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Abstract

An important characteristic of any software is its size. Frequently used metrics
for measuring the size of software are source lines of code (SLOC) and func-
tion points. Lines of code are easy to count and seem unambiguous (but different
definitions can cause variations of 500%). Function points are normally counted
by certified professionals, which may introduce differences between counters. In
this article we survey existing literature on inter-rater reliability that classically
involves recounts, but recounts are hardly possible in practice. We propose mul-
tiple methods to test for differences between raters that do not involve recounts.
In a case study of 311 projects and 58143 function points from a large institution
we determined that function point counts are a reliable base. Using our proposed
method, we did not find statistical evidence for systematic differences between
counters, and recounts were not necessary for that. So in this organization, the
function point counts are a reliable data source for IT management.

Keywords and Phrases: Empirical software engineering, quantitative software
engineering, software metrics, function points, inter-rater reliability, function point
analysis

1 Introduction

An important characteristic of any software is its size. Frequently used metrics for
software size are source lines of code (SLOC) and function points [2, 1, 13, 8, 10].
Lines of code are easy to count, but for function points certified professionals are a
good practice. Lines of code seem unambiguous, but for some programming languages
that allow multiple statements per physical line, different definitions still can cause
differences of 500%. More importantly, when used as a normalizing metric, LOC has
been proven to penalize modern programming languages [15]. Function points may
introduce differences due to different counters and methods.

One of the perceived problems with function point analysis [19] is that it does not
produce exact results. Different measurements sometimes produce different results.
This is a reason for some executives to abandon this metric altogether. However, in
fact also measuring length is not exact, and suffers from the same effects as function
point analysis. But we still use meters. In this article we will focus on differences
between function point counters, or in other words the inter-rater reliability. We will
survey the existing literature on the reliability of function point counting. This is clas-
sically measured by repeated function point counts. We propose various techniques to
assess the systematic differences between counters where recounts are not necessary.



In a case study of 311 projects with in total 58146 function points, counted by profes-
sional function point analysts from a large institution, we determined the suitability of
function point counts. We did not find statistical evidence that counters counted differ-
ently, so the function point counts are in this organization a reliable metric for decision
and control.

The method we used relies on statistical principles and is applicable to virtually any
metric. For example, consider the case where we are manually counting the number
of words per book. For books that are randomly distributed to word counters, system-
atic differences between counters are detectable without doing recounts. Because the
books are randomly assigned to counters, the word count distribution we find for each
counter should be not statistically different from the total distribution. If the means per
counter show a statistical difference, this is a strong indication for statistical differences
between counters or for non-random assignments. Note that this method only tests for
systematic differences: if you recount a manually counted book, it is not uncommon
to find a difference of a few words. While a rough method already spots system-
atic differences, a refinement is possible by adding more information to the equation.
For instance, given that thicker books usually have more words, testing for systematic
differences between counters is improved by compensating for the thickness. In this
paper, we use these observations to investigate potential differences between function
point counters by using two approaches. First, we examine function points counted per
counter. Second, we also take the project cost into account.

Organization The remainder of this paper is organized as follows. In Section 2 we
survey the existing literature on inter-rater reliability and compare the literature with
the methodology that we propose. In Section 3 we will describe the data from our case
study. In Section 4 we will test for differences between individual counters, and in
Section 5 differences between groups of counters are tested. In Section 6 a model is
constructed between cost, function points and the influence of counters, to further in-
vestigate the presence or absence of systematic differences between counters. Section 7
discusses results on a more limited data set, where differences between counters where
detected. This section also reviews potential limitations of our proposed methodology.
Finally, Section 8 provides a summary and conclusions.

2 Related work

In 1992 [17, 18], an extensive field experiment was conducted to address the questions
of inter-rater reliability and inter-method reliability. The experiment set out was to
have different counters analyze the same system, and test statistically whether the out-
comes were the same. In the experiment 27 systems were counted twice using standard
IFPUG-methodology, and 21 systems were counted twice using a different methodol-
ogy, the so-called Entity-Relationship method. In the experiment an inter-rater relia-
bility, defined in terms of differences between two counts, was found of about 12% in
median between people in the same organization using the same method. A test for
systematic statistical significant differences between those counts showed no evidence
for differences.

