. Then it is easy to see that fi ◦ gj(a) = gj(a) = gj ◦ fi(a).
It is also immediately clear that

fi ◦ gj(a · x) = fi

(
gj(a) · gρ(a,j)(x)

)

= gj(a) · fi ◦ gρ(a,j)(x)

and

gj ◦ fi(a · x) = gj

(
a · fi(x)

)

= gj(a) · gρ(a,j) ◦ fi(x).

Observe that we used here (iii). Finally let a ∈ S2\S1. We see that fi◦gj(a) =
fi(a) = gj ◦ fi(a). Moreover, using (ii), we find that

fi ◦ gj(a · x) = fi

(
a · gj(x)

)

= fi(a) · fσ(a,i) ◦ gj(x)

and

gj ◦ fi(a · x) = gj

(
fi(a) · fσ(a,i)(x)

)

= fi(a) · gj ◦ fσ(a,i)(x).

Thus, we find that {fi ◦ gj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a solution for E(M).
But we also find that {gj ◦ fi : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a solution for E(M).
So with the use of OSP, we find that fi ◦ gj = gj ◦ fi, for all 1 ≤ i ≤ n and
1 ≤ j ≤ m. This ends the proof of 3.4.28.

107

An Operator Definition Principle: 3.4. Theorems

Theorem (3.4.29)

Suppose that there is no communication, that is, a | b = δ for all atomic
actions a, b ∈ A. Let f1, g1 ∈ F be definable with the aid of linear functional
specifications. Let their sets of derived operators be D(f1) = {f1, . . . , fn} and
D(g1) = {g1, . . . , gm}. Let x, y be closed ACPτ,u-terms. Suppose that the
following conditions hold.

(i) α(x) ∪
⋃n

u=1 α
(
fu(x)

)
⊆

⋂m
v=1 S(gv)

(ii) α(y) ∪
⋃m

v=1 α
(
gv(y)

)
⊆

⋂n
u=1 S(fu)

Then we have for all 1 ≤ u ≤ n and 1 ≤ v ≤ m:

fu ◦ gv(x ‖ y) = fu(x) ‖ gv(y), (1)

fu ◦ gv(x y) = fu(x) gv(y). (2)

Proof. First we will show that equation (1) is correct. With that result we
will prove equation (2). Observe that this is not the “usual” order. This is
caused by the fact that if we know that equation (2) holds, we do not know
that

fu ◦ gv(y x) = gv(y) fu(x).

We will prove (1) with induction on the sum n of the number of symbols of x
and of y. First we will consider the basis of our induction: n = 2. We will have
four possibilities:

x = a, y = b x = a, y = τ x = τ, y = b x = y = τ,

with a, b ∈ Aδ. We will deduce only the first one. Let 1 ≤ u ≤ n and 1 ≤ v ≤ m
be fixed. Consider the following.

fu ◦ gv(a ‖ b) = fu ◦ gv(a · b) + fu ◦ gv(b · a)

= fu(a) · gv(b) + gv(b) · fu(a)

= fu(a) ‖ gv(b).

Now let n ≥ 2, and suppose that (1) is correct for n. We will prove it for n+1.
Let x, y be chosen. Recall that they can be written as BPAδ,τ -terms:

x =
∑

i

ai · xi +
∑

k

τ · tk,

y =
∑

j

bj · yj +
∑

l

τ · sl.

108

An Operator Definition Principle: 3.4. Theorems

Let ui be such that fu(ai ·z) = fu(ai) ·fui
(z) and let vj be such that gv(bj ·z) =

gv(bj) · gvj
(z). Consider the calculation below.

fu ◦ gv(x ‖ y) =
∑

i

fu ◦ gv

(
ai · (xi ‖ y)

)
+

∑

k

τ · fu ◦ gv(tk ‖ y)

+
∑

j

fu ◦ gv

(
bj · (x ‖ yj)

)
+

∑

l

τ · fu ◦ gv(x ‖ sl)

=
∑

i

fu

(
ai · gv(xi ‖ y)

)
+

∑

k

τ · fu ◦ gv(tk ‖ y)

+
∑

j

fu

(
gv(bj) · gvj

(x ‖ yj)
)

+
∑

l

τ · fu ◦ gv(x ‖ sl)

=
∑

i

f(ai) · fui
◦ gv(xi ‖ y) +

∑

k

τ · fu ◦ gv(tk ‖ y)

+
∑

j

gv(bj) · fu ◦ gvj
(x ‖ yj) +

∑

l

τ · fu ◦ gv(x ‖ sl)

It will be clear that we may use the induction hypothesis four times.

=
∑

i

f(ai) ·
(
fui

(xi) ‖ gv(y)
)

+
∑

k

τ ·
(
fu(tk) ‖ gv(y)

)

+
∑

j

gv(bj) ·
(
gvj

(yj) ‖ fu(x)
)

+
∑

l

τ ·
(
gv(sl) ‖ fu(x)

)

= fu(x) gv(y) + gv(y) fu(x)

= fu(x) ‖ gv(y).

This will end the proof of equation (1). To deduce equation (2) we find imme-
diately that

fu ◦ gv(x y) =
∑

i

fu(ai) · fui
◦ gv(xi ‖ y) +

∑

k

τfu ◦ gv(tk ‖ y).

With the aid of equation (1), we see that this yields

=
∑

i

fu(ai) ·
(
fui

(xi) ‖ gv(y)
)

+
∑

k

τ ·
(
fu(tk) ‖ gv(y)

)

= fu(x) gv(y).

This will end the proof of 3.4.29.

Remark (3.4.30)

We treated theorem (3.4.29), as it can be seen as one of the first general
theorems concerning linear unary operators. It can be found in [4]. It is stated
in terms of the state operator; see section 1.3 and it uses the notion of the
alphabet of an object to give the necessary conditions. This theorem, however,
as it is stated in [4], is wrong. The definition of the alphabet of an object is

109

An Operator Definition Principle: 3.4. Theorems

“wrong”. Even if we adjust this definition, the theorem still remains wrong.
To exemplify this we will give hereinafter the definitions needed to formulate
this theorem. Subsequently, we will state it and comment upon it. We will not
have abstraction here, since it is not considered in [4]. The following definition
is taken from [4].

We will give the definition of the alphabet α(m) of an object m ∈ M , as
the set of all actions that can be changed, so

α(m) = {a ∈ A | ∃s ∈ S : a(m, s) 6= a}.

The following is also copied from [4].

Theorem (3.4.31)

If there is no communication and α(x) ∩ α(m1) = α(y) ∩ α(m2) = ∅, then

λm1

s1
◦ λm2

s2
(x ‖ y) = λm1

s1
(x) ‖ λm2

s2
(y).

First of all we will show that this theorem is not correct. Let

M = {m,m′}, S = {s}, A = {a, b, c, d}.

We will give act and eff . We have c(m, s) = d and b(m′, s) = c. Further,
nothing changes: x(m, s) = x(m′, s) = x for x ∈ {a, d}. Observe that for
all x ∈ A:

s(m,x) = s(m′, x) = s.

The conditions of 3.4.31 are satisfied for x = a and y = b:

α(a) ∩ α(m′) = {a} ∩ {b} = ∅,

α(b) ∩ α(m) = {b} ∩ {c} = ∅.

It is very easy to see that λm
s ◦ λ

m′

s (a ‖ b) = a ‖ d, but we also see that

λm
s (a) ‖ λm′

s (b) = a ‖ c.

We will explain what is “wrong” with α(m), for m ∈ M . If we have the
situation that a(m, s) = a, we can still have s(m,a) 6= s. So this action has
changed the operator. For the alphabet of an object m ∈ M we take the
following set (this is the definition as it appears in [8], 6.4.10.4):

α(m) = {a ∈ A | ∃s ∈ S : a(m, s) 6= a} ∪ {a ∈ A | ∃t ∈ S : t(m,a) 6= t}.

With this definition the example presented above, is still a counterexample
for 3.4.31. Observe that we have the following:

α(m) =
⋃

s∈S

A \ S(λm
s). (3)

Now if we adjust the conditions in 3.4.31, as is done below, we have a correct
formulation of this theorem.

110

An Operator Definition Principle: 3.5. A Model

Theorem (3.4.32)

Let x, y be closed ACP-terms. Suppose that there is no communication.
If we have for m1,m2 in M and s1, s2 in S the following

[

α(x) ∪
⋃

s∈S

α
(
λm1

s (x)
)]

∩ α(m2) = ∅,

[

α(y) ∪
⋃

s∈S

α
(
λm2

s (y)
)]

∩ α(m1) = ∅,

then we have for ? =‖, :

λm1

s1
◦ λm2

s2
(x ? y) = λm1

s1
(x) ? λm2

s2
(y).

Observe that the conditions here are more or less the same as in (3.4.29). In
fact, the conditions in here are stronger, since in general

{
t ∈ S : λm

t ∈ D(λm
s)

}
 S.

With the aid of equation (3), we transform easily from the “empty intersection
conditions” to the form in (3.4.29).

Proof. This is left to the reader.

3.5. A Model

In this section we will not construct a model for ACPτ,u, but we will “forget”
about all the axioms concerning τs. Thus, we will confine ourselves to an axiom
system that is called ACPu. See table 3.5 on page 115. We will construct
for ACPu the standard model of process algebra: the projective limit model.
We will do this by first making a row of finite models and after that constructing
the projective limit. We will prove for each finite model that it makes ACPu,
RDP, RSP, AIP, EA, ODP and OSP true. Then we will prove the same items
for the projective limit, using the results for the finite models. In fact, we show
that the properties that are valid for the finite models are preserved under
projective limits. This is a subject of research in model theory and is known
under the name of “preservation theorems”. In [19] we find in exercise 5.2.25*
a preservation theorem concerning single-sorted projective limits. It says that
a sentence ϕ is preserved under inverse limits (= projective limits) if and only
if ϕ is equivalent to a sentence of the form

n∧

i=1

(∀x1, . . . , xs)
(
(∀y1, . . . , yt)ψi → θi

)
,

where ψi and θi are quantifier-free positive formulas. We will work out every
proof since we have two-sorted algebras, but it is the the author’s opinion, that
it is worthwhile investigating many-sorted inverse (and direct) limits separately
in connection to preservation theorems such as the one mentioned above. A
general reference to many-sorted algebras is [35].

* This is not a note: the asterisk belongs to the name of the exercise.

111

An Operator Definition Principle: 3.5. A Model

A1 x+ y = y + x ∂′H(a) = a, if a /∈ H D1′

A2 x+ (y + z) = (x+ y) + z ∂′H(a) = δ, if a ∈ H D2′

A3 x+ x = x ∂′H(x · y) = ∂′H(x) · ∂′H(y) D3′

A4 (x+ y) · z = x · z + y · z ∂′H(x+ y) = ∂′H(x) + ∂′H(y) D4′

A5 (x · y) · z = x · (y · z)

A6 x+ δ = x π′
k(a) = aPR1′

A7 δ · x = δ π′
1(a · x) = aPR2′

π′
k+1(a · x) = a · π′

k(x) PR3′

CM1 x ‖ y = x y + y x+ x | y π′
k(x+ y) = π′

k(x) + π′
k(y) PR4′

CM2 a x = a · x

CM3 (a · x) y = a · (x ‖ y) a | b = b | a C1

CM4 (x+ y) z = x z + y z (a | b) | c = a | (b | c) C2

CM5 (a · x) | b = (a | b) · x δ | a = δ C3

CM6 a | (b · x) = (a | b) · x

CM7 (a · x) | (b · y) = (a | b) · (x ‖ y)

CM8 (x+ y) | z = x | z + y | z

CM9 x | (y + z) = x | y + x | z

Table 3.4. An axiom system abbreviated by T .

Definition (3.5.1)

Let G be the set of all closed terms over the theory T (see table 3.4). Let
p be an element of G. We define the following subset of G.

[p]n =
{
q ∈ G : T ` π′

n(q) = π′
n(p)

}
.

Now we define the set An to be the following.

An =
{

[p]n : p ∈ G
}
.

Definition (3.5.2)

Let φ : An −→ An be a function. Suppose that we have for this function
φ([δ]n) = [δ]n, φ(x+ y) = φ(x) + φ(y) for all x, y ∈ An and for all p ∈ G and l
with 1 ≤ l ≤ n we have

φ
(
[p]n

)
= [q]n =⇒ φ

([
π′

l(p)
]

n

)
=

[
π′

l(q)
]

n
,

then we will call such a function a laminal function. We will use the abbrevi-
ation Hn for the set of all laminal functions.

112

An Operator Definition Principle: 3.5. A Model

Definition (3.5.3)

Let p, q ∈ G. We will define here some operators. First the binary opera-
tors, with both arguments in An.

[p]n ? [q]n = [p ? q]n, for ? = +, ·, ‖, , | .

Secondly the unary operators with their argument in An. Let k ≥ 1. Then we
define the projection operator πk : An −→ An to be πk

(
[p]n

)
=

[
π′

k(p)
]

n
. Now

let H be a subset of the set of atomic actions, then we define the encapsulation
operator ∂H : An −→ An to be ∂H

(
[p]n

)
=

[
∂′H(p)

]

n
.

Lemma (3.5.4)

Let x, y ∈ G. Let k, l ≥ 1. Let H ⊆ A. Then the following holds.

(i) π′
k ◦ π

′
l(x) = π′

min(k,l)(x)

(ii) π′
k ◦ ∂

′
H(x) = ∂′H ◦ π

′
k(x)

(iii) π′
k(x · y) = π′

k

(
π′

k(x) · π′
k(y)

)

(iv) π′
k(x | y) = π′

k

(
π′

k(x) | π′
k(y)

)

(v) π′
k(x y) = π′

k

(
π′

k(x) π′
k(y)

)

(vi) π′
k(x ‖ y) = π′

k

(
π′

k(x) ‖ π′
k(y)

)

Proof. Most of these properties have been proved in chapter 2 for processes
that can be defined with the aid of a guarded recursive specification; see
section 2.4. The proof of (ii) is completely analogous to the proof of theo-
rem (3.4.8). This will end the proof of lemma 3.5.4.

Lemma (3.5.5)

The operations that we introduced in (3.5.3) are well-defined, i.e., the
operators are independent of the choice of the representatives.

Proof. Suppose that p′ ∈ [p]n and q′ ∈ [q]n. Then we obviously have:

π′
n(p′) = π′

n(p), and π′
n(q′) = π′

n(q).

Consider the following calculation:

π′
n(p′ + q′) = π′

n(p′) + π′
n(q′)

= π′
n(p) + π′

n(q)

= π′
n(p+ q).

Thus, we find that [p′ + q′]n = [p + q]n and the alternative composition is
independent of the choice of the representatives. Now let ? = ·, ‖, or |. Then
consider the following:

π′
n(p′ ? q′) = π′

n

(
π′

n(p′) ? π′
n(q′)

)

= π′
n

(
π′

n(p) ? π′
n(q)

)

= π′
n(p ? q).

113

An Operator Definition Principle: 3.5. A Model

Here, we make use of lemma (3.5.4). We will consider the unary operators that
we introduced in (3.5.3). Let p′ ∈ [p]n. Then we have for k ≥ 1:

π′
n ◦ π

′
k(p′) = π′

min(k,n)(p
′)

= π′
k ◦ π

′
n(p′)

= π′
k ◦ π

′
n(p)

= π′
min(k,n)(p)

= π′
n ◦ π

′
k(p).

Thus, we find T ` π′
n ◦ π

′
k(p′) = π′

n ◦ π
′
k(p). Let H ⊆ A and p′ ∈ [p]n. Then,

we have the following.

π′
n ◦ ∂

′
H(p′) = ∂′H ◦ π

′
n(p′)

= ∂′H ◦ π
′
n(p)

= π′
n ◦ ∂

′
H(p).

So we see that T ` π′
n ◦ ∂

′
H(p′) = π′

n ◦ ∂
′
H(p); thus we find that ∂H

(
[p]n

)
=

∂H

(
[p′]n

)
. And we see that all the operators that we introduced in (3.5.3) are

well-defined. This ends the proof of our lemma.

Lemma (3.5.6)

Let n ≥ 1. For all k ≥ 1 we have πk ∈ Hn. For all H ⊆ A we have
∂H ∈ Hn.

Proof. We are to show for these operators that they are laminal functions. For
the definition of a laminal function, see (3.5.2). Let n, k ≥ 1. It is evidently
clear, that πk is the identity on [δ]n. The same is valid for ∂H , for every
subset H ⊆ A. Let [p]n, [q]n ∈ An and let φ be the projection operator, or the
encapsulation operator; and let φ′ be the acuted corresponding operator. Then
consider the following.

φ
(
[p]n + [q]n

)
= φ

(
[p+ q]n

)

=
[
φ′(p+ q)

]

n

=
[
φ′(p)

]

n
+

[
φ′(q)

]

n

= φ
(
[p]n

)
+ φ

(
[q]n

)
.

It follows immediately from lemma (3.5.4)(i) that πk is a laminal function. It
follows at once from lemma (3.5.4)(ii) that ∂H is a laminal function. This will
end the proof of lemma 3.5.6.

Remark (3.5.7)

We know that |Hn| < ∞, so {πk : k ≥ 1} must be finite. Let [p]n ∈ An.
Because of lemma (3.5.4), we can find the following for all k ≥ 0:

π′
n+k ◦ π

′
n(p) = π′

n(p).

Thus, we find πn+k

(
[p]n

)
= πn

(
[p]n

)
for all k ≥ 0 and [p]n ∈ An. Moreover,

we see that πn+k is the identity map for all k ≥ 0.

114

An Operator Definition Principle: 3.5. A Model

Definition (3.5.8)

We define χ : Hn ×An −→ An as follows: χ(f, x) = f(x), for f ∈ Hn and
x ∈ An. We define the composition of functions ◦ : Hn×Hn −→ Hn as follows.
Let (f, g) ∈ Hn ×Hn, then f ◦ g : An −→ An is defined: f ◦ g(x) = f

(
g(x)

)
,

for x ∈ An. It is easy to see that f ◦ g is indeed a laminal function.

Now we are in a position to give the following definition.

Definition (3.5.9)

Let Mn be the algebra that consists of the sets An and Hn, the operators
+, ·, ‖, , |, χ, ◦ and the constants [a]n ∈ An for all a ∈ A and the constants
πk, ∂H ∈ Hn for every k ≥ 1 and H ⊆ A.

A1 x+ y = y + x ∂H(a) = a, if a /∈ H D1

A2 x+ (y + z) = (x+ y) + z ∂H(a) = δ, if a ∈ H D2

A3 x+ x = x ∂H(x · y) = ∂H(x) · ∂H(y) D3

A4 (x+ y) · z = x · z + y · z

A5 (x · y) · z = x · (y · z) πn(a) = a PR1

A6 x+ δ = x π1(a · x) = a PR2

A7 δ · x = δ πn+1(a · x) = a · πn(x) PR3

CM1 x ‖ y = x y + y x+ x | y a | b = b | a C1

CM2 a x = a · x (a | b) | c = a | (b | c) C2

CM3 (a · x) y = a · (x ‖ y) δ | a = δ C3

CM4 (x+ y) z = x z + y z

CM5 (a · x) | b = (a | b) · x χ(f ◦ g, x) = χ
(
f, χ(g, x)

)
XC1

CM6 a | (b · x) = (a | b) · x χ
(
(f ◦ g) ◦ h, x

)
= χ

(
f ◦ (g ◦ h), x

)
XC2

CM7 (a · x) | (b · y) = (a | b) · (x ‖ y) χ(f, γ) = γ X1

CM8 (x+ y) | z = x | z + y | z χ(f, γ · x) = γ · χ(f, x) X2

CM9 x | (y + z) = x | y + x | z χ(f, x+ y) = χ(f, x) + χ(f, y) X3

Table 3.5. ACPu.

Theorem (3.5.10)

Let n ≥ 1, then we have Mn |= ACPu. See table 3.5 on page 115 for the
axiom system ACPu.

115

An Operator Definition Principle: 3.5. A Model

Proof. We are to show that Mn models each axiom of ACPu. We will only
sketch the proof, since the other axioms are deduced in the same way as the
examples below are proved. We will show that Mn |= A4.

(
[p]n + [q]n

)
· [r]n =

(
[p+ q]n

)
· [r]n

=
[
(p+ q) · r

]

n

= [p · r + q · r]n

= [p · r]n + [q · r]n

= [p]n · [r]n + [q]n · [r]n.

Now we will infer Mn |= CM7.
(
[a]n · [p]n

) ∣
∣
(
[b]n · [q]n

)
= [a · p]n

∣
∣ [b · q]n

=
[
(a · p) | (b · q)

]

n

=
[
(a | b) · (p ‖ q)

]

n

= [a | b]n · [p ‖ q]n

=
(
[a]n

∣
∣ [b]n

)
·
(
[p]n

∥
∥ [q]n

)
.

We will prove Mn |= D3.

χ
(
∂H , [p]n + [q]n

)
= χ

(
∂H , [p+ q]n

)

= ∂H

(
[p+ q]n

)

=
[
∂′H(p+ q)

]

n

=
[
∂′H(p) + ∂′H(q)

]

n

=
[
∂′H(p)

]

n
+

[
∂′H(q)

]

n

= ∂H

(
[p]n

)
+ ∂H

(
[q]n

)

= χ
(
∂H , [p]n

)
+ χ

(
∂H , [q]n

)
.

We will show Mn |= PR3. Let k ≥ 1.

χ
(
πk+1, [a]n · [p]n

)
= πk+1

(
[a · p]n

)

=
[
π′

k+1(a · p)
]

n

=
[
a · π′

k(p)
]

n

= [a]n ·
[
π′

k(p)
]

n

= [a]n · πk

(
[p]n

)

= [a]n · χ
(
πk, [p]n

)
.

Now we will prove XC1 and X2. Suppose that h, k ∈ Hn and x ∈ An.

χ(h ◦ k, x) = h ◦ k(x)

= χ
(
h, k(x)

)

= χ
(
h, χ(k, x)

)
.

116

An Operator Definition Principle: 3.5. A Model

Let h ∈ Hn and let [p]n ∈ An.

χ
(
h, [δ]n · [p]n

)
= h

(
[δ]n · [p]n

)

= h
(
[δ]n

)

= [δ]n

=
[
δ · χ

(
h, [p]n

)]

n

= [δ]n · χ
(
h, [p]n

)
.

This ends the sketch of the proof of 3.5.10.

RA2 (x+ y) + z → x+ (y + z) ∂′H(a)→ a, if a /∈ H RD1′

RA3 x+ x→ x ∂′H(a)→ δ, if a ∈ H RD2′

RA4 (x+ y) · z → x · z + y · z ∂′H(x · y)→ ∂′H(x) · ∂′H(y) RD3′

RA5 (x · y) · z → x · (y · z) ∂′H(x+ y)→ ∂′H(x) + ∂′H(y) RD4′

RA6 x+ δ → x

RA7 δ · x→ δ π′
k(a)→ aRPR1′

π′
1(a · x)→ aRPR2′

RCM1 x ‖ y → x y + (y x+ x | y) π′
k+1(a · x)→ a · π′

k(x) RPR3′

RCM2 a x→ a · x π′
k(x+ y)→ π′

k(x) + π′
k(y) RPR4′

RCM3 (a · x) y → a · (x ‖ y)

RCM4 (x+ y) z → x z + y z a | b→ ca,b RC

RCM5 (a · x) | b→ (a | b) · x

RCM6 a | (b · x)→ (a | b) · x

RCM7 (a · x) | (b · y)→ (a | b) · (x ‖ y)

RCM8 (x+ y) | z → x | z + y | z

RCM9 x | (y + z)→ x | y + x | z

Table 3.6. A term rewriting system associated with the theory T .

Lemma (3.5.11)

The term rewriting system of table 3.6 has the termination property*.

* See definition (3.3.11)

117

An Operator Definition Principle: 3.5. A Model

Proof. We will prove 3.5.11 in the same way as we proved (3.3.14). Firstly,
we will give the partial ordering of the signature. We will also use the ranked
operators that we introduced in section 3.3.

‖n> n, |n>‖n−1, ‖n, n, |n> ·, ∂H , · > +, πn+1 > πn > ·, |2> A > δ.

We will use the lexicographical variant of the recursive path ordering, although
we will need the lexicographical status only for the alternative composition
and for the sequential composition. We are to show that for each rewriting
rule s→ t in table 3.6, s � t. For the symbol “�” we refer to definition (3.3.9).
The treatment of the cases RA2–RA7, RCM1–RCM9 and RC, is the same as
in theorem (3.3.14). The calculation of RPR1′ is trivial. Let us treat RPR2′.

π′
1(a · x) � π

′∗
1 (a · x)

� a · x

� a ·∗ x

� a.

Now we will handle RPR3′. Let k ≥ 1.

π′
k+1(a · x) � π

′∗
k+1(a · x)

� π′∗
k+1(a · x) · π

′∗
k+1(a · x)

� (a · x) · π′
k

(
π′∗

k+1(a · x)
)

� (a ·∗ x) · π′
k(a · x)

� a · π′∗
k (a · x)

� a · π′
k(a ·∗ x)

� a · π′
k(x).

Now we will discuss RPR4′. Let k ≥ 1.

π′
k(x+ y) � π′∗

k (x+ y)

� π′
k(x+ y) +∗ π′

k(x+ y)

� π′∗
k (x+ y) + π′∗

k (x+ y)

� π′
k(x+∗ y) + π′

k(x+∗ y)

� π′
k(x) + π′

k(y).

RD1–RD4 are proved in the same way as in theorem (3.3.14), albeit that we
use ∂′H in the partial ordering instead of χ. This ends the proof of 3.5.11.

118

An Operator Definition Principle: 3.5. A Model

Lemma (3.5.12)

Let n ≥ 1 be chosen. Let p ∈ G be a closed term over the theory T .
See (3.5.1) for the definition of G. Then there is an element q ∈ G, such that
[q]n = [p]n and T ` π′

n(q) = q. We will call q the n-normal form of p.

Proof. Since p ∈ G is a closed T -term, π′
n(p) is also a closed T -term. With

the aid of lemma (3.5.11), we can rewrite this term to a term q ∈ G, which is
in normal form. We know that T ` q = π′

n(p), thus,

π′
n(q) = π′

n

(
π′

n(p)
)

= π′
n(p)

= q,

with the aid of lemma (3.5.4) and we also see that [q]n = [p]n. This ends the
proof of 3.5.12.

Lemma (3.5.13)

Let p′, q′ ∈ G be closed terms and let p and q be their n-normal forms.
Then we have the following.

Mn |= p = q ⇐⇒ T ` p = q.

Proof. Let us assume that Mn |= p = q, with p and q n-normal forms. Then
we find that T ` π′

n(p) = π′
n(q). But because of lemma (3.5.12), we have

π′
n(p) = p and π′

n(q) = q. So we find T ` p = q.

Now let us assume that T ` p = q. Then we have a fortiori T ` π′
n(p) =

π′
n(q). So [p]n = [q]n and we find Mn |= p = q. This ends the proof of 3.5.13.

Epiphenomenon (3.5.14)

Let ai = |Ai| be the number of elements of the set Ai that we defined
in (3.5.1) (i ≥ 1) and let a0 = 0. Let u = |A|. Then we have the following
recursive formula.

a0 = 0,

ai+1 = 2u·(1+ai).

Proof. We will give a sketch of the proof. Let i = 1. Because of axioms A3
and A6, we can make the following different sums:

1 +

u∑

i=1

(
u

i

)

= 1 + (2u − 1) = 2u = 2u·(1+a0).

Let i > 1. We will have u + u · ai terms of which the first symbol (in prefix
notation) is not a sum. Thus, we obtain, just as above for i = 1, 2u·(1+ai)

possibilities for the number of different sums that we can make with these
u · (1 + ai) terms of which the sums are built up.

119

An Operator Definition Principle: 3.5. A Model

u 1 2 3 4 5 6

a1 2 4 8 16 32 64

a2 8 1024 1.3 · 108 2.9 · 1020 4.6 · 1049 2.5 · 10117

a3 512 1.2 · 10617 −* − − −

a4 2.6 · 10154 − − − − −

* (> 109999)

Table 3.7. Some calculations with (3.5.14).

Examples (3.5.15)

In table 3.7 we will give some figures that we have calculated with the aid
of the formula of (3.5.14). For instance, if we have two atomic actions, there
are approximately 1.2 · 10617 elements in A3.

Remark (3.5.16)

Let x be a variable. Let C[x] be a context of x, in which the occurrence
of x is guarded. Then we have for all k ≥ n:

π′
n+1

(
C[x]

)
= π′

n+1

(
C

[
π′

k(x)
])
.

Theorem (3.5.17)

Let n ≥ 1, then we have Mn |= RDP,RSP.

Proof. Let V = {xα : α ∈ I} be a set of variables. Let

E(V) =
{
xα = tα

(
(xβ)β∈I

)
: α ∈ I

}

be a guarded recursive specification. Without loss of generality, we may assume
that E(V) is completely guarded; see definition (3.2.15). We will prove 3.5.17
with induction on n. Thus, let n = 1. For all α ∈ I, we calculate p1

α := π′
1(xα).

This is a closed term over the theory T .

π′
1

(
tα

(
(p1

β)β

))
= π′

1

(
tα

(
(xβ)β

))
(1)

= π′
1(xα)

= π′
1 ◦ π

′
1(xα)

= π′
1(p

1
α).

In (1) we use the fact that π′
1(a · x) = π′

1(a · y) for all x and y in combination
with the fact that E(V) is completely guarded. Henceforward, we will use this
argument tacitly. So we see that (p1

α)α solves the system E(V) in M1. Now

120

An Operator Definition Principle: 3.5. A Model

suppose that (qα)α also solves this system, i.e., π′
1(qα) = π′

1

(
tα

(
(qβ)β

))
. Then

we find the following:

π′
1(qα) = π′

1

(
tα

(
(qβ)β

))

= π′
1

(
tα

(
(xβ)β

))

= π′
1(xα)

= π′
1 ◦ π

′
1(xα)

= π′
1(p

1
α).

We see that the solution (qα)α is just the one that we have already constructed,
so (p1

α)α is the unique solution. Now we see that 3.5.17 is correct for n = 1.
Let n ≥ 1 and suppose that 3.5.17 has been proved for n. Let (pn

α)α be such
that

T ` π′
n(pn

α) = π′
n

(
tα

(
(pn

β)β

))
.

Define pn+1
α := tα

(
(pn

β)β

)
. We will show that

π′
n+1(p

n+1
α) = π′

n+1

(
tα

(
(pn+1

β)β

))
.

Consider thereto the following.

π′
n+1(p

n+1
α) = π′

n+1

(
tα

(
(pn

β)β

))

= π′
n+1

(

tα
((
π′

n(pn
β)

)

β

))

(2)

= π′
n+1

(

tα
(
π′

n

(
tβ

(
(pn

γ)γ

))

β

))

= π′
n+1

(

tα
(
tβ

(
(pn

γ)γ

)

β

))

= π′
n+1

(
tα

(
(pn+1

β)β

))
.

In equation (2), we use the fact that E(V) is completely guarded and we use
remark (3.5.16). In the sequel of this proof, we will apply this argument tacitly.
We find that (pn+1

α)α solves E(V) in Mn+1. Now we will show that this solution
is unique. Let (qα)α be such that

T ` π′
n+1(qα) = π′

n+1

(
tα

(
(qβ)β

))
.

Observe that the following holds.

π′
n(pn+1

α) = π′
n

(
tα

(
(pn

β)β

))

= π′
n(pn

α). (3)

First, we will show that π′
n(qα) is a solution in Mn.

π′
n(qα) = π′

n ◦ π
′
n+1(qα)

= π′
n ◦ π

′
n+1

(
tα

(
(qβ)β

))

= π′
n

(
tα

(
(qβ)β

))
.

121

An Operator Definition Principle: 3.5. A Model

But in Mn the solution is unique, so we find with (3) that

π′
n(qα) = π′

n(pα) = π′
n(pn+1

α).

Now we will show that π′
n+1(qα) = π′

n+1(p
n+1
α).

π′
n+1(qα) = π′

n+1

(
tα

(
(qβ)β

))

= π′
n+1

(

tα
((
π′

n(qβ)
)

β

))

= π′
n+1

(

tα
((
π′

n(pn+1
β)

)

β

))

= π′
n+1

(
tα

(
(pn+1

β)β

))

= π′
n+1(p

n+1
α).

This ends the proof of the theorem.

Theorem (3.5.18)

Let n ≥ 1, then Mn |= AIP.

Proof. Let x, y ∈ An. Suppose that for all k ≥ 1, we have πk(x) = πk(y).
In particular we have this for k = n. With the aid of remark (3.5.7), we find
that πn = id , so we see that x = y. This will end the proof of 3.5.18.

Lemma (3.5.19)

Let [p]n ∈ An. There are a1, . . . , as, b1, . . . , bt ∈ A ∪ {δ} p1, . . . , ps ∈ G,
such that

[p]n =

s∑

j=1

[aj]n · [pj]n +

t∑

k=1

[bk]n.

Proof. Let p be a closed term over the theory T . See table 3.4 on page 112. If
we take a close look at this axiom system, we see that this is in fact ACP with
projections. From this system we know that there are unique normal forms for
all closed terms (see [8]). They have the desired form:

p =

s∑

k=1

aj · pj +

t∑

k=1

bk,

for certain a1, . . . , as, b1, . . . , bt ∈ A ∪ {δ} and closed terms p1, . . . , ps. Thus,
we find

[p]n =

s∑

j=1

[aj]n · [pj]n +

t∑

k=1

[bk]n.

This ends the proof of the lemma.

122

An Operator Definition Principle: 3.5. A Model

Theorem (3.5.20)

Let n ≥ 1, then Mn |= EA. See (4.2.1) for the definition of EA.

Proof. Since Hn is defined as a function space, we automatically have that
for all f, g ∈ Hn : f = g, if and only if we have for all x ∈ An : f(x) = g(x).
This is what we wanted to prove.

Theorem (3.5.21)

Let n ≥ 1, then Mn |= ODP,OSP.

Proof. Fix an n ≥ 1. We will use the more explicit formulation of the defini-
tion of a linear functional specification that we have already described in (3.2.3).
Let M = {m1, . . . ,ml} be a set of function names and let

σ : A× {1, . . . , l} −→ {1, . . . , l}

be a given map. Recall that the linear functional specification E(M) has the
following form:

E(M) =
{
mi(a) = a(i) : a ∈ A, 1 ≤ i ≤ l

}

∪
{
mi(a · x) = a(i) ·mσ(a,i)(x) : a ∈ A, 1 ≤ i ≤ l

}
.

First we will prove that there is a valuation ϕ : M −→ Hn, which solves the
system of equations E(M). See section 3.2 for the definition of a valuation. It
suffices to show that there are µ1, . . . , µl ∈ Hn such that

µi

(
[a]n

)
=

[
a(i)

]

n
, (4)

µi

(
[a]n · [p]n

)
=

[
a(i)

]

n
· µσ(a,i)

(
[p]n

)
. (5)

(So we can take ϕ(mi) := µi.) Let [p]n ∈ An, there are a1, . . . , as, b1, . . . , bt in
A ∪ {δ} and p1, . . . , ps ∈ G such that

[p]n =

s∑

j=1

[aj]n · [pj]n +

t∑

k=1

[bk]n, (6)

according to lemma (3.5.19). Let µ1
i : An −→ An be defined as follows:

µ1
i

(
[δ]n

)
= [δ]n,

µ1
i

(
[p]n

)
=

s∑

j=1

[
a
(i)
j

]

n
+

t∑

k=1

[
b
(i)
k

]

n
.

It consists of a straightforward calculation to show that µ1
i ∈ Hn. Let 1 ≤ r <

n. Suppose that µr
i ∈ Hn, for all 1 ≤ i ≤ l, then we define

µr+1
i : An −→ An

123

An Operator Definition Principle: 3.5. A Model

to be the identity on [δ]n and for [p]n ∈ An

µr+1
i

(
[p]n

)
=

s∑

j=1

[
a
(i)
j

]

n
· µr

σ(aj,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n
.

We will show that µr+1
i ∈ Hn. It is trivial to prove that µr+1

i distributes over
the alternative composition. Let [p]n ∈ An be as in equation (6). Let

[qj]n = µr
σ(aj,i)

(
[pj]n

)

q =

s∑

j=1

a
(i)
j · qj +

t∑

k=1

b
(i)
k .

Then we see that µr+1
i

(
[p]n

)
= [q]n. We will prove for all v, with 1 ≤ v ≤ n

that
µr+1

i

([
π′

v(p)
]

n

)
=

[
π′

v(q)
]

n
. (7)

If v = 1, we immediately see that equation (7) is valid. Now suppose that
1 < v ≤ n, then consider the subsequent deduction.

µr+1
i

([
π′

v(p)
]

n

)
=

s∑

j=1

[
a
(i)
j

]

n
· µr

σ(aj,i)

([
π′

v−1(pj)
]

n

)
+

t∑

k=1

[
b
(i)
k

]

n

=
s∑

j=1

[
a
(i)
j

]

n
·
[
π′

v−1(qj)
]

n
+

t∑

k=1

[
b
(i)
k

]

n

=
[
π′

v(q)
]

n
.

This shows that µr+1
i is a laminal function. We will prove a technical result on

these laminal functions.

πn−r ◦ µ
n−r
i = πn−r ◦ µ

n−r+1
i , 1 ≤ i ≤ l, 1 ≤ r ≤ n− 1. (8)

We will prove (8) first for r = n − 1. Let [p]n ∈ An be as in equation (6).
Consider the calculation hereinafter.

π1 ◦ µ
2
i

(
[p]n

)
= π1

(s∑

j=1

[
a
(i)
j

]

n
· µ1

σ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

)

=

s∑

j=1

[
a
(i)
j

]

n
+

t∑

k=1

[
b
(i)
k

]

n

= π1

(s∑

j=1

[
a
(i)
j

]

n
+

t∑

k=1

[
b
(i)
k

]

n

)

= π1 ◦ µ
1
i

(
[p]n

)
.

124

An Operator Definition Principle: 3.5. A Model

So for r = n− 1 we see that (8) is correct. Suppose that (8) has been verified
for 1 < r ≤ n−1. We will prove it for r−1. Let [p]n ∈ An be as in equation (6).
Consider the following.

πn−r+1 ◦ µ
n−r+1
i

(
[p]n

)
= πn−r+1

(s∑

j=1

[
a
(i)
j

]

n
· µn−r

σ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

)

=

s∑

j=1

[
a
(i)
j

]

n
· πn−r ◦ µ

n−r
σ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

=

s∑

j=1

[
a
(i)
j

]

n
· πn−r ◦ µ

n−r+1
σ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

= πn−r+1

(s∑

j=1

[
a
(i)
j

]

n
· µn−r+1

σ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

)

= πn−r+1 ◦ µ
n−r+2
i

(
[p]n

)
.

This will end the verification of (8). In particular, we find that (8) is valid for
r = 1. Thus, we obtain the following formula:

πn−1 ◦ µ
n−1
i = πn−1 ◦ µ

n
i . (9)

Define µi = µn
i ∈ Hn for 1 ≤ i ≤ l. We claim that these functions satisfy

equations (4) and (5). It will be clear that

µi

(
[a]n

)
=

[
a(i)

]

n
,

for all 1 ≤ i ≤ l, so we see that µ1, . . . , µl satisfy the boundary conditions
of E(M), i.e., equation (4). Now let us take a look at the functional equations
of E(M), or equivalently, equation (5). Let i ∈ {1, . . . , l} be fixed.

µi

(
[a]n · [p]n

)
= µn

i

(
[a]n · [p]n

)

= πn ◦ µ
n
i

(
[a]n · [p]n

)
see remark (3.5.7)

= πn

([
a(i)

]

n
· µn−1

σ(a,i)

(
[p]n

))

=
[
a(i)

]

n
· πn−1 ◦ µ

n−1
σ(a,i)

(
[p]n

)

=
[
a(i)

]

n
· πn−1 ◦ µ

n
σ(a,i)

(
[p]n

)
because of (9)

= πn

([
a(i)

]

n
· µn

σ(a,i)

(
[p]n

))

=
[
a(i)

]

n
· µσ(a,i)

(
[p]n

)
.