However, we doubt that the research design justifies the latter conclusion on the
statistical significance of the results. Let us explain. When doing a paired two sample
t-test, normally the two samples should not be randomly assigned to from the same
pool. Otherwise, one is testing whether this pool is equal to itself or not, and the



probability of rejecting the null hypothesis is theoretically exactly equal to the p-value
used. That is, if other assumptions to the paired t-test are not violated that impact
the probability of false positives, such as the assumption of a normal distribution [3,
7]. As we understand in the research design of Kemerer [17], the two counters for
each methodology were not kept the same during the experiment. In fact they were
randomly chosen as far as the researchers could oversee. Statistical tests confirmed
that: they showed no evidence for non-random assignment between the groups. So the
assessment of systematic differences between counters should not be based on a paired
t-test. However, in that paper we read:

The results of a paired ¢-test of the null hypothesis that the difference be-
tween the means is equal to 0 was only -0.61 (p = 0.55), indicating no
support for rejecting the null hypothesis. The power of this test for re-
vealing the presence of a large difference, assuming it was to exist, is ap-
proximately 90% [8, Table 2.3.6]. Therefore, based on these results, there
is clearly no statistical support for assuming the counts are significantly
different.

Therefore, we must conclude that they did use a paired ¢-test on two randomly assigned
samples with a p-value of 0.10 (see the cited table [5]). Note that for small differences
like those between function point counters, in the same table the power listed is only
19%, even if we accept a 10% false positive rate. The false positive rate of 10% is
likely to be higher due to the expected non-normal distribution of the function points,
as shown later in this paper. So we can only conclude that their claims in regard to
statistical significant differences between counts using the same method were not sup-
ported by the described tests. Therefore, it is unknown which amount, if any, of the
12% median difference found between all 27 pairs of measurements using the standard
method is explained by systematic differences between counters. Therefore, we advise
to use the 12% with caution.

In 1990 [23], different figures were reported: a variance about the mean within
an organization of within 30 percent, along the lines of a previous study inside IBM.
Across organizations the variance was possibly higher, which could not be statistically
verified. Two relatively small systems of about 58 and 40 function points were counted
by 22 experienced analysts divided among 7 organizations. The system of about 58
function points was also counted by 20 inexperienced analysts, who estimated sig-
nificantly more function points. Systematic differences between experienced counters
were not tested for, so it remains unclear whether some counters systematically counted
more function points, or that there was only random variation in individual measure-
ments.

In a 1998 Inter-counter Consistency Checking Experiment by the UK Software
Metrics Association (UKSMA), differences of up to 50%, based on documented func-
tionality, were observed for novice estimators rating logical files [26]. Estimates for
this category could be rapidly improved with some environment-specific training.

We have not found any peer-reviewed studies on inter-rater reliability that were
conducted after 1992, which is more than 15 years ago at the time of writing this pa-
per. In fact, we also have not found any study that tested for systematic differences
between experienced counters, perhaps except for the work on counting rules clarifi-
cation by Kemerer in 1992 [18]. A likely reason for the rarity of such research, is that
the recounts classically involved are expensive for the organizations doing the function
point analysis. Therefore, we propose a methodology that does not impose new budget



requirements on the organization doing the function count analysis, and still assesses
the inter-rater reliability.