This will end the proof of the existential part of 3.5.21. Now we will prove
the uniqueness part: Mn |= OSP. Suppose that there is also a valuation

125

An Operator Definition Principle: 3.5. A Model

φ : M −→ Hn, which solves the system of equations E(M). Let φ(mi) := νi

for all i. Then we have for all i ∈ {1, . . . , l}

νi

(
[a]n

)
=

[
a(i)

]

n
,

νi

(
[a]n · [p]n

)
=

[
a(i)

]

n
· νσ(a,i)

(
[p]n

)
.

In order to verify that µi = νi (for all i), we will prove the following:

πr ◦ νi = µr
i , 1 ≤ r ≤ n, 1 ≤ i ≤ l. (10)

We will prove (10) with induction on r. Let [p]n ∈ An be as in equation (6).
Let r = 1 and let i ∈ {1, . . . , l}, then we see the following

π1 ◦ νi

(
[p]n

)
= π1

(s∑

j=1

[
a
(i)
j

]

n
· νσ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

)

=
s∑

j=1

[
a
(i)
j

]

n
+

t∑

k=1

[
b
(i)
k

]

n

= µ1
i

(
[p]n

)
.

Thus, (10) is correct for r = 1. Now suppose that (10) is valid for 1 ≤ r < n,
then we prove it for r + 1. Let [p]n ∈ An be as in equation (6).

πr+1 ◦ νi

(
[p]n

)
=

s∑

j=1

[
a
(i)
j

]

n
· πr ◦ νσ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

=

s∑

j=1

[
a
(i)
j

]

n
· µr

σ(aj ,i)

(
[pj]n

)
+

t∑

k=1

[
b
(i)
k

]

n

= µr+1
i

(
[p]n

)
.

This proves (10). In particular we find that (10) is valid for r = n. If we
combine this with the fact that πn is the identity map—see remark (3.5.7)—we
find for all 1 ≤ i ≤ l that νi = πn ◦ νi = µn

i = µi. This will end the verification
of the uniqueness part and therewith the proof of 3.5.21.

Construction (3.5.22)

We will construct the projective limit of the models Mn. Thereto we need
to define mappings κn : Mn+1 −→ Mn, for all n ≥ 1 as follows. First we will
define

κn : An+1 −→ An.

Let [p]n+1 ∈ An+1, then we define κn

(
[p]n+1

)
= [p]n. Now we will define

κn : Hn+1 −→ Hn.

126

An Operator Definition Principle: 3.5. A Model

Let f be an element of Hn+1. We define

κn(f) : An −→ An

to be the following map. Let [p]n ∈ An, then κn(f)
(
[p]n

)
= κn◦f

([
π′

n(p)
]

n+1

)
.

It is obvious that κn(f) is well-defined. So let us verify that κn(f) is an element
of Hn. First we are to show that κn(f) is a laminal function. It is evident
that κn

(
[δ]n

)
= [δ]n. To verify that κn(f) distributes over the alternative

composition, we will need the fact that κn distributes over the alternative
composition. Both proofs are trivial. The following remains to be shown. Let
[p]n be in An. Suppose that f

([
π′

n(p)
]

n+1

)
= [q]n+1. Then it is clear that

κn(f)
(
[p]n

)
= [q]n. We will prove that for all 1 ≤ l ≤ n we have:

κn(f)
([
π′

l(p)
]

n

)
=

[
π′

l(q)
]

n
.

Consider the calculation hereinafter.

κn(f)
([
π′

l(p)
]

n

)
= κn ◦ f

([
π′

n ◦ π
′
l(p)

]

n+1

)

= κn ◦ f
([
π′

l ◦ π
′
n(p)

]

n+1

)

= κn

([
π′

l(q)
]

n+1

)
(since f ∈ Hn+1)

=
[
π′

l(q)
]

n
.

So we find that κn(f) ∈ Hn. Now we will show that κn : Mn+1 −→ Mn is a
homomorphism, that is, it distributes over all the operations. Recall that there
are seven operations: the merge, the left-merge, the communication-merge,
the alternative composition, the sequential composition, the composition of
functions and the application function. Let ? be one of ‖, , |,+ or ·. Then
we are to show that κn(x ? y) = κn(x) ? κn(y), for all x, y ∈ An+1. This is
trivial. We will show that κn distributes over the composition of functions.
Let f, g ∈ Hn+1. Let [p]n be in An. Let g

([
π′

n(p)
]

n+1

)
= [r]n+1 and let

f
(
[r]n+1

)
= [q]n+1. Now contemplate the following.

κn(f ◦ g)
(
[p]n

)
= κn ◦ (f ◦ g)

([
π′

n(p)
]

n+1

)

= κn

(
f
(
[r]n+1

))

= [q]n

= κn

([
π′

n(q)
]

n+1

)

= κn

(
f
([
π′

n(r)
]

n+1

))

= κn(f)
(
[r]n

)

= κn(f)
(
κn

(
[r]n+1

))

= κn(f)
(

κn

(
g
([
π′

n(p)
]

n+1

)))

= κn(f) ◦ κn(g)
(
[p]n

)
.

127

An Operator Definition Principle: 3.5. A Model

Now we will show that κn distributes over the application function χ. Suppose
that f ∈ Hn+1 and let [p]n+1 be in An+1. Suppose that f

(
[p]n+1

)
= [q]n+1.

Consider the following:

κn

(
χ
(
f, [p]n+1

))
= κn

(
[q]n+1

)

= [q]n

= κn

([
π′

n(q)
]

n+1

)

= κn ◦ f
([
π′

n(p)
]

n+1

)

= κn(f)
(
[p]n

)

= χ
(
κn(f), κn

(
[p]n+1

))
.

We constructed thus a row

M1
κ1←−M2

κ2←−M3
κ3←−M4 ←− . . . (11)

of models with homomorphisms between them. With this row, we will construct
the inverse limit M∞. Let A∞ and H∞ be as follows:

A∞ =
{

(xn)n

∣
∣ xn ∈ An, κn(xn+1) = xn

}
,

H∞ =
{

(fn)n

∣
∣ fn ∈ Hn, κn(fn+1) = fn

}
.

We will call the elements of these sets projective rows. We will define the
operations hereinafter. Let ? be one of ‖, , |,+ or ·. Let (xn)n, (yn)n ∈ A∞.
Then we define ? to be

(xn)n ? (yn)n = (xn ? yn)n.

It is obvious that (xn ? yn)n ∈ A∞. Now we will define the composition of
functions. Let (fn)n, (gn)n ∈ H∞. Then we define

(fn)n ◦ (gn)n = (fn ◦ gn)n.

From the fact that κn is a homomorphism it follows immediately that

(fn ◦ gn)n ∈ H
∞.

Finally, we define the application function. Let (fn)n ∈ H
∞ and let (xn)n be

in A∞. Then we define χ to be

χ
(
(fn)n, (xn)n

)
=

(
χ(fn, xn)

)

n
.

It will be clear that
(
χ(fn, xn)

)

n
∈ A∞. Now we will define constants of

sort H∞. Firstly we will introduce the encapsulation operator. To prevent any
confusion we will label the encapsulation operators in all sets Hn as follows:

128

An Operator Definition Principle: 3.5. A Model

∂n
H ∈ Hn. We define the encapsulation operator to be ∂H = (∂n

H)n. We will
illustrate that ∂H ∈ H∞. For every component of the encapsulation operator,
we have of course ∂n

H ∈ Hn. It remains thus to prove that ∂H is a projective
row. Let thereto [p]n be in An. We easily deduce the following:

κn(∂n+1
H)

(
[p]n

)
= κn ◦ ∂

n+1
H

([
π′

n(p)
]

n+1

)

=
[
∂′H ◦ π

′
n(p)

]

n

= ∂n
H

(
[p]n

)
.

So we find that κn(∂n+1
H) = ∂n

H . Secondly we will introduce for all k ≥ 1, the
projection operators. We will label the projections in the sets Hn just as above:
πn

k ∈ Hn. Now we define the projection operator to be πk = (πn
k)n. We will

show that this projection is an element of H∞. The first condition is satisfied
by definition, so let us verify that (πn

k)n is a projective row. Let [p]n be in An.
Then it is easy to see the following:

κn(πn+1
k)

(
[p]n

)
=

[
π′

k ◦ π
′
n(p)

]

n

= πn
k

(
[p]n

)
.

And we find κn(πn+1
k) = πn

k . At this point, we will introduce constants in A∞.
Let a be an atomic action. Then we define a row

(
[a]n

)

n
. We immediately see,

by definition, that this row is in A∞.

Now let M
∞ be the algebra that consists of the sets A∞ and H∞, the

operators +, ·, ‖, , |, χ and ◦, and the constants
(
[a]n

)

n
∈ A∞ for all a ∈ A

and the constants πk, ∂H ∈ H∞, for all k ≥ 1 and H ⊆ A. We will define the
projections

ζn : M
∞ −→Mn

as follows. ζn(x) = xn, and ζ(f) = fn if x = (xn)n and f = (fn)n. It is very
easy to see that for all n ≥ 1, we have κn ◦ ζn+1 = ζn. It is a well-known fact
that such a construction forms the projective or inverse limit. We find thus
that M

∞ is the projective limit of the row in display (11).

Theorem (3.5.23)

M
∞ |= ACPu.

See table 3.5 on page 115 for the axioms of ACPu.

Proof. We know from theorem (3.5.10) that for all n ≥ 1 : Mn |= ACPu.
Forasmuch as the operations on M

∞ are defined component by component, we
see at once that M

∞ |= ACPu. This will end the proof of 3.5.23.

129

An Operator Definition Principle: 3.5. A Model

Theorem (3.5.24)

M
∞ |= RDP,RSP.

Proof. We will use the notations that we have already introduced in theo-
rem (3.5.17). So let

V = {xα : α ∈ I}

be a set of variables and let

E(V) =
{
xα = tα

(
(xβ)β∈I

)
: α ∈ I

}

be a guarded recursive specification. Without loss of generality, we may assume
that E(V) is completely guarded; see definition (3.2.15). For all n ≥ 1 we have
constructed in theorem (3.5.17) a solution ([pn

α])α for E(V) in Mn. We claim
that

(
[pn

α]n
)

n
is an element of A∞ for all α ∈ I. This follows immediately from

the following:

κn

([
pn+1

α

]

n+1

)
=

[
pn+1

α

]

n

=
[
π′

n(pn+1
α)

]

n

=
[
π′

n(pn
α)

]

n
see (3)

= [pn
α]n.

We are to verify that for all α ∈ I :
(
[pn

α]n
)

n
=

([
tα(pn

β)β

]

n

)

n
. But we know

from the proof of theorem (3.5.17) that for all n ≥ 1 we have

[pn
α]n =

[
tα(pn

β)β

]

n
;

so we see that M
∞ |= RDP, too. Now suppose that for all α ∈ I we have

(
[qn

α]n
)

n
=

([
tα(qn

β)β

]

n

)

n
. Let n ≥ 1 be fixed. Since RSP is valid in Mn, we

see that [qn
α]n = [pn

α]n, so we also find
(
[pn

α]n
)

n
=

(
[qn

α]n
)

n
and M

∞ |= RSP.
This ends the proof of theorem 3.5.24.

Theorem (3.5.25)

M
∞ |= AIP.

Proof. Let (xn)n, (yn)n ∈ A∞. Suppose that for all k ≥ 1, we have

πk

(
(xn)n

)
= πk

(
(yn)n

)
.

Then we find for all n, k ≥ 1 : πk(xn) = πk(yn). Now fix an n ≥ 1; we know
that Mn |= AIP, so we find xn = yn. But this is valid for all n ≥ 1 and we find
thus (xn)n = (yn)n. This is precisely what we wanted to prove.

130

An Operator Definition Principle: 3.5. A Model

Theorem (3.5.26)

M
∞ |= EA.

Proof. Since H∞ is a function space, we immediately have this property. See
also the proof of (3.5.20).

Theorem (3.5.27)

M
∞ |= ODP,OSP.

Proof. We will modify the notations of theorem (3.5.21) slightly. In there we
defined a sequence of elements

µr
1, . . . , µ

r
l ∈ Hn

for a fixed n ≥ 1 and 1 ≤ r ≤ n. We will give this sequence of elements an
extra label as follows:

µn,r
1 , . . . , µn,r

l ∈ Hn.

We define for all i with 1 ≤ i ≤ l the row µi to be (µn,n
i)n. We claim that

µ1, . . . , µl ∈ H
∞. (12)

To prove (12) we fix an i with 1 ≤ i ≤ l. By definition, we see that for all
n ≥ 1 we have µn,n

i ∈ Hn, so we have to verify that µi is a projective row, that
is, we are to show that for all n ≥ 1

κn(µn+1,n+1
i) = µn,n

i . (13)

First, we will treat the case n = 1. Let [p]1 be as in equation (6) of theo-
rem (3.5.21). It is very easy to see that

κ1(µ
2,2
1)

(
[p]1

)
=

s∑

j=1

[
a
(i)
j

]

1
+

t∑

k=1

[
b
(i)
k

]

1

= µ1,1
1

(
[p]1

)
.

Now let henceforward n > 1. In order to verify (13) we will need the following
intermediate result. For all 1 ≤ i ≤ l and for all 1 ≤ r ≤ n, we have

κn(µn+1,r
i) = µn,r

i . (14)

Let r = 1 and let 1 ≤ i ≤ l be chosen. Let [p]n ∈ An be as in equation (6).
Consider the following.

κn(µn+1,1
i)

(
[p]n

)
= κn ◦ µ

n+1,1
i

([
π′

n(p)
]

n+1

)

=

s∑

j=1

[
a
(i)
j

]

n
+

t∑

k=1

[
b
(i)
k

]

n

= µn,1
1

(
[p]n

)
.

131

An Operator Definition Principle: 3.5. A Model

Now let 1 ≤ r < n and suppose that (14) is proved up to and including r. We
will prove it for r + 1.

κn(µn+1,r+1
i)

(
[p]n

)
= κn ◦ µ

n+1,r+1
i

([
π′

n(p)
]

n+1

)

=

s∑

j=1

[
a
(i)
j

]

n
· κn(µn+1,r

σ(aj ,i))
([
π′

n−1(pj)
]

n

)
+

t∑

k=1

[
b
(i)
k

]

n

=

s∑

j=1

[
a
(i)
j

]

n
· µn,r

σ(aj,i)

([
π′

n−1(pj)
]

n

)
+

t∑

k=1

[
b
(i)
k

]

n

= µn,r+1
i

([
π′

n(p)
]

n

)

= µn,r+1
i

(
[p]n

)
.

This ends the proof of (14). In particular, we find for r = n

κn(µn+1,n
i) = µn,n

i . (15)

Now we will verify that equation (13) is valid. Let [p]n still be as in equation (6).
We will calculate the left-hand side of equation (13).

κn(µn+1,n+1
i)

(
[p]n

)
=

s∑

j=1

[
a
(i)
j

]

n
· κn(µn+1,n

σ(aj ,i))
([
π′

n−1(pj)
]

n

)
+

t∑

k=1

[
b
(i)
k

]

n

(15)
=

s∑

j=1

[
a
(i)
j

]

n
· µn,n

σ(aj,i)

([
π′

n−1(pj)
]

n

)
+

t∑

k=1

[
b
(i)
k

]

n
.

We know that all µn,n
i satisfy equations (4) and (5) of theorem (3.5.21). So we

find for the right-hand side of equation (13):

µn,n
i

(
[p]n

)
= µn,n

i

([
π′

n(p)
]

n

)

=

s∑

j=1

[
a
(i)
j

]

n
· µn,n

σ(aj,i)

([
π′

n−1(pj)
]

n

)
+

t∑

k=1

[
b
(i)
k

]

n
,

and therewith we deduced that µi ∈ H∞. In order to prove the existential part
of the theorem, i.e., M

∞ |= ODP, it suffices to show that for µ1, . . . , µl the
following two equations hold.

µi

(
([a]n)n

)
=

([
a(i)

]

n

)

n
,

µi

(
([a]n)n · (xn)n

)
=

([
a(i)

]

n

)

n
· µσ(a,i)

(
(xn)n

)
,

in which a ∈ A and (xn)n ∈ H
∞. This is trivial. So we find that M

∞ |= ODP.

132

An Operator Definition Principle: 3.5. A Model

Now we will prove the uniqueness part. Suppose that ν1, . . . , νl ∈ H∞

solves the system E(M) in M∞, too. With νi = (νn
i)n. Let p ∈ G. It is easy

to infer that for all n ≥ 1 we have

νn
i

(
[a]n

)
=

[
a(i)

]

n
,

νn
i

(
[a]n · [p]n

)
=

[
a(i)

]

n
· νn

σ(a,i)

(
[p]n

)
.

But because of theorem (3.5.21), we know that νn
i = µn,n

i . So we find

νi = (νn
i)n = (µn,n

i)n = µi.

So M
∞ |= OSP. This will finish the proof of 3.5.27.

Remark (3.5.28)

We will mention briefly some observations about problems with the con-
struction of models for ACPτ,u and additional principles. The general idea for
the construction of these models is that we take for the sort of processes an
existing model such as a bisimulation model. For the sort of linear unary opera-
tors we take a function space on this model. However, this function space must
be chosen with care. If we choose the function space too small we will obtain
the situation that ODP is not valid. For example, take the empty function
space. If there are too many functions in the space we will obtain that OSP

does not hold. We will give an example due to Jan Bergstra [11] of this situ-
ation. We are going to show that there are two different functions that satisfy
the same linear functional specification. For the sort of processes we take the
set of finitely branching rooted labeled trees modulo weak bisimulation B. We
will call elements of B process trees. For the function space we take the bisimu-
lation preserving linear unary functions on B. The function that we will define
is called f . We will chose a particular label l ∈ A. The function f renames
every label of a process tree into τ but it “temporarily” remembers the original
label. Then in every node of the process tree it determines if there is a trace
with infinitely many labels that are not equal to τ . If the answer is affirmative
the function f will add to these nodes the option to do an l. If all the nodes
are treated this way the function will forget the original labels. We will give a
typical example: we will show in figure 3.3 how the function f behaves on aω.

We will not prove that X1, X2 and X3 are valid for f but we will sketch
that it is a solution for the next linear functional specification E(n).

E(n) = {n(a) = τ : a ∈ A} ∪ {n(a · x) = n(a) · n(x) : a ∈ A}.

First, we see that f(a) = τ . For, in the process tree representing a there are
no infinite traces. So the boundary conditions are satisfied. We will only show
that f(a · aω) = f(a) · f(aω). In figure 3.3 we see that f(aω) = l + τ · f(aω).

133

An Operator Definition Principle: 3.5. A Model

a a a a

τ (a) τ (a) τ (a) τ (a)

τ τ τ τ

l l l l

f

Figure 3.3. A visualization of aω 7→ f(aω).

Observe that the following derivation uses axiom T2 therefore, the example is
specific for weak bisimulation.

f(aω) = l + τ · f(aω)

= l + τ · f(aω) + τ · f(aω)

= f(aω) + τ · f(aω)

= τ · f(aω)

= f(a) · f(aω).

So the function f will solve the linear functional specification E(n). But on
the other hand τA will solve this system, too. But clearly we have that f 6= τA.
This means that the function space that we chosed is too large.

The problem with the function f is that it has an infinite lookahead. At
every node it can decide whether or not there was an infinite trace of non-τ
actions. If we only look at the functions that have no lookahead we will have
a function space in which ODP and OSP hold. Such functions could be called
sequential renamings. The idea is that such a function is specified with the aid
of a linear functional specification, which is, in fact, a set of renaming schemes.
It starts at the root of a process tree and it renames the labels according to its
renaming scheme. The original labels tell the function which renaming scheme
must be used for the next node, and so on. These functions are called sequential
renamings since after a sequential composition the renaming scheme turns into
probably another scheme.

Another observation is that not every model of a process algebra can be
extended with an appropriate function space. The following example is also

134

An Operator Definition Principle: 3.6. Applications

due to Jan Bergstra [11]. Consider the subalgebra A of B that consists of all
the process trees with only a finite number of b-labels. For the function space
we take a very large one: the bisimulation preserving linear unary functions
on A . The linear functional specification

E(n) = {n(a) = b : a ∈ A} ∪ {n(a · x) = n(a) · n(x) : a ∈ A}

will not have a solution since a solution for the linear functional specifica-
tion E(n) should map aω to bω and we clearly have that bω /∈ A .

3.6. Applications

In this section we will apply the theory ACPτ,u on the one hand, by proving a
number of basic adversaria in a “new” way. By this we mean an enumeration
of straightforward non-related results (at first sight) that are already known.
The main difference here is that we will use ACPτ,u to prove these theorems.
In fact, the correlation between these results is the use of auxiliary linear unary
operators in order to prove them. On the other hand, it is not only customary
to use auxiliary linear unary operators in verifications, but also in specifica-
tions. So we will give some examples of specifications with the aid of such
auxiliary operators, too, in which we will use ODP and OSP to introduce the
operators needed for the specification. In practice it is a combination of both:
specification with the aid of linear unary operators in order to be able to give
a verification.

The first example in using an auxiliary operator is a theorem that states:
KFAR1 =⇒ KFAR2. For the definition of KFAR we refer to principle (1.2.7).
This theorem can be found in [40]. In this example, we will use linear unary
operators in the body of the proof.

Theorem (3.6.1)

Suppose that KFAR1 holds, then we can derive that KFAR2 holds.

Proof. We will prove this theorem only in the following case. Let u and v be
closed terms. Let i ∈ I and j ∈ I be internal atomic actions (I ⊆ A). Let x
and y be processes such that the following holds:

x = i · y + u,

y = j · x+ v.

We are to show:
τI(x) = τ · τI(u+ v).

We will use the following abbreviations: u′ = τ{i}(u) and v′ = τ{i}(v). Consider
the guarded recursive specification E1 below:

E1 =
{
x1 = τ · y1 + u′, y1 = j · x1 + v′

}
.

135

An Operator Definition Principle: 3.6. Applications

(At this point we already see why we consider the closed term case only: the
specification E1 must be without the abstraction operator. Although u′ and v′

are abbreviations in which the abstraction operator occurs, they are closed
terms, so we can eliminate the τ{i} with the axioms concerning the abstraction
operator. Hence, we should consider a completely equivalent guarded recursive
specification E′

1 without the abstraction operator. We will not do so. If we
want to prove the general case, we will probably need the notion of guarded
recursive specifications with parameters. Then the closed terms u and v can be
interpreted as arbitrary processes that are parameters of a guarded recursive
specification. The processes u′ and v′ are in that case just other parameters,
hence, we still have a guarded recursive specification without the abstraction
operator. The concept of guarded recursive specifications with parameters, can
be found in [32].)

It is very easy to see that the conditions of theorem (3.4.12) are satisfied,
so we see that τ{i} is idempotent. This can be used to see that the unique

solution of E1 is
(
τ{i}(x), τ{i}(y)

)
. We will use the fact that τ{i} is idempotent

tacitly in the sequel. Now consider the guarded recursive specification E2:

E2 =
{
x2 = i · y2 + u′ + v′, y2 = j · x2 + v′

}
.

Let (x2, y2) be the solution of E2. Then it is clear that we have the following
for τ{i}(y2) and τ{i}(x2):

τ{i}(y2) = j · τ{i}(x2) + v′

and

τ{i}(x2) = τ · τ{i}(y2) + u′ + v′

= τ · τ{i}(y2) + τ{i}(y2) + u′ + v′

= τ · τ{i}(y2) + j · τ{i}(x2) + v′ + v′ + u′

= τ · τ{i}(y2) + j · τ{i}(x2) + v′ + u′

= τ · τ{i}(y2) + τ{i}(y2) + u′

= τ · τ{i}(y2) + u′.

Hence,
(
τ{i}(x2), τ{i}(y2)

)
is also a solution for the guarded recursive specifica-

tion E1, so by RSP we obtain: τ{i}(x2) = τ{i}(x). With the aid of (3.4.18), it is
easy to see that τI is a right-absorber for τ{i}, that is, we know that τI◦τ{i} = τI .
Thus, we achieve:

τI(x2) = τI ◦ τ{i}(x2)

= τI ◦ τ{i}(x)

= τI(x). (1)

136

An Operator Definition Principle: 3.6. Applications

Now consider the guarded recursive specifications E3 and E4:

E3 =
{
x3 = i · y3 + u′′ + v′′, y3 = τ · x3 + u′′ + v′′

}
,

E4 =
{
x4 = i · y4 + u′ + v′, y4 = j · x4 + u′ + v′

}
.

We used above the abbreviations τ{i,j}(u) = u′′ and τ{i,j}(v) = v′′. With the
aid of corollary (3.4.22) it is immediately clear that τ{j} ◦ τ{i} = τ{i,j}. Now
we can derive:

τ{j}(x2) = i · τ{j}(y2) + u′′ + v′′

and

τ{j}(y2) = τ · τ{j}(x2) + v′′

= τ · τ{j}(x2) + τ{j}(x2) + v′′

= τ · τ{j}(x2) + i · τ{j}(y2) + u′′ + v′′ + v′′

= τ · τ{j}(x2) + i · τ{j}(y2) + u′′ + v′′ + u′′ + v′′

= τ · τ{j}(x2) + τ{j}(x2) + u′′ + v′′

= τ · τ{j}(x2) + u′′ + v′′.

We see that
(
τ{j}(x2), τ{j}(y2)

)
is a solution for E3. For the solution (x4, y4)

of E4 we can deduce easily:

τ{j}(x4) = i · τ{j}(y4) + u′′ + v′′

and

τ{j}(y4) = τ · τ{j}(x4) + u′′ + v′′.

Now we see that
(
τ{j}(x4), τ{j}(y4)

)
is also a solution for E3. Hence, by RSP

we obtain τ{j}(x4) = τ{j}(x2). Completely analogous to the calculation of
equation (1), we find:

τI(x4) = τI(x2). (2)

Observe that we use here (3.4.18) since we use that τI is a right-absorber
for τ{j}. Consider the guarded recursive specifications E5 and E6:

E5 =
{
x5 = j · x5 + u′ + v′

}
,

E6 =
{
x6 = j · y6 + u′ + v′, y6 = j · x6 + u′ + v′

}
.

At this point we want to introduce a linear unary operator. Let n be a function
name. Consider the linear functional specification below:

E(n) =
{
n(a) = a

∣
∣ a ∈ A \ {i}

}
∪ {n(i) = j}

∪
{
n(a · x) = n(a) · n(x) | a ∈ A

}
.

137

An Operator Definition Principle: 3.6. Applications

With the aid of ODP we know that there is a valuation ϕ which solves this
specification. Let us say ϕ(n) = ρ ∈ F . With the aid of theorem (3.4.15), we
find that τ{i} is a left-absorber for ρ. So for the solution (x4, y4) of E4, we can
derive:

ρ(x4) = j · ρ(y4) + u′ + v′,

ρ(y4) = j · ρ(x4) + u′ + v′.

So we see that
(
ρ(x4), ρ(y4)

)
is a solution for E6. On the other hand, if we

interchange the order of the equations above, we see that
(
ρ(y4), ρ(x4)

)
is a

solution for E6, thus, with the aid of RSP, we obtain ρ(x4) = ρ(y4). In
particular we find:

ρ(x4) = j · ρ(x4) + u′ + v′.

Hence, ρ(x4) is a solution for E5. Let x5 be the solution for E5, then we obtain
by RSP ρ(x4) = x5. Use theorem (3.4.18) to see that τI is a right-absorber
for ρ. We will use this fact in the calculation hereinafter. On the one hand we
have:

τI(x5) = τI ◦ ρ(x4)

= τI(x4)

= τI(x2) because of (2)

= τI(x). because of (1)

And on the other hand we may apply KFAR1 to the equation x5 = j ·x5+u
′+v′.

This gives the following: (notice that we use the fact that τI is a right-absorber

for τ{i})

τI(x5) = τ · τI(u
′ + v′)

= τ ·
(
τI ◦ τ{i}(u) + τI ◦ τ{i}(v)

)

= τ ·
(
τI(u) + τI(v)

)

= τ · τI(u+ v).

Combining these two inferences, we conclude the proof of 3.6.1.

In our next example, we will give a recursive specification of a queue Q
over a data set D with input channel 1 and output channel 2. We suppose that
the data set D contains more than one datum (see figure 3.4).

1
Q

2

Figure 3.4. A queue Q with input channel 1 and output channel 2.

138

An Operator Definition Principle: 3.6. Applications

It is known that an infinite guarded recursive specification of Q can be given
by the equations hereinafter:

Q = Qλ =
∑

d∈D

r1(d) ·Qd, (3)

Qσ∗d = s2(d) ·Qσ +
∑

e∈D

r1(e) ·Qe∗σ∗d, (4)

for any word σ ∈ D∗ and any d ∈ D. Here, we use λ ∈ D∗ for the empty
word. The asterisk (∗) stands for the concatenation of words. It is known that
there is no finite guarded recursive specification over ACP which defines the
process Q. It is also known that the queue can be specified with the aid of a
finite guarded recursive specification, if we allow certain auxiliary linear unary
operators (renaming operators). Both results can be found in [4]. Below we
will state the latter theorem in terms of ACPτ,u.

Theorem (3.6.2)

The queue is definable by a finite guarded recursive specification in ACPτ,u.

Proof. Suppose that we have for the set A of atomic actions

{r1(d), s2(d), l(d), u(d) : d ∈ D} ⊆ A.

Let the communication function be given as follows:

∀ d ∈ D : l(d) | l(d) = u(d),

and all the other communications result in δ. Consider the following linear
functional specification for the set of function names N = {n,m}:

E(N) =
{
n
(
u(d)

)
= s2(d) : d ∈ D

}
∪

{
n
(
l(d)

)
= δ : d ∈ D

}

∪
{
n(a) = a : a ∈ A \

(
u(D) ∪ l(D)

) }

∪
{
m

(
s2(d)

)
= l(d) : d ∈ D

}
∪

{
m(a) = a : a ∈ A \ s2(D)

}

∪
{
f(a · x) = f(a) · f(x)

∣
∣ f ∈ N, a ∈ A

}
.

We used above the following abbreviations: u(D) = {u(d) : d ∈ D}, l(D) =
{l(d) : d ∈ D} and s2(D) = {s2(d) : d ∈ D}. According to ODP, there is a
valuation ϕ : N −→ F . Let us say ϕ(n) = ν ∈ F and ϕ(m) = µ ∈ F . Consider
the following finite guarded recursive specification:

R =
∑

d∈D

r1(d) · ν
(
µ(R) ‖ s2(d) · Z

)
,

Z =
∑

d∈D

l(d) · Z.

139

An Operator Definition Principle: 3.6. Applications

Now let σ ∈ D∗, then we define the process Rσ inductively as displayed below:

Rλ = R,

Rσ∗d = ν
(
µ(Rσ) ‖ s2(d) · Z

)
.

At this point, we will prove the following claim:

Rσ = ν
(
µ(Rσ) ‖ Z

)
. (5)

We will verify this by showing that both left and right-hand side of equation (5)
are solutions for the same guarded recursive specification and then we will apply
RSP. In order to prove this, we need another intermediate result:

∀σ ∈ D∗,∀ d ∈ D : ν
(
µ(Rσ) s2(d) · Z

)
=

∑

e∈D

r1(e) ·Re∗σ∗d. (6)

We will prove (6) with induction on the length of the word σ. First let d ∈ D
be arbitrarily chosen and let σ = λ. Consider the following calculation:

ν
(
µ(Rλ) s2(d) · Z

)
= ν

(∑

e∈D

r1(e) · µ(Re) s2(d) · Z
)

=
∑

e∈D

r1(e) · ν
(
µ(Re∗λ) ‖ s2(d) · Z

)

=
∑

e∈D

r1(e) ·Re∗λ∗d.

Hence, for σ = λ equation (6) is proved. Now let d ∈ D and let σ = ρ ∗ f ∈ D∗

for some f ∈ D, such that equation (6) is proved for ρ ∈ D∗. We show that (6)
holds for σ:

ν
(
µ(Rσ) s2(d) · Z

)
= ν

(

µ ◦ ν
(
µ(Rρ) ‖ s2(f) · Z

)
s2(d) · Z

)

= ν
(

µ ◦ ν
(
µ(Rρ) s2(f) · Z

)
s2(d) · Z

)

+ ν
(

µ ◦ ν
(
s2(f) · Z µ(Rρ)

)
s2(d) · Z

)

= ν
(

µ ◦ ν
(
µ(Rρ) s2(f) · Z

)
s2(d) · Z

)

+ δ

= ν
(

µ
(∑

e∈D

r1(e) ·Re∗ρ∗f

)

s2(d) · Z
)

=
∑

e∈D

r1(e) · ν
(
µ(Re∗σ) ‖ s2(d) · Z

)

=
∑

e∈D

r1(e) ·Re∗σ∗d.

140

An Operator Definition Principle: 3.6. Applications

This ends the proof of our intermediate result stated in (6). Let us now calculate
the left-hand side of equation (5), first we take σ = λ:

Rλ = R

=
∑

d∈D

r1(d) · ν
(
µ(Rλ) ‖ s2(d) · Z

)

=
∑

d∈D

r1(d) · ν
(
µ(R) ‖ s2(d) · Z

)

=
∑

d∈D

r1(d) ·Rd.

Now we will drop the assumption of σ being the empty word.

Rσ∗d = ν
(
µ(Rσ) ‖ s2(d) · Z

)

= ν
(
µ(Rσ) s2(d) · Z

)
+ s2(d) · ν

(
µ(Rσ) ‖ Z

)

=
∑

e∈D

r1(e) ·Re∗σ∗d + s2(d) · ν
(
µ(Rσ) ‖ Z

)
. (7)

Consider the guarded recursive specification G below:

G =

{

Xλ =
∑

d∈D

r1(d) ·Xd,

Xσ∗d =
∑

e∈D

r1(e) ·Xe∗σ∗d + ν
(
µ(Xσ) ‖ Z

)
∣
∣
∣ d ∈ D,σ ∈ D∗

}

.

Then it is obvious that, if we put Xσ = Rσ for all σ ∈ D∗, this system is a solu-
tion for G. Observe that the linear unary operators, appearing in the guarded
recursive specification G, are concrete operators; confer remark (3.2.19). Now
we will prove that the right-hand side of equation (5) is also a solution for the
specification G. Therefore, we will introduce one more abbreviation:

Sσ = ν
(
µ(Rσ) ‖ Z

)
.

Consider the calculation below for Sλ:

Sλ = ν
(
µ(Rλ) Z

)

= ν
(

µ
(∑

d∈D

r1(d) · ν
(
µ(Rλ) ‖ s2(d) · Z

))

Z
)

= ν
(∑

d∈D

r1(d) · µ ◦ ν
(
µ(Rλ) ‖ s2(d) · Z

)
Z

)

=
∑

d∈D

r1(d) · ν
(
µ ◦ ν

(
µ(Rλ) ‖ s2(d) · Z

)
‖ Z

)

141

An Operator Definition Principle: 3.6. Applications

=
∑

d∈D

r1(d) · ν
(
µ(Rd) ‖ Z

)

=
∑

d∈D

r1(d) · Sd.

Now we calculate Sσ∗d:

Sσ∗d = ν
(
µ(Rσ∗d) ‖ Z

)

=
∑

e∈D

r1(e) · ν
(
µ(Re∗σ∗d) ‖ Z

)
+ s2(d) · ν

(
µ(Sσ) ‖ Z

)
use (7)

=
∑

e∈D

r1(e) · Se∗σ∗d + s2(d) · ν
(
µ(Sσ) ‖ Z

)

It is clear that, if we put for all σ ∈ D∗ : Xσ = Sσ, this system is also a solution
for G. Hence, by RSP, we conclude the proof of equation (5). Now we find for
the defining equations for Rσ:

Rλ =
∑

d∈D

r1(d) ·Rd,

Rσ∗d =
∑

e∈D

r1(d) ·Re∗σ∗d + s2(d) ·Rσ.

But these are the defining equations of the process Q = Qλ; see equations (6)
and (7). Thus, again using RSP, we obtain Q = Rλ. This ends the proof
of 3.6.2.

At this point, we will give an example in which we will use the operator
definition principle in order to specify a communication network. In [4] this
particular example is specified with an auxiliary operator, which is called the
localization operator. In fact, it is the composition of a renaming operator and
an abstraction operator. We will handle this in a slightly different way. We
will combine three operators in one linear unary operator instead of two: a
renaming operator (which is the auxiliary part), an abstraction operator and
an encapsulation operator. In this network, we will have an environment E, a
sender S and a receiver R. We will have four channels 1–4. We will depict this
network in figure 3.5.

S
2

3
R

E

1 4

Figure 3.5. A communication network.

142

An Operator Definition Principle: 3.6. Applications

Let D be a finite set of data and let ack /∈ D be an acknowledgement. We will
give the recursive equations for the sender S and the receiver R.

S =
∑

d∈D

r1(d) · s2(d) · r3(ack) · s1(ack) · S,

R =
∑

d∈D

r2(d) · s4(d) · s3(ack) ·R.

The sender and the receiver both communicate with the environment via chan-
nels 1 and 4. The environment E can send data along 1, receive an ack along 1,
or receive data along 4. Thus, we can put for the recursive specification for E:

E =
(∑

d∈D

s1(d) +
∑

d∈D

r4(d) + r1(ack)
)

·E.

The behaviour of the environment is that we first must have an s1(d), then an
r4(d) and then an r1(ack) before the next s1(e) can follow. This ordering of
atomic actions is not expressed in the definition of E. We will use an auxiliary
linear unary operator to express this behaviour. We assume for the set of
atomic actions A the following:

A =
{
ri(d), si(d), ci(d) : d ∈ D, i = 1, 2, 4

}

∪
{
ri(ack), si(ack), ci(ack) : i = 1, 3

}
.

Next we will give, for a function name n, the following linear functional speci-
fication:

E(n) =
{
n
(
ri(x)

)
= n

(
si(x)

)
= δ

∣
∣ i = 1, 2, 4, x ∈ D ∪ {ack}

}

∪
{
n
(
c1(x)

)
= s1(x)

∣
∣ x ∈ D ∪ {ack}

}

∪
{
n
(
c2(d)

)
= τ

∣
∣ d ∈ D

}

∪
{
n
(
c4(d)

)
= r4(d)

∣
∣ d ∈ D

}

∪ {n
(
c3(ack)

)
= τ}

∪
{
n(a · x) = n(a) · n(x)

∣
∣ a ∈ A

}
.

With the aid of ODP, we know that there is a valuation ϕ that solves this
system. Let us say ϕ(n) = ν ∈ F (notice that this linear unary operator is
an example of an abstracting operator; see definition (3.2.12) on page 76). We
can now state the following theorem in which we will use the notations that
we have introduced above. This theorem says that we will obtain the actions
of E in the right order.

143

An Operator Definition Principle: 3.6. Applications

Theorem (3.6.3)

ν(E ‖ S ‖ R) =
∑

d∈D

s1(d) · r4(d) · r1(ack) · ν(E ‖ S ‖ R).

Proof. This consists of the following straightforward calculation:

ν(E ‖ S ‖ R) = ν
(
(E | S) R

)

=
∑

d∈D

s1(d) · ν
(
s2(d) · r3(ack) · s1(ack) · S ‖ E ‖ R

)

=
∑

d∈D

s1(d) · ν
((
s2(d) · r3(ack) · s1(ack) · S | R

)
E

)

=
∑

d∈D

s1(d) · τ · ν
(
s4(d) · s3(ack) ·R ‖ r3(ack) · s1(ack) · S ‖ E

)

=
∑

d∈D

s1(d) · ν
((
s4(d) · s3(ack) ·R | E

)
r3(ack) · s1(ack) · S

)

=
∑

d∈D

s1(d) · r4(d) · ν
(
s3(ack) ·R ‖ E ‖ r3(ack) · s1(ack) · S

)

=
∑

d∈D

s1(d) · r4(d) · ν
((
s3(ack) ·R | r3(ack) · s1(ack) · S

)
E

)

=
∑

d∈D

s1(d) · r4(d) · τ · ν
(
R ‖ s1(ack) · S ‖ E

)

=
∑

d∈D

s1(d) · r4(d) · ν
((
E | s1(ack) · S

)
R

)

=
∑

d∈D

s1(d) · r4(d) · s1(ack) · ν(E ‖ S ‖ R).

In the next example, we will describe a process P , which can be in different
states: we will specify a process with parallel input. More on this subject can
be found in chapter 2. Suppose we have a finite data set D consisting of
two elements 0 and 1. We have two input channels: 1 and 2, and one output
channel: 3. The process P reads in an arbitrary order the data of the input
channels 1 and 2 and sends along channel 3 the sum of these data modulo 2
(and then it starts all over again). We can think of P as a simulation of
a(n) xor-port with the aid of process algebra. We will depict this process in
figure 3.6.

P
1

2

3

Figure 3.6. Simulation of a(n) xor-port.

144

An Operator Definition Principle: 3.6. Applications

We will first describe the process P without the merge. We assume that we
have the following set of atomic actions:

A = {r′i(j) : i = 1, 2 j = 0, 1} ∪ {t}

∪ {ri(j) : i = 1, 2 j = 0, 1} ∪ {s3(j) : j = 0, 1}

= {r′i(j) : i = 1, 2 j = 0, 1} ∪ {t} ∪B,

with B = {ri(j) : i = 1, 2 j = 0, 1} ∪ {s3(j) : j = 0, 1}. Consider the recursive
specification of the process P below:

P =
∑

i=0,1

r1(i) ·
∑

j=0,1

r2(j) · s3(i+ j mod 2) · P

+
∑

l=0,1

r2(l) ·
∑

k=0,1

r1(k) · s3(k + l mod 2) · P.

The problem with this specification is that we actually want to denote this
process with a merge. For it has parallel input. But if we do so, we will obtain
difficulties with the scope of the sum signs. We could write the specification
above as follows:

P =
(∑

i=0,1

r1(i)
∥
∥

∑

j=0,1

r2(j)
)

· s3(i+ j mod 2) · P.

Since the variable i under the first sum sign is bounded, we can alter it without
changing the meaning of the sum. But the i that occurs in the send action will
remain the same. So the meaning of the entire formula will change. We will
use an auxiliary unary operator to solve this problem. Let

N = {nk,l : k, l = 0, 1}

be a set of function names. Let E(N) be the following linear functional speci-
fication.

E(N) =
{
nk,l

(
r′i(j)

)
= ri(j) : j, k, l = 0, 1 i = 1, 2

}

∪
{
nk,l(t) = s3(k + l mod 2) : k, l = 0, 1

}

∪ {n(a) = a : a ∈ B}

∪
{
nk,l

(
r′1(j) · x

)
= r1(j) · nj,l(x) : j, k, l = 0, 1

}

∪
{
nk,l

(
r′2(j) · x

)
= r2(j) · nk,j(x) : j, k, l = 0, 1

}

∪
{
nk,l(t · x) = s3(k + l mod 2) · n0,0(x) : k, l = 0, 1

}

∪ {nk,l(a · x) = a · nk,l(x) : a ∈ B k, l = 0, 1}.

With the aid of ODP, we know that there is a valuation ϕ : N −→ F which
solves this system. Let us say ϕ(nk,l) = νk,l ∈ F with k, l ∈ {0, 1}. Subse-
quently, we will give a specification of a process X.

X =
(∑

i=0,1

r′1(i)
∥
∥

∑

j=0,1

r′2(j)
)

· t ·X.

With the notations that we have introduced above we can now state the fol-
lowing theorem.

145

An Operator Definition Principle: 3.6. Applications

Theorem (3.6.4)

ν0,0(X) = P.

Proof. Consider the following calculation.

ν0,0(X) = ν0,0

(∑

i=0,1

r′1(i) ·
∑

j=0,1

r′2(j) · t ·X
)

+ ν0,0

(∑

l=0,1

r′2(l) ·
∑

k=0,1

r′1(k) · t ·X
)

=
∑

i=0,1

r1(i) · νi,0

(∑

j=0,1

r′2(j) · t ·X
)

+
∑

l=0,1

r2(l) · ν0,l

(∑

k=0,1

r′1(k) · t ·X
)

=
∑

i=0,1

r1(i) ·
∑

j=0,1

·νi,j(t ·X)

+
∑

l=0,1

r2(l) ·
∑

k=0,1

r1(k) · νk,l(t ·X)

=
∑

i=0,1

r1(i) ·
∑

j=0,1

·s3(i+ j mod 2) · ν0,0(X)

+
∑

l=0,1

r2(l) ·
∑

k=0,1

r1(k) · s3(k + l mod 2) · ν0,0(X).

With the aid of RSP we see that ν0,0(X) = P . This will end the verification
of theorem 3.6.4.

3.7. Generalizations

In this section we will mention briefly some generalizations of ACPτ,u. In par-
ticular, we will point out that the definition of a linear functional specification
can be generalized easily such that, with the aid of ODP and OSP, we can
introduce more linear unary operators. The first generalization that can be
thought of is an “exit” possibility. That is, we allow functional equations of
the following type:

f(a · x) = f(a).

Then we are able to specify (operators that behave like) the projection opera-
tors, with the aid of a linear functional specification. The second generalization
that we can think of is that we have more “liberal” boundary conditions: we
would sometimes send an atomic action to a closed term. To exemplify this,
we will give hereinafter a definition of a linear functional specification that
accommodates both generalizations.

146

An Operator Definition Principle: 3.7. Generalizations

Definition (3.7.1)

Let N be a set of function names. A linear functional specification E(N)
for N is a set of the following form:

E(N) = {rn,a : n ∈ N, a ∈ A} ∪ {en,a : n ∈ N, a ∈ A}. (1)

Both rn,a and en,a are equations. Now fix an a ∈ A and an n ∈ N , then we will
define the two equations rn,a and en,a for the pair (n, a). The first equation
rn,a is called a boundary condition and has the following form: there are closed
terms {tk : k ∈ K} and {sl : l ∈ L} without linear unary operators, for certain
finite disjoint sets K and L, such that

rn,a ≡ χ(n, a) =
∑

k∈K

tk +
∑

l∈L

sl. (2)

The equation en,a is called a linear functional equation and it is of the following
form:

en,a ≡ χ(n, a · x) =
∑

k∈K

tk · χ(nk, x) +
∑

l∈L

sl, (3)

in which {nk : k ∈ K} ⊆ N . If K = ∅, we omit the first sum sign in both
equations (2) and (3) and if L = ∅, we leave out the second sum sign in (2)
and (3).

It will be clear that this definition is a generalization of definition (3.2.2),
for let L = ∅ (this disables the “exit” possibility), let |K| = 1 and let the closed
term tk ∈ A ∪ {δ, τ}.

Since, for the generalized state operator*, we have

Λm
s (a) =

∑

b∈a(m,s)

b,

we see that we can specify this operator with a linear functional specification
of definition (3.7.1). We will not need the “exit” possibility here.

It is also possible to consider operators f : P −→ Q. Where we have a
binary operator “+” on the elements of Q. If we take, for example, Q = P(A)
we can define the binary operator + to be the union of sets. We must change
the definition of a linear functional specification in a radical way. For we might
want to have functional equations that look like

f(a · x) = f(a) + f(x).

* see definition (1.3.4)

147

An Operator Definition Principle: 3.7. Generalizations

Examples of such operators are: the trace operator and the alphabet of a
process, which can be found in [4]. An example of an auxiliary operator of this
“type” can be found in chapter 2. It is the collection of all the registers that
occur in a process x and it is abbreviated: reg(x). We will not discuss this type
of generalization any further.

Concluding, we can say that the notion of a linear functional specification
can be generalized easily, such that we can handle more and more linear unary
operators.

3.8. Conclusions

In this chapter we have presented a way to introduce linear unary operators.
Moreover, ACPτ,u is a first attempt to unify many other axiom systems. In
section 3.6, all the examples were originally specified in different axiom systems.
While in this chapter, these examples are studied in ACPτ,u.

The first example concerning KFARn, was specified in ACPτ with renam-
ing operators. This example showed us that the principles ODP and OSP were
not only used to specify an auxiliary linear unary operator in order to give
a verification, but we also employed it indirectly: we intensively referred to
some (absorption) theorems that were proved, using the principles ODP and
OSP. Another matter that we discovered in studying this example, was that
the notion of a guarded recursive specification had to be adapted; see for details
remark (3.2.19).

The second example was specified in ACP with renaming operators. These
renaming operators were more “elementary” than the renaming operators that
were defined in [40]. A remarkable fact is that in this example we find linear
unary operators inside a guarded recursive specification. As they are so-called
concrete operators, they are of no harm in the guarded recursive specification.

The next example uses ACP with the localization operator. It is an ope-
rator that consists of two parts: there is an encapsulation part and there is
a “renaming” part. The localization operator is in fact the composition of a
renaming operator and an encapsulation operator. We treated this operator
in a slightly different way: we made a linear unary operator with three com-
ponents; besides the two mentioned hereinbefore, we adapted an abstraction
part, too. This is done to create an example of an abstracting operator and to
make things a little more compact.

The last example was originally specified in ACPτ and the register operator
(see chapter 2). To shorten the proof of theorem (3.6.4), we simplified the

148

An Operator Definition Principle: 3.8. Conclusions

situation somewhat: we “reset” the xor-port each time after it sent the output
along channel 3.

Theorem (3.4.29) was originally formulated with the aid of ACP with
the (simple) state operator, as can be seen in the remark subsequent to this
theorem. We formulate and prove it, in ACPτ,u.

We find thus that ACPτ,u with of course ODP and OSP, is a theory that
handles all these different cases. So it can be seen as a theory that unifies the
other theories. We are not ready, however, since there are examples of linear
unary operators that we cannot describe with this theory yet. We can mention
the generalized state operator here. The main reason for this “lack”, is the
definition of a linear functional specification. We kept this definition as simple
as possible for heuristic reasons.

A matter that we did not discuss here is the research on non-linear unary
operators, such as the priority operator; see section 1.4. It is the author’s
opinion that it is worthwhile doing some further investigations on both linear
and non-linear unary operators.

149

Chapter 4

On Induction Principles

WE will discuss a theory that is a generalization of the theory of chapter 3,
where we developed the theory in its most elementary form. We will

explore one of the suggested generalizations in section 3.7, which is the so
called “exit” possibility. This means that we are able to reason on projection
operators and linear unary operators that behave like projection operators. In
fact, we will consider a more general type of projection operators than the usual
projection operators. With the generalized projection operators we will propose
an induction principle that turns out to be useful in protocol verifications.

The theory in chapter 3 has been developed to obtain a uniform approach
for the introduction of linear unary operators in process algebras. Instances of
such operators are frequently found in, for example, communication protocols.
In many cases a new verification demands a new set of operators. So for each
new verification a new axiom system must be given. Moreover, a number of
lemmas concerning the brand new operators have to be proved, or, if that
fails, additional axioms on these operators have to be added, for instance, the
conditional alphabet axioms; see section 1.5. Although these operators are
all different, they share certain common properties, which calls for a unifying
framework in which it will be possible to introduce these operators and to
reason about them in order to save time and effort.

We will prove some general theorems on linear unary operators. Moreover,
we will apply the theory by proving that a fair FIFO queue satisfies a criterion
for protocol correctness where we will use the induction principle. This is not
an individual case: we will show that a wide range of communication protocols
in which unbounded queues appear can be verified using the same methods.

4.1. Introduction

We will consider the algebra of communicating processes with abstraction and
linear unary operators. The abbreviation for this axiom system will be ACPτ,u.
The τ stands for Milner’s silent action [36] and the u for unary (in linear unary
operator). The theory ACPτ,u is an extension of the algebra of communicating

151

On Induction Principles: 4.1. Introduction

processes with abstraction ACPτ that has been studied in [12]; see for a short
introduction chapter 1. In chapter 3 the idea of a two sorted algebra is proposed
and it is shown that this is a proper way to obtain a uniform approach for the
introduction of linear unary operators and moreover, a number of examples
illustrate that ACPτ,u is a unifying framework for many other theories that
consist of ACP or ACPτ with some additional linear unary operators.

In this chapter we will study the generalization of the theory in which it is
possible to specify the projection operators, as well. The projection operators
can be found for the first time in process algebra in [14]. Due to the system-
atic research on linear unary operators more general projection operators are
proposed instead of the “classical” or full projection operators. The approx-
imation induction principle (AIP) accompanies the full projection operators;
see section 1.2. In this chapter we propose its equivalent for the generalized
projection operators. In fact, we propose a number of induction principles:
one for each subset of the finite set of atomic actions. If we take this subset
to be the set of atomic actions itself we will regain the old induction princi-
ple AIP. We will show that these principles can be very useful in verifications
of correctness theorems on communication protocols.

We will briefly mention the overall structure of this chapter. In section 4.2
we will repeat the main points of the axiomatic framework ACPτ,u as it is
already described in chapter 3 albeit that certain matters are generalizations of
the corresponding ones in chapter 3. In the subsequent section 4.3 we will prove
some general theorems on linear unary operators. The items in this section are
both a continuation and a generalization of theorems that have been studied
in section 3.4. In this section we will focus on theorems in combination with
the projection operators; for general theorems without projection operators we
refer to section 3.4. An important theorem in section 4.3 is the result that
the abstraction operator and the projection operators commute under certain
circumstances. The proof of this theorem is trivial but its consequences are
not. In section 4.4 we will see this when we will explain how this theory can
be used in protocol verifications. We will show that a fair FIFO queue with
an unbounded capacity satisfies an algebraic criterion for protocol correctness;
this is an old problem in process algebra and it has been first studied in [13].
With the methods that we use in this proof we will verify three alternating bit
protocols with a time out that can take place at any moment. In section 4.5 we
will state some conclusions and recommendations for the further development
of this theory and we mention a number of protocols that can be verified in the
same way as the ones in section 4.4.

152

On Induction Principles: 4.2. Definitions

4.2. Definitions

In this section we will give the signature and the axioms of ACPτ,u as it will be
used in this chapter. We will mention five principles (with accompanying def-
initions): the Operator Definition Principle ODP, the Operator Specification
Principle OSP, the Recursive Definition Principle RDP, the Recursive Specifi-
cation Principle RSP and Koomen’s Fair Abstraction Rule KFARn. The first
two ODP and OSP can be found in chapter 3. The principles RDP and RSP

can be found in chapter 1. Finally, KFARn can also be found in chapter 1.

We will also mention a sixth principle: the Generalized Induction Prin-
ciple GIP. The principle GIP is new and is the subject of research in this
chapter. It is a generalization of the Approximation Induction Principle AIP

−

that can be found in [21]; see also [15]. RDP, RSP and KFAR were introduced
in papers about protocol verification. AIP is not used in protocol verifications.
The reason for that is that the operators occurring in AIP do not commute
with an important linear unary operator: the abstraction operator. Using GIP

will by-pass this problem. We will show this in the next section (see theo-
rem (4.3.12)).

First we will provide a picture of the signature of ACPτ,u. The difference
between figure 4.1 and figure 3.1 on page 71 is the set of constants of sort F .
It is extended. In figure 3.1 we have besides the encapsulation operator and
the abstraction operator all the full projection operators. In figure 4.1 we have
also the identity map id and we have for each subset J ⊆ A a set of projection
operators.

A, δ, τ

P χ F

id , ∂H , τI , π
1
J , π

2
J , π

3
J , . . .

‖, , |,+, · · ◦ ·

Figure 4.1. Graphical representation of the signature.

Now we will explain this figure. As we can see it is a two-sorted algebra. The
first sort that we consider is the sort P of processes. We have a set of constants
or atomic actions A in P . There are two so-called special constants in P :
deadlock, which is denoted by δ and the silent step, which is abbreviated by τ .
We have five binary operators with both arguments in P (they are all infix
operators):

merge: ‖ : P × P −→ P,

153

On Induction Principles: 4.2. Definitions

left-merge: : P × P −→ P,

communication-merge: | : P × P −→ P,

sequential composition: · : P × P −→ P,

alternative composition: + : P × P −→ P.

Now we will consider the second one: the sort F of functions or linear unary op-
erators. First, we will discuss the constants of this sort. We have a constant id ,
which stands for the identity. For all H ⊆ A we have a constant ∂H ∈ F . We
will refer to this constant as the encapsulation operator. For all I ⊆ A we have
a constant τI ∈ F , which is called the abstraction operator. Furthermore, we
have for all n ≥ 1 and for all J ⊆ A a constant πn

J ∈ F . This constant will be
called the (nth) projection operator. We have only one binary operator with
both arguments of sort F :

◦ : F × F −→ F.

This operator will be called the composition of functions. Finally, we have a
binary operator that “connects” the two sorts P and F . It is called the apply
function:

χ : F × P −→ P.

This will end the discussion on the signature. Afterwards, we will give the
axiom system of ACPτ,u as it is stated in chapter 3 albeit that we will have
other axioms concerning the projection operators. We will use the following
notational conventions for the symbols that appear in table 4.1 (page 155): a, b
and c are atomic actions, or δ; x, y, z are processes; γ is a special constant, that
is, deadlock or silent step; n ≥ 1; H, I and J are subsets of A; and finally, f, g
and h are linear unary operators.

We will formulate an extensionality axiom, which states that linear unary
operators that coincide on all processes are indeed the same. We will not use
this axiom since we will introduce the notion of a linear functional specification
and some principles that allow us to reason about linear unary operators in a
comfortable way, but there is no reason to exclude extensionality, so here it is
anyway.

Axiom (4.2.1) Extensionality(4.2.1)

Let f and g be linear unary operators. If for all processes x ∈ P : χ(f, x) =
χ(g, x), then f = g. We will use the abbreviation EA for this axiom.

Hereinafter, we will define the notion of a linear functional specification.
This concept is already defined in chapter 3. We will use a generalized form
in which it will be possible to specify the “generalized” projection operators
πn

J ∈ F . This form is suggested in section 3.7.

154

On Induction Principles: 4.2. Definitions

A1 x+ y = y + x χ(τI , a) = a, if a /∈ I TI1

A2 x+ (y + z) = (x+ y) + z χ(τI , a) = τ, if a ∈ I TI2

A3 x+ x = x χ(τI , x · y) = χ(τI , x) · χ(τI , y) TI3

A4 (x+ y) · z = x · z + y · z

A5 (x · y) · z = x · (y · z) τ | x = δ TC1

A6 x+ δ = x x | τ = δ TC2

A7 δ · x = δ (τ · x) | y = x | y TC3

x | (τ · y) = x | y TC4

C1 a | b = b | a

C2 (a | b) | c = a | (b | c) x · τ = x T1

C3 δ | a = δ τ · x+ x = τ · x T2

a · (τ · x+ y) = a · (τ · x+ y) + a · x T3

CM1 x ‖ y = x y + y x+ x | y

CM2 a x = a · x τ x = τ · x TM1

CM3 (a · x) y = a · (x ‖ y) (τ · x) y = τ · (x ‖ y) TM2

CM4 (x+ y) z = x z + y z

CM5 (a · x) | b = (a | b) · x χ(f ◦ g, x) = χ
(
f, χ(g, x)

)
XC1

CM6 a | (b · x) = (a | b) · x χ
(
(f ◦ g) ◦ h, x

)
= χ

(
f ◦ (g ◦ h), x

)
XC2

CM7 (a · x) | (b · y) = (a | b) · (x ‖ y)

CM8 (x+ y) | z = x | z + y | z χ(f, γ) = γ X1

CM9 x | (y + z) = x | y + x | z χ(f, γ · x) = γ · χ(f, x) X2

χ(f, x+ y) = χ(f, x) + χ(f, y) X3

D1 χ(∂H , a) = a, if a /∈ H

D2 χ(∂H , a) = δ, if a ∈ H χ(πn
J , a) = aGPR1

D3 χ(∂H , x · y) = χ(∂H , x) · χ(∂H , y) χ(π1
J , a · x) = a, if a ∈ J GPR2

χ(πn+1
J , a · x) = a · χ(πn

J , x), if a ∈ J GPR3

ID χ(id , x) = x χ(πn
J , a · x) = a · χ(πn

J , x), if a /∈ J GPR4

Table 4.1. ACPτ,u.

Definition (4.2.2) Linear Functional Specifications(4.2.2)

Let N be a finite set of function names. A linear functional specifica-

155

On Induction Principles: 4.2. Definitions

tion E(N) for the set of names N is a set of equations of the following form:

E(N) =
{
rn,a|n ∈ N, a ∈ A

}
∪

{
en,a|n ∈ N, a ∈ A

}
,

in which rn,a is called a boundary condition and en,a is called a (linear) func-
tional equation. Fix a ∈ A and n ∈ N . Then we will define what the form is of
these two types of equations. First we define the boundary condition. There is
a b ∈ A ∪ {δ, τ} such that

rn,a ≡ χ(n, a) = b.

Now we will define what the functional equation is. It can have two forms. We
will use the same b as in the boundary condition that we defined above.

en,a ≡

{
χ(n, a · x) = b, or
χ(n, a · x) = b · χ(m,x), for one m ∈ N .

In chapter 3 we have only the second form for the functional equation.

Subsequently, we will recall ODP and OSP. They are the same as in chap-
ter 3 but they use the more general definition of a linear functional specification
given above.

Definition (4.2.3)

We will call a mapping ϕ : N −→ F a valuation for N .

Principle (4.2.4) The Operator Definition Principle(4.2.4)

Let E(N) be a linear functional specification for a set of function names N
in the sense of definition (4.2.2). Then the following holds: there is a valuation
ϕ for N , which solves the system of equations E(N). We will use the compact
notation ODP for this principle.

Principle (4.2.5) The Operator Specification Principle(4.2.5)

Let E(N) be a linear functional specification for a set of function names N
in the sense of definition (4.2.2). Then there is at most one valuation ϕ for
N such that ϕ solves the system of equations E(N). We will use the compact
notation OSP.

We will recall RDP and RSP.

Principle (4.2.6) The Recursive Definition Principle(4.2.6)

LetE be a guarded recursive specification in the sense of definition (3.2.15).
Then there is a solution for E.

156

On Induction Principles: 4.2. Definitions

Principle (4.2.7) The Recursive Specification Principle(4.2.7)

LetE be a guarded recursive specification in the sense of definition (3.2.15).
Then there is at most one solution for E.

Now we will state our new principle.

Principle (4.2.8) The Generalized Approximation Induction Principle(4.2.8)

Let J ⊆ A and let x, y ∈ P . If we have for all n ≥ 1 : πn
J (x) = πn

J (y)
and we have that x or y can be specified with the aid of a guarded recursive
specification in the sense of definition (3.2.15), we have x = y. We will use
the abbreviation GIP for this principle; this acronym stands for: “generalized
induction principle”.

Remarks (4.2.9)

We will explain why this principle is called “generalized”. In section 3.2 we
can find this principle for J = A. The projection operators are simply denoted
by πn there. It has the subsequent form: if we have for all n ≥ 1:

πn(x) = πn(y)

then we have x = y. This principle is called “the approximation induction prin-
ciple” hence the adjective generalized. We will also use the notation πn = πn

A

in accordance with the notational conventions of process algebra.

Now we will recall KFAR. It can be found in chapter 1.

Principle (4.2.10) Koomen’s Fair Abstraction Rule(4.2.10)

Let x1, . . . , xn and y1, . . . , yn be in P . Let I ⊆ A and suppose that we
have the following identities for these processes:

x1 = i1 · x2 + y1,

x2 = i2 · x3 + y2,

...

xn−1 = in−1 · xn + yn−1,

xn = in · x1 + yn,

with the following assumptions on the ij , (1 ≤ j ≤ n):

{τ} 6= {i1, . . . , in} ⊆ I ∪ {τ},

then we have:

τI(x) = τ ·
(
τI(y1) + τI(y2) + · · ·+ τI(yn)

)
.

We will refer to this principle with the abbreviation KFARn. But if we have
that n = 1 we will also use the abbreviation KFAR.

157

On Induction Principles: 4.3. Theorems

4.3. Theorems

In this section we will prove some general theorems on linear unary operators.
We will focus on theorems in which the projection operators occur. Theorems
concerning just linear unary operators without an exit possibility can be found
in chapter 3.

The first result is that the projection operators commute. The second
result is that in certain circumstances the composition of two projections can
be written as one projection. This is true in general for full projections (which is
the next result). Then a number of results follow in which necessary conditions
are formulated such that a linear unary operator without an exit possibility
commutes with a projection operator. This will be generalized to linear unary
operators with an exit. The last theorem states that a linear unary operator
with an exit possibility can be decomposed into a linear unary operator without
an exit and a generalized projection operator. This is an important result. In
chapter 3 we discussed the linear unary operators without an exit in depth and
in this section we will discuss the projections. This theorem states that we can
investigate linear unary operators as they are defined here by researching two
simpler classes: the ones in chapter 3 and the generalized projections.

Theorem (4.3.1)

For all n, k ≥ 1 and J1, J2 ⊆ A we have πn
J1
◦ πk

J2
= πk

J2
◦ πn

J1
.

Proof. Let M = {mi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} be a set of function names.
Consider the following linear functional specification:

E(M) =
{
mi,j(a) = a : a ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ k

}

∪
{
mi,j(a · x) = mi,j(a) ·mi,j(x)

: a ∈ A \ (J1 ∪ J2), 1 ≤ i ≤ n, 1 ≤ j ≤ k
}

∪
{
m1,j(a · x) = m1,j(a) : a ∈ J1, 1 ≤ j ≤ k

}

∪
{
mi,1(a · x) = mi,1(a) : a ∈ J2, 1 ≤ i ≤ n

}

∪
{
mi+1,j(a · x) = mi+1,j(a) ·mi,j(x)

: a ∈ J1 \ J2, 1 ≤ i < n, 1 ≤ j ≤ k
}

∪
{
mi,j+1(a · x) = mi,j+1(a) ·mi,j(x)

: a ∈ J2 \ J1, 1 ≤ i ≤ n, 1 ≤ j < k
}

∪
{
mi+1,j+1(a · x) = mi+1,j+1(a) ·mi,j(x)

: a ∈ J1 ∩ J21 ≤ i < n, 1 ≤ j < k
}
.

We will try the solutionmi,j = πi
J1
◦πj

J2
. First, we will verify that the boundary

conditions hold. Because of GPR1 we immediately see that πi
J1
◦ πj

J2
(a) = a

for all a ∈ A and 1 ≤ i ≤ n, 1 ≤ j ≤ k. Subsequently, we will check that the

158

On Induction Principles: 4.3. Theorems

functional equations hold. Let a ∈ A \ (J1 ∪ J2) and let 1 ≤ i ≤ n, 1 ≤ j ≤ k
be chosen. Then we see, using GPR4 twice, that

πi
J1
◦ πj

J2
(a · x) = πi

J1
◦ πj

J2
(a) · πi

J1
◦ πj

J2
(x).

Now we treat the case a ∈ J1, 1 ≤ j ≤ k. In fact, we have two subcases
here: a ∈ J2 and a /∈ J2. But eventually the remaining part will be “cut off”
by π1

J1
. So we obtain that

π1
J1
◦ πj

J2
(a · x) = πi

J1
◦ πj

J2
(a).

The case a ∈ J2, 1 ≤ i ≤ n is treated similarly to this case only more simply.
Now we take a ∈ J1 \ J2 and 1 ≤ i < n, 1 ≤ j ≤ k. We find with the aid of the
axioms for the projection operators at once that

πi+1
J1
◦ πj

J2
(a · x) = πi+1

J1
◦ πj

J2
(a) · πi

J1
◦ πj

J2
(x).

The case a ∈ J2 \ J1, 1 ≤ i ≤ n, 1 ≤ j < k is verified the same as the former
case. Finally, we will treat the case a ∈ J1 ∩ J2, 1 ≤ i < n, 1 ≤ j < k. We find
immediately that

πi+1
J1
◦ πj+1

J2
(a · x) = πi+1

J1
◦ πj+1

J2
(a) · πi

J1
◦ πj

J2
(x).

Now we can conclude that the solution that we proposed is indeed a solution
for E(M). On the other hand, if we try the solution mi,j = πj

J2
◦ πi

J1
, we

obtain, just as above, that this will solve the system E(M), too. Thus, we may
conclude in accord with OSP that these solutions are the same. In particular,
we find that πn

J1
◦ πk

J2
= πk

J2
◦ πn

J1
. Herewith we end the verification of 4.3.1.

Theorem (4.3.2)

For all k ≥ n ≥ 1 and for all subsets J1, J2 ⊆ A with J2 ⊆ J1 we have

πn
J1
◦ πk

J2
= πn

J1
.

Proof. We will prove 4.3.2 with induction on n. Hence, let n = 1, k ≥ 1
and J2 ⊆ J1 ⊆ A be chosen. Let m be a function name. Consider the linear
functional specification E(m), defining π1

J1
, hereinafter.

E(m) =
{
m(a) = a : a ∈ A

}

∪
{
m(a · x) = m(a) : a ∈ J1

}

∪
{
m(a · x) = m(a) ·m(x) : a ∈ A \ J1

}
.

We immediately see that π1
J1

is a solution for E(m). We will show that π1
J1
◦πk

J2

is also a solution. Thereto we will verify that the boundary conditions hold.

159

On Induction Principles: 4.3. Theorems

Let a ∈ A be fixed. Then we see with GPR1 that π1
J1
◦ πk

J2
(a) = a. Now

we will consider the functional equations. First let a ∈ J1. We will have two
cases: a /∈ J2 and a ∈ J2. The latter case will have two subcases: k = 1
and k > 1. Consider the following simple calculation:

π1
J1
◦ πk

J2
(a · x) =







a ∈ J2 :

{

π1
J1
◦ πk

J2
(a), if k = 1;

π1
J1

(
πk

J2
(a) · πk−1

J2
(x)

)
, if k > 1.

a /∈ J2 : π1
J1

(
πk

J2
(a) · πk

J2
(x)

)

= π1
J1
◦ πk

J2
(a).

Now we will treat the case a ∈ A \ J1 ⊆ A \ J2. It is evident that

π1
J1
◦ πk

J2
(a · x) = π1

J1
◦ πk

J2
(a) · π1

J1
◦ πk

J2
(x).

Thus, we find, using OSP:

∀k ≥ 1, ∀J2 ⊆ J1 : π1
J1
◦ πk

J2
= π1

J1
. (1)

Now suppose that 4.3.2 is proved up to n inclusive. Then we will verify 4.3.2
for n+ 1. Choose k ≥ n+ 1 and let J2 ⊆ J1 ⊆ A be fixed. Let

M = {m1, . . . ,mn+1}

be a set of function names and consider the subsequent linear functional spec-
ification E(M):

E(M) =
{
mi(a) = a : a ∈ A, 1 ≤ i ≤ n+ 1

}

∪
{
mi(a · x) = mi(a) ·mi(x) : a ∈ A \ J1, 1 ≤ i ≤ n+ 1

}

∪
{
mi+1(a · x) = mi+1(a) ·mi(x) : a ∈ J1, 1 ≤ i ≤ n

}

∪
{
m1(a · x) = m1(a) : a ∈ J1

}
.

It will be clear that π1
J1
, . . . , πn+1

J1
solves the system E(M). We will try the

solution mi = πi
J1
◦ πk

J2
for 1 ≤ i ≤ n + 1. It is obvious that the boundary

conditions are satisfied. So we will only treat the functional equations. Let
thereto a ∈ A \ J1 and 1 ≤ i ≤ n+ 1. Since a /∈ J2 we find:

πi
J1
◦ πk

J2
(a · x) = πi

J1
◦ πk

J2
(a) · πi

J1
◦ πk

J2
(x).

Now let a ∈ J1. First we will handle the case i = 1.

π1
J1
◦ πk

J2
(a · x) = π1

J1
(a · x) because of (1)

= π1
J1

(a)

= π1
J1
◦ πk

J2
(a).

160

On Induction Principles: 4.3. Theorems

Now let 1 ≤ i < n. Consider the following calculation.

πi+1
J1
◦ πk

J2
(a · x) = πi+1

J1
(a · x) induction

= πi+1
J1

(a) · πi
J1

(x)

= πi+1
J1
◦ πk

J2
(a) · πi

J1
(x)

= πi+1
J1
◦ πk

J2
(a) · πi

J1
◦ πk

J2
(x). induction

Now we will treat the case i = n + 1. We will have two subcases: a ∈ J2

and a /∈ J2. First, we will consider a ∈ J2 (observe that k > 1):

πn+1
J1
◦ πk

J2
(a · x) = πn+1

J1

(
πk

J2
(a) · πk−1

J2
(x)

)

= πn+1
J1
◦ πk

J2
(a) · πn

J1
◦ πk−1

J2
(x)

= πn+1
J1
◦ πk

J2
(a) · πn

J1
(x) induction

= πn+1
J1
◦ πk

J2
(a) · πn

J1
◦ πk

J2
(x). induction

Now we take a /∈ J2.

πn+1
J1
◦ πk

J2
(a · x) = πn+1

J1

(
πk

J2
(a) · πk

J2
(x)

)

= πn+1
J1
◦ πk

J2
(a) · πn

J1
◦ πk

J2
(x).

We see that in both subcases the right-hand sides are the same. Hence, we see
that the functional equations are satisfied, too. So with the aid of OSP we find
that πn+1

J1
◦ πk

J2
= πn+1

J1
. This will end the induction step and therewith the

proof of 4.3.2.

Corollary (4.3.3)

For all n, k ≥ 1 and for all J ⊆ A we have πn
J ◦ π

k
J = π

min(n,k)
J .

Proof. Let J1 = J2 = J . First suppose that k ≥ n. With the aid of theo-
rem (4.3.2) we find that

πn
J ◦ π

k
J = πn

J = π
min(n,k)
J .

Now suppose that k < n. Then we find:

πn
J ◦ π

k
J = πk

J ◦ π
n
J because of (4.3.1)

= πk
J theorem (4.3.2)

= π
min(n,k)
J .

This will end the proof of 4.3.3.

161

On Induction Principles: 4.3. Theorems

Corollary (4.3.4)

For all n, k ≥ 1 : πn ◦ πk = πmin(n,k). We used here the abbreviation πn =
πn

A, see (4.2.9).

Remark (4.3.5)

It is a well-known fact in process algebra that for closed terms t the fol-
lowing holds:

πn ◦ πk(t) = πmin(n,k)(t).

Confer section 2.4. We see that with the use of linear functional specifications,
in combination with ODP and OSP, we are able to prove this fact for all pro-
cesses. So a composition of “full” projections is always composable into only one
full projection. This composability result is generalized in theorem (4.3.2). The
following question may arise: “Is every composition of generalized projection
operators composable into only one (generalized) projection operator?” The
answer to this question is negative. For, let A = {a, b} and suppose that there
exists a subset J ⊆ A and a natural number n ≥ 1 such that π1

{a} ◦ π
2
{b} = πn

J .

Assume that b /∈ J . Then we see that

π1
{a} ◦ π

2
{b}(b

3) = b2 6= b3 = πn
J (b3).

So this assumption cannot hold. Hence, b ∈ J . In a similar way we find
that a ∈ J , so J = A. Assume that n = 1. Then we see that

π1
J (b3) = b 6= b2 = π1

{a} ◦ π
2
{b}(b

3).

Thus, we find that n > 1. Thus, πn
J (a2) = a2. But

πn
J (a2) = π1

{a} ◦ π
2
{b}(a

2) = a.

So n 6> 1. This is in contradiction with the fact that n > 1 so the assumption
that π1

{a} ◦ π
2
{b} can be written as πn

J for one n ≥ 1 and a subset J ⊆ A cannot
hold.

We will define hereinafter what a renaming operator is. In chapter 3 we
define this to be a linear unary operator that can be defined with the aid of a
linear functional specification with the extra requirement that the set of derived
operators D(f) contains only one element; see definition (3.2.10). But with the
generalized version of a linear functional specification, we are able to specify π1.
This means that with this definition π1 would become a renaming operator.
To solve this, we will need the subsequent definition in which we will introduce
the concept of the set of “exits” of a linear unary operator.

162

On Induction Principles: 4.3. Theorems

Definition (4.3.6)

Let f ∈ F be a linear unary operator. The set of exits X(f) with respect
to f is the following subset of A:

X(f) =
{
a ∈ A | ∀x ∈ P∃b ∈ A ∪ {τ} : f(a · x) = b

}
.

We excluded δ here, since δ = δ · f(x) for all f ∈ F . This means that if we
have an atomic action a such that f(a ·x) = δ, it looks like an exit but, in fact,
it is not since we can write f(a · x) = δ · f(x).

Examples (4.3.7)

It is easy to see that X(π1
J) = J . For, let j ∈ J then we have for all x ∈ P :

π1
J (j · x) = j

so we see that j ∈ X(π1
J). Now suppose that a /∈ J . Then we know that for

all x ∈ P : π1
J (a · x) = a · π1

J (x) and we see that a /∈ X(π1
J). Thus, we find

that X(π1
J) = J . We will show that X(∂H) = ∅. Suppose that there is an

atomic action a ∈ X(∂H). If a /∈ H we find that ∂H(a · x) = a · ∂H(x). This
yields that a /∈ X(∂H). So we must have a ∈ H. But then we find: ∂H(a·x) = δ.
So we see, by definition, that a /∈ X(∂H). We find thus that X(∂H) = ∅. In a
similar way we can obtain that X(τI) = ∅.

Definition (4.3.8)

Let f ∈ F be a linear unary operator, which can be defined with the aid
of a linear functional specification. If |D(f)| = 1 and X(f) = ∅, we will call f
a (linear unary) renaming operator.

Examples (4.3.9)

We will show that ∂H is a renaming operator. We have seen in (3.2.9)
that |D(∂H)| = 1. In (4.3.7) we have seen that X(∂H) = ∅. It is easy to see
that ∂H can be defined with the aid of a linear functional specification, so we
find that ∂H is a renaming operator. In the same way we can obtain that τI
is a renaming operator. Now suppose that π1

J is a renaming operator, then π1
J

must be the identity map. We already know that |D(π1
J)| = 1; see (3.2.9).

Since π1
J is a renaming operator, we have J = X(π1

J) = ∅. Let n be a function
name and consider the following linear functional specification.

E(n) =
{
n(a) = a : a ∈ A

}
∪

{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

It is very easy to see that both π1
∅ and id* are solutions for E(n). Hence, we

have π1
∅ = id .

* See table 4.1 page 155.

163

On Induction Principles: 4.3. Theorems

Theorem (4.3.10)

Let f ∈ F be a renaming operator. Let J ⊆ A be chosen. Suppose that

the following two conditions are valid

(i) f(J) ⊆ J ∪ {δ}

(ii) f(A \ J) ⊆ A \ J ∪ {δ}

then we have for all n ≥ 1 : f ◦ πn
J = πn

J ◦ f . Observe that f is a concrete
renaming operator because of the conditions (i) and (ii).

Proof. Choose an n ≥ 1 and let M = {m1, . . . ,mn} be a set of function
names. Contemplate the subsequent linear functional specification.

E(M) =
{
mi(a) = f(a) : a ∈ A, 1 ≤ i ≤ n

}

∪
{
mi(a · x) = mi(a) ·mi(x) : a ∈ A \ J, 1 ≤ i ≤ n

}

∪
{
m1(a · x) = m1(a) : a ∈ J

}

∪
{
mi+1(a · x) = mi+1(a) ·mi(x) : a ∈ J, 1 ≤ i < n

}
.