Our research design is different: we have not asked counters to repeatedly carry
out a function point analysis (FPA) of the same system, but we collected function point
totals of finalized IT projects. The function point analyses were carried out by multiple
counters. Some of the criticism on function points is that when two counters estimate
the function point total of a system, the answers may be different. In our opinion, func-
tion point counting is a stochastic process, inevitably leading to differences. Rather
than trying to ban the differences, we propose to recognize the stochastic nature of
function point analysis, and take that as the fundamental viewpoint on function points.
In other engineering disciplines the stochastic nature of certain processes is not only
recognized, but is used as a basic tool to construct systems. Let us explain. When
van Doorne’s transmissions invented the Variomatic (an automated kludge for automo-
biles), this consisted of a number of metal bands that fit very closely together. While in
the lab situation the researchers could produce small numbers of the kludge, it turned
out to be a problem to industrialize it. Apart from oven heating problems that disturbed
production start-up, it was also close to impossible to deliver the various metal bands
with ultra high precision. The solution was not to improve the reliability of the produc-
tion process, but the other way around. You just make a large number of metal bands,
and after production you collect them, measure them, categorize them, and construct a
perfect fitting transmission system. So high tolerance, low cost, and high precision can
go hand in hand in other engineering disciplines. Therefore, we should not abandon im-
precise metrics as useless. We better recognize stochastic effects and if possible exploit
their properties. We think that there are such opportunities in software engineering, of
which this paper testifies.

To statistically test whether or not different counters produce different results due
to differences in counting habits one would ideally set up a controlled and appropri-
ate experiment to test this. For example, each counter counts a number of systems of
different sizes and the measurements are compared. There will then be a number of
observations for each of the systems; each observation being the number of function
points produced by one of the counters. The question of interest is whether or not the
counters are different with respect to the number of function points counted. If the
counters produce comparable numbers of function points in counting the same system,
then the conclusion is justified that there are no differences in counting behavior be-
tween the various counters. In statistics this way of working is known as experimental
design modeling. The interest is not in predicting the value of one variable by using
the values of related factors, but the interest is mainly in comparing the effects of two
or more factors.

Of course the sample size should be chosen not too small to be able to powerfully
test the hypothesis that there is no effect caused by counter behavior. With powerful
we mean that the chance of accepting the null hypothesis when the alternative hypoth-
esis is true is not unacceptably high. However, in practice it is often not possible to
design special experiments for the purpose of credibility checks. A number of different
counters have counted different systems of different sizes and no more information is
available. There are no two counters who have counted the same system, so a direct
comparison between counter behavior is impossible. This often is the case in prac-
tice. However, it remains a debatable point whether a specific effect caused by counter
behavior plays a role in counting the number of function points.

Let us explain. When we investigate the data set of function points we want to
know whether the set is homogeneous or heterogeneous from a counter point of view.



Suppose that we have good reasons to postulate a relationship between the size of a
system and the costs of building the system. Or, we expect that there is a relationship
between the chance of IT project failure and the system size. Note that the relationships
do not have to be linear, but can take every conceivable form. We then want to use
the observational in-house data to test statistically whether our theory is supported or
not by the data and, if so, to obtain an estimation of the parameters of the functional
relationship. However, if the data is biased because of individual counter behavior
then the set is not usable to test our hypothesis. In this paper we show that a test on
homogeneity of the data set is also doable when no direct comparison between the
measurements of different counters is feasable.

For all function points, our counters used the same method: an approved adaptation
of the IFPUG-standard. Backfiring, where SLOC are converted into the language inde-
pendent function points using conversion ratios [14], was not used. Different methods
are known to produce extremely different results [12], but as all counts were done using
the same method we did not address the inter-method reliability question. Our focus
here concerns the inter-rater reliability.

Our research design to test whether the function point counters are equal is done
in a stochastic manner. We give another example to illustrate this. Suppose we would
want to find out whether two dice are the same, or, in other words reliable as in fair
and unbiased. Then by throwing the dice, we should not conclude that the dice are
unreliable if the outcome of the dice is different. We would say that the dice are dif-
ferent if the probability of a certain outcome differs between the two dice. Exactly the
same, we investigate the function point counters. Some stochastic process produces a
string of function point totals out of a universe of IT projects that need to be counted.
We are not interested in the question whether the exact outcome will be given if we
provide one system to all counters, but we want to know whether the probability that
they give the same outcome is not different. And by recognizing the stochastic nature
of function point counting, this becomes in fact feasible. In the remainder of this paper
we use formal statistical tests to do this. These tests give us insight in whether different
“FPA-dice” produce different results.

3 Our data set

From a large institution, we received data on a portfolio of IT projects to perform an
audit on the effects of a software improvement project in the organization. Before doing
the audit, we assessed the accuracy and plausibility of the function point data. Our data
set consists of 311 IT projects with a total size of 58146 function points. The function
point counts are done by 17 function point counters, of which 14 are internal, and three
are hired externally from a specialized company doing function point counting only.
All the counts measured actually delivered functionality, not estimates of proposals.
For the methodology this does not matter, but one should be careful when mixing both
type of counts into one group, because the counts are usually different on average,
because the scope of projects tends to increase [22].

When you are going to audit whether targets are met or not, you have to exclude
the variant that more function points are reported than are delivered, since this would
boost IT productivity. We will therefore test whether or not this was the case.

outlier In the data set of 311 projects, there is one project with a size of just 3 function
points, while all other projects are 15 function points or more. Because function points



were never intended for small projects, and this project would be spotted as an outlier
on every graph, we left this project out of the analysis presented in the rest of this
paper. We ran all analyses in parallel to ascertain that the removal of this project did
not influence the results. To be precise, the largest difference would be in Table 6
presented later on in this paper. A p-value for the Shapiro test for the distribution of
external counter number 2, who counted this project, would drop to 0.0228 from 0.12,
but that does not alter the conclusions. Hence, without loss of generality we discarded
the outlier.

Amount of function points and projects per counter
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Figure 1: Visualizing the total amount of function points and projects counted per
function point counter.



4 Individual counters

The organization employs 17 function point counters, of which 14 are internal, and
three are hired externally from a specialized company doing function point counting
only. In Figure 1, we plot the total amount of function points measured by each counter.
The abbreviation int stands for an internal function point counter, and ext is short for
an external one. It is immediately visible from Figure 1 that some counters do a lot
of counting and some do very little counting. For instance, external counter 2 is the
star counter: more than 11000 function points. Internal counter 12 is second in row
with about 10000 function points. Furthermore, there are a few counters who counted
almost no function points.

Now that we have an initial idea of the totals per function point counter in the re-
search set, we are also interested to know how many IT projects each counting special-
ist took care of. We also plotted this in Figure 1, as the dark-grey bar. There is a clearly
visible relation between the two bars. Indeed, a (superfluous) test using Pearson’s prod-
uct moment correlation coefficient [30] gives a p-value of <le-10, proving the visually
obvious correlation. So, it is unlikely that for example a counter always counts the
large projects, and thus counts not too many projects, but does count a large amount
of function points, or vice versa. These views combined already give us evidence that
incoming IT projects are indeed randomly assigned. If there is no random assignment,
our methodology will usually spot differences caused by biased assignment, which we
indeed did not find as is presented further in this section.

To obtain a more in-dept view we constructed another view in which we visualize
the size-range per counter. We do this via a so-called box and whiskers plot, or box-
plot for short [29, 24]. A box-plot is just a visual form to summarize the data with as
few points as possible. One well-known point is the median, dividing the ordered data
in two equally sized groups. The other points we use are of the family of quantiles. In
general, a quantile is any of several ways of dividing your ordered observations into
equally sized groups. An example of a quantile is the percentile: this divides your data
into 100 equally sized groups. Likewise, guintiles divide into 5 equally sized groups,
and quartiles divide data into 4 equally sized groups. You can obtain a fairly good
idea of the distribution of your data by dividing it into quartiles [29, 24]. The boxes in
Figure 2 are limited by the first and third quartile, and the white line inside the box is the
median so that skewness of the data is immediately visible. The shaded box encloses
the middle 50% of the observed values. Its length is also called the inter-quartile range,
which is an important measure that is less influenced by extreme values. The whiskers
are some standard span away from the quartiles, we used as standard span 1.5 times the
inter-quartile range. Points that go beyond the whiskers are potential outliers and they
are drawn individually.