We will try the solution mi = πi
J ◦ f for 1 ≤ i ≤ n. It is very easy to see that

the boundary conditions are valid, so we will only verify that the functional
equations are satisfied. Let a ∈ A \ J and 1 ≤ i ≤ n.

πi
J ◦ f(a · x) = πi

J

(
f(a) · f(x)

)

= πi
J ◦ f(a) · πi

J ◦ f(x). use (ii)

Now let a ∈ J . We have two cases: i = 1 and n ≥ i > 1.

π1
J ◦ f(a · x) = π1

J

(
f(a) · f(x)

)

= π1
J ◦ f(a). use (i)

Now the case i > 1:

πi+1
J ◦ f(a · x) = πi+1

J

(
f(a) · f(x)

)

= πi+1
J ◦ f(a) · πi

J ◦ f(x). use (i)

So we see that this solves the system E(M). On the other hand if we try the
solution mi = f ◦ πi

J for all 1 ≤ i ≤ n, we obtain that this is also a solution
for E(M). Using OSP we find that, in particular, f ◦ πn

J = πn
J ◦ f . This will

end the verification of the theorem.

Theorem (4.3.10) was originally stated in chapter 3. In there, it was not
yet possible to reason with projection operators. We obtained that f ◦πn(x) =
πn ◦ f(x) for so-called concrete processes x; see theorem (3.4.8).

164

On Induction Principles: 4.3. Theorems

Corollary (4.3.11)

For all n ≥ 1 and for all subsets H,J ⊆ A we have:

πn
J ◦ ∂H = ∂H ◦ π

n
J .

Proof. We will check that the conditions of theorem (4.3.10) are satisfied.
First, we will take a look at condition (i). Since ∂H(a) ⊆ {a, δ} for all a ∈ A,
we immediately see that (i) holds. The same is valid for condition (ii). Thus,
we may apply theorem (4.3.10) and we obtain the desired equation.

Theorem (4.3.12)

Let I, J ⊆ A and suppose that I ∩ J = ∅. Then we have for all n ≥ 1 :
πn

J ◦ τI = τI ◦ πn
J .

Proof. Let n ≥ 1 be chosen. Let {m1, . . . ,mn} be a set of function names.
Consider the following linear functional specification:

E(m1, . . . ,mn) =
{
mi(a) = a : a ∈ A \ I, 1 ≤ i ≤ n

}

∪
{
mi(a) = τ : a ∈ I, 1 ≤ i ≤ n

}

∪
{
mi(a · x) = mi(a) ·mi(x) : a ∈ A \ J, 1 ≤ i ≤ n

}

∪
{
m1(a · x) = m1(a) : a ∈ J

}

∪
{
mi+1(a · x) = mi+1(a) ·mi(x) : a ∈ J, 1 ≤ i < n

}
.

It consists of straightforward calculation to see that if we put for all 1 ≤ i ≤ n:

mi = πi
J ◦ τI ,

that this solves the system E(m1, . . . ,mn). But on the other hand if we put

mi = τI ◦ π
i
J ,

for all 1 ≤ i ≤ n, we obtain a solution for E(m1, . . . ,mn), too. So with the aid
of OSP we may conclude that these solutions are the same. In particular we
find that πn

J ◦ τI = τI ◦ πn
J . This will end the verification of 4.3.12.

Theorem (4.3.13)

Let f be a renaming operator. Let J ⊆ A. Suppose that the following

conditions hold.

(i) f(J) ⊆ J ∪ {δ}

(ii) f(A \ J) ⊆ A \ J ∪ {δ, τ}

Then we have πn
J ◦ f = f ◦ πn

J for all n ≥ 1.

165

On Induction Principles: 4.3. Theorems

Proof. We could give a direct proof of this theorem, but we will give an
indirect proof: first, we will show that we can decompose f into a concrete
part and an abstraction operator. Thereinafter, we will apply theorems (4.3.10)
and (4.3.12). Let I = {a ∈ A : f(a) = τ} be the abstracting set of f . Let n be
a function name and consider the following linear functional specification.

E(n) =
{
n(a) = f(a) : a ∈ A \ I

}

∪
{
n(a) = a : a ∈ I

}

∪
{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

It will be clear that the solution for this linear functional specification is a
concrete renaming operator. We will name it g. It is not very difficult to see
that it will be sufficient to show that

∀a ∈ A : f(a) = g ◦ τI(a), (2)

in order to be able to conclude that f = g ◦ τI . Since (2) is valid, we find
the desired decomposition. We will verify that g satisfies the conditions (i)
and (ii) of theorem (4.3.10). Let a ∈ J , then we see that a /∈ I*. So, we
find g(a) = f(a) ∈ J ∪ {δ}. Now we verify condition (ii). Let a ∈ A \ J .
If a ∈ I, we find, by definition, g(a) = a ∈ A \ J ∪ {δ}. So let a /∈ I. Then
we find g(a) = f(a) ∈ A \ J ∪ {δ, τ}. But g(a) 6= τ , so g(a) ∈ A \ J ∪ {δ}. It
will be clear that we may use theorem (4.3.12), so we can make the subsequent
calculation.

f ◦ πn
J = g ◦ τI ◦ π

n
J

= g ◦ πn
J ◦ τI because of (4.3.12)

= πn
J ◦ g ◦ τI because of (4.3.10)

= πn
J ◦ f.

This will end the verification of 4.3.13.

Remark (4.3.14)

The decomposition of a renaming operator f into a concrete renaming
operator g and an abstraction operator τI is not unique. For, let A = {a, b}
and let I = {b}. Let f be the solution for E(n):

E(n) =
{
n(a) = b, n(b) = τ

}
∪

{
n(c · x) = n(c) · n(x) : c ∈ A

}
.

Let g be the solution for E(m):

E(m) =
{
m(a) = b,m(b) = b

}
∪

{
m(c · x) = m(c) ·m(x) : c ∈ A

}
.

* We see that I ∩ J = ∅, so the condition of theorem (4.3.12) is satisfied

166

On Induction Principles: 4.3. Theorems

Then it is easy to see that f = g ◦ τI (of course, g is a concrete renaming
operator). Let g′ be the solution for E(m′):

E(m′) =
{
m′(a) = b,m′(b) = a

}
∪

{
m′(c · x) = m′(c) ·m′(x) : c ∈ A

}
.

We can find easily that f = g′◦τI . Suppose that g = g′ then g′ is also a solution
for E(m). But g′(b) 6= b and we find that g′ 6= g. So the decomposition is not
unique.

Theorem (4.3.15)

Let f1 ∈ F be a linear unary operator that can be defined with the aid of

a linear functional specification. Let D(f1) = {f1, . . . , fk} be the set of derived

operators of f1. Let X(fj) = ∅ for all 1 ≤ j ≤ k. Suppose that the following

conditions hold.

(i)
⋃k

j=1 fj(J) ⊆ J ∪ {δ}

(ii)
⋃k

j=1 fj(A \ J) ⊆ A \ J ∪ {δ, τ}

Then we have πn
J ◦ f1 = f1 ◦ πn

J for all n ≥ 1.

Proof. Define a map σ : A× {1, 2, . . . , k} −→ {1, 2, . . . , k} as follows

σ(a, i) = j ⇐⇒ ∀x ∈ P : fi(a · x) = fi(a) · fj(x).

Let M = {mi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} be a set of function names and consider
the subsequent linear functional specification E(M).

E(M) =
{
mi,j(a) = fj(a) : a ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ k

}

∪
{
mi,j(a · x) = mi,j(a) ·mi,σ(a,j)(x)

: a ∈ A \ J, 1 ≤ i ≤ n, 1 ≤ j ≤ k
}

∪
{
m1,j(a · x) = m1,j(a) : a ∈ J, 1 ≤ j ≤ k

}

∪
{
mi+1,j(a · x) = mi+1,j(a) ·mi,σ(a,j)(x)

: a ∈ J, 1 ≤ i < n, 1 ≤ j ≤ k
}
.

It is very easy to see that if we try the solution πi
J ◦ fj = mi,j this system

will solve the linear functional specification E(M). We will need here both
conditions. But if we try on the other hand the solution fj ◦ π

i
J = mi,j we will

effortlessly see that this will solve the linear functional specification, too. So
in accord with OSP we may conclude that these solutions must be equal. In
particular, we find that πn

J ◦ f1 = f1 ◦ πn
J for all n ≥ 1. This will end the proof

of the theorem.

Below, we will generalize theorem (4.3.15) to linear unary operators that
can have an exit.

167

On Induction Principles: 4.3. Theorems

Theorem (4.3.16)

Let f1 ∈ F be a linear unary operator that can be defined with the aid of

a linear functional specification. Let D(f1) = {f1, . . . , fk} be its set of derived

operators. Suppose that the following conditions hold.

(i)
⋃k

j=1 fj

(
J \X(fj)

)
⊆ J ∪ {δ}

(ii)
⋃k

j=1 fj

(
A \

(
J ∪X(fj)

))
⊆ A \ J ∪ {δ, τ}

Then we have πn
J ◦ f1 = f1 ◦ πn

J for all n ≥ 1.

Proof. Let M = {mi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} be a set of function names.
Let

σ : A× {1, 2, . . . , k} −→ {1, 2, . . . , k}

be the partial* function defined hereinafter.

σ(a, i) = j ⇐⇒ ∀x ∈ P : fi(a · x) = fi(a) · fj(x).

Consider the next linear functional specification E(M).

E(M) =
{
mi,j(a) = fj(a) : 1 ≤ i ≤ n, 1 ≤ j ≤ k

}

∪
k⋃

j=1

{
mi,j(a · x) = mi,j(a) : a ∈ X(fj), 1 ≤ i ≤ n

}

∪
k⋃

j=1

{
m1,j(a · x) = m1,j(a) : a ∈ J \X(fj)

}

∪
k⋃

j=1

{
mi+1,j(a · x) = mi+1,j(a) ·mi,σ(a,j)(x)

: a ∈ J \X(fj), 1 ≤ i < n
}

∪
k⋃

j=1

{
mi,j(a · x) = mi,j(a) ·mi,σ(a,j)(x)

: a ∈ A \
(
J ∪X(fj)

)
, 1 ≤ i ≤ n

}
.

It is rather easy to deduce that, if we put mi,j = πi
J ◦ fj , this will solve the

linear functional specification E(M) (we will need here the conditions stated
in the theorem). But if we put, on the other hand, mi,j = fj ◦ πi

J , a simple
calculation will learn us that this will solve the system E(M), too. Using OSP

we immediately see that 4.3.16 is proved.

* If a ∈ X(fi) then σ(a, i) is not defined.

168

On Induction Principles: 4.3. Theorems

Definition (4.3.17)

A linear unary operator f ∈ F that can be defined with the aid of a linear
functional specification has no exits if for all g ∈ D(f) their sets of exits X(g)
are empty.

Theorem (4.3.18)

Let f ∈ F be a linear unary operator that can be defined with the aid of
a linear functional specification. Then there is a linear unary operator g ∈ F
without exits such that f = g ◦ π1

X(f). Moreover, the sets of derived operators
of f and g have the same cardinality.

Proof. Let f = f1 and let D(f) = {f1, . . . , fk} be the set of derived operators
of f . Let N = {n1, . . . , nk} be a set of function names. Let

σ : A× {1, 2, . . . , k} −→ {1, 2, . . . , k}

be the partial map defined as follows.

σ(a, i) = j ⇐⇒ ∀x ∈ P : fi(a · x) = fi(a) · fj(x).

Consider the linear functional specification E(N) below.

E(N) =
{
ni(a) = fi(a) : a ∈ A, 1 ≤ i ≤ k

}

∪
k⋃

i=1

{
ni(a · x) = ni(a) · ni(x) : a ∈ X(fi)

}

∪
k⋃

i=1

{
ni(a · x) = ni(a) · nσ(a,i)(x) : a ∈ A \X(fi)

}
.

According to ODP there is a solution for this system. Let us say that g1, . . . , gk

is a solution for it. We claim that we can take g = g1. For, let

M = {m1, . . . ,mk}

be a set of function names. Let E(M) be the defining linear functional speci-
fication of f :

E(M) =
{
mi(a) = fi(a) : a ∈ A, 1 ≤ i ≤ k

}

∪
k⋃

i=1

{
mi(a · x) = mi(a) : a ∈ X(fi)

}

∪
k⋃

i=1

{
mi(a · x) = mi(a) ·mσ(a,i)(x) : a ∈ A \X(fi)

}
.

169

On Induction Principles: 4.3. Theorems

It will be evident that f1, . . . , fk is a solution for this system. It is also very
easy to see that

g1 ◦ π
1
X(f1), g2 ◦ π

1
X(f2), . . . , gk ◦ π

1
X(fk)

is also a solution for it. So with the aid of OSP we can conclude that these
solutions are the same. In particular, we find that f = g1 ◦ π1

X(f). We see

that |D(f)| = |D(g)|. This will finish the proof of 4.3.18.

4.4. Applications

In this section we will apply the theory that we developed. First, we will
state a correctness criterion that can be found among others in [13]. Then
we will show that processes that satisfy other criteria that are common in
protocol verification* also satisfy the criterion stated in this chapter (we will
prove this in two ways). Furthermore, we will show that a FIFO queue with an
unbounded capacity satisfies this correctness criterion. We will base ourselves
on a (begin of a) proof that can be found in [13]. However, as we can see in
the preface of [3]: the authors of [13] have not been able to give a solution
to the problems they have put forward. Then we will formulate a lemma
on an apparently important linear unary operator that occurs in the proof of
the FIFO queue. Afterwards, we will discuss three alternating bit protocols
with a time out that can take place at any moment. They only differ in one
way: their communication channels. The acknowledgement channel is perfectly
reliable in all three cases. This is done to shorten the proofs but is not a serious
constraint. In the first protocol the data channel is also reliable: it is a queue
with an unbounded capacity, since the time out can occur at any moment. In
the second protocol we make things a bit less unrealistic: the queue with an
unbounded capacity can lose its last read datum at any moment. In the last
protocol we have a queue that can lose or duplicate any datum that is in the
queue at any moment.

The following definition is taken from [13].

Definition (4.4.1)

Let D be a set of datum elements. Let P be a process (see figure 4.2).
Let H ⊆ A be the set of all the internal read and send actions and the input
read and send actions of the process P . Let I ⊆ A be the set of all the non-
trivial communications that can be made with the atomic actions of H. Let Dω

be the cartesian product of infinitely many countable copies of D. Let the input

* See, for instance, [17], [18] and [29].

170

On Induction Principles: 4.4. Applications

and output channel of P be labeled with the numbers 1, and 2 respectively. If
for all (di)i ∈ Dω:

τI ◦ ∂H

(

P
∥
∥

∞∏

i=1

s1(di)
)

= τ ·
∞∏

i=1

s2(di),

then we will call P a correct (communication) protocol.

1
P

2

Figure 4.2. Visualization of the process P .

In protocol verifications we often meet other correctness criteria. One of
these criteria is that a protocol is correct if it is bisimilar to a one bit buffer.
In other words, if P is our protocol with input channel 1 and output channel 2
then we want that

P =
∑

d∈D

r1(d) · s2(d) · P.

Another criterion says that the protocol should behave as a two bit buffer.
And, more general, we have a criterion that says that our protocol is correct
when it behaves as an s-bit buffer. The criterion that we use in this chapter
says that the protocol must behave like a queue with unbounded capacity (or
an “ω-bit buffer”).

Hereinafter, we will show that every s-bit buffer satisfies the correctness
criterion stated in definition (4.4.1). Consider the following visualization of
an s-bit buffer.

1
xs xs−1 · · · · · · · · · x2 x1

2

s boxes
︷ ︸︸ ︷

Figure 4.3. An s-bit buffer with input channel 1 and output channel 2.

Now we will give a guarded recursive specification of an s-bit buffer.

Bs =
∑

x1∈D

r1(x1) ·Bs(x1)

For 1 ≤ j < s we have:

171

On Induction Principles: 4.4. Applications

Bs(x1, . . . , xj) =
∑

xj+1∈D

r1(xj+1) ·Bs(x1, . . . , xj+1) + s2(x1) ·Bs(x2, . . . , xj)

Bs(x1, . . . , xs) = s2(x1) ·Bs(x2, . . . , xs).

Let the following subsets of the set of atomic actions A be given:

H =
{
r1(x), s1(x) : x ∈ D

}
,

I =
{
c1(x) : x ∈ D

}
.

Below we will prove that Bs is a correct protocol. But first, we will provide a
visualization in figure 4.4 of the left-hand side of the following equation (1).

τ s2(d1) τ s2(d2) τ s2(d3)

τ s2(d1) τ s2(d2) τ

τ s2(d1) τ s2(d2) τ s2(d3)

Figure 4.4. A graph of the left-hand side of equation (1).

Theorem (4.4.2)

For all (di)i ∈ Dω the following holds:

τI ◦ ∂H

(

Bs

∥
∥

∞∏

i=1

s1(di)
)

= τ ·
∞∏

i=1

s2(di). (1)

Proof. Let us choose an element (di)i ∈ Dω. We will introduce some notations
for convenience sake. For all k ≥ 1 and 1 ≤ j ≤ s we define

Zk
0 = Bs

∥
∥

∞∏

i=k

s1(di)

Zk
j = Bs(dk, . . . , dk+j−1)

∥
∥

∞∏

i=k+j

s1(di).

172

On Induction Principles: 4.4. Applications

It is very easy to see that the following holds for all k ≥ 1 and 1 ≤ j < s:

τI ◦ ∂H(Zk
0) = τ · τI ◦ ∂H(Zk

1) (2)

τI ◦ ∂H(Zk
j) = τ · τI ◦ ∂H(Zk

j+1) + s2(dk) · τI ◦ ∂H(Zk+1
j−1)

τI ◦ ∂H(Zk
s) = s2(dk) · τI ◦ ∂H(Zk+1

s−1).

We will prove the following claim:

∀k, n ≥ 1,∀0 ≤ j ≤ s : (3)

πn ◦ τI ◦ ∂H(Zk
j) =







τ · πn

(
∏∞

i=k s2(di)
)

, if 0 ≤ j < s;

πn

(
∏∞

i=k s2(di)
)

, if j = s.

We will prove (3) with induction on n. So let n = 1. Now fix a k ≥ 1. First,
we will take j = s. Since

π1 ◦ τI ◦ ∂H(Zk
s) = s2(dk) = π1

(∞∏

i=k

s2(di)
)

,

we see that the case j = s is finished. Now suppose that for 1 < j ≤ s we have
proved the following:

π1 ◦ τI ◦ ∂H(Zk
j) = τ · s2(dk), (4)

then we prove equation (4) for j − 1 (observe that we use here axiom T2):

π1 ◦ τI ◦ ∂H(Zk
j−1) = τ · π1 ◦ τI ◦ ∂H(Zk

j) + s2(dk)

= τ ·
(
τ · s2(dk)

)
+ s2(dk)

= τ · π1

(∞∏

i=k

s2(di)
)

.

We find thus that equation (4) is valid for all 1 ≤ j ≤ s. Now it will be evident
from equation (2) that the same holds for j = 0; so we see that equation (3) is
correct for n = 1. Now suppose that (3) is proved up to and including n. We
will prove it for n+1. Choose k ≥ 1. Again, let first of all j = s. Then we find

πn+1 ◦ τI ◦ ∂H(Zk
s) = s2(dk) · πn ◦ τI ◦ ∂H(Zk+1

s−1)

(3)
= s2(dk) · τ · πn

(∞∏

i=k+1

s2(di)
)

= πn+1

(∞∏

i=k

s2(di)
)

.

173

On Induction Principles: 4.4. Applications

Suppose that for 1 < j ≤ s we have already proved

πn+1 ◦ τI∂H(Zk
j) = τ · πn+1

(∞∏

i=k

s2(di)
)

, (5)

then we find for j − 1:

πn+1 ◦ τI∂H(Zk
j−1) = τ · πn+1 ◦ τI∂H(Zk

j) + s2(dk) · πn ◦ τI ◦ ∂H(Zk+1
j−2)

(3)
= τ · πn+1 ◦ τI∂H(Zk

j) + s2(dk) · τπn

(∞∏

i=k+1

s2(di)
)

(5)
= τ · πn+1

(∞∏

i=k

s2(di)
)

.

So for 1 ≤ j ≤ s we find that equation (5) holds. Now it is trivial to see with
the aid of equation (2) that equation (5) is valid for all 0 ≤ j ≤ s. But this
means that equation (3) is correct for n+1. So we find that this equation holds
for all n ≥ 1. Take, in particular, k = 1 and j = 0. Then we find for all n ≥ 1:

πn ◦ τI ◦ ∂H

(

Bs

∥
∥

∞∏

i=1

s1(di)
)

= τ · πn

(∞∏

i=1

s2(di)
)

;

thus, using AIP, we find that theorem 4.4.2 is proved since (di)i ∈ Dω was
arbitrary chosen.

Remarks (4.4.3)

First of all, we see that we did not use in the proof of theorem (4.4.2) any
of the theory that we developed so far. The main reason for giving this proof
is that it illustrates the problem that will occur if the capacity of the buffer
tends to infinity: we see that while we are busy with the induction on n, we
need a “small” reversed induction on j; if the capacity of the buffer becomes
infinite—we have a queue with unbounded capacity—we can no longer make
this reversed induction on j. Therefore, we will need another method to solve
this problem.

Secondly, we also see that the above proof makes heavily use of axiom T2.
If we have branching bisimulation (q.v. [23]), we can not just copy the above
proof since in there we do not have T2. In that case we can use methods
that will follow hereinafter (when we will show that a queue with unbounded
capacity satisfies our correctness criterion) and then we can imitate the proof
of (4.4.4) to obtain the result of theorem (4.4.2). This will be done in theo-
rem (4.4.7).

We will give a guarded recursive specification of a FIFO queue Q over a
data set D with input channel 1 and output channel 2 (see figure 4.5). We

174

On Induction Principles: 4.4. Applications

suppose that the data set contains more than one element. It is known that an
infinity guarded recursive specification of Q can be given with the subsequent
equations:

Q = Qλ =
∑

d∈D

r1(d) ·Qd, (6)

Qd∗σ = s2(d) ·Qσ +
∑

e∈D

r1(e) ·Qd∗σ∗e, (7)

for any word σ ∈ D∗ and any d ∈ D. Here, we use λ ∈ D∗ for the empty word.
The asterisk (∗) in equation (7) stands for the concatenation of words.

1
Q

2

Figure 4.5. A queue Q with input channel 1 and output channel 2.

Below, we will prove that the queue is a correct communication protocol. But
first, we will provide in figure 4.6 a picture of the left-hand side of the following
equation (8), in which we can see that all the “lines” that go up in the graph
are labeled with a τ .

τ s2(e1) τ s2(e2) τ s2(e3) τ

τ s2(e1) τ s2(e2) τ s2(e3) τ

τ s2(e1) τ s2(e2) τ

τ s2(e1) τ

τ

Figure 4.6. A graph of the left-hand side of equation (8)

175

On Induction Principles: 4.4. Applications

Theorem (4.4.4)

The queue Q is a correct communication protocol.

Proof. Let (ei)i ∈ D
ω. Let H = {r1(d), s1(d) : d ∈ D} and I = {c1(d) : d ∈

D}. In accord with definition (4.4.1), we are to show that

τI ◦ ∂H

(

Qλ

∥
∥

∞∏

i=1

s1(ei)
)

= τ ·
∞∏

i=1

s2(ei). (8)

We will show this with the use of GIP. So let J = {s2(d) : d ∈ D}. We will
show that for all n ≥ 1, for all (ei)i ∈ Dω and for all k ≥ 1 the following holds:

πn
J ◦ τI ◦ ∂H

(

Qλ

∥
∥

∞∏

i=1

s1(ei)
)

= τ ·
n∏

i=1

s2(ei), (9)

πn
J ◦ τI ◦ ∂H

(

Qe1∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei)
)

= τ ·
n∏

i=1

s2(ei). (10)

We will prove equations (9) and (10) with induction on n. But first we will
do some preliminary calculations. Therefore we will introduce the following
abbreviations (for all k ≥ 1):

Z0 = Qλ

∥
∥

∞∏

i=1

s1(ei),

Zk = Qe1∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei).

Now we will calculate for all k ≥ 0 : ∂H(Zk). First we handle the case k = 0:

∂H(Z0) = ∂H

(

Qλ

∥
∥

∞∏

i=1

s1(ei)
)

= ∂H

(

Qλ

∣
∣

∞∏

i=1

s1(ei)
)

= c1(e1) · ∂H

(

Qe1

∥
∥

∞∏

i=2

s1(ei)
)

= c1(e1) · ∂H(Z1).

Now we treat the case k ≥ 1:

∂H(Zk) = ∂H

(

Qe1∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei)
)

176

On Induction Principles: 4.4. Applications

= ∂H

(

Qe1∗···∗ek

∞∏

i=k+1

s1(ei)
)

+ ∂H

(

Qe1∗···∗ek

∣
∣

∞∏

i=k+1

s1(ei)
)

= s2(e1) · ∂H

(

Qe2∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei)
)

+ c1(ek+1) · ∂H

(

Qe1∗···∗ek+1

∥
∥

∞∏

i=k+2

s1(ei)
)

= s2(e1) · ∂H

(

Qe2∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei)
)

+ c1(ek+1) · ∂H(Zk+1)

Now we will define an auxiliary linear unary operator as follows: Let {b, t} be a
set of function names and fix an arbitrary i ∈ I. Consider the linear functional
specification hereinafter:

E(b, t) =
{
b(a) = a : a ∈ A \ I

}

∪
{
b(a) = i : a ∈ I

}

∪
{
t(a) = a : a ∈ A \ I

}

∪
{
t(a) = τ : a ∈ I

}

∪
{
b(a · x) = b(a) · b(x) : a ∈ A \ J

}

∪
{
b(a · x) = b(a) · t(x) : a ∈ J

}

∪
{
t(a · x) = t(a) · t(x) : a ∈ A

}
.

According to ODP there is a valuation ϕ : {b, t} −→ F that solves the sys-
tem E(b, t). Let us say ϕ(b) = β and ϕ(t) = γ. We can see from the defining
equations for γ that this operator behaves just like τI . We will show that γ = τI .
Let n be a function name. Consider the following linear functional specification:

E(n) =
{
n(a) = a : a ∈ A \ I

}

∪
{
n(a) = τ : a ∈ I

}

∪
{
n(a · x) = n(a) · n(x) : a ∈ A

}
.

It will be clear that τI solves this system. But from the defining equations of γ
it is also clear that γ solves this system, too. Thus we can conclude with the
aid of OSP that γ = τI . We find thus the following functional equation for
all x ∈ P and a ∈ J :

β(a · x) = β(a) · τI(x). (11)

In fact we see in this equation the crux of the operator β. We can see this
operator as some sort of “booby-trap”. Only if the dangerous atomic actions

177

On Induction Principles: 4.4. Applications

pass, this operator will “detonate” and it becomes the abstraction operator
afterwards. In all other circumstances only the abstraction set will be reduced
by replacing all the internal actions by a fixed i ∈ I. This technique is called
pre-abstraction and is studied in [4]. In the body of the proof it will be fine to
have this situation but in the end we will treat all the atomic actions equally. So
we will have to defuse this booby-trap. We will show hereinafter that τI◦β = τI .
Let thereto {r, s} be a set of function names. Consider the following linear
functional specification:

E(r, s) =
{
r(a) = s(a) = a : a ∈ A \ I

}

∪
{
r(a) = s(a) = τ : a ∈ I

}

∪
{
r(a · x) = r(a) · r(x) : a ∈ A \ J

}

∪
{
r(a · x) = r(a) · s(x) : a ∈ J

}

∪
{
s(a · x) = s(a) · s(x) : a ∈ A

}
.

We will show that (τI ◦β, τI) is a solution for this system. First we will handle
the boundary conditions. We see that

τI ◦ β(a) = τI(a),

since β(a) = a for all a ∈ A \ I and β(a) = i for all a ∈ I. Thus the boundary
conditions are satisfied. Now we will treat the functional equations. It is
evident that the functional equations for s are satisfied for all atomic actions.
So we will only show that the functional equations for r are valid. Let a /∈ J .
Then we find:

τI ◦ β(a · x) = τI
(
β(a) · β(x)

)

= τI ◦ β(a) · τI ◦ β(x).

Now let a ∈ J . Then we obtain with the aid of (11):

τI ◦ β(a · x) = τI
(
β(a) · τI(x)

)

= τI ◦ β(a) · τI ◦ τI(x)

= τI ◦ β(a) · τI(x).

We used here the following fact: τI ◦ τI = τI . It is trivial to see that τI ◦ τI
is also a solution for the linear functional specification E(n) that we defined
hereinbefore, so with the aid of OSP we find that τI ◦τI = τI . We find thus that
the functional equations are valid. If we take on the other hand r = s = τI

then it is not difficult to see that this solves the system E(r, s), too. So in
accordance with OSP we may conclude that these solutions must be equal. In
particular we find:

τI ◦ β = τI . (12)

178

On Induction Principles: 4.4. Applications

At this point we will return to the calculations that we were busy with. Our
aim is to calculate τI ◦∂H(Zk). If we look at the equations deduced for ∂H(Zk)
so far, we can see that if we apply the abstraction operator to them, we obtain
unguarded recursive equations. Hence, this type of calculating is in a certain
way too coarse. Therefore, we have introduced β. We can apply it to the
equations and we still have guardedness since for all atomic actions a ∈ A we
have β(a) ∈ A. In certain subterms where we actually want an abstraction
operator, this β will transform into τI after passing the “right” atomic actions.

Now we will calculate for all k ≥ 0 : β ◦ ∂H(Zk). Again we will make a
case distinction. First, let k = 0. Then we find at once

β ◦ ∂H(Z0) = i · β ◦ ∂H(Z1).

We will handle the case k ≥ 1. We will use (11) here.

β ◦ ∂H(Zk) = s2(e1) · τI ◦ ∂H

(

Qe2∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei)
)

+ i · β ◦ ∂H(Zk+1).

At this point we will calculate for all n ≥ 1 and for all k ≥ 0 the nth projection
of β ◦ ∂H(Zk). First, we will consider the case k = 0.

πn
J ◦ β ◦ ∂H(Z0) = i · πn

J ◦ β ◦ ∂H(Z1)

Now we will treat the case k ≥ 1. Here we will have two subcases: n = 1
and n > 1. First, let n = 1 and consider the following

π1
J ◦ β ◦ ∂H(Zk) = s2(e1) + i · π1

J ◦ β ◦ ∂H(Zk+1). (13)

Now let n ≥ 1. Then we calculate

πn+1
J ◦ β ◦ ∂H(Zk) = s2(e1) · π

n
J ◦ τI ◦ ∂H

(

Qe2∗···∗ek

∥
∥

∞∏

i=k+1

s1(ei)
)

+ i · πn+1
J ◦ β ◦ ∂H(Zk+1). (14)

Now we have all the prerequisites needed to establish the induction mentioned
in the beginning of the proof. Recall that we proposed to verify that equa-
tions (9) and (10) hold for all n ≥ 1. We will verify the basis of our induction.
Let n = 1. Consider the following guarded recursive specification E1:

E1 =
{
Xk = s2(e1) + i ·Xk+1 | k ≥ 1

}
.

179

On Induction Principles: 4.4. Applications

With the aid of equation (13) we immediately see that, if we put for all k ≥ 1:

Xk = π1
J ◦ β ◦ ∂H(Zk),

this solves the guarded recursive specification E1. Now consider the guarded
recursive specification F1:

F1 =
{
X = s2(e1) + i ·X

}
.

According to RDP there is a solution for this system. Let us say that x is a
solution for F1. If we put Xk = x for all k ≥ 1, we see that x is also a solution
for the guarded recursive specification E1. In accordance with RSP we may
conclude now that for all k ≥ 1:

x = π1
J ◦ β ◦ ∂H(Zk).

Since x is the solution for F1, we see that the following equation is valid:

x = s2(e1) + i · x.

The guard i is an internal atomic action. This means that we may apply KFAR

on this equation. This yields: τI(x) = τ · s2(e1). So we find

τ · s2(e1) = τI(x)

= τI ◦ π
1
J ◦ β ◦ ∂H(Zk)

= π1
J ◦ τI ◦ β ◦ ∂H(Zk) because of (4.3.12)

= π1
J ◦ τI ◦ ∂H(Zk). because of (12)

Thus, we see that equation (10) holds for n = 1. Now we will show that
equation (9) is correct for n = 1. Let thereto k = 0 and consider the subsequent
display.

τI ◦ π
1
J ◦ β ◦ ∂H(Z0) = τ · τI ◦ π

1
J ◦ β ◦ ∂H(Z1)

= τ · π1
J ◦ τI ◦ ∂H(Z1)

= τ · τ · s2(e1)

= τ · s2(e1),

since we just have seen above that for all k ≥ 1 : π1
J ◦ τI ◦ ∂H(Zk) = τ · s2(e1).

Thus, we see that both equations (9) and (10) are proved for n = 1. Now let
us assume that these equations are valid for all (ei)i ∈ Dω and k ≥ 1 for a
certain n ≥ 1. Then we will prove these equations for n + 1. This proof will
be more or less the same as the verification of the case n = 1. We will work

180

On Induction Principles: 4.4. Applications

out equation (14) a bit more. Let for all k ≥ 1 : e′i = ei+1 (we will use the
induction hypothesis for (e′i)i ∈ Dω and k − 1 ≥ 0). Then we find

πn+1
J ◦ β ◦ ∂H(Zk) = s2(e1) · π

n
J ◦ τI ◦ ∂H

(

Qe′

1
∗···∗e′

k−1

∥
∥

∞∏

i=k

s1(e
′
i)

)

+ i · πn+1
J ◦ β ◦ ∂H(Zk+1)

= s2(e1) · τ ·
n∏

i=1

s2(e
′
i) + i · πn+1

J ◦ β ◦ ∂H(Zk+1)

=

n+1∏

i=1

s2(ei) + i · πn+1
J ◦ β ◦ ∂H(Zk+1). (15)

Now consider the following guarded recursive specification E2:

E2 =
{

Yk =

n+1∏

i=1

s2(ei) + i · Yk+1

∣
∣ k ≥ 1

}

.

We see with the aid of equation (15), if we put for all k ≥ 1

Yk = πn+1
J ◦ β ◦ ∂H(Zk)

that this is a solution for the guarded recursive specification E2. Now consider
the guarded recursive specification F2:

F2 =
{

Y =

n+1∏

i=1

s2(ei) + i · Y
}

.

With the aid of RDP we know that this system has a solution. Let us say
that y is the solution for F2. If we put for all k ≥ 1 : Yk = y, then we see that
this also solves the guarded recursive specification E2. So with the aid of RSP

we conclude that for all k ≥ 1:

y = πn+1
J ◦ β ◦ ∂H(Zk).

Observe that the following equation holds

y = i · y +

n+1∏

i=1

s2(ei),

so we may apply KFAR since i ∈ I. We find thus that

τI(y) = τ ·
n+1∏

i=1

s2(ei).

181

On Induction Principles: 4.4. Applications

On the other hand, we find for all k ≥ 1

τI(y) = τI ◦ π
n+1
J ◦ β ◦ ∂H(Zk)

= πn+1
J ◦ τI ◦ β ◦ ∂H(Zk) because of (4.3.12)

= πn+1
J ◦ τI ◦ ∂H(Zk). because of (12)

Combining these two inferences, we see that equation (10) is valid for n + 1.
Now we will handle the case k = 0. Since

πn+1
J ◦ τI ◦ ∂H(Z0) = τ · πn+1

J ◦ τI ◦ ∂H(Z1),

we find, using the just derived results for k = 1, that

πn+1
J ◦ τI ◦ ∂H(Z0) = τ · τ ·

n+1∏

i=1

s2(ei) = τ ·
n+1∏

i=1

s2(ei).

This means that equation (9) is also valid. This will end proof of equations (9)
and (10). Now we find in particular for all n ≥ 1 and k = 0 that equation (9)
is valid. If we adjust this equation a little as is done below

πn
J ◦ τI ◦ ∂H

(

Qλ

∥
∥

∞∏

i=1

s1(ei)
)

= πn
J

(

τ ·
∞∏

i=1

s2(ei)
)

,

we may apply GIP and we find

τI ◦ ∂H

(

Qλ

∥
∥

∞∏

i=1

s1(ei)
)

= τ ·
∞∏

i=1

s2(ei).

According to definition (4.4.1), we may conclude that Qλ is a correct commu-
nication protocol. This will end the proof of 4.4.4.

Remark (4.4.5)

As we can see in the proof of the former theorem, we did not use axiom T2.
In fact, we only used axiom T1, which means that this proof can also be given
if we had used branching τ -laws.

We will formulate a lemma on β for later reference.

182

On Induction Principles: 4.4. Applications

Lemma (4.4.6) The Selective Abstraction Lemma(4.4.6)

Let S, I ⊆ A. Then there is a linear unary operator β(I, S) ∈ F with the

following properties:

(i) β(I, S)(a) = a (∀a ∈ A)

(ii) β(I, S)(a · x) = a · β(I, S)(x) (∀a ∈ A \ S,∀x ∈ P)

(iii) β(I, S)(a · x) = a · τI(x) (∀a ∈ S,∀x ∈ P)

(iv) τI ◦ β(I, S) = τI

Proof. Replace in the proof of theorem (4.4.4) the set J for the set S and
do not rename internal actions to a specific one. Then the introduction of the
linear unary operator β will satisfy the requirements of 4.4.6. And we can
take β(I, S) = β. This will end the proof of our lemma.

We will supply another proof of theorem (4.4.2) in which we will not use
axiom T2. We will use the method that we established in the proof of theo-
rem (4.4.4).

Theorem (4.4.7)

Let Bs be the s-bit buffer of page 172. For all (di)i ∈ Dω the following
holds:

τI ◦ ∂H

(

Bs

∥
∥

∞∏

i=1

s1(di)
)

= τ ·
∞∏

i=1

s2(di).

Proof. We will (tacitly) use the notations as they appear in the former theo-
rems. It is very easy to see that the following equations are valid (1 ≤ j < s).

∂H(Zk
0) = c1(dk) · ∂H(Zk

1)

∂H(Zk
j) = c1(dk+j) · ∂H(Zk

j+1) + s2(dk) · ∂H(Zk+1
j−1)

∂H(Zk
s) = s2(dk) · ∂H(Zk+1

s−1).

In contrast to the method used in theorem (4.4.2), we will follow here the
method of theorem (4.4.4). So let J = {s2(d) : d ∈ D} and β = β(I, J); see
lemma (4.4.6). Thus, we find using equation (11)

β ◦ ∂H(Zk
0) = c1(dk) · β ◦ ∂H(Zk

1)

β ◦ ∂H(Zk
j) = c1(dk+j) · β ◦ ∂H(Zk

j+1) + s2(dk) · τI ◦ ∂H(Zk+1
j−1)

β ◦ ∂H(Zk
s) = s2(dk) · τI ◦ ∂H(Zk+1

s−1).

We will prove the following claim with induction on n.

∀k, n ≥ 1,∀0 ≤ j ≤ s : (16)

πn
J ◦ τI ◦ ∂H(Zk

j) =







τ · πn
J

(
∏∞

i=k s2(di)
)

, if 0 ≤ j < s;

πn
J

(
∏∞

i=k s2(di)
)

, if j = s.

183

On Induction Principles: 4.4. Applications

First, we will prove equation (16) for n = 1. For j = s we immediately see that
this is the case. Now assume that 1 ≤ j < s. We will calculate

π1
J ◦ β ◦ ∂H(Zk

j) = c1(dk+j) · π
1
J ◦ β ◦ ∂H(Zk

j+1) + s2(dk).

Now consider the following guarded recursive specification E1.