The distribution of function points tends to have a large right-tail, which means that
very large values can occur at the high-end of the distribution. The box-plots indeed
show that there are few values that are smaller than the rest, while there are some
values that are shown as outliers in the box-plot at the high-end. This indicates that we
are dealing with a function point distribution that shows signs of control; the outliers
shown are as expected. Furthermore, the box-plots do not show very strange deviations,
except that external counter 1 appears to deliver higher function point totals than others.
Clearly this counter just counted somewhat larger projects, or there is a deviation that
too high function point totals are reported. All in all, an external counter usually has
no interest in counting too many function points, since it is their profession to count
correctly. Another indication is that external counters count more function points per
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Figure 2: Box-plots of the different function point totals per function point counter.

project than internal counters, providing initial evidence that there is no boosting of
function point totals in place, by the internal metrics people.

After this initial visualization of the function point distribution per counter, we want
to know this distribution for real. Therefore, we further zoom in on the distribution of
the function point totals per counter. As a first quantitative indication, we summarize
for each counter a ten-point summary statistic in Table 1. The abbreviations in Table 1
are self-explanatory, except sd, which is short for standard deviation, and geom which
stands for geometric average. From Table 1, we find that function point counters int4,
extl and ext3 only rarely counted function points. We quantified now much more con-



cnt # min 1Istqu med mean 3rdqu max sd sum  geom
intl 6 45 61 106 166 167 506 174 997 115
int2 5 25 25 172 171 279 355 148 856 101
int3 4 52 89 114 102 128 129 36 410 97
int4 1 15 15 15 15 15 15 NA 15 15
int5 10 45 98 162 192 262 434 127 1923 155
int6 4 115 134 150 224 238 480 172 894 187
int7 14 87 156 178 218 297 360 89 3053 201
int8 39 20 64 136 175 198 1413 225 6810 118
int9 37 34 80 152 255 344 1085 262 9445 159
int10 5 44 52 112 114 123 240 79 571 95
intll 17 30 60 154 141 209 257 78 2399 115
int12 57 21 72 117 177 248 736 159 10068 127
intl3 24 30 55 101 132 138 647 131 3176 99
intl4 26 35 79 129 195 254 600 156 5076 145
extl 2 182 198 213 213 228 244 44 426 211
ext2 56 31 65 162 206 249 1072 222 11532 138
ext3 3 74 76 77 164 209 341 153 492 125

Table 1: Ten-point summaries for the various function counters. For each counter (cnt),
minimum (min), first quartile (1st qu.), median (med), mean, third quartile (3rd qu),
maximum (max), standard deviation (sd), summation and geometric average (geom)
are reported. NA stands for not applicable.

crete how the data is skewed, for instance by the sometimes large differences between
the median and the mean. But we gain the most insight in a plot of the various density
functions. So we calculated the empirical probability density functions [32, 27] and
show them in a beanplot [16]. In Figure 3 all the counters are shown. The small white
lines reflect individual projects that are counted by a counter, and the density estimation
is shown in black. The prominent black line reflects the geometric mean. A log-scale is
chosen, so that individual points do not overlap and the distributions obtain a Gaussian
shape. The plot shows that the distributions do not have entirely different locations.
Only internal counter number 4 appears to be off, but this counter has done only one
measurement, so this is not statistically relevant.

Next we want to understand whether the density functions we depicted in Figure 3
are truly different from each other. Of course, when we look at the density functions
we spot differences, but how different need these differences be before we would say
that the function point counters are actually counting with systematic differences? In
order to find out we used a formal test to asses this hypothesis.

The performance of each counter is described by the cumulative distribution func-
tion (CDF) of the number of function points measured by that counter. As discussed
before the number of function points counted by counter ¢ is considered as a random
variable. Let F;(z) denote the cumulative distribution function of the number of func-
tion points counted by counter ¢. So F;(z) gives the probability that the number of
function points counted by counter ¢ is less than or equal to z. We test the hypoth-
esis that F;(x) and Fj(z) are equal for all ¢ and j, ¢ # j. We therefore used the
Kolmogorov-Smirnov goodness of fit test, or KS-test in short [20, 28, 6]. If the hy-
pothesis is true we conclude that the counting skills of the counters are not different
from each other. Unfortunately, we do not know the exact theoretical CDFs of the in-
dividual counters, but we are able to approximate them via their empirical CDFs. We
have to assess F;(z) for each counter ¢ on the basis of the number of systems measured
by this counter. So for each counter ¢ we derived the empirical CDF EF;(z) of the
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Figure 3: A beanplot for the function points counts per counter. Note the log-scale.

counted number of function points and applied the KS-test to statistically test whether
EF;(x) = EFj(x), forall i and j, ¢ # j holds.

The KS-test is a so-called distribution-free test, which means that it is applicable
to any distribution of the data. It measures the maximal vertical distance between
the cumulative distributions (CDF) of two data sets. The beanplots in Figure 3 are
(empirical) density functions and not cumulative distributions, needed for the KS-test.
However, this is not a problem as it is possible to obtain the cumulative distribution
from the density function and vice versa. The maximal vertical distance between two
CDFs measured by the test is known as the KS-test statistic. If this value is very small,

10



p>0.10 No evidence against Ho: data seems consistent with Ho
0.05 <p<0.10 . | Weak evidence against Hp in favor of the alternative
0.01 <p <0.05 * | Moderate evidence against Hy in favor of the alternative
0.001 < p <0.01 ** | Strong evidence against Hy in favor of the alternative

p < 0.001 *##% | Very strong evidence against Hy in favor of the alternative

Table 2: Symbolic notation for various ranges of p-values with qualitative explanations
of their meaning.

counter | il i2 i3 i4 i5 i6 i7 i8 i9 il0 ill i12 {13 il4 el e2 €3
il | -
i2 -
i3 - *
i4 -
i5 -
i6 -
i8 . -
i9 -
i10 * -
ill -
i12 * -
il4 . . -
el -
e2 . -
e3 -

Table 3: Comparisons of individual function point counters with each other with a
KS-test.

this is an indication that both CDFs are not fundamentally different. A related metric to
indicate how strong the evidence supporting this hypothesis is the p-value. In Table 2,
we introduce symbolic notation indicating in qualitative terms which evidence range is
meant by which p-value. For instance, if a p-value is smaller than 0.001, there is very
strong evidence that the hypothesis is not true, in favor of the alternative.

In Table 3, we summarize the results of carrying out 136 KS-tests, comparing the
CDFs of all individual function point counters against each other, except themselves,
hence 136 KS-tests. The null hypothesis, denoted Hy, is that both CDFs based on the
data coincide. For instance the first row of Table 3, shows that all the KS-tests are in the
nothing or no-stars category. This means according to Table 2 that there is no evidence
to reject the null hypothesis. In other words, there is no evidence, based on this formal
test, that the counting practice of counter 1 differs from the counting practices of any
of the other function point counters. Note that we made Table 3 symmetric (so the
first column is the same as the first row). Internal counter 7 differs in 6 cases from
other counters. The more stars, the stronger the evidence that the differences are due to
different counting practices. Internal counters 4, 13 and 14 and external counter 2 show
a dot, indicating weak evidence. All in all, these differences give us input for a more
in-dept analysis to investigate why both counters seem to differ from other counters.