E1 =
{
Xj = c1(dk+j) ·Xj+1 + s2(dk), Xs = s2(dk) | 1 ≤ j < s

}

It will be clear that if we put Xj = π1
J ◦ β ◦ ∂H(Zk

j) for all 1 ≤ j ≤ s, this will
solve the system E1. Now contemplate the guarded recursive specification F1:

F1 =
{
X = c1(dk+j) ·X + s2(dk)

}

and let x be a solution for this system accordingly to RDP. If we put for
all 1 ≤ j < s : Xj = x, we see that this will solve the system E1, too. So with
the help of RSP we may conclude for all 1 ≤ j < s:

x = π1
J ◦ β ◦ ∂H(Zk

j).

Now we will apply KFAR on the equation x = c1(dk+j) ·x+ s2(dk) and we find
thus τI(x) = τ · s2(dk). It is easy to see that, using equation (12), the following
holds:

τ · s2(dk) = τI(x)

= τI ◦ π
1
J ◦ β ◦ ∂H(Zk

j)

= π1
J ◦ τI ◦ β ◦ ∂H(Zk

j)

= π1
J ◦ τI ◦ ∂H(Zk

j).

So we find that the claim holds for 1 ≤ j ≤ s. It is trivial to see that it is also
valid for j = 0. Thus we see that equation (16) is correct for n = 1. Suppose
that this claim holds for a certain n ≥ 1 then we prove it for n + 1. First we
take j = s:

πn+1
J ◦ τI ◦ ∂H(Zk

s) = s2(dk) · πn
J ◦ τI ◦ ∂H(Zk+1

s−1)

(16)
= s2(dk) · τ · πn

J

(∞∏

i=k+1

s2(di)
)

= πn+1
J

(∞∏

i=k

s2(di)
)

.

Now we take 1 ≤ j < s. Consider the following guarded recursive specifica-
tion E2:

E2 =
{
Yj = c1(dk+j) · Yj+1 +

k+n+1∏

i=k

s2(di), Ys =
k+n+1∏

i=k

s2(di) | 1 ≤ j < s
}
.

184

On Induction Principles: 4.4. Applications

We see at once that, if we put Yj = πn+1
J ◦ β ◦ ∂H(Zk

j) for all 1 ≤ j < s, this
solves the system E2 using the induction hypothesis. Now consider also the
guarded recursive specification F2

F2 =
{
Y = c1(dk+j) · Y +

k+n+1∏

i=k

s2(di)
}
.

With the aid of RDP we know that this guarded recursive specification has a
solution, say y. If we put for all 1 ≤ j < s : Yj = y then we see that this will
solve the system E2. But then we find with RSP that

y = πn+1
J ◦ β ◦ ∂H(Zk

j).

If we apply KFAR on the equation

y = c1(dk+j) · y +

k+n+1∏

i=k

s2(di),

we find that

τI(y) = τ ·
k+n+1∏

i=k

s2(di).

So we can deduce:

τ ·
k+n+1∏

i=k

s2(di) = τI ◦ π
n+1
J ◦ β ◦ ∂H(Zk

j)

= πn+1
J ◦ τI ◦ β ◦ ∂H(Zk

j)

= πn+1
J ◦ τI ◦ ∂H(Zk

j).

So we see that equation (16) is correct for 1 ≤ j ≤ s. Now it is trivial to see
that the same holds for j = 0. This concludes the induction step and we find,
in particular, for k = 1 and j = 0 that for all n ≥ 1:

πn
J ◦ τI ◦ ∂H

(

Bs

∥
∥

∞∏

i=1

s1(di)
)

= τ · πn
J

(∞∏

i=1

s2(di)
)

.

Thus, using GIP, we finish the proof of 4.4.7.

Next, we will give an example of an alternating bit protocol with a time
out. See figure 4.7 hereinafter.

185

On Induction Principles: 4.4. Applications

∞∏

i=1

s1(di)
1

S(0)

2
Q(λ)

3

4

R(0)
5

Figure 4.7. An alternating bit protocol with a time out.

The dashed box in figure 4.7 is not part of the protocol. It is a test row. Below,
we will give the specification of the components that are present in figure 4.7.
But first, we will explain some of the symbols used in the specification. The
symbol k is common in group theory. It stands for

k ≡ k mod 2 ∈ Z/2Z.

It is, in fact, the alternating bit. We use this notation since it will shorten
notations somewhat. Furthermore, D is a finite set of datum elements. The
abbreviation RA stands for read acknowledgement. The atomic action t stands
for time out and it is this particular action that justifies the use of a queue
with an unbounded capacity. The set E is the following:

E = {dk : d ∈ D, k ∈ Z/2Z}.

The abbreviation SM means send message and SA send acknowledgement.

S(k) =
∑

d∈D

r1(d) · S(dk)

S(dk) = s2(dk) · RA(dk)

RA(dk) = r4(k) · S(k + 1) +
(
r4(k + 1) + t

)
· S(dk)

Q(λ) =
∑

x∈E

r2(x) ·Q(x)

Q(x ∗ σ) =
∑

y∈E

r2(y) ·Q(x ∗ σ ∗ y) + s3(x) ·Q(σ)

R(k) =
∑

d∈D

r3(dk) · SM (dk) +
∑

d∈D

r3
(
d(k + 1)

)
· SA(k + 1)

SM (dk) = s5(d) · SA(k)

SA(k) = s4(k) ·R(k + 1)

Below, we will enumerate the encapsulation set H and the abstraction set I.

H =
{
r1(d), s1(d) : d ∈ D

}

∪
{
r2(x), r3(x), s2(x), s3(x) : x ∈ E

}

∪
{
r4(k), s4(k) : k ∈ Z/2Z

}

I =
{
c1(d) : d ∈ D

}

∪
{
c2(x), c3(x) : x ∈ E

}

∪
{
c4(k) : k ∈ Z/2Z

}
∪ {t}.

186

On Induction Principles: 4.4. Applications

c1(d1)

c2(d10)

t c2(d10)

c3(d10)

s5(d1)

t c2(d10)

s5(d1)

c2(d10)t

c3(d10)

s5(d1)

c3(d10)

t c2(d10)

c3(d10)

s5(d1)

t c2(d10)

s5(d1)

c2(d10)t

c3(d10)

s5(d1)

c3(d10)

t c2(d10)

c3(d10)

s5(d1)

t c2(d10)

s5(d1)

c2(d10)t

c3(d10)

s5(d1)

c3(d10)

t c2(d10)

c3(d10)

s5(d1)

t c2(d10)

s5(d1)

c2(d10)t

c3(d10)

s5(d1)

c3(d10)

c4(0)

c1(d2)

c2(d21)

t c2(d21)

c3(d21)

s5(d2)

t c2(d21)

s5(d2)

c2(d21)t

c3(d21)

s5(d2)

c3(d21)

t c2(d21)

c3(d21)

s5(d2)

t c2(d21)

s5(d2)

c2(d21)t

c3(d21)

s5(d2)

c3(d21)

t c2(d21)

c3(d21)

s5(d2)

t c2(d21)

s5(d2)

c2(d21)t

c3(d21)

s5(d2)

c3(d21)

t c2(d21)

c3(d21)

s5(d2)

t c2(d21)

s5(d2)

c2(d21)t

c3(d21)

s5(d2)

c3(d21)

c4(0)

c1(d2)c3(d10)

c1(d2) c3(d10)c2(d21)

c3(d10)c2(d21)

t c3(d10)

t

c2(d21)

c3(d10)c2(d21)

t c3(d10)

t

c2(d21)

c3(d10)c2(d21)

t c3(d10)

t

c4(0)

c1(d2)c3(d10)

c1(d2) c3(d10)c2(d21)

c3(d10)c2(d21)

t c3(d10)

t

c2(d21)

c3(d10)c2(d21)

t c3(d10)

t

c4(0)

c1(d2)c3(d10)

c1(d2) c3(d10)c2(d21)

c3(d10)c2(d21)

t c3(d10)

t

c4(0)

c4(0)

c4(0)

c4(0)

c4(0)

c4(0)

Figure 4.8. A beginning of a graph of ∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

.

187

On Induction Principles: 4.4. Applications

Theorem (4.4.8)

τI ◦ ∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

= τ ·
∞∏

i=1

s5(di).

Proof. We will first calculate

∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

.

Figure 4.8 (see page 187) is a picture of this process. We will introduce some
notations for convenience sake. We will abbreviate d̃k+1 = dk+1k and for
all n ≥ 1:

d̃n
k+1 = d̃k+1 ∗ · · · ∗ d̃k+1

︸ ︷︷ ︸

n times

.

If n = 0 we will use the convention x0 = λ for all words x ∈ E∗. Let for
all k ≥ 0 and any word σ ∈ E∗ the following be given:

Ak(σ) = S(k) ‖ Q(σ) ‖ R(k) ‖
∞∏

i=k+1

s1(di)

Bk(σ) = S(d̃k+1) ‖ Q(σ) ‖ R(k) ‖
∞∏

i=k+2

s1(di)

Ck(σ) = RA(d̃k+1) ‖ Q(σ) ‖ R(k) ‖
∞∏

i=k+2

s1(di)

Dk(σ) = RA(d̃k+1) ‖ Q(σ) ‖ SM (d̃k+1) ‖
∞∏

i=k+2

s1(di)

Ek(σ) = S(d̃k+1) ‖ Q(σ) ‖ SM (d̃k+1) ‖
∞∏

i=k+2

s1(di)

Fk(σ) = RA(d̃k+1) ‖ Q(σ) ‖ SA(k) ‖
∞∏

i=k+2

s1(di)

Gk(σ) = RA(d̃k+2) ‖ Q(σ) ‖ SA(k) ‖
∞∏

i=k+3

s1(di).

Observe, that we are to evaluate ∂H

(
A0(λ)

)
. If we do so, we will find that there

is much more needed. For, we will have to calculate ∂H

(
Ak(λ)

)
for all k ≥ 0.

If we make this calculation, we will see that we will also need to evaluate for
all k, n ≥ 0

∂H

(
Ak+1(d̃

n
k+1)

)
.

188

On Induction Principles: 4.4. Applications

If we calculate this “one” we will find that this is enough to obtain a guarded
recursive specification for ∂H

(
A0(λ)

)
with the abbreviations that we can find

above. First, we will give the result of the calculation. Second, with the aid
of the guarded recursive specification, consisting of equations (17)–(27) and
figure 4.8 of page 187, we will provide some explanation such that it will be
not that hard for the reader to verify the result. For all k ≥ 0 we have the
following guarded recursive specification for ∂H

(
A0(λ)

)
.

∂H

(
Ak(λ)

)
= c1(dk+1) · ∂H

(
Bk(λ)

)
(17)

∂H

(
Ak+1(d̃

n
k+1)

)
= c1(dk+2) · ∂H

(
Bk+1(d̃

n
k+1)

)
(n ≥ 1)

+ c3(d̃k+1) · c1(dk+2)

· c2(d̃k+2) · ∂H

(
Gk(d̃n−1

k+1 ∗ d̃k+2)
)

(18)

∂H

(
Bk(λ)

)
= c2(d̃k+1) · ∂H

(
Ck(d̃k+1)

)
(19)

∂H

(
Bk(d̃n

k+1)
)

= c2(d̃k+1) · ∂H

(
Ck(d̃n+1

k+1)
)

(n ≥ 1)

+ c3(d̃k+1) · ∂H

(
Ek(d̃n−1

k+1)
)

(20)

∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
= c2(d̃k+2) · ∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

)

+ c3(d̃k+1) · c2(d̃k+2) (n ≥ 1,m ≥ 0)

· ∂H

(
Gk(d̃n−1

k+1 ∗ d̃
m+1
k+2)

)
(21)

∂H

(
Ck(d̃n

k+1)
)

= t · ∂H

(
Bk(d̃n

k+1)
)

(n ≥ 1)

+ c3(d̃k+1) · ∂H

(
Dk(d̃n−1

k+1)
)

(22)

∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
= t · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
(n,m ≥ 1)

+ c3(d̃k+1) · ∂H

(
Gk(d̃n−1

k+1 ∗ d̃
m
k+2)

)
(23)

∂H

(
Dk(d̃n

k+1)
)

= t · ∂H

(
Ek(d̃n

k+1)
)

(n ≥ 0)

+ s5(dk+1) · ∂H

(
Fk(d̃n

k+1)
)

(24)

∂H

(
Ek(d̃n

k+1)
)

= c2(d̃k+1) · ∂H

(
Dk(d̃n+1

k+1)
)

(n ≥ 0)

+ s5(dk+1) · c2(d̃k+1) · ∂H

(
Fk(d̃n+1

k+1)
)

(25)

∂H

(
Fk(d̃n

k+1)
)

= t · c2(d̃k+1) · ∂H

(
Fk(d̃n+1

k+1)
)

(n ≥ 0)

+ c4(k) · ∂H

(
Ak+1(d̃

n
k+1)

)
(26)

∂H

(
Gk(d̃n

k+1 ∗ d̃
m
k+2)

)
= t · c2(d̃k+2) (n ≥ 0,m ≥ 1)

· ∂H

(
Gk(d̃n

k+1 ∗ d̃
m+1
k+2)

)

+ c4(k) · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
(27)

At this point we will explain this large guarded recursive specification with
the aid of the figure. We will begin in the first node. At that place there
is only one possible action that can be performed: the first element will be

189

On Induction Principles: 4.4. Applications

taken from the test row (we will go to the left in the graph). This corresponds
to equation (17). Still there is one possible action: the test datum will be
loaded in the queue (we will go down one node in the graph). This transition
corresponds to equation (19). Now we entered the third node and here we have
two possible actions: the queue can communicate with the receiver and the
datum just read will be removed from the queue (we go one node down in the
graph) or a time out can be given (we go to the right in the graph). We will
call the first infinite horizontal trace the single BC-trace since in this phase the
queue can only contain one type of data. We will discuss this trace. We can see
that after the time out the queue can be loaded (we will go to the right) or the
single BC-trace can be escaped by communicating with the receiver (we will
go one node down in the graph). This behaviour is reiterated every two nodes
in the single BC-trace. The equations that correspond to this trace are (20)
and (22). As we said we can leave the single BC-trace with a communication
(in the graph all the down going arrows are labeled with this action) and we
will enter what we will call a DE-trace. We will discuss this trace. In fact, this
trace is the same as the single BC-trace except that the down going arrows are
labeled with a send action and then we will enter an F-trace. The equations
that correspond with the DE-trace are (24) and (25). This F-trace consist of
alternating time outs and loadings of the queue. The equation that accompanies
this is (26). In the picture we can see that there are two different ways to escape
the F-trace. The first possible arrow down connects the F-trace “directly” to
the next single BC-trace. Then the already described pattern will be repeated.
We will explain the arrows that go southeastwards from the F-trace. As we
can see in equation (26) these A-nodes contain old data: the acknowledgement
has been performed but due to time outs there are still old datum elements
in the queue. From these A-nodes we can take the next element of the test
row (we go to the southeast in the graph) and we will enter a double BC-tra-
ce or we can communicate with the receiver (we go southwestwardly) and we
will enter a G-trace. This corresponds to equation (18). We will discuss the
double BC-traces. Now there are old data in the queue and moreover, new
data can be added if we stay in this trace: alternating time outs and loading
of new data will be performed (we go southeastwards in the graph). As with
the single BC-traces we can escape the double one by communicating with the
receiver (we go southwestwards from a node in the double BC-trace). This
corresponds to the equations (21) and (23). Now we will discuss the G-traces.
In this trace we can execute alternating time outs and loadings of the queue
(we go southeastwards in the graph). We can escape a G-trace by the execution
of an acknowledgement and we enter a double BC-trace with one old datum
element less (we go to the left in the graph) or if we are already at the leftmost
G-trace the next single BC-trace will be entered (the three long arrows in the
graph that connect the leftmost G-trace with the second single BC-trace). The
equation that corresponds to the G-traces is (27).

190

On Induction Principles: 4.4. Applications

Now that it is plausible how this large guarded recursive specification can
be obtained, we will discuss the structure of the sequel of the proof of this
theorem. First we will make an assumption on a DE-trace for one fixed p ≥ 1
(which is valid for p = 1). Then we will derive from this assumption a conclusion
on an F-trace. To obtain this result we will need an intermediary result on
the double BC-traces and the G-traces. This will be first deduced from the
assumptions on the DE-trace. As soon as we verified all this we will show that
the conclusion on the F-trace itself is a true statement. With this result we
will prove that the same yields for the assumptions that we made. In fact, we
set off a chain reaction: the assumptions for p = 1 are satisfied. This implies
that the conclusions are valid for p = 1. But with this we can show that the
assumptions for p = 2 are satisfied so the conclusion is valid for p = 2, et
cetera. We will do this with induction on p. Once we have all these facts we
will deduce a result on the single BC-traces and then a small calculation will
finish the proof.

Let J = {s5(d) : d ∈ D}. Let β1 = β(I, J); see for such operators and
their properties lemma (4.4.6). We will use these properties tacitly throughout
this verification. Let p ≥ 1 be fixed. Suppose that for all k, n ≥ 0 the following
holds

πp
J ◦ β1 ◦ ∂H

(
Dk(d̃n

k+1)
)

= t · πp
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+

p
∏

i=1

s5(dk+i) (28)

πp
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

= c2(d̃k+1) · ∂H

(
Dk(d̃n+1

k+1)
)

+

p
∏

i=1

s5(dk+i) (29)

Then we will prove that for all k, n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Fk(d̃n

k+1)
)

= τ ·

p
∏

i=1

s5(dk+1+i) (30)

In order to prove this we will need an intermediary result that we will verify
first. For all k, l,m ≥ 0 we have

πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

l
k+1 ∗ d̃

m
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Gk(d̃l

k+1 ∗ d̃
m+1
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i) (31)

We will prove (31) with induction on l. So let l = 0 and fix an arbitrary k ≥ 0.
Consider the following guarded recursive specification E1.

E1 =
{
X1

n = t · Y 1
n +

p
∏

i=1

s5(dk+1+i)

Y 1
n = c2(d̃k+2) ·X

1
n+1 +

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 0

}
.

191

On Induction Principles: 4.4. Applications

Because of the assumptions that we made in equations (28) and (29) we see
that if we put for all n ≥ 0

X1
n = πp

J ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

Y 1
n = πp

J ◦ β1 ◦ ∂H

(
Ek+1(d̃

n
k+2)

)
,

this is a solution for the guarded recursive specification E1. The subsequent
ratiocination will frequently occur in this proof. In fact, we already applied this
technique in the former theorems. So it will be convenient to give it a name
for later reference. We will baptize it “a collapsing-argument”. Now consider
the following guarded recursive specification F1, which is “E1 without n”.

F1 =
{
X1 = t · Y1 +

p
∏

i=1

s5(dk+1+i)

Y1 = c2(d̃k+2) ·X1 +

p
∏

i=1

s5(dk+1+i)
}
.

According to RDP there is a solution for F1, say (x1, y1). So we have two
equations

x1 = t · y1 +

p
∏

i=1

s5(dk+1+i)

y1 = c2(d̃k+2) · x1 +

p
∏

i=1

s5(dk+1+i).

To these equations we may apply KFAR2 (see section 4.2 or definition (1.2.7))
and we find

τI(x1) = τI(y1) = τ ·

p
∏

i=1

s5(dk+1+i). (32)

It will be clear that, if we put for all n ≥ 0

X1
n = x1, Y 1

n = y1,

this will solve the system E1, too. So with the aid of RSP we find that for
all n ≥ 0

x1 = πp
J ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

y1 = πp
J ◦ β1 ◦ ∂H

(
Ek+1(d̃

n
k+2)

)
.

And we obtain using lemma (4.4.6), theorem (4.3.12) and equation (32) that

πp
J ◦ τI ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Ek+1(d̃

n
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (33)

192

On Induction Principles: 4.4. Applications

We will show this for the first equation.

τ ·

p
∏

i=1

s5(dk+1+i) = τI(x1)

= τI ◦ π
p
J ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

= πp
J ◦ τI ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)
use (4.3.12)

= πp
J ◦ τI ◦ ∂H

(
Dk+1(d̃

n
k+2)

)
see lemma (4.4.6)

Such a calculation can be made for Ek+1, too. We find thus that (33) is correct.

Now consider the guarded recursive specification E2

E2 =
{
X2

m = c2(d̃k+2) · Y
2
m+1 + c3(d̃k+2) ·

p
∏

i=1

s5(dk+1+i)

Y 2
m+1 = t ·X2

m+1 + c3(d̃k+2) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ m ≥ 0

}
.

Let β2 = β
(
I, {c3(d̃k+2)}

)
; see lemma (4.4.6). It is easy to see with the aid of

equations (20), (22) and (33) that if we put for all m ≥ 0

X2
m = πp

J ◦ β2 ◦ ∂H

(
Bk+1(d̃

m
k+2)

)

Y 2
m+1 = πp

J ◦ β2 ◦ ∂H

(
Ck+1(d̃

m+1
k+2)

)
,

this will solve the system E2. First, we will show this for the first equation
of E2.

πp
J ◦ β2 ◦ ∂H

(
Bk+1(d̃

m
k+2)

)(20)
= c2(d̃k+2) · π

p
J ◦ β2 ◦ ∂H

(
Ck+1(d̃

m+1
k+2)

)

+ c3(d̃k+2) · π
p
J ◦ τI ◦ ∂H

(
Ek+1(d̃

m−1
k+2)

)

(33)
= c2(d̃k+2) · π

p
J ◦ β2 ◦ ∂H

(
Ck+1(d̃

m+1
k+2)

)

+ c3(d̃k+2) · τ ·

p
∏

i=1

s5(dk+1+i).

Now we will treat the second equation.

Y 2
m+1 = πp

J ◦ β2 ◦ ∂H

(
Ck+1(d̃

m+1
k+2)

)

(22)
= t · πp

J ◦ β2 ◦ ∂H

(
Bk+1(d̃

m+1
k+2)

)

+ c3(d̃k+2) · π
p
J ◦ τI ◦ ∂H

(
Dk+1(d̃

m
k+2)

)

(33)
= t ·X2

m+1 + c3(d̃k+2) · τ ·

p
∏

i=1

s5(dk+1+i).

193

On Induction Principles: 4.4. Applications

We see that this solves indeed the guarded recursive specification E2. Now we
are going to use a collapsing-argument as with E1: we construct a guarded
recursive specification F2 without m.

F2 =
{
X2 = c2(d̃k+2) · Y2 + c3(d̃k+2) ·

p
∏

i=1

s5(dk+1+i)

Y2 = t ·X2 + c3(d̃k+2) ·

p
∏

i=1

s5(dk+1+i)
}
.

With RDP we see that there is a solution (x2, y2) for F2 that is also a solution
for the system E2. With KFAR2 we find that

τI(x2) = τI(y2) = τ ·

p
∏

i=1

s5(dk+1+i)

and with RSP we see that for all m ≥ 0

x2 = πp
J ◦ β2 ◦ ∂H

(
Bk+1(d̃

m
k+2)

)
.

Thus we have

πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

m
k+2)

)
= τ ·

p
∏

i=1

s5(dk+1+i). (34)

For, consider the following

τ ·

p
∏

i=1

s5(dk+1+i) = τI(x2)

= τI ◦ π
p
J ◦ β2 ◦ ∂H

(
Bk+1(d̃

m
k+2)

)

= πp
J ◦ τI ◦ β2 ◦ ∂H

(
Bk+1(d̃

m
k+2)

)
use (4.3.12)

= πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

m
k+2)

)
see lemma (4.4.6)

This means that the first equation of (31) is correct for l = 0 and our fixed k ≥ 0.

Consider the following guarded recursive specification E3.

E3 =
{
X3

m = t · Y 3
m + c4(k) ·

p
∏

i=1

s5(dk+1+i)

Y 3
m = c2(d̃k+2) ·X

3
m+1

∣
∣ m ≥ 1

}
.

Let β3 = β
(
I, {c4(k)}

)
. We will show that, if we put for all m ≥ 1

X3
m = πp

J ◦ β3 ◦ ∂H

(
Gk(d̃m

k+2)
)

194

On Induction Principles: 4.4. Applications

this will solve the guarded recursive specification E3. We will only verify this
for the first equation of E3

X3
m = πp

J ◦ β3 ◦ ∂H

(
Gk(d̃m

k+2)
)

(27)
= t · c2(d̃k+2) · π

p
J ◦ β3 ◦ ∂H

(
Gk(d̃m+1

k+2)
)

+ c4(k) · π
p
J ◦ τI ◦ ∂H

(
Bk+1(d̃

m
k+2)

)

(34)
= t · Y 3

m + c4(k) · τ ·

p
∏

i=1

s5(dk+1+i).

Again, we will use a collapsing-argument. Consider the guarded recursive spec-
ification F3 without m.

F3 =
{
X3 = t · Y3 + c4(k) ·

p
∏

i=1

s5(dk+1+i)

Y3 = c2(d̃k+2) ·X3

}

and let (x3, y3) be a solution for it. Then it is also a solution for E3. After
using KFAR2 on F3 we find with (4.3.12) and (4.4.6) that

πp
J ◦ τI ◦ ∂H

(
Gk(d̃m

k+2)
)

= τ ·

p
∏

i=1

s5(dk+1+i).

So we see that our intermediate result (31) is correct for l = 0 since k ≥ 0
was arbitrarily chosen. Assume that (31) is proved for l ≥ 0. We will verify it
for l + 1. Fix a k ≥ 0 and consider the following guarded recursive specifica-
tion E4.

E4 =
{
X4

m = c2(d̃k+2) · Y
4
m+1 + c3(d̃k+1) ·

p
∏

i=1

s5(dk+1+i)

Y 4
m+1 = t ·X4

m+1 + c3(d̃k+1) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ m ≥ 0

}
.

Let β4 = β
(
I, {c3(d̃k+1)}

)
. Because of equations (21) and (23) and the induc-

tion hypothesis (for l), it is easy to see that if we put for all m ≥ 0

X4
m = πp

J ◦ β4 ◦ ∂H

(
Bk+1(d̃

l+1
k+1 ∗ d̃

m
k+2)

)

Y 4
m+1 = πp

J ◦ β4 ◦ ∂H

(
Ck+1(d̃

l+1
k+1 ∗ d̃

m+1
k+2)

)
,

this will solve the guarded recursive specification E4. And we see that with the
aid of a collapsing-argument we find, in particular,

πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

l+1
k+1 ∗ d̃

m
k+2)

)
= τ ·

p
∏

i=1

s5(dk+1+i).

195

On Induction Principles: 4.4. Applications

Thus, the first equation of (31) is correct for l + 1. Because of equation (27)
and the above display we see that if we put for all m ≥ 1

X3
m = πp

J ◦ β3 ◦ ∂H

(
Gk(d̃l+1

k+1 ∗ d̃
m
k+2)

)

that this will solve the system E3, too. Hence,

πp
J ◦ τI ◦ ∂H

(
Gk(d̃l+1

k+1 ∗ d̃
m
k+2)

)
= τ ·

p
∏

i=1

s5(dk+1+i)

and our intermediate result (31) is correct for l+1. This will end the induction
step and we find that (31) is correct.

We were busy with the proof that equation (30) holds if the assumptions
on Dk and Ek hold. With the aid of equation (17) we find using our interme-
diate result for l = m = 0

πp
J ◦ τI ◦ ∂H

(
Ak+1(λ)

)
= τ · πp

J ◦ τI ◦ ∂H

(
Bk+1(λ)

)

= τ ·

p
∏

i=1

s5(dk+1+i).

And with equation (18) we find, for all n ≥ 1, using (31) twice

πp
J ◦ τI ◦ ∂H

(
Ak+1(d̃

n
k+1)

)
= τ · πp

J ◦ τI ◦ ∂H

(
Bk+1(d̃

n
k+1)

)

+ τ · πp
J ◦ τI ◦ ∂H

(
Gk(d̃n−1

k+1 ∗ d̃k+2)
)

= τ ·

p
∏

i=1

s5(dk+1+i) + τ ·

p
∏

i=1

s5(dk+1+i)

= τ ·

p
∏

i=1

s5(dk+1+i).

Summarizing, we have seen that for all n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Ak+1(d̃

n
k+1)

)
= τ ·

p
∏

i=1

s5(dk+1+i). (35)

Now consider the following guarded recursive specification E5.

E5 =
{
X5

n = t · Y 5
n + c4(k) ·

p
∏

i=1

s5(dk+1+i)

Y 5
n = c2(d̃k+1) ·X

5
n+1

∣
∣ n ≥ 0

}
.

196

On Induction Principles: 4.4. Applications

With the aid of equation (26) and (35), it is evident that if we put for all n ≥ 0

X5
n = πp

J ◦ β3 ◦ ∂H

(
Fk(d̃n

k+1)
)

this is a solution for the system E5. Using a collapsing-argument we will find
immediately that

πp
J ◦ τI ◦ ∂H

(
Fk(d̃n

k+1)
)

= τ ·

p
∏

i=1

s5(dk+1+i).

This is precisely equation (30). Thus, we have proved that if equations (28)
and (29) hold that (30) also holds. Now we are going to prove that equation (30)
itself holds. We will do that with induction on p. So let p = 1. Observe that
equations (28) and (29) are valid for p = 1 (q.v. equations (24) and (25)).
Thus, we find that equation (30) is valid for p = 1. Now suppose that (30)
holds for p ≥ 1. Then it is easy to see with the aid of equation (24) and the
induction hypothesis for p that

πp+1
J ◦ β1 ◦ ∂H

(
Dk(d̃n

k+1)
)

= t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+ s5(dk+1) ·

p
∏

i=1

s5(dk+1+i)

= t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+

p+1
∏

i=1

s5(dk+i).

This is equation (28) for p + 1. It can be seen in exactly the same way that
equation (29) is also valid for p + 1. But that means that equation (30) is
correct for p + 1. So this will end the induction step and we find that (30) is
true for all p ≥ 1*. Consider the following guarded recursive specification E6.

E6 =
{
X6

n = t · Y 6
n +

p
∏

i=1

s5(dk+i)

Y 6
n = c2(d̃k+1) ·X

6
n+1 +

p
∏

i=1

s5(dk+i)
∣
∣ n ≥ 0

}
.

With the aid of equations (24) and (25) we can conclude, using equation (30)
that, if we put for all n ≥ 0

X6
n = πp

J ◦ β1 ◦ ∂H

(
Dk(d̃n

k+1)
)

Y 6
n = πp

J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

* Notice that now equations (28) and (29) are true for all p ≥ 1, as well.

197

On Induction Principles: 4.4. Applications

this is a solution for E6. With a collapsing-argument we find that

πp
J ◦ τI ◦ ∂H

(
Dk(d̃n

k+1)
)

πp
J ◦ τI ◦ ∂H

(
Ek(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+i). (36)

Consider the guarded recursive specification E7.

E7 =
{
X7

n = c2(d̃k+1) · Y
7
n+1 + c3(d̃k+1) ·

p
∏

i=1

s5(dk+i)

Y 7
n+1 = t ·X7

n+1 + c3(d̃k+1) ·

p
∏

i=1

s5(dk+i)
∣
∣ n ≥ 1

}
.

It is easy to see with the aid of equations (20), (22) and (36) that, if we put
for all n ≥ 1

X7
n = πp

J ◦ β4 ◦ ∂H

(
Bk(d̃n

k+1)
)

Y 7
n+1 = πp

J ◦ β4 ◦ ∂H

(
Ck(d̃n+1

k+1)
)
,

this will solve the system E7. So, in particular, we find, using a collapsing-
argument, for all n ≥ 1

πp
J ◦ τI ◦ ∂H

(
Ck(d̃n

k+1)
)

= τ ·

p
∏

i=1

s5(dk+i). (37)

Now we can find with the aid of equation (17), (19) and (37) that for k = 0

πp
J ◦ τI ◦ ∂H

(
A0(λ)

)
= τ · πp

J ◦ τI ◦ ∂H

(
B0(λ)

)

= τ · πp
J ◦ τI ◦ ∂H

(
C0(d̃1)

)

= τ ·

p
∏

i=1

s5(di).

Thus, we have proved for all p ≥ 1

πp
J ◦ τI ◦ ∂H

(
A0(λ)

)
= τ · πp

J

(∞∏

i=1

s5(di)
)

and with a GIP argument we can conclude the proof.

Remark (4.4.9)

In this verification, we have seen the frequent use of a so-called collapsing-
argument. We can imagine that if the protocol becomes more complicated the
collapsing-argument will become more complicated, as well. We can provide
for each situation a new collapsing-argument; but it will be better to formulate
a general theorem on collapsing-arguments that we can use in every situation.
Fortunately, such a theorem already exists. Hereinafter, we will enumerate all
the definitions needed in order to state this theorem.

The following definitions are taken from [40].

198

On Induction Principles: 4.4. Applications

Definition (4.4.10)

Let E = {x = tx(X) : x ∈ X} be a guarded recursive specification (with-
out abstracting operators). Let I ⊆ A. We will call a subset C ⊆ X a cluster
of I in E if C 6= ∅ and for all x ∈ C we have i1, . . . , im ∈ I∪{τ}, x1, . . . , xm ∈ C
and y1, . . . , yn ∈ X \ C (n ≥ 1,m ≥ 0) such that the equation for x in the
guarded recursive specification E is

x =

m∑

k=1

ik · xk +

n∑

l=1

yl,

in which the last summand is omitted if n = 0. We will call the variables yl

exits of x and we write U(x) = {y1, . . . , yn}. We will use U(C) =
⋃

x∈C U(x)
for the exit set of the cluster C. We will call a cluster conservative if every
exit y ∈ U(C) is accessible from every variable in the cluster by doing zero or
more steps from I ∪ {τ} in the cluster to a cluster-variable which has exit y.

Definition (4.4.11) Cluster Fair Abstraction Rule(4.4.11)

Let E be a guarded recursive specification and let I ⊆ A with |I| ≥ 2.
Let C be a conservative cluster of E in I. Let |U(C)| <∞. Then we have for
all x ∈ C:

τI(x) = τ ·
∑

y∈U(C)

τI(y).

We will refer to this rule with the abbreviation CFAR∞, since it is not supposed
that the cluster itself is finite; only the exit set of the cluster. If C is a finite
set then the abbreviation CFAR will be used.

The following theorem is taken from [40]. Only some notations are modi-
fied.

Theorem (4.4.12)

ACPτ,u + RDP + RSP + ODP + OSP + KFAR1 + GIP ` CFAR
∞.

Example (4.4.13)

Let us take a look at the guarded recursive specification E1 that can be
found in the proof of theorem (4.4.8).

E1 =
{
X1

n = t · Y 1
n + Z

Y 1
n = c2(d̃k+2) ·X

1
n+1 + Z

Z =

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 0

}
.

199

On Induction Principles: 4.4. Applications

It is not very hard to see that C = {X1
n, Y

1
n : n ≥ 0} is a conservative cluster

of E1 in I and that for the set of exits we have U(C) = {Z}. Hence, we may
apply CFAR∞ and we find thus for all n ≥ 0

τI(X
1
n) = τI(Y

1
n) = τ · τI(Z) = τ ·

p
∏

i=1

s5(dk+1+i).

So, in fact, our collapsing-argument is just a proof of theorem (4.4.12) in a
special case.

In our next example we will make things a little less unrealistic. We will
change the behaviour of the queue Q that already appeared in the specification
of our alternating bit protocol: the queue can lose its last frame. We will
express this with an atomic action l (for lost) as follows.

Q(λ) =
∑

x∈E

r2(x) ·Q(x)

Q(x ∗ σ) =
∑

y∈E

r2(y) ·Q(x ∗ σ ∗ y) + s3(x) ·Q(σ) + l ·Q(σ).

All the other components of our alternating bit protocol will remain the same
and will be used in the following theorem. Observe that we use the same symbol
for this faulty queue. This is done because abbreviations in the former theorem
can be used again. We will enumerate the following sets that will be used in
this theorem.

H =
{
r1(d), s1(d) : d ∈ D

}

∪
{
r2(x), r3(x), s2(x), s3(x) : x ∈ E

}

∪
{
r4(k), s4(k) : k ∈ Z/2Z

}

I =
{
c1(d) : d ∈ D

}

∪
{
c2(x), c3(x) : x ∈ E

}

∪
{
c4(k) : k ∈ Z/2Z

}
∪ {l, t}.

Notice that the only difference with the sets used in theorem (4.4.8) is the
extra l in the abstraction set I.

Theorem (4.4.14)

Let Q be the above queue with the possibility that the last frame can be
lost. The other components are the same that appear in theorem (4.4.8).

τI ◦ ∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

= τ ·
∞∏

i=1

s5(di).

Proof. The structure of this proof will be the same as before. We will first
calculate

∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

.

200

On Induction Principles: 4.4. Applications

Figure 4.9. A state transition diagram.

We have included a picture of this process in figure 4.9 on page 201. The actual
calculation of this process will be left to the reader, but we will provide some
explanation such that with the aid of the picture and the specification it will
be not that hard to verify that the result is correct. We will use the same
notations as in theorem (4.4.8). In order to give the specification we will need
three more abbreviations.

Hk(σ) = S(d̃k+1) ‖ Q(σ) ‖ SA(k) ‖
∞∏

i=k+2

s1(di)

Ik(σ) = S(k + 1) ‖ Q(σ) ‖ SA(k) ‖
∞∏

i=k+2

s1(di)

201

On Induction Principles: 4.4. Applications

Jk(σ) = S(d̃k+2) ‖ Q(σ) ‖ SA(k) ‖
∞∏

i=k+3

s1(di)

Hereinafter, we will enumerate the guarded recursive specification. We have
k ≥ 0 and n ≥ 1. For m we will mention its range explicitly. Then we will
discuss this result.

∂H

(
Ak(λ)

)
= c1(dk+1) · ∂H

(
Bk(λ)

)
(38)

∂H

(
Ak+1(d̃

n
k+1)

)
= l · ∂H

(
Ak+1(d̃

n−1
k+1)

)
+ c1(dk+2) · ∂H

(
Bk+1(d̃

n
k+1)

)

+ c3(d̃k+1) · ∂H

(
Ik(d̃n−1

k+1)
)

(39)

∂H

(
Bk(λ)

)
= c2(d̃k+1) · ∂H

(
Ck(d̃k+1)

)
(40)

∂H

(
Bk(d̃n

k+1)
)

= l · ∂H

(
Bk(d̃n−1

k+1)
)

+ c2(d̃k+1) · ∂H

(
Ck(d̃n+1

k+1)
)

+ c3(d̃k+1) · ∂H

(
Ek(d̃n−1

k+1)
)

(41)

∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
= l · ∂H

(
Bk+1(d̃

n−1
k+1 ∗ d̃

m
k+2)

)
(m ≥ 0)

+ c3(d̃k+1) · ∂H

(
Jk(d̃n−1

k+1 ∗ d̃
m
k+2)

)

+ c2(d̃k+2) · ∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

)
(42)

∂H

(
Ck(λ)

)
= t · ∂H

(
Bk(λ)

)
(43)

∂H

(
Ck(d̃n

k+1)
)

= l · ∂H

(
Ck(d̃n−1

k+1)
)

+ t · ∂H

(
Bk(d̃n

k+1)
)

+ c3(d̃k+1) · ∂H

(
Dk(d̃n−1

k+1)
)

(44)

∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
= l · ∂H

(
Ck+1(d̃

n−1
k+1 ∗ d̃

m
k+2)

)
(m ≥ 1)

+ c3(d̃k+1) · ∂H

(
Gk(d̃n−1

k+1 ∗ d̃
m
k+2)

)

+ t · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
(45)

∂H

(
Dk(λ)

)
= t · ∂H

(
Ek(λ)

)
+ s5(dk+1) · ∂H

(
Fk(λ)

)
(46)

∂H

(
Dk(d̃n

k+1)
)

= l · ∂H

(
Dk(d̃n−1

k+1)
)

+ t · ∂H

(
Ek(d̃n

k+1)
)

+ s5(dk+1) · ∂H

(
Fk(d̃n

k+1)
)

(47)

∂H

(
Ek(λ)

)
= c2(d̃k+1) · ∂H

(
Dk(d̃k+1)

)

+ s5(dk+1) · ∂H

(
Hk(λ)

)
(48)

∂H

(
Ek(d̃n

k+1)
)

= l · ∂H

(
Ek(d̃n−1

k+1)
)

+ c2(d̃k+1) · ∂H

(
Dk(d̃n+1

k+1)
)

+ s5(dk+1) · ∂H

(
Hk(d̃n

k+1)
)

(49)

∂H

(
Fk(λ)

)
= t · ∂H

(
Hk(λ)

)
+ c4(k) · ∂H

(
Ak+1(λ)

)
(50)

∂H

(
Fk(d̃n

k+1)
)

= l · ∂H

(
Fk(d̃n−1

k+1)
)

+ t · ∂H

(
Hk(d̃n

k+1)
)

+ c4(k) · ∂H

(
Ak+1(d̃

n
k+1)

)
(51)

∂H

(
Gk(λ)

)
= t · ∂H

(
Jk(λ)

)
+ c4(k) · ∂H

(
Bk+1(λ)

)
(52)

202

On Induction Principles: 4.4. Applications

∂H

(
Gk(d̃m

k+2)
)

= l · ∂H

(
Gk(d̃m−1

k+2)
)

+ t · ∂H

(
Jk(d̃m

k+2)
)

(m ≥ 1)

+ c4(k) · ∂H

(
Bk+1(d̃

m
k+2)

)
(53)

∂H

(
Gk(d̃n

k+1 ∗ d̃
m
k+2)

)
= l · ∂H

(
Gk(d̃n−1

k+1 ∗ d̃
m
k+2)

)
(m ≥ 1)

+ t · ∂H

(
Jk(d̃n

k+1 ∗ d̃
m
k+2)

)

+ c4(k) · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
(54)

∂H

(
Hk(λ)

)
= c2(d̃k+1) · ∂H

(
Fk(d̃k+1)

)
(55)

∂H

(
Hk(d̃n

k+1)
)

= l · ∂H

(
Hk(d̃n−1

k+1)
)

+ c2(d̃k+1) · ∂H

(
Fk(d̃n+1

k+1)
)

(56)

∂H

(
Ik(λ)

)
= c1(dk+2) · ∂H

(
Jk(λ)

)
(57)

∂H

(
Ik(d̃n

k+1)
)

= l · ∂H

(
Ik(d̃n−1

k+1)
)

+ c1(dk+2) · ∂H

(
Jk(d̃n

k+1)
)

(58)

∂H

(
Jk(λ)

)
= c2(d̃k+2) · ∂H

(
Gk(d̃k+2)

)
(59)

∂H

(
Jk(d̃m

k+2)
)

= l · ∂H

(
Jk(d̃m−1

k+2)
)

(m ≥ 1)

+ c2(d̃k+2) · ∂H

(
Gk+1(d̃

m+1
k+2)

)
(60)

∂H

(
Jk(d̃n

k+1 ∗ d̃
m
k+2)

)
= l · ∂H

(
Jk(d̃n−1

k+1 ∗ d̃
m
k+2)

)
(m ≥ 0)

+ c2(d̃k+2) · ∂H

(
Gk+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

)
(61)

At this point, we will clarify the guarded recursive specification consisting of
the equations (38)–(61). We are to give a guarded recursive specification of the
process ∂H

(
A0(λ)

)
. If we calculate this, we can see in figure 4.9, starting from

the root of the graph, that we will rise to the next node, which is ∂H

(
B0(λ)

)
.

This part of the picture corresponds to equation (38) for k = 0. If we calculate
this node we will go up again and we will enter “the single* BC-trace”, which
corresponds to equations (41) and (44). We can enter a triangle from this node
that corresponds to equations (44) for n = 1 and equation (43). If we go one
step to the right from the single BC-trace we will enter the DE-trace, which
corresponds to the equations (46)–(49). In the DE-trace we can do an s5(d0)
step to the right and then we will enter the FH-trace. This trace resembles
the equations (50), (51), (55) and (56). If we step to the right in the FH-trace
on the lowest level, (see equation (50)), we see that we will enter ∂H

(
A1(λ)

)
,

via an acknowledgement c4(0). This corresponds to equation (38) for k = 1.
Thereupon, we will enter the single BC-trace for k = 1, or a triangle, and so on.
If we do a step to the right from the FH-trace on another level, we will enter an
A-node, which corresponds to equation (39) (confer (51)). At this A-node we
have three choices: we can jump to a lower A-node, we can go down to an I-no-
de (57) and (58), or we can enter a double** BC-trace, which corresponds to

* Single stands for the fact that there is only one type of elements in the
queue.
** Double stands for the fact that there are two types of elements in the

queue.

203

On Induction Principles: 4.4. Applications

the equations (42) and (45). From the double BC-trace we can do a step down
and enter the JG-trace or jump down to a lower BC-trace. This can be a
double BC-trace, or if we are on the first level, a single one. From the I-node
we can jump to a lower I-node, except on the first level, or we can enter the
JG-trace, as well. This JG-trace corresponds to equations (52)–(54) and (59)–
(61). From the JG-trace we can jump down to a lower JG-trace, except on the
first level; there we can only jump to the left in the same JG-trace. Or we can
do a “skewed” step down to a lower BC-trace, which can be both double or
single. There is one node that we have not met yet: it is the node between the
lowest JG-trace and the single BC-trace right under it. This node corresponds
to equation (52).

Now we have seen how this large guarded recursive specification can be
deduced, we will briefly discuss the overall structure of the sequel: first, we
will make an assumption for one p ≥ 1 on a DE-trace, for which we already
know that it holds for p = 1. With this assumption we can derive a conclusion
for an FH-trace. To achieve this we will need an intermediary result that we
will prove with induction. Once we derived the conclusion on this FH-trace
we will set off a chain reaction: we know that the assumption on the DE-trace
holds for p = 1 and then we conclude that the conclusion on the FH-trace is
valid for p = 1. With this knowledge we can derive that the assumption on
the DE-trace is correct for p = 2 and so we find that the conclusion concerning
the FH-trace holds for p = 2 et cetera. This will be done with induction on p.
In the end it will turn out that both the assumption and the conclusion hold
for all p ≥ 1. This fact will be used to make a small calculation on a single
BC-trace. Using this together with a GIP argument, we can conclude the proof
of 4.4.14.

Let J = {s5(d) : d ∈ D}. Let β1 = β(I, J). Let, for the moment, p ≥ 1 be
fixed. Suppose that the following holds. For all k ≥ 0 and for all n ≥ 1:

πp
J ◦ β1 ◦ ∂H

(
Dk(λ)

)
= t · πp

J ◦ β1 ◦ ∂H

(
Ek(λ)

)
+

p
∏

i=1

s5(dk+i) (62)

πp
J ◦ β1 ◦ ∂H

(
Dk(d̃n

k+1)
)

= t · πp
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

(63)

+ l · πp
J ◦ β1 ◦ ∂H

(
Dk(d̃n−1

k+1)
)

+

p
∏

i=1

s5(dk+i)

πp
J ◦ β1 ◦ ∂H

(
Ek(λ)

)
= c2(d̃k+1) · π

p
J ◦ β1 ◦ ∂H

(
Dk(d̃k+1)

)

+

p
∏

i=1

s5(dk+i) (64)

πp
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

= c2(d̃k+1) · π
p
J ◦ β1 ◦ ∂H

(
Dk(d̃n+1

k+1)
)

(65)

204

On Induction Principles: 4.4. Applications

+ l · πp
J ◦ β1 ◦ ∂H

(
Ek(d̃n−1

k+1)
)

+

p
∏

i=1

s5(dk+i).

Then the following can be derived from this assumption. For all k, n ≥ 0:

πp
J ◦ τI ◦ ∂H

(
Fk(d̃n

k+1)
)

πp
J ◦ τI ◦ ∂H

(
Hk(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (66)

To prove this we will first deduce from the assumptions that we made an
intermediary result on the JG-traces and the double BC-traces. Hereinafter,
we will state it and we will prove it with induction on u. For all k, u,m ≥ 0:

πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

u
k+1 ∗ d̃

m
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Ck+1(d̃

u
k+1 ∗ d̃

m+1
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Gk(d̃u

k+1 ∗ d̃
m+1
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Jk(d̃u

k+1 ∗ d̃
m
k+2)

)







= τ ·

p
∏

i=1

s5(dk+1+i) (67)

As we already announced, we will prove (67) with induction on u. So let
first of all u = 0 and fix k ≥ 0. Consider the following guarded recursive
specification E1.

E1 =
{
X1

0 = t · Y 1
0 + Z1

Y 1
0 = c2(d̃k+2) ·X

1
1 + Z1

X1
n = l ·X1

n−1 + t · Y 1
n + Z1

Y 1
n = l · Y 1

n−1 + c2(d̃k+2) ·X
1
n+1 + Z1

Z1 =

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C1 = {X1
n, Y

1
n : n ≥ 0}. Then C1 is a conservative cluster of E1 in I. Since

the set of exits U(C1) = {Z1} is finite, we may apply CFAR∞ and we find for
all n ≥ 0:

τI(X
1
n) = τI(Y

1
n) = τ ·

p
∏

i=1

s5(dk+1+i).

Because of equations (62)–(65) we see that if we put for all n ≥ 0

X1
n = πp

J ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

Y 1
n = πp

J ◦ β1 ◦ ∂H

(
Ek+1(d̃

n
k+2)

)
,

205

On Induction Principles: 4.4. Applications

this will solve the guarded recursive specification E1. Now consider the follow-
ing calculation.

τ ·

p
∏

i=1

s5(dk+1+i) = τI(X
1
n)

= τI ◦ π
p
J ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

= πp
J ◦ τI ◦ β1 ◦ ∂H

(
Dk+1(d̃

n
k+2)

)
use (4.3.12)

= πp
J ◦ τI ◦ ∂H

(
Dk+1(d̃

n
k+2)

)
see lemma (4.4.6)

Such a calculation can be made for Ek+1, too. We find thus for all n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Dk+1(d̃

n
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Ek+1(d̃

n
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (68)

Now consider the following guarded recursive specification E2.

E2 =
{
X2

0 = c2(d̃k+2) · Y
2
1

Y 2
0 = t ·X2

0

X2
n = l ·X2

n−1 + c2(d̃k+2) · Y
2
n+1 + Z2

Y 2
n = l · Y 2

n−1 + t ·X2
n + Z2

Z2 = c3(d̃k+2) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C2 = {X2
n, Y

2
n : n ≥ 0}. Then C2 is a conservative cluster of E2 in I. Since

the set of exits U(C2) = {Z2} is finite, we may apply CFAR∞ and we find for
all n ≥ 0:

τI(X
2
n) = τI(Y

2
n) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β2 = β
(
I, {c3(d̃k+2)}

)
. Hereinafter, we will show that if we put for all n ≥ 0

X2
n = πp

J ◦ β2 ◦ ∂H

(
Bk+1(d̃

n
k+2)

)

Y 2
n = πp

J ◦ β2 ◦ ∂H

(
Ck+1(d̃

n
k+2)

)
,

(69)

this will solve the guarded recursive specification E2. For n = 0 it is trivial to
see that, with the aid of equations (40) and (43), this is true for the first two
equations of E2. Now let n ≥ 1. We will verify the third equation of E2.

πp
J ◦ β2 ◦ ∂H

(
Bk+1(d̃

n
k+2)

)(41)
= l · πp

J ◦ β2 ◦ ∂H

(
Bk+1(d̃

n−1
k+2)

)

+ c2(d̃k+2) · π
p
J ◦ β2 ◦ ∂H

(
Ck+1(d̃

n+1
k+2)

)

206

On Induction Principles: 4.4. Applications

+ c3(d̃k+2) · π
p
J ◦ τI ◦ ∂H

(
Ek+1(d̃

n−1
k+2)

)

(68)
= l · πp

J ◦ β2 ◦ ∂H

(
Bk+1(d̃

n−1
k+2)

)

+ c2(d̃k+2) · π
p
J ◦ β2 ◦ ∂H

(
Ck+1(d̃

n+1
k+2)

)

+ c3(d̃k+2) · τ ·

p
∏

i=1

s5(dk+1+i).

So we see that this solves the equation in E2 for X2
n. A similar calculation will

yield the same result for the fourth equation of E2. So the claim that (69) is a
solution for E2 is valid. We find

τ ·

p
∏

i=1

s5(dk+1+i) = τI(X
2
n)

= τI ◦ π
p
J ◦ β2 ◦ ∂H

(
Bk+1(d̃

n
k+2)

)

= πp
J ◦ τI ◦ β2 ◦ ∂H

(
Bk+1(d̃

n
k+2)

)
use (4.3.12)

= πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

n
k+2)

)
. see (4.4.6)

Such a calculation can be made for Ck+1, too. Thus, we have for all n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

n
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Ck+1(d̃

n
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (70)

This means that the first two equations of (67) are proved for u = 0 and our
fixed k ≥ 0. Consider the next guarded recursive specification E3.

E3 =
{
X3

0 = t · Y 3
0 + Z3

Y 3
0 = c2(d̃k+2) ·X

3
1

X3
m = l ·X3

m−1 + t · Y 3
m + Z3

Y 3
m = l · Y 3

m−1 + c2(d̃k+2) ·X
3
m+1

Z3 = c4(k) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C3 = {X3
m, Y

3
m : m ≥ 0}. Then C3 is a conservative cluster of E3 in I.

Since the set of exits U(C3) = {Z3} is finite, we may apply CFAR∞ and we
find for all m ≥ 0:

τI(X
3
m) = τI(Y

3
m) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β3 = β
(
I, {c4(k)}

)
. It will not be difficult to see that if we put for all m ≥ 0

X3
m = πp

J ◦ β3 ◦ ∂H

(
Gk(d̃m

k+2)
)

Y 3
m = πp

J ◦ β3 ◦ ∂H

(
Jk(d̃m

k+2)
)
,

(71)

207

On Induction Principles: 4.4. Applications

this will solve the system E3. We will only verify the first equation for E3.
Consider thereto the following display.

πp
J ◦ β3 ◦ ∂H

(
Gk(λ)

)(52)
= t · πp

J ◦ β3 ◦ ∂H

(
Jk(λ)

)

+ c4(k) · π
p
J ◦ τI ◦ ∂H

(
Bk+1(λ)

)

(70)
= t · πp

J ◦ β3 ◦ ∂H

(
Jk(λ)

)

+ c4(k) · τ ·

p
∏

i=1

s5(dk+1+i).

The other equations can be handled in the same way while using equation (70).
Thus, we find that (71) solves the guarded recursive specification E3. When
we use the fact that the generalized projection operator and the abstraction
operator commute and the fact that the abstraction operator absorbs the se-
lective abstraction operator β3 we will find with a calculation that is similar to
the ones we did for E1 and E2 that for all m ≥ 0

πp
J ◦ τI ◦ ∂H

(
Gk(d̃m

k+2)
)

πp
J ◦ τI ◦ ∂H

(
Jk(d̃m

k+2)
)

}

= τ ·

p
∏

i=1

s5(dk+1+i).

Now we find that the second two equations of (67) are also correct so we see
that the basis of the induction is proved for (67), since k ≥ 0 was arbitrarily
chosen. Assume that (67) is valid for u ≥ 0. We will prove it for u+1. Fix k ≥ 0
and let E4 be the following guarded recursive specification.

E4 =
{
X4

m = c2(d̃k+2) · Y
4
m+1 + Z4

Y 4
m+1 = t ·X4

m+1 + Z4

Z4 =
(
c3(d̃k+1) + l

)
·

p
∏

i=1

s5(dk+1+i)
∣
∣ m ≥ 0

}
.

Let C4 = {X4
m, Y

4
m+1 : m ≥ 0}. Then it is easy to see that C4 is a conservative

cluster of E4 in I. The set of exits U(C4) = {Z4} is finite, so we may apply
CFAR∞ and we find for all m ≥ 0

τI(X
4
m) = τI(Y

4
m+1) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β4 = β
(
I, {c3(d̃k+1), l}

)
. We will show that if we put for all m ≥ 0

X4
m = πp

J ◦ β4 ◦ ∂H

(
Bk+1(d̃

u+1
k+1 ∗ d̃

m
k+2)

)

Y 4
m+1 = πp

J ◦ β4 ◦ ∂H

(
Ck+1(d̃

u+1
k+1 ∗ d̃

m+1
k+2)

)
,

(72)

208

On Induction Principles: 4.4. Applications

this will be a solution for the system E4. For, contemplate the deduction below
concerning the first equation of E4.

πp
J ◦ β4 ◦ ∂H

(
Bk+1(d̃

u+1
k+1 ∗ d̃

m
k+2)

)

(42)
= l · πp

J ◦ τI ◦ ∂H

(
Bk+1(d̃

u
k+1 ∗ d̃

m
k+2)

)

+ c2(d̃k+2) · π
p
J ◦ β4 ◦ ∂H

(
Ck+1(d̃

u+1
k+1 ∗ d̃

m+1
k+2)

)

+ c3(d̃k+1) · π
p
J ◦ τI ◦ ∂H

(
Jk(d̃u

k+1 ∗ d̃
m
k+2)

)

(67)
= l · τ ·

p
∏

i=1

s5(dk+1+i) + c3(d̃k+1) · τ ·

p
∏

i=1

s5(dk+1+i)

+ c2(d̃k+2) · π
p
J ◦ β4 ◦ ∂H

(
Ck+1(d̃

u+1
k+1 ∗ d̃

m+1
k+2)

)

= c2(d̃k+2) · π
p
J ◦ β4 ◦ ∂H

(
Ck+1(d̃

u+1
k+1 ∗ d̃

m+1
k+2)

)

+
(
c3(d̃k+1) + l

)
·

p
∏

i=1

s5(dk+1+i).

Completely analogously to the above calculation we can deduce a similar result
for the second equation of E4. So we see that the solution for the guarded
recursive specification E4 is (72). We find easily using commutativity and
absorption:

πp
J ◦ τI ◦ ∂H

(
Bk+1(d̃

u+1
k+1 ∗ d̃

m
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Ck+1(d̃

u+1
k+1 ∗ d̃

m+1
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (73)

Thus we find that the first two equations of (67) are correct for u + 1 for our
chosen k ≥ 0. To prove that the other two are also correct we will consider the
following guarded recursive specification E5.

E5 =
{
X5

m+1 = t · Y 5
m+1 + Z5

1 + Z5
2

Y 5
m = c2(d̃k+2) ·X

5
m+1 + Z5

2

Z5
1 = c4(k) ·

p
∏

i=1

s5(dk+1+i)

Z5
2 = l ·

p
∏

i=1

s5(dk+1+i)
∣
∣ m ≥ 0

}
.

Let C5 = {X5
m+1, Y

5
m : m ≥ 0}. It is evident that C5 is a conservative cluster

of E5 in I. The set of exits U(C5) = {Z5
1 , Z

5
2} is finite so in accordance with

CFAR∞ we find for all m ≥ 0

τI(X
5
m+1) = τI(Y

5
m) = τ ·

p
∏

i=1

s5(dk+1+i).

209

On Induction Principles: 4.4. Applications

Let β5 = β
(
I, {c4(k), l}

)
. Then it is easy to see with the aid of equations (54)

and (61), the induction hypothesis, and the just derived result (73) that if we
put for all m ≥ 0

X5
m+1 = πp

J ◦ β5 ◦ ∂H

(
Gk(d̃u+1

k+1 ∗ d̃
m+1
k+2)

)

Y 5
m = πp

J ◦ β5 ◦ ∂H

(
Jk(d̃u+1

k+1 ∗ d̃
m
k+2)

)
,

this will be a solution for the system E5. It is deduced in exactly the same way
as we did hereinbefore that

πp
J ◦ τI ◦ ∂H

(
Gk(d̃u+1

k+1 ∗ d̃
m+1
k+2)

)

πp
J ◦ τI ◦ ∂H

(
Jk(d̃u+1

k+1 ∗ d̃
m
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i).

Hence, we see that also the second two equations of (67) are valid for u + 1,
so this will end the induction step for our intermediate result since k ≥ 0 was
arbitrarily chosen.

At this point we will state three more guarded recursive specifications
before we can conclude the proof of equation (66). The first matter that we
are going to discuss is a result on the I-nodes. We want to calculate that for
all n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Ik(d̃n

k+1)
)

= τ ·

p
∏

i=1

s5(dk+1+i). (74)

Therefore, we will consider the guarded recursive specification E6.

E6 =
{
X6

0 = c1(dk+2) ·

p
∏

i=1

s5(dk+1+i)

X6
n = l ·X6

n−1 +X6
0

∣
∣ n ≥ 1

}
.

Let C6 = {X6
n : n ≥ 1}. The set of exits is U(C6) = {X6

0}. It will be clear
that C6 is a conservative cluster for E6 in I. Hence, according to CFAR∞ we
find for all n ≥ 1, which can be obtained for n = 0 directly:

τI(X
6
0) = τI(X

6
n) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β6 = β
(
I, {c1(dk+2)}

)
. We will show that if we put for all n ≥ 0

X6
n = πp

J ◦ β6 ◦ ∂H

(
Ik(d̃n

k+1)
)
, (75)

this will solve E6. First, let n = 0 and consider the following.

πp
J ◦ β6 ◦ ∂H

(
Ik(λ)

)(57)
= c1(dk+2) · π

p
J ◦ τI ◦ ∂H

(
Jk(λ)

)

(67)
= c1(dk+2) · τ ·

p
∏

i=1

s5(dk+1+i).

210

On Induction Principles: 4.4. Applications

Now we will handle the case n ≥ 1.

πp
J ◦ β6 ◦ ∂H

(
Ik(d̃n

k+1)
)(58)

= l · πp
J ◦ β6 ◦ ∂H

(
Ik(d̃n−1

k+1)
)

+ c1(dk+2) · π
p
J ◦ τI ◦ ∂H

(
Jk(d̃n

k+1)
)

(67)
= l · πp

J ◦ β6 ◦ ∂H

(
Ik(d̃n−1

k+1)
)

+ c1(dk+2) · τ ·

p
∏

i=1

s5(dk+1+i).

So we see that (75) solves the guarded recursive specification E6. Together
with our calculations above we find that equation (74) is valid for all n ≥ 0.
The next thing that we are going to prove is something about the A-nodes. We
will show that for all n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Ak+1(d̃

n
k+1)

)
= τ ·

p
∏

i=1

s5(dk+1+i). (76)

Consider the guarded recursive specification E7 below.

E7 =
{
X7

0 = c1(dk+2) ·

p
∏

i=1

s5(dk+1+i)

X7
n = l ·X7

n−1 +X7
0 + Z7

Z7 = c3(d̃k+1) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C7 = {X7
n : n ≥ 1}. The set of exits is U(C7) = {X7

0 , Z7}. Since C7 is
a conservative cluster for E7 in I and since the set of exits is finite, we may
apply CFAR∞. This yields for all n ≥ 1, which we can immediately infer
for X7

0 :

τI(X
7
0) = τI(X

7
n) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β7 = β
(
I, {c1(dk+2), c3(d̃k+1)}

)
. We will show that, if we put for all n ≥ 0

X7
n = πp

J ◦ β7 ◦ ∂H

(
Ak+1(d̃

n
k+1)

)
,

this will solve E7. First let n = 0. We find easily

πp
J ◦ β7 ◦ ∂H

(
Ak+1(λ)

)(38)
= c1(dk+2) · π

p
J ◦ τI ◦ ∂H

(
Bk+1(λ)

)

(67)
= c1(dk+2) · τ ·

p
∏

i=1

s5(dk+1+i).

211

On Induction Principles: 4.4. Applications

Now we will handle n ≥ 1.

πp
J ◦ β7 ◦ ∂H

(
Ak+1(d̃

n
k+1)

)(39)
= l · πp

J ◦ β7 ◦ ∂H

(
Ak+1(d̃

n−1
k+1)

)

+ c1(dk+2) · π
p
J ◦ τI ◦ ∂H

(
Bk+1(d̃

n−1
k+1)

)

+ c3(d̃k+1) · π
p
J ◦ τI ◦ ∂H

(
Ik(d̃n−1

k+1)
)

(67)
= l · πp

J ◦ β7 ◦ ∂H

(
Ak+1(d̃

n−1
k+1)

)
+X7

0

+ c3(d̃k+1) · π
p
J ◦ τI ◦ ∂H

(
Ik(d̃n−1

k+1)
)

(74)
= l · πp

J ◦ β7 ◦ ∂H

(
Ak+1(d̃

n−1
k+1)

)
+X7

0 + Z7

Combining the just derived results we find with a commutativity/absorption
argument that equation (76) is correct. Now we are in a position to prove that
equation (66) is valid. We need yet another guarded recursive specification E8

for that purpose.

E8 =
{
X8

0 = t · Y 8
0 + Z8

Y 8
0 = c2(d̃k+1) ·X

8
1

X8
n = l ·X8

n−1 + t · Y 8
n + Z8

Y 8
n = l · Y 8

n−1 + c2(d̃k+1) ·X
8
n+1

Z8 = c4(k) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C8 = {X8
n, Y

8
n : n ≥ 0}. The set of exits is U(C8) = {Z8}. It is clear

that C8 is conservative, so we apply CFAR∞ and we find for all n ≥ 0

τI(X
8
n) = τI(Y

8
n) = τ ·

p
∏

i=1

s5(dk+1+i).

We will not need a new β. We will take β3 = β
(
I, {c4(k)}

)
. Now it will not be

difficult to show that, if we put for all n ≥ 0

X8
n = πp

J ◦ β3 ◦ ∂H

(
Fk(d̃n

k+1)
)

Y 8
n = πp

J ◦ β3 ◦ ∂H

(
Hk(d̃n

k+1)
)
,

this will solve E8. Use equations (50), (51), (55) and (56) together with the
just inferred result on the A-nodes (76). Combining the results with an easy
commutativity/absorption argument gives that equation (66) is correct if we
assume that equations (62)–(65) are valid.

Now we will prove that equation (66) itself is correct. We will do this with
induction on p. So let p = 1. We will show that the assumptions that we made

212

On Induction Principles: 4.4. Applications

in equations (62)–(65) are valid for p = 1. Let us first take a look at the first
assumption (62) and consider the following simple calculation.

π1
J ◦ β1 ◦ ∂H

(
Dk(λ)

)(46)
= t · π1

J ◦ β1 ◦ ∂H

(
Ek(λ)

)
+ s5(dk+1).

So we see that this is just the assumption (62) for p = 1. Now let us verify
that the second assumption (63) is also valid for p = 1.

π1
J ◦ β1 ◦ ∂H

(
Dk(d̃n

k+1)
)(47)

= l · π1
J ◦ β1 ◦ ∂H

(
Dk(d̃n−1

k+1)
)

+ t · π1
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+ s5(dk+1).

This is precisely equation (63) for p = 1. The verification that the other two
assumptions are correct for p = 1 can be proved analogously. So we obtain that
equation (66) is correct for p = 1. This concludes the basis of our induction
on p. Now assume that equation (66) is valid for one p ≥ 1. We will show that
the assumptions that we made are now valid for p + 1. First, we will verify
that equation (62) is correct for p+ 1. Consider thereto the following.

πp+1
J ◦ β1 ◦ ∂H

(
Dk(λ)

)(46)
= t · πp+1

J ◦ β1 ◦ ∂H

(
Ek(λ)

)

+ s5(dk+1) · π
p
J ◦ τI ◦ ∂H

(
Fk(λ)

)

= t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(λ)

)

+ s5(dk+1) · τ ·

p
∏

i=1

s5(dk+1+i)

= t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(λ)

)

+

p+1
∏

i=1

s5(dk+i).

We see that this is indeed equation (62) for p + 1. Now let us make a similar
calculation for the second assumption.

πp+1
J ◦ β1 ◦ ∂H

((
Dk(d̃n

k+1)
)(47)

= l · πp+1
J ◦ β1 ◦ ∂H

(
Dk(d̃n−1

k+1)
)

+ t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+ s5(dk+1) · π
p
J ◦ τI ◦ ∂H

(
Fk(d̃n

k+1)
)

= l · πp+1
J ◦ β1 ◦ ∂H

(
Dk(d̃n−1

k+1)
)

+ t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+ s5(dk+1) · τ ·

p
∏

i=1

s5(dk+1+i)

213

On Induction Principles: 4.4. Applications

= l · πp+1
J ◦ β1 ◦ ∂H

(
Dk(d̃n−1

k+1)
)

+ t · πp+1
J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)

+

p+1
∏

i=1

s5(dk+i).

We see that this is exactly the second assumption (63) for p + 1. The proof
that the assumptions (64) and (65) are also correct for p+ 1 can be calculated
in the same way. But then we can immediately conclude that (66) is correct
for p+1. This ends our induction on p and we find that equation (66) is correct
for all p. With this knowledge it is evident that the assumptions that we made
are also correct by themselves. (For, the case p = 1 was already correct and
for p > 1 we can reiterate, using (66), the above calculation.) We will use this
fact to prove that the following holds for all n ≥ 0.

πp
J ◦ τI ◦ ∂H

(
Dk(d̃n

k+1)
)

πp
J ◦ τI ◦ ∂H

(
Ek(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+i). (77)

Consider the subsequent guarded recursive specification E9.

E9 =
{
X9

0 = t · Y 9
0 + Z9

Y 9
0 = c2(d̃k+1) ·X

9
1 + Z9

X9
n = l ·X9

n−1 + t · Y 9
n + Z9

Y 9
n = l · Y 9

n−1 + c2(d̃k+1) ·X
9
n+1 + Z9

Z9 =

p
∏

i=1

s5(dk+i)
∣
∣ n ≥ 1

}
.

We see at once from equations (62)–(65) that if we put for all n ≥ 0

X9
n = πp

J ◦ β1 ◦ ∂H

(
Dk(d̃n

k+1)
)

Y 9
n = πp

J ◦ β1 ◦ ∂H

(
Ek(d̃n

k+1)
)
,

that this will solve the system E9. Let C9 = {X9
n, Y

9
n : n ≥ 0}. The set of exits

is U(C9) = {Z9}. We may apply CFAR∞ and we find for all n ≥ 0

τI(X
9
n) = τI(Y

9
n) = τ ·

p
∏

i=1

s5(dk+i).

A simple commutativity/absorption argument will yield that equation (77) is
valid. In the sequel we will need the following result for a single BC-trace. For
all n ≥ 0

πp
J ◦ τI ◦ ∂H

(
Bk(d̃n

k+1)
)

πp
J ◦ τI ◦ ∂H

(
Ck(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+i). (78)

214

On Induction Principles: 4.4. Applications

To achieve this, we will need one more guarded recursive specification E10.

E10 =
{
X10

0 = c2(d̃k+1) · Y
10
1

Y 10
0 = t ·X10

0

X10
n = l ·X10

n−1 + c2(d̃k+1) · Y
10
n+1 + Z10

Y 10
n = l · Y 10

n−1 + t ·X10
n + Z10

Z10 = c3(d̃k+1) ·

p
∏

i=1

s5(dk+i)
∣
∣ n ≥ 1

}
.

Let C10 = {X10
n , Y 10

n : n ≥ 0}. It will be clear that this is a conservative cluster
for E10 in I. The set of exits is U(C10) = {Z10}. So if we apply CFAR∞ we
find for all n ≥ 0

τI(X
10
n) = τI(Y

10
n) = τ ·

p
∏

i=1

s5(dk+i).

Let β8 = β
(
I, {c3(d̃k+1)}

)
. With the aid of equations (40), (41), (43) and (44)

together with the just derived result on the DE-traces (77) it is not hard to see
that if we put for all n ≥ 0

X10
n = πp

J ◦ β8 ◦ ∂H

(
Bk(d̃n

k+1)
)

Y 10
n = πp

J ◦ β8 ◦ ∂H

(
Ck(d̃n

k+1)
)
,

this is a solution for the guarded recursive specification E10. So a straightfor-
ward calculation gives us that equation (78) is correct.

Hereinafter, we will give the final calculation in order to prove 4.4.14.
Choose k = 0 and consider the following.

πp
J ◦ τI ◦ ∂H

(
A0(λ)

)(38)
= τ · πp

J ◦ τI ◦ ∂H

(
B0(λ)

)

(78)
= τ ·

p
∏

i=1

s5(di)

= τ · πp
J

(∞∏

i=1

s5(di)
)

.

So we see that we have shown for a fixed p ≥ 1

πp
J ◦ τI ◦ ∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

= τ · πp
J

(∞∏

i=1

s5(di)
)

.

With the use of GIP we conclude the proof of 4.4.14.

215

On Induction Principles: 4.4. Applications

In the following application we will increase the unreliability of the queue.
We will allow that the queue can lose or duplicate any datum contained in it at
any moment. In order to be able to give a guarded recursive specification for
this faulty and stuttering queue, we will need the notion of a residue set and
a stuttering set of the words that the faulty and stuttering queue can contain.
The notion of a residue set is taken from [22].

Definitions (4.4.15)

Let n ≥ 1 and let σ ∈ E∗ be a non-empty word, say σ = e1 ∗ e2 ∗ · · · ∗ en.
For n ≥ 2 the residue set R(σ) of σ is the following set

R(σ) = {e1 ∗ · · · ∗ en−1, e2 ∗ · · · ∗ en}∪{e1 ∗ · · · ∗ ei−1 ∗ ei+1 ∗ · · · ∗ en : 1 < i < n}

and if n = 1 we will have for the residue set R(e1) = {λ}. For the stuttering set
we will not need this dichotomy. The stuttering set S(σ) of σ is the following
set

S(σ) = {e1 ∗ · · · ∗ ei ∗ ei ∗ · · · ∗ en : 1 ≤ i ≤ n}.

Just as with the previous queue we will express the lossy behaviour by an
atomic action l. The stuttering will be expressed with an atomic action s. Now
we are in a position to give the guarded recursive specification for the faulty
and stuttering queue.

Q(λ) =
∑

x∈E

r2(x) ·Q(x)

Q(x ∗ σ) =
∑

y∈E

r2(y) ·Q(x ∗ σ ∗ y) + s3(x) ·Q(σ)

+
∑

ρ1∈R(x∗σ)

l ·Q(ρ1) +
∑

ρ2∈S(x∗σ)

s ·Q(ρ2).

The other components of our alternating bit protocol will remain the same just
as in the former theorem. We will reiterate the encapsulation set H and we will
give a new abstraction set I that only differs from the previous one in having
an extra s.

H =
{
r1(d), s1(d) : d ∈ D

}

∪
{
r2(x), r3(x), s2(x), s3(x) : x ∈ E

}

∪
{
r4(k), s4(k) : k ∈ Z/2Z

}

I =
{
c1(d) : d ∈ D

}

∪
{
c2(x), c3(x) : x ∈ E

}

∪
{
c4(k) : k ∈ Z/2Z

}
∪ {l, t, s}.

216

On Induction Principles: 4.4. Applications

Figure 4.10. Another state transition diagram.

Theorem (4.4.16)

Let Q be the faulty and stuttering queue and let the other components be
as in theorem (4.4.8). Then the following holds for all (di)i ∈ Dω

τI ◦ ∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

= τ ·
∞∏

i=1

s5(di).

Proof. The structure of this proof will not be entirely the same as before.
Let (di)i ∈ D

ω be fixed. We will first calculate

∂H

(

S(0) ‖ Q(λ) ‖ R(0) ‖
∞∏

i=1

s1(di)
)

.

217

On Induction Principles: 4.4. Applications

We have schematically depicted this process in figure 4.10 on page 217. We will
leave out the actual calculation of this process but we will use figure 4.10 to
provide some explanation on the resulting guarded recursive specification. For
the guarded recursive specification that follows we will use the abbreviations

Ak(σ), Bk(σ), . . . , Jk(σ)

that we already saw in theorems (4.4.8) and (4.4.14). We will alternate pieces of
the guarded recursive specification with informal comment on them to optimize
the readability of the specification. Moreover, the order of the equations will
be different than in the former theorems. It is determined by a walk through
figure 4.10.

We suppose that k, n,m range over the set of natural numbers with k ≥ 0
and n,m ≥ 1. Informally, we will start walking at the initial point ∂H

(
A0(λ)

)

of the graph in figure 4.10. Formally, we will start for all k ≥ 0 with equa-
tion ∂H

(
Ak(λ)

)
. The first equation corresponds to the transition from the

initial node to the only node that can be reached from that point: the second
node. This equation is the same as it appeared in theorem (4.4.14).

∂H

(
Ak(λ)

)
= c1(dk+1) · ∂H

(
Bk(λ)

)
.

This is not surprising since in this phase the faulty and stuttering queue is
empty. In the second node the queue is still empty so this equation will not
differ from the one in the former theorem either.

∂H

(
Bk(λ)

)
= c2(d̃k+1) · ∂H

(
Ck(d̃k+1)

)
.

In the third node several things can occur: a time out can be given (we will
go up one node in the graph), a loss of any datum can be given (we will go
southeastwards and enter the triangle), a duplication of any datum can be
performed (we will rise two nodes in the graph with an arched edge) or a
communication can be executed (we will go to the right in the graph). This
behaviour will be repeated in the node that we enter if the duplication has
taken place and so on, see the picture. So we obtain for all these nodes the
following equation

∂H

(
Ck(d̃n

k+1)
)

= l · ∂H

(
Ck(d̃n−1

k+1)
)

+ s · ∂H

(
Ck(d̃n+1

k+1)
)

+ t · ∂H

(
Bk(d̃n

k+1)
)

+ c3(d̃k+1) · ∂H

(
Dk(d̃n−1

k+1)
)
.

If n = 1 we will enter the triangle. In that node only a time out can be
performed and we come back in the second node. This corresponds to the
equation

∂H

(
Ck(λ)

)
= t · ∂H

(
Bk(λ)

)
.

218

On Induction Principles: 4.4. Applications

Half of the first trace up is now clarified but we must take a look at the even
nodes of this trace. As with the odd nodes four actions can be executed. We
can lose any datum element and go down two nodes with an arched edge, a
duplication of any datum can be performed and we will go up two nodes with
an arched edge, the queue can be loaded with one more datum of the same
type (we will go up one node in the graph) or a communication can take place
and a datum will be removed from the queue (we will go to the right in the
graph to the second trace up). Observe that we are dealing with a queue that
contains one type of data, so the residue set and the stuttering set both contain
one element so there is one stuttering edge and one losing edge. We will have
the following equation for these even nodes

∂H

(
Bk(d̃n

k+1)
)

= l · ∂H

(
Bk(d̃n−1

k+1)
)

+ s · ∂H

(
Bk(d̃n+1

k+1)
)

+ c2(d̃k+1) · ∂H

(
Ck(d̃n+1

k+1)
)

+ c3(d̃k+1) · ∂H

(
Ek(d̃n−1

k+1)
)
.

This trace up will be called a single BC-trace since the queue contains only
a single type of elements. We have seen that the only way out from a single
BC-trace is by entering what we will call a DE-trace. We will discuss this
second trace. We will start with the lowest node of the second trace. In this
phase the queue is empty. A time out can be executed and we will go up one
node or a send action at port 5 can take place (we go to the right in the graph).
This corresponds to the following equation

∂H

(
Dk(λ)

)
= t · ∂H

(
Ek(λ)

)
+ s5(dk+1) · ∂H

(
Fk(λ)

)
.

Now we will discuss the second node of the DE-trace. At that node we can
load the queue with a datum element or we can perform the send action to the
right, as well. So we obtain a similar equation.

∂H

(
Ek(λ)

)
= c2(d̃k+1) · ∂H

(
Dk(d̃k+1)

)
+ s5(dk+1) · ∂H

(
Hk(λ)

)
.

Now we take a node of this trace that is neither the first nor the second. Then
we will have two more possible actions that can be performed since the queue
it not empty at this stage: an additional duplication or deletion can be carried
out. We can see this in the graph. The following two equations will complete
the description of the DE-trace.