Power of the test In formal testing of an hypothesis two types of errors are distin-
guished: rejecting the hypothesis when it is true (error Type 1) and not rejecting the

11



counter | il i2 i3 4 i5 i6 i7 i8 19 i10 i1l {12 13 i14 el e2 €3

il | -

i2 -

]3 - * *

i4 -

i5 -

i6 -

17 * - sk . * sk ksk *

18 sk -

i9 - *
i10 . - .
ill * - *
i12 w3k - .
il4 . -

Cl * . . £ . £ _

e2 * . -

e3 -

Table 4: Comparisons of individual function point counters with each other with a
t-test.

p-value category | notation meaning amount | % of total
nothing p>0.10 120 88.24
dot .1 0.06<p<0.10 6 4.41
single star * 1 0.01 <p<0.05 7 5.15
double star *10.001 <p<0.01 2 1.47
triple star oAk p <0.001 1 0.74
Total number of combinations 136 100.00

Table 5: Summary of the various ranges of p-values found in the individual ¢-test
comparisons between function point counters.

hypothesis when it is false (error Type II). Our method of testing controls the chance of
making the Type 1 error. Ideally, the test also controls the probability of making error
Type 1I satisfactory. Let us denote the probability of making the Type II error with (.
The power of a test is defined as 1 — 3. In the case of the distribution-free KS-test
the power of the test is unknown. However, it is clear that the power increases when
the sample size increases. Especially, when the number of systems counted by some
counter ¢ is rather small and the systems counted are also of about the same size the
approximation of F;(z) by EF;(x) will not be very accurate. The probability that the
null hypothesis will be excepted when it is in fact false (error Type II) will in that case
increase as a consequence.

If we assume that the distribution of the function points per counter is in fact a
log-normal distribution, we are able to use a stronger, more powerful, statistical test,
namely the ¢-test [30]. Later in this article in section 5 (Table 6) it is shown that, after
correction for multiple tests, there is no statistical evidence for non-log-normality of
the distributions. In Table 4 we show the results for the ¢-test. The results are similar
to the KS-test, but the number of stars is higher. As discussed the power of the t-
test is much stronger, so this test produces more interesting results. We are not too
surprised that external counter 1 differs, since we already noticed from the box-plots
in Figure 2 that this counter is at the high end in function point totals. In Table 5, we

12



summarized the various p-value categories for the 136 ¢-tests. The table shows that 120
of the 136 combinations do not show evidence of differences, which is about 88% of
the combinations. More interesting is that there is one combination that scores a triple
star. There appears to be a huge difference between internal counter 7 and internal
counter 13. The actual p-value of this particular pair is 0.0006114. This is quite low, so
there could be something strange going on. We however have to take into account that
we did 16-17/2 = 136 tests. In such cases, one should use a correction on the p-value.
The most well known method is the Bonferroni correction [9, p. 339], which amounts
to simply multiplying the p-value by the number of tests. Note that the Bonferroni
correction is not unquestioned [25], but in this article we combine it with single tests,
and also show all uncorrected p-values (for example, many low p-values indicate a
problem). By multiplication of the lowest p-value with the number of tests we obtain
a corrected p-value of 0.0813, which is acceptable and gives only a weak indication of
possible differences.

A single test for multiple comparisons

We also tested for differences between counters in one single test, so that compensa-
tion for multiple tests is not necessary. Normally, this is the preferred way to start an
analysis. However, when differences are found, or if a closer look is appreciated, one
has to resort to the previously mentioned methods anyway to know where there are
differences. To keep the ordering of increasingly sophisticated methods in this article,
we present these single tests now and not earlier.

If we do not use assumptions on the underlying distribution, we may still use a
Kruskal-Wallis rank sum test [6] to test for differences between groups; in this case be-
tween the groups that are formed by the projects counted by different counters. The test
gives a p-value of 0.3460, which gives no indication for differences between groups.
The Kruskal-Wallis test tests for differences in location, not in distribution like the
distribution-free KS-test we used earlier.

Assuming a log-normal distribution with equal variances for the distribution per
counter allows us to utilize an ANOVA-model [30]. The F'-test [30] for the inclu-
sion of counters in the model gives a p-value of 0.2092, indicating no differences be-
tween counters. Note that the ¢-test we used makes less assumptions than its combined
ANOVA-variant, namely it assumes no equality of variance of the compared function
count distributions. These single test methods provide reassurance for the lack of sta-
tistical evidence for differences we found earlier.