∂H

(
Dk(d̃n

k+1)
)

= l · ∂H

(
Dk(d̃n−1

k+1)
)

+ s · ∂H

(
Dk(d̃n+1

k+1)
)

+ t · ∂H

(
Ek(d̃n

k+1)
)

+ s5(dk+1) · ∂H

(
Fk(d̃n

k+1)
)

∂H

(
Ek(d̃n

k+1)
)

= l · ∂H

(
Ek(d̃n−1

k+1)
)

+ s · ∂H

(
Ek(d̃n+1

k+1)
)

+ c2(d̃k+1) · ∂H

(
Dk(d̃n+1

k+1)
)

+ s5(dk+1) · ∂H

(
Hk(d̃n

k+1)
)
.

As with the single BC-trace the way out from the DE-trace is by performing
a send action and entering an FH-trace. We will start at the lowest level of

219

On Induction Principles: 4.4. Applications

this trace. The queue is empty and just two actions can be done: a time out
can be given and we will go up in the FH-trace or a communication can take
place that acknowledges the transmission of the send action that was executed
before (when leaving the DE-trace) and we will enter the subsequent A-node
(we will go to the right). This corresponds to the following equation

∂H

(
Fk(λ)

)
= t · ∂H

(
Hk(λ)

)
+ c4(k) · ∂H

(
Ak+1(λ)

)
.

Now we will discuss the second node of the FH-trace. In that phase the queue
is still empty, for, we entered it due to a time out. There is just one action that
can be executed: the queue will be loaded with a datum element (the one that
was just sent away). This will be represented by the following equation

∂H

(
Hk(λ)

)
= c2(d̃k+1) · ∂H

(
Fk(d̃k+1)

)
.

Taking a node of the FH-trace that is neither the first nor the second will yield
two more possibilities: duplication or deletion of any datum. We can see this in
the picture. Only in the odd nodes we can enter a dense block with entrances
that are A-nodes. See the following two equations that complete the discussion
of the FH-traces.

∂H

(
Fk(d̃n

k+1)
)

= l · ∂H

(
Fk(d̃n−1

k+1)
)

+ s · ∂H

(
Fk(d̃n+1

k+1)
)

+ t · ∂H

(
Hk(d̃n

k+1)
)

+ c4(k) · ∂H

(
Ak+1(d̃

n
k+1)

)

∂H

(
Hk(d̃n

k+1)
)

= l · ∂H

(
Hk(d̃n−1

k+1)
)

+ s · ∂H

(
Hk(d̃n+1

k+1)
)

+ c2(d̃k+1) · ∂H

(
Fk(d̃n+1

k+1)
)
.

The only nodes that we did not discuss yet are the A-nodes that contain datum
elements that are old: the send action has been executed but not the acknowl-
edgement and due to time outs the queue will be loaded with old data. This
can be clearly seen in the description of the FH-trace. So we will discuss here
the A-nodes with a non-empty queue. In this phase duplication and deletion
can take place (these correspond in figure 4.10 to the up and down going arched
edges). Besides this behaviour a new datum element can be taken from the
test row (we go to the right in the picture and we enter a B-node) or a commu-
nication can take place with the receiver such that one datum can be removed
from the queue (we will go down one node and enter a I-node). The equation
that accompanies this is as follows.

∂H

(
Ak+1(d̃

n
k+1)

)
= l · ∂H

(
Ak+1(d̃

n−1
k+1)

)

+ s · ∂H

(
Ak+1(d̃

n+1
k+1)

)

+ c1(dk+2) · ∂H

(
Bk+1(d̃

n
k+1)

)

+ c3(d̃k+1) · ∂H

(
Ik(d̃n−1

k+1)
)
.

220

On Induction Principles: 4.4. Applications

First, we will treat the I-nodes. From the lowest one we can do just one thing:
take the following element of the test row (we go to the right in the picture).
On the other levels the queue is not empty so we will also have the possibility
to duplicate or to delete (the arched up and down going edges in the figure).
We will give both equations for the I-nodes.

∂H

(
Ik(λ)

)
= c1(dk+2) · ∂H

(
Jk(λ)

)

∂H

(
Ik(d̃n

k+1)
)

= l · ∂H

(
Ik(d̃n−1

k+1)
)

+ s · ∂H

(
Ik(d̃n+1

k+1)
)

+ c1(dk+2) · ∂H

(
Jk(d̃n

k+1)
)
.

Now we will treat the B-nodes. Recall that they are at the right of the A-nodes.
We can lose or duplicate or we can load or communicate. After deletions and
stutterings we will still be in a B-node (the arched edges). If we load we will
go to the right in the picture (we will enter the double BC-trace since there
are now two types of data) and if we communicate we will go one node down
in the graph. We will give the equation of the B-nodes.

∂H

(
Bk+1(d̃

n
k+1)

)
= l · ∂H

(
Bk+1(d̃

n−1
k+1)

)
+ s · ∂H

(
Bk+1(d̃

n+1
k+1)

)

+ c2(d̃k+2) · ∂H

(
Ck+1(d̃

n
k+2 ∗ d̃k+2)

)

+ c3(d̃k+1) · ∂H

(
Jk(d̃n−1

k+1)
)
.

Observe that we have in the node that is right from this B-node two types of
data in the queue: old data and a new one. Since we can lose or duplicate any
datum that is in the queue at any moment we will see in the graph more edges
than in the first part of the figure: we have two deletions and two duplications.
The triangles that we can see in the picture are due to the fact that the just
read new datum can be deleted immediately. This means that there are also
C-nodes. First, we will discuss the node with the old and new data. As we
already said there are two types of deletion and duplication (arched edges to
the right and two nodes up are the stuttering edges; an arched edge two nodes
down and the small edge to the triangle node are the deletion edges). Also a
time out can be given (we will go to the right one node in the graph). Finally, a
communication with the receiver can be executed and we will go down one node
in the graph. This is expressed in the following equation (recall that n,m ≥ 1).

∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
= l · ∂H

(
Ck+1(d̃

n−1
k+1 ∗ d̃

m
k+2)

)

+ l · ∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m−1
k+2)

)

+ s · ∂H

(
Ck+1(d̃

n+1
k+1 ∗ d̃

m
k+2)

)

+ s · ∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

)

+ t · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)

+ c3(d̃k+1) · ∂H

(
Gk(d̃n−1

k+1 ∗ d̃
m
k+2)

)
.

221

On Induction Principles: 4.4. Applications

Now we will discuss the C-nodes. In these nodes there is only one type of data
left: the old ones. So we will have here one type of deletion and duplication (the
arched edges up and down at the triangle nodes). A time out can be performed
(we will go northwestwards in the triangle and return to the B-node) or we
can communicate with the receiver and an old datum can be removed from the
queue (we will go southeastwards in the graph). We will give the corresponding
equation in the next display.

∂H

(
Ck+1(d̃

n
k+1)

)
= l · ∂H

(
Ck+1(d̃

n−1
k+1)

)
+ s · ∂H

(
Ck+1(d̃

n+1
k+1)

)

+ t · ∂H

(
Bk+1(d̃

n
k+1)

)
+ c3(d̃k+1) · ∂H

(
Gk(d̃n−1

k+1)
)
.

We will finish the discussion of the double BC-trace by giving the equation for
the B-nodes that contain two types of data. Just as with the C-nodes of this
trace we will have two types of deletion and duplication (for the stuttering we
go up and to the right with an arched edge and for the deletion we will go down
and to the left with an arched edge). Besides these things we can also stay in
the double BC-trace by loading one more new datum in the queue (we go one
node to the right) or we can escape it by communicating with the receiver (we
go one node down in the picture). We will give the equation for all these nodes.

∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
= l · ∂H

(
Bk+1(d̃

n−1
k+1 ∗ d̃

m
k+2)

)

+ l · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m−1
k+2)

)

+ s · ∂H

(
Bk+1(d̃

n+1
k+1 ∗ d̃

m
k+2)

)

+ s · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

)

+ c2(d̃k+2) · ∂H

(
Ck+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

)

+ c3(d̃k+1) · ∂H

(
Jk(d̃n−1

k+1 ∗ d̃
m
k+2)

)
.

To escape a single BC-trace we communicate with the receiver and we enter
a DE-trace. With the double BC-trace we communicate with the receiver and
we will enter the JG-trace. These traces are the only ones that remain for our
discussion. For both nodes we will have four equations. First, we will treat the
nodes with an empty queue. The location of the empty G-node in the picture
is the lowest node of the dense block; it is part of a triangle. If we go from
that point northwestwardly to the next node we will enter the empty J-node.
In this node the only possible action is the loading of the queue with a new
datum element (we will go to the right in the picture). This is expressed in an
equation as follows.

∂H

(
Jk(λ)

)
= c2(d̃k+2) · ∂H

(
Gk(d̃k+2)

)
.

We see that in this equation there is a G-node with only a new datum. We will
discuss this node after the empty G-node. In this node we have two possible

222

On Induction Principles: 4.4. Applications

actions. We can perform a time out (we go northwestwardly to the empty
J-node) or an acknowledgement can be executed and we enter the beginning of
the next single BC-trace. This is the corresponding equation

∂H

(
Gk(λ)

)
= t · ∂H

(
Jk(λ)

)
+ c4(k) · ∂H

(
Bk+1(λ)

)
.

The lowest horizontal line of the dense block is a somewhat different JG-trace
than the others: in this trace all the old datum elements are removed from
the queue and only new data is in the queue. Therefore, there is one type of
deletion and duplication (we go to the left or to the right with arched edges).
At a G-node we can execute a time out and we stay in the JG-trace (we go one
node to the right in the figure) or we can perform an acknowledgement and we
go to the next single BC-trace (we go to the southeast in the graph). For the
J-nodes there is besides the stuttering and deletion actions just one possible
action: the queue will be loaded with a new datum element (we will go one
node to the right in the graph). We will give both equations hereinafter.

∂H

(
Gk(d̃m

k+2)
)

= l · ∂H

(
Gk(d̃m−1

k+2)
)

+ s · ∂H

(
Gk(d̃m+1

k+2)
)

+ t · ∂H

(
Jk(d̃m

k+2)
)

+ c4(k) · ∂H

(
Bk+1(d̃

m
k+2)

)

∂H

(
Jk(d̃m

k+2)
)

= l · ∂H

(
Jk(d̃m−1

k+2)
)

+ s · ∂H

(
Jk(d̃m+1

k+2)
)

+ c2(d̃k+2) · ∂H

(
Gk(d̃m+1

k+2)
)
.

The JG-traces have at their beginning a triangle as with the beginning of the
double BC-traces. In fact, we have in this dense block a horizontal CG-trace.
The C-nodes of this trace have already been treated. Now we will handle the
other part of this CG-trace. Since the empty G-node is already discussed we will
treat the non-empty ones. In these nodes there are only old datum elements.
Hence, we will have one deletion and one duplication (see the up and down
going arched edges). A time out can be executed (we will go northwestwardly)
and we return in the first J-node of the JG-trace or an acknowlegdement is
performed (we will go southwestwards in the graph). We will give the equation.

∂H

(
Gk(d̃n

k+1)
)

= l · ∂H

(
Gk(d̃n−1

k+1)
)

+ s · ∂H

(
Gk(d̃n+1

k+1)
)

+ t · ∂H

(
Jk(d̃n

k+1)
)

+ c4(k) · ∂H

(
Bk+1(d̃

n
k+1)

)
.

We see in this equation that also J-nodes can contain only old data. We will
discuss them hereinafter. Besides losing and stuttering (we will go up and down
with arched edges) the queue can be loaded with a new datum element (we go
one node to the right in the picture). We will give this equation below.

∂H

(
Jk(d̃n

k+1)
)

= l · ∂H

(
Jk(d̃n−1

k+1)
)

+ s · ∂H

(
Jk(d̃n+1

k+1)
)

+ c2(d̃k+2) · ∂H

(
Gk(d̃n

k+1 ∗ d̃k+2)
)
.

223

On Induction Principles: 4.4. Applications

The two remaining equations concern the JG-traces with two types of datum
elements. For the G-nodes we have beside the four stuttering and deletion
actions (see the four arched edges in the graph) two possible actions: we can
stay in the JG-trace and perform a time out (we go one node to the right in
the graph) or an acknowledgement is executed (we will go southeastwards to
the lower double BC-trace). We will give its equation.

∂H

(
Gk(d̃n

k+1 ∗ d̃
m
k+2)

)
= l · ∂H

(
Gk(d̃n−1

k+1 ∗ d̃
m
k+2)

)

+ l · ∂H

(
Gk(d̃n

k+1 ∗ d̃
m−1
k+2)

)

+ s · ∂H

(
Gk(d̃n+1

k+1 ∗ d̃
m
k+2)

)

+ s · ∂H

(
Gk(d̃n

k+1 ∗ d̃
m+1
k+2)

)

+ t · ∂H

(
Jk(d̃n

k+1 ∗ d̃
m
k+2)

)

+ c4(k) · ∂H

(
Bk+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
.

Finally, for the J-nodes with two types of data we have apart from the four
obvious possibilities (see the arched edges in the graph) just one other action:
the queue will be loaded with a new datum element (we go one node to the
right in the picture). We will give the equation for these nodes.

∂H

(
Jk(d̃n

k+1 ∗ d̃
m
k+2)

)
= l · ∂H

(
Jk(d̃n−1

k+1 ∗ d̃
m
k+2)

)

+ l · ∂H

(
Jk(d̃n

k+1 ∗ d̃
m−1
k+2)

)

+ s · ∂H

(
Jk(d̃n+1

k+1 ∗ d̃
m
k+2)

)

+ s · ∂H

(
Jk(d̃n

k+1 ∗ d̃
m+1
k+2)

)

+ c2(d̃k+2) · ∂H

(
Gk(d̃n

k+1 ∗ d̃
m+1
k+2)

)
.

In the former theorems we used the large guarded recursive specification
in the sequel of the proof. If one tries to imitate the proofs that have been
exposed thus far, it will turn out that there is a problem with the dense block
of figure 4.10: in the former verifications these blocks have been teared down
with induction on the “floor height”. We can see in figure 4.9 on page 201 that
there are no arrows that go up from a floor; they all go to the right, down or
to the southeast. In the dense block of figure 4.10 there are arrows that go up
from all but the lowest floor. This is due to the duplication of old data. If we
assume that only the last read datum element can be duplicated then we can
use the above deduced guarded recursive specification. But now we can not
use this induction argument since we can reach all the floors above us. What
we will use is the fact that this dense block not just looks like a cluster: it
can be made into a cluster in the sense of definition (4.4.10). To achieve the
desired situation we have to introduce a new guarded recursive specification
that is heavily based on the one that we found above. We will write down an

224

On Induction Principles: 4.4. Applications

acuted version of the above guarded recursive specification in which we will
also acute some of the atomic actions that appear in the dense block. All the
atomic actions in the dense block that result in a transition such that the queue
becomes empty or does not contain old datum elements anymore will be acuted.
Before we will explain more of the structure of this proof we will enumerate
the guarded recursive specification and thereinafter we will show that we may
use this specification in order to prove 4.4.16. Let k, n,m range over the set
of natural numbers with k ≥ 0, n,m ≥ 1. In the subsequent display we will
asume that k ≥ 0 and m ≥ 1 in all the equations. For n ≥ 1 we will mention
explicitly what the range is.

A′
k(λ) = c1(dk+1) ·B

′
k(λ) (79)

A′
k+1(d̃

n
k+1) = l ·A′

k+1(d̃
n−1
k+1) + s ·A′

k+1(d̃
n+1
k+1) (n ≥ 1)

+ c1(dk+2) ·B
′
k+1(d̃

n
k+1) + c3(d̃k+1) · I

′
k(d̃n−1

k+1) (80)

B′
k(λ) = c2(d̃k+1) · C

′
k(d̃k+1) (81)

B′
k(d̃n

k+1) = l ·B′
k(d̃n−1

k+1) + s ·B′
k(d̃n+1

k+1) (n ≥ 1)

+ c2(d̃k+1) · C
′
k(d̃n+1

k+1) + c3(d̃k+1) ·E
′
k(d̃n−1

k+1) (82)

B′
k+1(d̃k+1) = l′ ·B′

k+1(λ) + s ·B′
k+1(d̃

2
k+1)

+ c2(d̃k+2) · C
′
k+1(d̃k+1 ∗ d̃k+2)

+ c′3(d̃k+1) · J
′
k(λ) (83)

B′
k+1(d̃

n
k+1) = l ·B′

k+1(d̃
n−1
k+1) + s ·B′

k+1(d̃
n+1
k+1) (n ≥ 2)

+ c2(d̃k+2) · C
′
k+1(d̃

n
k+1 ∗ d̃k+2)

+ c3(d̃k+1) · J
′
k(d̃n−1

k+1) (84)

B′
k+1(d̃k+1 ∗ d̃

m
k+2) = l′ ·B′

k+1(d̃
m
k+2) + l ·B′

k+1(d̃k+1 ∗ d̃
m−1
k+2)

+ s ·B′
k+1(d̃

2
k+1 ∗ d̃

m
k+2) + s ·B′

k+1(d̃k+1 ∗ d̃
m+1
k+2)

+ c2(d̃k+2) · C
′
k+1(d̃k+1 ∗ d̃

m+1
k+2)

+ c′3(d̃k+1) · J
′
k(d̃m

k+2) (85)

B′
k+1(d̃

n
k+1 ∗ d̃

m
k+2) = l ·B′

k+1(d̃
n−1
k+1 ∗ d̃

m
k+2) + l ·B′

k+1(d̃
n
k+1 ∗ d̃

m−1
k+2) (n ≥ 2)

+ s ·B′
k+1(d̃

n+1
k+1 ∗ d̃

m
k+2) + s ·B′

k+1(d̃
n
k+1 ∗ d̃

m+1
k+2)

+ c2(d̃k+2) · C
′
k+1(d̃

n
k+1 ∗ d̃

m+1
k+2)

+ c3(d̃k+1) · J
′
k(d̃n−1

k+1 ∗ d̃
m
k+2) (86)

C′
k(λ) = t ·B′

k(λ) (87)

C′
k(d̃n

k+1) = l ·C ′
k(d̃n−1

k+1) + s · C′
k(d̃n+1

k+1) (n ≥ 1)

+ t ·B′
k(d̃n

k+1) + c3(d̃k+1) ·D
′
k(d̃n−1

k+1) (88)

C′
k+1(d̃k+1) = l′ · C′

k+1(λ) + s · C ′
k+1(d̃

2
k+1)

225

On Induction Principles: 4.4. Applications

+ t ·B′
k+1(d̃k+1) + c′3(d̃k+1) ·G

′
k(λ) (89)

C′
k+1(d̃

n
k+1) = l · C ′

k+1(d̃
n−1
k+1) + s ·C′

k+1(d̃
n+1
k+1) (n ≥ 2)

+ t ·B′
k+1(d̃

n
k+1) + c3(d̃k+1) ·G

′
k(d̃n−1

k+1) (90)

C′
k+1(d̃k+1 ∗ d̃

m
k+2) = l′ · C′

k+1(d̃
m
k+2) + l · C ′

k+1(d̃k+1 ∗ d̃
m−1
k+2)

+ s · C′
k+1(d̃

2
k+1 ∗ d̃

m
k+2) + s · C′

k+1(d̃k+1 ∗ d̃
m+1
k+2)

+ t ·B′
k+1(d̃k+1 ∗ d̃

m
k+2)

+ c′3(d̃k+1) ·G
′
k(d̃m

k+2) (91)

C′
k+1(d̃

n
k+1 ∗ d̃

m
k+2) = l · C ′

k+1(d̃
n−1
k+1 ∗ d̃

m
k+2) + l · C ′

k+1(d̃
n
k+1 ∗ d̃

m−1
k+2) (n ≥ 2)

+ s · C′
k+1(d̃

n+1
k+1 ∗ d̃

m
k+2) + s · C′

k+1(d̃
n
k+1 ∗ d̃

m+1
k+2)

+ t ·B′
k+1(d̃

n
k+1 ∗ d̃

m
k+2)

+ c3(d̃k+1) ·G
′
k(d̃n−1

k+1 ∗ d̃
m
k+2) (92)

D′
k(λ) = t ·E′

k(λ) + s5(dk+1) · F
′
k(λ) (93)

D′
k(d̃n

k+1) = l ·D′
k(d̃n−1

k+1) + s ·D′
k(d̃n+1

k+1) (n ≥ 1)

+ t ·E′
k(d̃n

k+1) + s5(dk+1) · F
′
k(d̃n

k+1) (94)

E′
k(λ) = c2(d̃k+1) ·D

′
k(d̃k+1) + s5(dk+1) ·H

′
k(λ) (95)

E′
k(d̃n

k+1) = l ·E′
k(d̃n−1

k+1) + s ·E′
k(d̃n+1

k+1) (n ≥ 1)

+ c2(d̃k+1) ·D
′
k(d̃n+1

k+1) + s5(dk+1) ·H
′
k(d̃n

k+1) (96)

F ′
k(λ) = t ·H ′

k(λ) + c4(k) ·A
′
k+1(λ) (97)

F ′
k(d̃n

k+1) = l · F ′
k(d̃n−1

k+1) + s · F ′
k(d̃n+1

k+1) (n ≥ 1)

+ t ·H ′
k(d̃n

k+1) + c4(k) ·A
′
k+1(d̃

n
k+1) (98)

G′
k(λ) = t · J ′

k(λ) + c4(k) ·B
′
k+1(λ) (99)

G′
k(d̃m

k+2) = l ·G′
k(d̃m−1

k+2) + s ·G′
k(d̃m+1

k+2)

+ t · J ′
k(d̃m

k+2) + c4(k) ·B
′
k+1(d̃

m
k+2) (100)

G′
k(d̃k+1) = l′ ·G′

k(λ) + s ·G′
k(d̃2

k+1)

+ t · J ′
k(d̃k+1) + c4(k) ·B

′
k+1(d̃k+1) (101)

G′
k(d̃n

k+1) = l ·G′
k(d̃n−1

k+1) + s ·G′
k(d̃n+1

k+1) (n ≥ 2)

+ t · J ′
k(d̃n

k+1) + c4(k) ·B
′
k+1(d̃

n
k+1) (102)

G′
k(d̃k+1 ∗ d̃

m
k+2) = l′ ·G′

k(d̃m
k+2) + l ·G′

k(d̃k+1 ∗ d̃
m−1
k+2)

+ s ·G′
k(d̃2

k+1 ∗ d̃
m
k+2) + s ·G′

k(d̃k+1 ∗ d̃
m+1
k+2)

+ t · J ′
k(d̃k+1 ∗ d̃

m
k+2)

+ c4(k) ·B
′
k+1(d̃k+1 ∗ d̃

m
k+2) (103)

G′
k(d̃n

k+1 ∗ d̃
m
k+2) = l ·G′

k(d̃n−1
k+1 ∗ d̃

m
k+2) + l ·G′

k(d̃n
k+1 ∗ d̃

m−1
k+2) (n ≥ 2)

226

On Induction Principles: 4.4. Applications

+ s ·G′
k(d̃n+1

k+1 ∗ d̃
m
k+2) + s ·G′

k(d̃n
k+1 ∗ d̃

m+1
k+2)

+ t · J ′
k(d̃n

k+1 ∗ d̃
m
k+2)

+ c4(k) ·B
′
k+1(d̃

n
k+1 ∗ d̃

m
k+2) (104)

H ′
k(λ) = c2(d̃k+1) · F

′
k(d̃k+1) (105)

H ′
k(d̃n

k+1) = l ·H ′
k(d̃n−1

k+1) + s ·H ′
k(d̃n+1

k+1) (n ≥ 1)

+ c2(d̃k+1) · F
′
k(d̃n+1

k+1) (106)

I ′k(λ) = c1(dk+2) · J
′
k(λ) (107)

I ′k(d̃n
k+1) = l · I ′k(d̃n−1

k+1) + s · I ′k(d̃n+1
k+1) (n ≥ 1)

+ c1(dk+2) · J
′
k(d̃n

k+1) (108)

J ′
k(λ) = c2(d̃k+2) ·G

′
k(c2(d̃k+2)) (109)

J ′
k(d̃m

k+2) = l · J ′
k(d̃m−1

k+2) + s · J ′
k(d̃m+1

k+2)

+ c2(d̃k+2) ·G
′
k(d̃m+1

k+2) (110)

J ′
k(d̃k+1) = l′ · J ′

k(λ) + s · J ′
k(d̃2

k+1)

+ c2(d̃k+2) ·G
′
k(d̃k+1 ∗ d̃k+2) (111)

J ′
k(d̃n

k+1) = l · J ′
k(d̃n−1

k+1) + s · J ′
k(d̃n+1

k+1) (n ≥ 2)

+ c2(d̃k+2) ·G
′
k(d̃n

k+1 ∗ d̃k+2) (112)

J ′
k(d̃k+1 ∗ d̃

m
k+2) = l′ · J ′

k(d̃m
k+2) + l · J ′

k(d̃k+1 ∗ d̃
m−1
k+2)

+ s · J ′
k(d̃2

k+1 ∗ d̃
m
k+2) + s · J ′

k(d̃k+1 ∗ d̃
m+1
k+2)

+ c2(d̃k+2) ·G
′
k(d̃k+1 ∗ d̃

m+1
k+2) (113)

J ′
k(d̃n

k+1 ∗ d̃
m
k+2) = l · J ′

k(d̃n−1
k+1 ∗ d̃

m
k+2) + l · J ′

k(d̃n
k+1 ∗ d̃

m−1
k+2) (n ≥ 2)

+ s · J ′
k(d̃n+1

k+1 ∗ d̃
m
k+2) + s · J ′

k(d̃n
k+1 ∗ d̃

m+1
k+2)

+ c2(d̃k+2) · J
′
k(d̃n

k+1 ∗ d̃
m+1
k+2) (114)

Let E′ be the guarded recursive specification consisting of the equations (79)–
(114) and let E be the guarded recursive specification consisting of the same
equations but without the extra acutes on the atomic actions. According
to RDP there is a solution for the guarded recursive specification E ′. We
will denote this solution as follows.

a′k(λ), a′k+1(d̃
n
k+1), . . . , j

′
k(d̃n

k+1 ∗ d̃
m
k+2).

We will show that we may use these processes in order to prove the theorem.
Therefore, we will introduce a linear unary operator. Let {r} be a set of function
names and consider the following linear functional specification E({r}).

E({r}) =
{
r(l′) = l, r

(
c′3(x)

)
= c3(x) : x ∈ E

}

∪
{
r(a) = a : a ∈ A \ {l′, c′3(x) : x ∈ E}

}

∪
{
r(a · x) = r(a) · r(x) : a ∈ A

}
.

227

On Induction Principles: 4.4. Applications

In accordance with ODP there is a solution for this system, say %. It will be
clear that

%
(
a′k(λ)

)
, %

(
a′k+1(d̃

n
k+1)

)
, . . . , %

(
j′k(d̃n

k+1 ∗ d̃
m
k+2)

)

is a solution for the guarded recursive specification E without accented atomic
actions. But it is also evident that

∂H

(
Ak(λ)

)
, ∂H

(
Ak+1(d̃

n
k+1)

)
, . . . , ∂H

(
Jk(d̃n

k+1 ∗ d̃
m
k+2)

)

is a solution for the guarded recursive specification E. So with the aid of RSP

we conclude that these solutions are equal and we find, in particular,

%
(
a′0(λ)

)
= ∂H

(
A0(λ)

)
. (115)

Let I ′ = I ∪ {l} ∪ {c′3(x) : x ∈ E} be a subset of the set of atomic actions A.
We will prove that τI′ = τI ◦ %. Let {t} be a functon name and let E({t}) be
the defining linear functional specification for τI′ .

E({t}) =
{
t(a) = a : a ∈ A \ I ′

}

∪
{
t(a) = τ : a ∈ I ′

}

∪
{
t(a · x) = t(a) · t(x) : a ∈ A

}
.

It will be clear that τI′ solves this system. It is not hard to see that τI ◦% is also
a solution for the linear functional specification E({t}). So in accord with OSP

we find that these solutions must be equal and τI′ = τI ◦ %. With this in mind
we can deduce the following relation between a′0 and A0 using equation (115).

τI′

(
a′0(λ)

)
= τI ◦ %

(
a′0(λ)

)

= τI ◦ ∂H

(
A0(λ)

)
.

So in order to prove theorem 4.4.16 it will be sufficient to deduce that the
following equation is valid.

τI′

(
a′0(λ)

)
= τ ·

∞∏

i=1

s5(di). (116)

The last part of this proof will consist of the verification of equation (116). So
for convenience sake we will stipulate the structure of this last part. We will
make an assumption on a DE-trace for a fixed p ≥ 1. Then we will state a
conclusion on an FH-trace that can be derived from this assumption. Then the
actual derivation of this will follow. It will be easy to see that the assumption
on this DE-trace is valid for p = 1. With the aid of this we can set off a chain
reaction and in the end we will find that both the assumption on the DE-trace
and the conclusion on the FH-trace are true statements by themselves. With

228

On Induction Principles: 4.4. Applications

this knowledge we can make a small calculation on a single BC-trace. Then a
straightforward deduction in which we will use GIP will end the proof of (116).

Let J = {s5(d) : d ∈ D} be a subset of the set of atomic actions A.
Let β1 = β(I ′, J). Let p ≥ 1 be arbitrary but fixed. Suppose that the following
holds for all k ≥ 0 and n ≥ 1.

πp
J ◦ β1

(
d′k(λ)

)
= t · πp

J ◦ β1

(
e′k(λ)

)
+

p
∏

i=1

s5(dk+i) (117)

πp
J ◦ β1

(
d′k(d̃n

k+1)
)

= l · πp
J ◦ β1

(
d′k(d̃n−1

k+1)
)

+ s · πp
J ◦ β1

(
d′k(d̃n+1

k+1)
)

+ t · πp
J ◦ β1

(
e′k(d̃n

k+1)
)

+

p
∏

i=1

s5(dk+i) (118)

πp
J ◦ β1

(
e′k(λ)

)
= c2(d̃k+1) · π

p
J ◦ β1

(
e′k(d̃k+1)

)
+

p
∏

i=1

s5(dk+i) (119)

πp
J ◦ β1

(
e′k(d̃n

k+1)
)

= l · πp
J ◦ β1

(
e′k(d̃n−1

k+1)
)

+ s · πp
J ◦ β1

(
e′k(d̃n+1

k+1)
)

+ c2(d̃k+1) · π
p
J ◦ β1

(
d′k(d̃n+1

k+1)
)

+

p
∏

i=1

s5(dk+i). (120)

Then the following can be derived from these four equations for all k, n ≥ 0:

πp
J ◦ τI′

(
f ′k(d̃n

k+1)
)

πp
J ◦ τI′

(
h′k(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (121)

In order to derive this we will first verify a similar result from the assumptions
on double BC-traces and the JG-traces. In the subsequent display we will state
what we are going to deduce from the assumptions for all k, u,m ≥ 0.

πp
J ◦ τI′

(
b′k+1(d̃

u
k+1 ∗ d̃

m
k+2)

)

πp
J ◦ τI′

(
c′k+1(d̃

u
k+1 ∗ d̃

m+1
k+2)

)

πp
J ◦ τI′

(
g′k(d̃u

k+1 ∗ d̃
m+1
k+2)

)

πp
J ◦ τI′

(
j′k(d̃u

k+1 ∗ d̃
m
k+2)

)







= τ ·

p
∏

i=1

s5(dk+1+i). (122)

In the former theorems we verified this with induction on u. In fact, we proved
it with induction on the number of old datum elements available. This number
could not be increased once we entered a double BC-trace or a JG-trace. So
it was convenient to use this induction on the floor height of the traces. If we
had assumed that the queue could only duplicate “new” datum elements, we
could still use the floor height induction argument. For, we would not be able

229

On Induction Principles: 4.4. Applications

to reach a higher floor once we entered a double BC-trace or a JG-trace. And
the calculations in the previous theorems could have been reiterated. Now we
are in a different situation: as soon as we enter a trace that contains just one
old datum element we can reach every higher situated horizontal trace of the
dense block, q.v. figure 4.10. However, the proof for the case u = 0 will be the
same as in the former theorems since if u = 0 there are no old datum elements
in the queue. We will use this result to calculate the general case u ≥ 0. So
let u = 0 and fix an arbitrary k ≥ 0. Consider the following guarded recursive
specification E1.

E1 =
{
X1

0 = t · Y 1
0 + Z1

Y 1
0 = c2(d̃k+2) ·X

1
1 + Z1

X1
n = l ·X1

n−1 + s ·X1
n+1 + t · Y 1

n + Z1

Y 1
n = l · Y 1

n−1 + s · Y 1
n+1 + c2(d̃k+2) ·X

1
n+1 + Z1

Z1 =

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C1 = {X1
n, Y

1
n : n ≥ 0}. Then C1 is a conservative cluster of E1 in I ′. Since

the set of exits U(C1) = {Z1} is finite, we may apply CFAR∞ and we find for
all n ≥ 0:

τI′(X1
n) = τI′(Y 1

n) = τ ·

p
∏

i=1

s5(dk+1+i).

Because of equations (117)–(120) we see that if we put for all n ≥ 0

X1
n = πp

J ◦ β1

(
d′k+1(d̃

n
k+2)

)

Y 1
n = πp

J ◦ β1

(
e′k+1(d̃

n
k+2)

)
,

this will solve the guarded recursive specification E1. Now consider the follow-
ing calculation.

τ ·

p
∏

i=1

s5(dk+1+i) = τI′(X1
n)

= τI′ ◦ πp
J ◦ β1

(
d′k+1(d̃

n
k+2)

)

= πp
J ◦ τI′ ◦ β1

(
d′k+1(d̃

n
k+2)

)
use (4.3.12)

= πp
J ◦ τI′

(
d′k+1(d̃

n
k+2)

)
see lemma (4.4.6)

Such a calculation can be made for e′k+1, too. We find thus for all n ≥ 0

πp
J ◦ τI′

(
d′k+1(d̃

n
k+2)

)

πp
J ◦ τI′

(
e′k+1(d̃

n
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (123)

230

On Induction Principles: 4.4. Applications

Now consider the following guarded recursive specification E2.

E2 =
{
X2

0 = c2(d̃k+2) · Y
2
1

Y 2
0 = t ·X2

0

X2
n = l ·X2

n−1 + s ·X2
n+1 + c2(d̃k+2) · Y

2
n+1 + Z2

Y 2
n = l · Y 2

n−1 + s · Y 2
n+1 + t ·X2

n + Z2

Z2 = c3(d̃k+2) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C2 = {X2
n, Y

2
n : n ≥ 0}. Then C2 is a conservative cluster of E2 in I ′. Since

the set of exits U(C2) = {Z2} is finite, we may apply CFAR∞ and we find for
all n ≥ 0:

τI′(X2
n) = τI′(Y 2

n) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β2 = β
(
I ′, {c′3(d̃k+2)}

)
. We will show that if we put for all n ≥ 0

X2
n = πp

J ◦ β2

(
b′k+1(d̃

n
k+2)

)

Y 2
n = πp

J ◦ β2

(
c′k+1(d̃

n
k+2)

)
,

(124)

this will solve the guarded recursive specification E2. For n = 0 it is trivial to
see that, with the aid of equations (81) and (87), this is true for the first two
equations of E2. Now let n ≥ 1. We will verify the third equation of E2.

πp
J ◦ β2

(
b′k+1(d̃

n
k+2)

)(82)
= l · πp

J ◦ β2

(
b′k+1(d̃

n−1
k+2)

)

+ s · πp
J ◦ β2

(
b′k+1(d̃

n+1
k+2)

)

+ c2(d̃k+2) · π
p
J ◦ β2

(
c′k+1(d̃

n+1
k+2)

)

+ c3(d̃k+2) · π
p
J ◦ τI′

(
e′k+1(d̃

n−1
k+2)

)

(123)
= l · πp

J ◦ β2

(
b′k+1(d̃

n−1
k+2)

)

+ s · πp
J ◦ β2

(
b′k+1(d̃

n+1
k+2)

)

+ c2(d̃k+2) · π
p
J ◦ β2

(
c′k+1(d̃

n+1
k+2)

)

+ c3(d̃k+2) · τ ·

p
∏

i=1

s5(dk+1+i).

So we see that this solves the equation in E2 for X2
n. A similar calculation will

yield the same result for the fourth equation of E2. So the claim that (124) is
a solution for E2 is valid. We find

τ ·

p
∏

i=1

s5(dk+1+i) = τI′(X2
n)

231

On Induction Principles: 4.4. Applications

= τI′ ◦ πp
J ◦ β2

(
b′k+1(d̃

n
k+2)

)

= πp
J ◦ τI′ ◦ β2

(
b′k+1(d̃

n
k+2)

)
use (4.3.12)

= πp
J ◦ τI′

(
b′k+1(d̃

n
k+2)

)
. see lemma (4.4.6)

Such a calculation can be made for c′k+1, too. Summarizing we have for all n ≥ 0

πp
J ◦ τI′

(
b′k+1(d̃

n
k+2)

)

πp
J ◦ τI′

(
c′k+1(d̃

n
k+2)

)

}

= τ ·

p
∏

i=1

s5(dk+1+i). (125)

This means that the first two equations of (122) are proved for u = 0 and our
fixed k ≥ 0. Consider the next guarded recursive specification E3.

E3 =
{
X3

0 = t · Y 3
0 + Z3

Y 3
0 = c2(d̃k+2) ·X

3
1

X3
m = l ·X3

m−1 + s ·X3
m+1 + t · Y 3

m + Z3

Y 3
m = l · Y 3

m−1 + s · Y 3
m+1 + c2(d̃k+2) ·X

3
m+1

Z3 = c4(k) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C3 = {X3
m, Y

3
m : m ≥ 0}. Then C3 is a conservative cluster of E3 in I ′.

Since the set of exits U(C3) = {Z3} is finite, we may apply CFAR∞ and we
find for all m ≥ 0:

τI′(X3
m) = τI′(Y 3

m) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β3 = β
(
I ′, {c4(k)}

)
. It will not be difficult to see that if we put for allm ≥ 0

X3
m = πp

J ◦ β3

(
g′k(d̃m

k+2)
)

Y 3
m = πp

J ◦ β3

(
j′k(d̃m

k+2)
)
,

(126)

this will solve the system E3. We will only verify the first equation for E3.
Consider thereto the following display.

πp
J ◦ β3

(
g′k(λ)

)(99)
= t · πp

J ◦ β3

(
j′k(λ)

)
+ c4(k) · π

p
J ◦ τI′

(
b′k+1(λ)

)

(125)
= t · πp

J ◦ β3

(
j′k(λ)

)
+ c4(k) · τ ·

p
∏

i=1

s5(dk+1+i).

The other equations can be handled in the same way while using equation (125).
Thus, we find that (126) solves the guarded recursive specification E3. When

232

On Induction Principles: 4.4. Applications

we use the fact that the generalized projection operator and the abstraction
operator commute and the fact that the abstraction operator absorbs the se-
lective abstraction operator β3 we will find with a calculation that is similar to
the ones we did for E1 and E2 that for all m ≥ 0

πp
J ◦ τI′

(
g′k(d̃m

k+2)
)

πp
J ◦ τI′

(
j′k(d̃m

k+2)
)

}

= τ ·

p
∏

i=1

s5(dk+1+i).

Now we find that the second two equations of (122) are also correct so we see
that the case u = 0 is proved for (122), since k ≥ 0 was arbitrarily chosen. We
will use this result to prove equation (122) for all u ≥ 0. We can think of the
dense block as a very large (conservative) cluster. The only way out for this
cluster is by removing all the old data from the queue, that is, the case u = 0.
Precisely the atomic actions that result in this situation are acuted. So if we
make a β that transforms into the abstraction operator after passing the acuted
actions we can use the result for u = 0. To achieve this consider the subsequent
equations. The guarded recursive specification E4 consists of these equations
for all n ≥ 2 and m ≥ 1. Let k ≥ 0 be fixed.

X4
1,0 = l′ · Z4 + s ·X4

2,0 + c2(d̃k+2) · Y
4
1,1 + c′3(d̃k+1) · Z4

X4
n,0 = l ·X4

n−1,0 + s ·X4
n+1,0 + c2(d̃k+2) · Y

4
n,1 + c3(d̃k+1) · T

4
n−1,0

X4
1,m = l′ · Z4 + l ·X4

1,m−1 + s ·X4
2,m + s ·X4

1,m+1

+ c2(d̃k+2) · Y
4
1,m+1 + c′3(d̃k+1) · Z4

X4
n,m = l ·X4

n−1,m + l ·X4
n,m−1 + s ·X4

n+1,m + s ·X4
n,m+1

+ c2(d̃k+2) · Y
4
n,m+1 + c3(d̃k+1) · T

4
n−1,m

Y 4
1,0 = l′ · Z4 + s · Y 4

2,0 + t ·X4
1,0 + c′3(d̃k+1) · Z4

Y 4
n,0 = l · Y 4

n−1,0 + s · Y 4
n+1,0 + t ·X4

n,0 + c3(d̃k+1) · Z
4
n−1,0

Y 4
1,m = l′ · Z4 + l · Y 4

1,m−1 + s · Y 4
2,m + s · Y 4

1,m+1

+ t ·X4
1,m + c′3(d̃k+1) · Z4

Y 4
n,m = l · Y 4

n−1,m + l · Y 4
n,m−1 + s · Y 4

n+1,m + s · Y 4
n,m+1

+ t ·X4
n,m + c3(d̃k+1) · Z

4
n−1,m

Z4
1,0 = l′ · Z4 + s · Z4

2,0 + t · T 4
1,0 + c4(k) ·X

4
1,0

Z4
n,0 = l · Z4

n−1,0 + s · Z4
n+1,0 + t · T 4

n,0 + c4(k) ·X
4
n,0

Z4
1,m = l′ · Z4 + l · Z4

1,m−1 + s · Z4
2,m + s · Z4

1,m+1

+ t · T 4
1,m + c4(k) ·X

4
1,m

Z4
n,m = l · Z4

n−1,m + l · Z4
n,m−1 + s · Z4

n+1,m + s · Z4
n,m+1

+ t · T 4
n,m + c4(k) ·X

4
n,m

233

On Induction Principles: 4.4. Applications

T 4
1,0 = l′ · Z4 + s · T 4

2,0 + c2(d̃k+2) · Z
4
1,1

T 4
n,0 = l · T 4

n−1,0 + s · T 4
n+1,0 + c2(d̃k+2) · Z

4
n,1

T 4
1,m = l′ · Z4 + l · T 4

1,m−1 + s · T 4
2,m + s · T 4

1,m+1

+ c2(d̃k+2) · Z
4
1,m+1

T 4
n,m = l · T 4

n−1,m + l · T 4
n,m−1 + s · T 4

n+1,m + s · T 4
n,m+1

+ c2(d̃k+2) · Z
4
n,m+1

Z4 =

p
∏

i=1

s5(dk+1+i)

Let C4 = {X4
n,m, Y

4
n,m, Z

4
n,m, T

4
n,m : n ≥ 1,m ≥ 0}. The set of exits is

U(C4) = {l′ · Z4, c
′
3(d̃k+1) · Z4}.

It is not hard to see that C4 is a conservative cluster of E4 in I ′; so since the
set of exits is finite we may apply CFAR∞ and we find for all n ≥ 1 and m ≥ 0

τI′(X4
n,m) = τI′(Y 4

n,m) = τI′(Z4
n,m) = τI′(T 4

n,m) = τ ·

p
∏

i=1

s5(dk+1+i). (127)

Let β4 = β
(
I ′, {l′, c′3(d̃k+1)}

)
. It will be not that hard to see that, if we put

for all n ≥ 1 and m ≥ 0

X4
n,m = πp

J ◦ β4

(
b′k+1(d̃

n
k+1 ∗ d̃

m
k+2)

)

Y 4
n,m = πp

J ◦ β4

(
c′k+1(d̃

n
k+1 ∗ d̃

m
k+2)

)

Z4
n,m = πp

J ◦ β4

(
g′k(d̃n

k+1 ∗ d̃
m
k+2)

)

T 4
n,m = πp

J ◦ β4

(
j′k(d̃n

k+1 ∗ d̃
m
k+2)

)

this will solve the guarded recursive specification E4. To show the usage of
the acuted atomic actions we will prove the first four equations of the guarded
recursive specification E4.

X4
1,0 = πp

J ◦ β4

(
b′k+1(d̃k+1)

)

= l′ · πp
J ◦ τI′

(
b′k+1(λ)

)
+ s · πp

J ◦ β4

(
b′k+1(d̃

2
k+1)

)
use (83)

+ c2(d̃k+2) · π
p
J ◦ β4

(
c′k+1(d̃k+1 ∗ d̃k+2)

)

+ c′3(d̃k+1) · π
p
J ◦ τI′

(
j′k(λ)

)

= l′ · Z4 + s ·X4
2,0 + c2(d̃k+2) · Y

4
1,1

+ c′3(d̃k+1) · Z4. use (122) for u = 0

234

On Induction Principles: 4.4. Applications

The second equation. Let n ≥ 2. In equation (84) there are no acuted atomic
actions so β4 will not transform into an abstraction operator.

X4
n,0 = πp

J ◦ β4

(
b′k+1(d̃

n
k+1)

)

= l ·X4
n−1,0 + s ·X4

n+1,0 + c2(d̃k+2) · Y
4
n,1 + c3(d̃k+1) · T

4
n−1,0.

The third equation.

X4
1,m = πp

J ◦ β4

(
b′k+1(d̃k+1 ∗ d̃

m
k+2)

)

= l′ · πp
J ◦ τI′

(
b′k+1(d̃

m
k+2)

)
use (85)

+ l ·X4
1,m−1 + s ·X4

2,m + s ·X4
1,m+1

+ c2(d̃k+2) · Y
4
1,m+1 + c′3(d̃k+1) · π

p
J ◦ τI′

(
j′k(d̃m

k+2)
)

= l′ · Z4 + l ·X4
1,m−1 + s ·X4

2,m + s ·X4
1,m+1 use (122)

+ c2(d̃k+2) · Y
4
1,m+1 + c′3(d̃k+1) · Z4

The fourth equation. In equation (86) there are no accented atomic actions
so β4 will not do anything. Just as with the second equation the verification of
the fourth equation is trivial. The other equations are verified in exactly the
same way as these first four. Recall that we are proving (122). We will prove
that the first equation of (122) holds.

τ ·

p
∏

i=1

s5(dk+1+i) = τI′(X4
n,m) with (127)

= τI′ ◦ πp
J ◦ β4

(
b′k+1(d̃

n
k+1 ∗ d̃

m
k+2)

)

= πp
J ◦ τI′ ◦ β4

(
b′k+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
use (4.3.12)

= πp
J ◦ τI′

(
b′k+1(d̃

n
k+1 ∗ d̃

m
k+2)

)
see (4.4.6)

Since this deduction is valid for all n ≥ 1 and m ≥ 0 we see that the first
equation of (122) is correct. The other three are verified analogously. We have
also seen that (122) is correct for u = 0 so this will end the proof of (122).

Now we will verify that from equations (117)–(120) we can derive (121).
Choose a fixed k ≥ 0. First, we will prove for all n ≥ 0 for the I-nodes:

πp
J ◦ τI′

(
i′k(d̃n

k+1)
)

= τ ·

p
∏

i=1

s5(dk+1+i). (128)

Consider thereto the following guarded recursive specification E5.

E5 =
{
X5

0 = c1(dk+2) ·

p
∏

i=1

s5(dk+1+i)

X5
n = l ·X5

n−1 + s ·X5
n+1 +X5

0

∣
∣ n ≥ 1

}
.

235

On Induction Principles: 4.4. Applications

Let C5 = {X5
n : n ≥ 1} and U(C5) = {X5

0}. We see that C5 is a conservative
cluster for E5 in I ′ hence, we may apply CFAR∞ and we find for all n ≥ 1

τI′(X5
n) = τ ·

p
∏

i=1

s5(dk+1+i) = τI′(X5
0).

Let β5 = β
(
I ′, {c1(dk+2)}

)
. We will show that if we put for all n ≥ 0

X5
n = πp

J ◦ β5

(
i′k(d̃n

k+1)
)

this will solve the system E5. We begin with the first equation.

X5
0 = πp

J ◦ β5

(
i′k(λ)

)

= c1(dk+2) · π
p
J ◦ τI′

(
j′k(λ)

)
see (107)

= c1(dk+2) · τ ·

p
∏

i=1

s5(dk+1+i). use (122)

Now let n ≥ 1.

X5
n = πp

J ◦ β5

(
i′k(d̃n

k+1)
)

= l ·X5
n−1 + s ·X5

n+1 + c1(dk+2) · π
p
J ◦ τI′

(
j′k(d̃n

k+1)
)

use (108)

= l ·X5
n−1 + s ·X5

n+1 + c1(dk+2) · τ ·

p
∏

i=1

s5(dk+1+i) use (122)

= l ·X5
n−1 + s ·X5

n+1 +X5
0 .

Using theorem (4.3.12) and lemma (4.4.6) we will find that equation (128) is
correct.

With the use of (128) we are going to verify that a similar result holds for
the A-nodes. For all n ≥ 1 the following is valid

πp
J ◦ τI′

(
a′k+1(d̃

n
k+1)

)
= τ ·

p
∏

i=1

s5(dk+1+i). (129)

Consider the subsequent guarded recursive specification E6.

E6 =
{
X6

0 = c1(dk+2) ·

p
∏

i=1

s5(dk+1+i)

X6
n = l ·X6

n−1 + s ·X6
n+1 +X6

0 + Z6

Z6 = c3(d̃k+1) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

236

On Induction Principles: 4.4. Applications

Let C6 = {X6
n : n ≥ 1} and U(C6) = {X6

0 , Z6}. It is easy to see that C6 is a
conservative cluster for E6 in I ′ so in accord with CFAR∞ we find for all n ≥ 1

τI′(X6
n) = τ ·

p
∏

i=1

s5(dk+1+i) = τI′(X6
0).

Let β6 = β
(
I ′, {c1(dk+2), c3(d̃k+1)}

)
. It is not difficult to see that if we put for

all n ≥ 0
X6

n = πp
J ◦ β6

(
a′k+1(d̃

n
k+1)

)

this will solve the specification E6. We will show this for the second equation
of E6.

X6
n = πp

J ◦ β6

(
a′k+1(d̃

n
k+1)

)

= l ·X6
n−1 + s ·X6

n+1 + c1(dk+2) · π
p
J ◦ τI′

(
b′k+1(d̃

n
k+1)

)

+ c3(d̃k+1) · π
p
J ◦ τI′

(
i′k(d̃n−1

k+1)
)

see (80)

= l ·X6
n−1 + s ·X6

n+1 +X6
0 because of (122)

+ c3(d̃k+1) · π
p
J ◦ τI′

(
i′k(d̃n−1

k+1)
)

= l ·X6
n−1 + s ·X6

n+1 +X6
0 + Z6. use (128)

And using (4.3.12) and (4.4.6) we find that equation (129) is verified.

Now we are in a position to prove that equation (121) is correct. Consider
thereto the following guarded recursive specification E7.

E7 =
{
X7

0 = t · Y 7
0 + Z7

Y 7
0 = c2(d̃k+1) ·X

7
1

X7
n = l ·X7

n−1 + s ·X7
n+1 + t · Y 7

n + Z7

Y 7
n = l · Y 7

n−1 + s · Y 7
n+1 + c2(d̃k+1) ·X

7
n+1

Z7 = c4(k) ·

p
∏

i=1

s5(dk+1+i)
∣
∣ n ≥ 1

}
.

Let C7 = {X7
n, Y

7
n : n ≥ 0} and U(C7) = {Z7}. We see that C7 is a conservative

cluster for E7 in I ′ so we can apply CFAR∞ and we find for all n ≥ 0

τI′(X7
n) = τI′(Y 7

n) = τ ·

p
∏

i=1

s5(dk+1+i).

Let β7 = β
(
I ′, {c4(k)}

)
. If we put for all n ≥ 0

X7
n = πp

J ◦ β7

(
f ′k(d̃n

k+1)
)

Y 7
n = πp

J ◦ β7

(
h′k(d̃n

k+1)
)

237

On Induction Principles: 4.4. Applications

this will solve the guarded recursive specification E7. We will verify the first
equation. The other equations are verified analogously.

X7
0 = πp

J ◦ β7

(
f ′k(λ)

)

= t · Y 7
0 + c4(k) · π

p
J ◦ τI′

(
a′k+1(λ)

)
because of (97)

= t · Y 7
0 + Z7. use (129)

Combining these facts while using theorem (4.3.12) and lemma (4.4.6) we find
that equation (121) is correct under the assumption that equations (117)–(120)
hold.

At this point we will prove that without these assumptions equation (121)
is also valid. We will show this with induction on p. Let p = 1. We will
show that the equations (117)–(120) are valid for p = 1. Let us first consider
equation (117) for p = 1. With the aid of equation (93) we immediately see

π1
J ◦ β1

(
d′k(λ)

)
= t · π1

J ◦ β1

(
e′k(λ)

)
+ s5(dk+1).

This is precisely assumption (117). Now we will look at the second assump-
tion (118). With the aid of equation (94) we see at once

π1
J ◦ β1

(
d′k(d̃n

k+1)
)

= l · π1
J ◦ β1

(
d′k(d̃n−1

k+1)
)

+ s · π1
J ◦ β1

(
d′k(d̃n+1

k+1)
)

+ t · π1
J ◦ β1

(
e′k(d̃n

k+1)
)

+ s5(dk+1).

This is just equation (118). The remaining two assumptions are verified in the
same trivial way. This means that equation (121) is valid for p = 1, which
concludes the basis of our induction. Now suppose that (121) is correct for
one p ≥ 1. Then we will prove it for p + 1. Thereto, we will show that the
assumptions (117)–(120) are valid for p + 1. Let us take a look at the first
assumption. With the aid of equation (93) we find easily

πp+1
J ◦ β1

(
d′k(λ)

)
= t · πp+1

J ◦ β1

(
e′k(λ)

)
+ s5(dk+1) · π

p
J ◦ τI′

(
f ′k(λ)

)

= t · πp+1
J ◦ β1

(
e′k(λ)

)

+ s5(dk+1) · τ ·

p
∏

i=1

s5(dk+1+i) induction

= t · πp+1
J ◦ β1

(
e′k(λ)

)
+

p+1
∏

i=1

s5(dk+i).

This means that the first assumption is satisfied. Below we will show this for
the second assumption.

πp+1
J ◦ β1

(
d′k(d̃n

k+1)
)

= l · πp+1
J ◦ β1

(
d′k(d̃n−1

k+1)
)

use (94)

238

On Induction Principles: 4.4. Applications

+ s · πp+1
J ◦ β1

(
d′k(d̃n+1

k+1)
)

+ t · πp+1
J ◦ β1

(
e′k(d̃n

k+1)
)

+ s5(dk+1) · π
p
J ◦ τI′

(
f ′k(d̃n

k+1)
)

= l · πp+1
J ◦ β1

(
d′k(d̃n−1

k+1)
)

+ s · πp+1
J ◦ β1

(
d′k(d̃n+1

k+1)
)

+ t · πp+1
J ◦ β1

(
e′k(d̃n

k+1)
)

+ s5(dk+1) · τ ·

p
∏

i=1

s5(dk+1+i) induction

= l · πp+1
J ◦ β1

(
d′k(d̃n−1

k+1)
)

+ s · πp+1
J ◦ β1

(
d′k(d̃n+1

k+1)
)

+ t · πp+1
J ◦ β1

(
e′k(d̃n

k+1)
)

+

p+1
∏

i=1

s5(dk+i).

The other two assumptions can be treated in exactly the same way. So we
find that all the assumptions are valid for p + 1. But then it follows that
equation (121) is proved for p + 1. This concludes the induction step. Now
that we have seen that (121) it is evident that the assumptions that we made
are also correct by themselves. (For, the case p = 1 was already correct and
for p > 1 we can reiterate, using (121), the above calculation.) With that result
we are going to prove that the following holds for all n ≥ 0.

πp
J ◦ τI

(
d′k(d̃n

k+1)
)

πp
J ◦ τI

(
e′k(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+i). (130)

Consider the subsequent guarded recursive specification E8.

E8 =
{
X8

0 = t · Y 8
0 + Z8

Y 8
0 = c2(d̃k+1) ·X

8
1 + Z8

X8
n = l ·X8

n−1 + s ·X8
n+1 + t · Y 8

n + Z8

Y 8
n = l · Y 8

n−1 + s · Y 8
n+1 + c2(d̃k+1) ·X

8
n+1 + Z8

Z8 =

p
∏

i=1

s5(dk+i)
∣
∣ n ≥ 1

}
.

We see at once from equations (117)–(120) and equation (121) that if we put
for all n ≥ 0

X8
n = πp

J ◦ β1

(
d′k(d̃n

k+1)
)

Y 8
n = πp

J ◦ β1

(
e′k(d̃n

k+1)
)
,

that this will solve the system E8. Let C8 = {X8
n, Y

8
n : n ≥ 0}. The set of exits

is U(C8) = {Z8}. We may apply CFAR∞ and we find for all n ≥ 0

τI′(X8
n) = τI′(Y 8

n) = τ ·

p
∏

i=1

s5(dk+i).

239

On Induction Principles: 4.4. Applications

A simple commutativity/absorption argument will yield that equation (130) is
valid.

Now we will deduce the following result on a single BC-trace. For all n ≥ 0

πp
J ◦ τI′

(
b′k(d̃n

k+1)
)

πp
J ◦ τI′

(
c′k(d̃n

k+1)
)

}

= τ ·

p
∏

i=1

s5(dk+i). (131)

To achieve this, we will need one more guarded recursive specification E9.

E9 =
{
X9

0 = c2(d̃k+1) · Y
9
1

Y 9
0 = t ·X9

0

X9
n = l ·X9

n−1 + s ·X9
n+1 + c2(d̃k+1) · Y

9
n+1 + Z9

Y 9
n = l · Y 9

n−1 + s · Y 9
n+1 + t ·X9

n + Z9

Z9 = c3(d̃k+1) ·

p
∏

i=1

s5(dk+i)
∣
∣ n ≥ 1

}
.

Let C9 = {X9
n, Y

9
n : n ≥ 0}. It will be clear that this is a conservative cluster

for E9 in I ′. The set of exits is U(C9) = {Z9}. So if we apply CFAR∞ we find
for all n ≥ 0

τI′(X9
n) = τI′(Y 9

n) = τ ·

p
∏

i=1

s5(dk+i).

Let β8 = β
(
I ′, {c3(d̃k+1)}

)
. With the aid of equations (81), (82), (87) and (88)

together with the just derived result on the DE-traces (130) it is not hard to
see that if we put for all n ≥ 0

X9
n = πp

J ◦ β8

(
b′k(d̃n

k+1)
)

Y 9
n = πp

J ◦ β8

(
c′k(d̃n

k+1)
)
,

this is a solution for the guarded recursive specificationE9. So a straightforward
calculation gives us that equation (131) is correct.

At this point we will make the final calculations to prove the theorem.
Suppose that k = 0. We will show that equation (116) is correct. Let p ≥ 1 be
fixed and consider the deduction below.

πp
J ◦ τI′

(
a′0(λ)

)
= τ · πp

J ◦ τI′

(
b′0(λ)

)
use (79)

= τ · τ ·

p
∏

i=1

s5(di) because of (131)

= τ · πp
J

(∞∏

i=1

s5(di)
)

.

240

On Induction Principles: 4.5. Conclusions and further research

In accord with GIP we may conclude that

τI′

(
a′0(λ)

)
= τ ·

∞∏

i=1

s5(di),

which is exactly equation (116). We have also seen the relation between a′0
and A0; see equation (115). And with the aid of this equation we conclude
that

τI ◦ ∂H

(
A0(λ)

)
= τ ·

∞∏

i=1

s5(di).

This ends the proof of 4.4.16.

4.5. Conclusions and further research

We have presented a theory in which it is possible to introduce linear unary
operators and in which we can reason on these operators in a comfortable way.
The theory that we developed is a generalization of the theory that is the
subject of research in chapter 3. In there it was not yet possible to specify
the projection operators. This is now incorporated in the theory. Moreover,
the generalized induction principle GIP has been added to the theory that we
studied in chapter 3, in which we already studied the two other principles ODP

and OSP. The results of chapter 3 can also be verified in this more general
framework. Therefore, we focused in this chapter on theorems concerning op-
erators that could not be specified with the more restrictive form of the theory:
the projection operators and linear unary operators with an exit possibility.

In section 4.4 we found some interesting applications to the subject of
protocol verification. We showed in that section that GIP can be very useful in
the area of protocol verification, especially for algebraic verification techniques,
whereas AIP and its set of full projections is not very useful due to the fact
that they do, in general, not commute with the abstraction operator. It will
be clear that in this area more work can be done: we verified three protocols
that were just hypothetical ones. We can make the three example protocols
more symmetric by giving the two channel specifications the same behaviour;
it will be not that hard to verify these protocols in the same way as we did for
the asymmetric ones, although it can be quite a lenghty job. It will also not
be a difficult task to verify the examples with a stronger correctness criterion:
namely that these protocols are, in fact, one bit buffers.

We can still not specify the generalized state operator, see section 1.3, with
a linear functional specification so further research on this subject is recom-
mended. A way how to achieve this is mentioned briefly in section 3.7. When

241

On Induction Principles: 4.5. Conclusions and further research

we are able to specify the generalized state operator and more protocol verifi-
cations of this type have been investigated, we can try to verify some sliding
window protocols that have similar correctness criteria as the criterion that we
used for our verifications; see [24].

Another interesting matter that can be worked out is the verification of
theorem (4.4.12) and its more restrictive versions. In chapter 3 we can already
see such a theorem: see theorem (3.6.1), page 135.

In this chapter we have not mentioned anything on the model theoretic side
of ACPτ,u. In section 3.5 a model for the theory without abstraction ACPu has
been given and this can be generalized effortlessly to the more general situation
that we studied in this chapter. However, on this subject still a lot of work has
to be done.

If we look at the proofs that have been given in section 4.4 we can see
that they consist of many steps that are almost the same. It might be the case
that parts of these proofs can be done automagically and therefore it is also
interesting to give formal specifications of these protocols with the use of an
algebraic specification language. Examples of such languagese are PSF, see [34]

and µCRL, see [25].

242

Samenvatting

De titel van dit proefschrift luidt in het Nederlands: lineaire unaire opera-
toren in de procesalgebra. Met behulp van de procesalgebra worden allerlei
processen bestudeerd. Zo een proces kan zijn een koffieautomaat, een robot,
een computer, een verkeerslicht of het breien van een sjaal. Om deze processen
te beschrijven gaan we er vanuit dat ze een aantal elementaire acties kunnen
uitvoeren. Te denken valt aan een muntje inwerpen, een verfspuit aanzetten,
een karakter inlezen, het licht op groen zetten of één steek averecht breien.
Deze acties worden wel atomair genoemd. Om nu het gedrag van een proces
te beschrijven, gebruiken we behalve deze atomen ook een aantal bewerkingen.
Zo wordt bijvoorbeeld het na elkaar uitvoeren van twee atomaire acties met een
vermenigvuldigingsteken · aangegeven. Als we definiëren dat r staat voor één
steek recht en a staat voor één steek averecht dan wordt één recht, één averecht
als volgt genoteerd: r · a. Zo zijn er nog een aantal van dit soort operaties. Als
er gekozen moet worden tussen r en a wordt een + gebruikt: r + a. Meestal
wordt een proces gedefinieerd in termen van zichzelf. Dit heet recursie. Als we
bijvoorbeeld een sjaal willen breien dan staat B = r · a ·B voor het proces dat
één recht, één averecht doet en dan weer opnieuw begint.

Lineaire unaire operatoren worden in de procesalgebra gebruikt om spe-
cifieke problemen op te lossen. De werkwijze is meestal als volgt: er is een
probleem dat opgelost moet worden maar de formalismen die op dat moment
voor handen zijn, zijn niet toereikend. Derhalve wordt er naar een nieuw for-
malisme gezocht, hetgeen met zich meebrengt dat er allerlei standaardfeiten
over dit formalisme bewezen moeten worden. In een aantal gevallen ligt de
oplossing in het ad hoc definiëren van een of andere operator. Het formalisme
waarmee het probleem aangepakt kan worden bestaat dan uit een basisforma-
lisme aangevuld met de operator die het probleem op de juiste wijze modelleert
teneinde tot een oplossing te geraken en natuurlijk een aantal stellingen met
betrekking tot de nieuwe operator. Dit proefschrift vormt daar geen uitzonde-
ring op: in hoofdstuk 2 wordt een probleem opgelost door aan een bestaand
formalisme een operator toe te voegen. Ook worden er aanvullende stellingen
bewezen die nodig zijn voor de uiteindelijke oplossing ervan.

Om een voorbeeld van deze werkwijze te geven gaan we een stekentellertje
inbouwen in ons breiproces B dat het aantal steken telt en elke 100 steken
opnieuw begint te tellen. De register operator die in hoofdstuk 2 is behandeld
leent zich daar uitstekend voor. We gaan eerst de acties r en a van een zoge-
naamd steekgetal voorzien: r(k) en a(k). Zo betekent r(k) de kde steek recht.

243

Samenvatting

Om het tellertje te kunnen ophogen definiëren we een functie f als volgt:

f(k) = k + 1 (mod 101).

Het getal k wordt veranderd in de rest van k + 1 bij deling door 101. Dus

f(0) = 1, f(1) = 2, . . . , f(99) = 100, f(100) = 0.

Ook zullen we een aantal pre-acties invoeren. Dit zijn weliswaar atomaire acties
maar ze moeten gezien worden als rekengrootheden. Deze rekengrootheden zijn:

r
(
f(↑)

)
, a

(
f(↑) ↓

)
.

De pijltjes omhoog betekenen dat er een gegeven uit het geheugen van de
register operator kan worden opgediept en een pijltje omlaag betekent dat er
een gegeven in het geheugen geplaatst kan worden. Laten we nu naar het
volgende proces kijken

X = r
(
f(↑)

)
· a

(
f(↑) ↓

)
·X.

Als we daar de register operator op los laten met als geheugeninhoud een
nul samen met een operator τ0 die de steken r(0) en a(0) met steekgetal nul
onzichtbaar maakt, dan zien we dat B = τ0 ◦ [0](X) precies het proces is dat
100 rechte en 100 averechte steken telt en dan weer opnieuw begint te tellen.
De operator τ0 verandert de acties r(0) en a(0) in een speciale “onzichtbare”
actie genaamd τ die de eigenschap heeft om te verdwijnen als hij wordt vooraf
gegaan door een andere actie: a(100) · τ = a(100). We berekenen τ0 ◦ [0](X):

B = τ0 ◦ [0]
(

r
(
f(↑)

)
· a

(
f(↑) ↓

)
·X

)

= r(1) · τ0 ◦ [0]
(

a
(
f(↑) ↓

)
·X

)

= r(1) · a(1) · τ0 ◦ [1](X)

...

= r(1) · a(1) · r(2) · a(2) · . . . · r(100) · a(100) · τ0 ◦ [100](X)

= r(1) · a(1) · r(2) · a(2) · . . . · r(100) · a(100) · τ0
(
r(0) · a(0) · [0](X)

)

= r(1) · a(1) · r(2) · a(2) · . . . · r(100) · a(100) · τ · τ · τ0 ◦ [0](X)

= r(1) · a(1) · r(2) · a(2) · . . . · r(100) · a(100) ·B.

En we zien dat er nu een stekentellerje is ingebouwd.

De rest van dit proefschrift bestaat uit pogingen om de hier boven ge-
schetste werkwijze in een algemeen kader te plaatsen. In hoofdstuk 3 wordt
een formalisme voorgesteld waarmee men de beschikking krijgt over een klasse

244

Samenvatting

van operatoren; de zogenaamde lineaire unaire operatoren. Een basisforma-
lisme waar men vanuit zou kunnen gaan bij de “klassieke” werkwijze wordt
verrijkt met een functieruimte waarin een groot aantal van de ad hoc opera-
toren leeft, die in het verleden reeds bedacht zijn. Er worden twee cruciale
bewijsregels gelanceerd die het mogelijk maken om op een eenvoudige manier
te kunnen redeneren over een deelklasse van de lineaire unaire operatoren. In
dit hoofdstuk wordt aandacht besteed aan algemene stellingen over deze opera-
toren. Er wordt aan de hand van, uit de literatuur bekende, voorbeelden (die in
verschillende theorieën zijn behandeld) plausibel gemaakt dat de voorgestelde
theorie toereikend is om deze voorbeelden aan te pakken. Hiermee wordt even-
eens aangetoond dat het voorgestelde formalisme unificerend werkt. Er wordt
echter ook gewezen op een aantal beperkingen die er liggen bij het formalisme
als zodanig.

We zullen nog éénmaal terugkomen op het breivoorbeeld. We hebben nu
wel een tellertje gemaakt, maar we zouden na 100 steken een nieuwe pen willen
kunnen opzetten en dan weer 100 steken breien. Met een n bedoelen we een
nieuwe pen. We willen bereiken dat B = (r · a)100 · n ·B hetgeen zoveel zeggen
wil dat er na 100 keer één recht, één averecht met een nieuwe pen begonnen
wordt en dan weer van voren af aan. We gaan een operator invoeren die het
gedrag van [0](X) zodanig aanpast dat we de nieuwe B krijgen. De operator
die we willen invoeren moet voldoen aan een aantal voorwaarden. We zullen
deze operator niet formeel invoeren zoals in hoofdstuk 3 is aangegeven, maar
we zullen ons beperken tot de eigenschappen die de operator heeft. We noe-
men deze operator ρ van renaming. Als k 6= 0 dan gooien we gewoon het
steekgetal weg: ρ

(
r(k)

)
= r en ρ

(
a(k)

)
= a. Als k = 0 dan geven we r(0) de

naam n: ρ
(
r(0)

)
= n van nieuwe pen en omdat we a(0) niet nodig hebben ont-

doen we hem weer van zijn identiteit door hem te veranderen in de onzichtbare
actie τ , waar voor geldt: n · τ = n. We berekenen nu ρ ◦ [0](X):

ρ ◦ [0](X) = ρ
(
r(1) · a(1) · . . . · r(100) · a(100) · r(0) · a(0) · [0](X)

)

= (r · a)100 · ρ
(
r(0) · a(0) · [0](X)

)

= (r · a)100 · n · τ · ρ ◦ [0](X)

= (r · a)100 · n · ρ ◦ [0](X).

We zien dat het gedrag van ρ◦[0](X) uitdrukt dat er na 100 maal één recht, één
averecht een nieuwe pen begonnen kan worden en dan weer van voren af aan.

In hoofdstuk 4 wordt één van de mogelijke bezwaren die men zou kunnen
hebben tegen het formalisme in hoofdstuk 3 weggenomen. Het formalisme
wordt op bepaalde plaatsen aangepast zodat er over een grotere deelklasse
van operatoren kan worden geredeneerd met behulp van de bewijsregels die
in hoofdstuk 3 uitgebreid aan de orde zijn geweest. Bovendien wordt er nog
een andere bewijsregel aan de theorie toegevoegd waarmee het mogelijk is om

245

Samenvatting

inductieve bewijzen te beschouwen. In tegenstelling tot de gevolgde weg in
hoofdstuk 3, ligt in dit hoofdstuk de nadruk op het toepassen van de tot nu toe
ontwikkelde theorie. Er wordt een oud probleem in de procesalgebra opgelost en
er wordt een methode geschetst om communicatieprotocollen door te rekenen,
aan de hand van een drietal voorbeelden.

246

References

At this point we will catalogue all the references we made throughout this
thesis. We will refer to the first possible source in which an item can be found.
This is not always the best source. General references to the subject of process
algebra and its applications are [8] for the process algebra and [3] for several
applications.

[1] G. J. Akkerman, J. C. M. Baeten, Term rewriting analysis in process

algebra, Report P9006, Programming Research Group, University of

Amsterdam, 1990. To appear in CWI Quarterly, 1992.

[2] P. America, J. W. de Bakker, Designing equivalent semantic models for

process creation, Theor. Comp. Sci. 60, pp. 109–176, 1988.

[3] J. C. M. Baeten (Editor), Applications of process algebra, Cambridge

Tracts in Theoretical Computer Science 17, Cambridge University Press

1990.

[4] J. C. M. Baeten, J. A. Bergstra, Global renaming operators in concrete

process algebra, Information and Computation 78, pp. 205–245, 1988.

[5] J. C. M. Baeten, J. A. Bergstra, J. W. Klop, Conditional axioms and

α/β-calculus in process algebra, in: Proc. IFIP Conf. on Formal De-

scription of Programming Concepts III, Ebberup 1986 (M. Wirsing,

ed.), North-Holland, Amsterdam, pp. 77–103, 1987.

[6] J. C. M. Baeten, J. A. Bergstra, J. W. Klop, Syntax and defining equa-

tions for an interrupt mechanism in process algebra, Fundamenta Infor-

maticae IX, pp. 127–168, 1986.

[7] J. C. M. Baeten, R. J. van Glabbeek, Another look at abstraction in

process algebra, In: Proc. 14th ICALP, Karlsruhe 1987 (Th. Ottmann,

ed.), LNSC 267, Springer Verlag, pp. 84–94, 1987.

[8] J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge Tracts in

Theoretical Computer Science 18, Cambridge University Press, 1990.

[9] J. W. Bakker, J. I. Zucker, Denotational semantics of concurrency, Proc.

14th ACM Symp. Theory of Comp., pp. 153–158, 1982.

247

References

[10] J. A. Bergstra, A process creation mechanism in process algebra, In [3],

pp. 81–88.

[11] J. A. Bergstra, personal communication, March 1992.

[12] J. A. Bergstra, J. W. Klop, Algebra of communicating processes with

abstraction, TCS 37, 77–121, 1985.

[13] J. A. Bergstra, J. W. Klop, Fair FIFO queues satisfy an algebraic cri-

terion for protocol correctness, Report CS-R8405, CWI Amsterdam,

1984.

[14] J. A. Bergstra, J. W. Klop, Fixed point semantics in process algebras,

MC report IW 206, Mathematical Centre, Amsterdam, 1982. Revised

version: J. A. Bergstra, J. W. Klop, A convergence theorem in process

algebra, CWI report CS-R8733, CWI Amsterdam, 1987.

[15] J. A. Bergstra, J. W. Klop, Process Algebra: specification and verifica-

tion in bisimulation semantics, Math. & Comp. Sci. II (M. Hazewinkel,

J. K. Lenstra, L. G. L. T. Meertens, eds.), CWI Monograph 4, North-

Holland, Amsterdam, pp. 61–94, 1986.

[16] J. A. Bergstra, J. W. Klop, The algebra of recursively defined processes

and the algebra of regular processes, Proceedings 11th ICALP, Antwer-

pen 1984 (ed. J. Paredaens), Springer LNCS 172, pp. 82–95, 1984.

[17] J. A. Bergstra, J. W. Klop, Verification of an alternating bit protocol by

means of process algebra, In: Math. Methods of Spec. and Synthesis of

Software Systems 1985 (eds. W. Bibel, K. P. Jantke), Math. Research

31, Akademie-Verlag Berlin, pp. 9–23, 1985.

[18] J. J. Brunekreef, A formal specification of three sliding window protocols,

Report P9102, Programming Research Group, University of Amster-

dam, 1991. Revised version: J. J. Brunekreef, A formal specification of

three sliding window protocols (revised version), Report P9102b, Pro-

gramming Research Group, University of Amsterdam, 1991.

[19] C. C. Chang, H. J. Keisler, Model Theory, Second Edition, North-Hol-

land, Amsterdam, 1973.

[20] N. Dershowitz, Termination of rewriting, Journal of Symbolic Compu-

tation, 3, pp. 69–116, 1987.

248

References

[21] R. J. van Glabbeek, Bounded nondeterminism and the approximation

induction principle in process algebra, In: Proceedings STACS 87 (F. J.

Brandenburg, G. Vidal-Naquet, M. Wirsing, eds.), LNCS 247, Springer

Verlag, pp. 336–347, 1987.

[22] R. J. van Glabbeek, F. W. Vaandrager, Modular specifications in pro-

cess algebra—with curious queues, in: Algebraic Methods: Theory,

Tools, and Applications (M. Wirsing, J. A. Bergstra, eds.), LNCS 394,

Springer Verlag, pp. 465–506, 1989.

[23] R. J. van Glabbeek, W. P. Weijland, Branching time and abstraction in

bisimulating semantics (extended abstract), Information Processing 89,

(G. X. Ritter, ed.), North-Holland, 613–618, Amsterdam 1989.

[24] R. A. Groenveld, Verification of a sliding window protocol by means of

process algebra, Report P8701, Programming Research Group, Univer-

sity of Amsterdam, 1987.

[25] J. F. Groote, A. Ponse, The syntax and semantics of µCRL, CWI report

CS-R9076, CWI Amsterdam, 1990. Also contained in: J. F. Groote,

Process algebra and structured operational semantics, Ph D thesis, Uni-

versity of Amsterdam, 1991.

[26] M. Hennessy, Algebraic theory of processes, MIT Press, Cambridge Ma.,

1988.

[27] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall In-

ternational, Englewood Cliffs, New Jersey, 1985.

[28] S. Kamin, J.-J. Lévy, Two generalizations of the recursive path order-

ing, Unpublished note, Department of Computer Science, University of

Illinois, Urbana, IL, 1980.

[29] G. Karjoth, Stepwise specification of a sliding-window protocol by means

of process algebra, Proc. 1988 Intl. Zürich Seminar on Digital Commu-

nications (IEEE Catalog Nr. 88TH0202-2), pp. 109–114, 1988.

[30] J. W. Klop, Term Rewriting Systems, CWI report CS-R9073, CWI Am-

sterdam, 1990. To appear in: Handbook of Logic in Computer Science

(eds. S. Abramsky, D. Gabbay and T. Maibaum), Oxford University

Press.

[31] J. C. Koomen, A structure theory for communication network control,

Ph D thesis, Technical University Delft, 1982.

249

References

[32] E. Kranakis, Fixed point equations with parameters in the projective limit

model, Inf. & Comp. 75, pp. 264–288, 1987.

[33] H. T. Kung, C. E. Leiserson, Systolic Arrays for VLSI, Proc. of the sym-

posium on sparse matrices computation, L. S. Duff et al. eds., Knoxville,

Tenn. pp. 256–282, 1987.

[34] S. Mauw, G. J. Veltink, A process specification formalism, Fundamenta

Informaticae XIII, pp. 85–139, 1990.

[35] K. Meinke, J. V. Tucker, Universal Algebra, Oxford University Press, To

appear.

[36] R. Milner, A calculus of communicating systems, LNCS 92, Springer

Verlag, 1980.

[37] R. Milner, Communication and Concurrency, Prentice-Hall Internation-

al, Englewood Cliffs, New Jersey, 1989.

[38] F. W. Vaandrager, Algebraic techniques for concurrency and their appli-

cation, Ph D thesis, University of Amsterdam, 1990.

[39] F. W. Vaandrager, Process algebra semantics of POOL, In [3], pp. 173–

236.

[40] F. W. Vaandrager, Two simple protocols, In [3], pp. 23–44.

[41] C. Verhoef, An operator definition principle (for process algebras), Re-

port P9105, Programming Research Group, University of Amsterdam,

1991.

[42] C. Verhoef, On induction principles, Report P9204, Programming Re-

search Group, University of Amsterdam, 1992.

[43] C. Verhoef, On the register operator, Report P9003, Programming Re-

search Group, University of Amsterdam, 1990.

[44] W. P. Weijland, Synchrony and Asynchrony in Process Algebra, Ph D

Thesis, University of Amsterdam, 1989.

250