S Comparing counter groups

In our first analysis we have shown that there are not many indications for differences
between individual counters, with a few exceptions. In order to come up with an answer
to the question whether a software process improvement project resorted the desired
effect, we have to exclude the following possibility that we already alluded at. Suppose
the internal counters have a vested interest in counting more than is produced. In
this way, productivity can turn out to be higher, while in effect this is not the case.
To that end, we analyzed the data of the function point counters in two groups. The
group of internal counters, who might have that interest, and the group of external
counters, whose profession it is to count the correct amounts. Delivering erroneous
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Figure 4: Comparison of CDFs of internal and external function point counters.

results exposes them and their firms to litigation risks due to contracts that are based
on their results.

In Figure 4, we plot the cumulative distribution functions of the group of internal
counters and the group of external counters. The plot shows no sign of systematic
differences between the two groups. We also carried out a formal test, the Kolmogorov-
Smirnov goodness of fit test, which gives a p-value of 0.449, giving no indication that
the distributions are different. A ¢-test gives a p-value of 0.5647, also indicating no
difference.

For this ¢-test we give a 95%-confidence interval of the difference (95% of such
intervals contain the true value of the difference). In this case the interval on a log-
scale is [—0.316, 0.174]. In linear representation this is between 27% lower for internal
counters to 19% higher for internal counters. A difference of up to 27% sounds at the
high side, but given that differences in IT metrics, for example between estimates and
finals, can easily be a factor 2 or more, this is entirely reasonable. Seen from the mean
value of function points, the largest project is 977% larger, and the smallest project is
89% smaller (this is after filtering one outlier). The largest project is 9320% larger than
the smallest one, so the scale is much larger than the confidence interval. Next to that,
27% is on the outer bound of the interval, and the real value is likely to be much more
in the center of the interval. We conclude that even if there is a difference between
those groups, the difference will not have a significant impact.

As an extra assurance to the results in this section and the previous one, we also
tested whether individual counters give different results than all the other counters
grouped together and whether the distributions are log-normal. In Table 6 we show
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counter  count mean median  shapiro KS-test U-test t-test

intl 6 166.17 106.0  0.6621 0.9639 0.6324 0.7349
int2 5 171.20 1720  0.0971 . 0.4531 0.8131 0.6752
int3 4 102.50 1145  0.1087 0.2368 0.3888 0.2420
int4 1 15.00 15.0  1.0000 0.2718 0.0853 . 1.0000
int5 10 192.30 161.5  0.9126 0.8759 0.4644 0.4844
int6 4 22350 149.5  0.1265 0.4643 0.4302 0.3445
int7 14 218.07 178.0  0.3695 0.0215 * 0.0226 * 0.0022 **
int8 39 174.62 136.0  0.5973 0.8554 0.4245 0.4094
int9 37 255.27 1520  0.2138 0.1630 0.2939 0.2077
int10 5 11420 1120  0.6269 0.6166 0.3367 0.3440
intl1 17 141.12 1540 0.0187 *  0.4077 0.6773 0.4468
int12 57 176.63 117.0  0.9095 0.7819 0.6952 0.7195
intl3 24 13233 101.0  0.5376 0.0847 . 0.0588 . 0.0630
intl4 26 195.23 129.0  0.6942 0.9367 0.5485 0.5159
extl 2 213.00 213.0  1.0000 0.3658 0.3186 0.1610
ext2 56 20593 162.0  0.1216 0.6087 0.6691 0.6518
ext3 3 164.00 77.0  1.0000 0.7929 0.8893 0.9286

Table 6: Various values for the different counter groups. The test for a log-normal
distribution used is the Shapiro test. The three other tests are for difference in location
between the counter and all other counters. Under our assumptions, little stars are to
be expected.

the p-values for three different tests, a KS-test, a Wilcoxon Mann-Whitney U-test [6]
and a t-test. There is little evidence for rejecting the hypotheses that there are no
differences. The most evidence is found for internal counter number 7, but after the
Bonferroni correction for 17 counters (multiplication by 17) to its p-value of 0.0022
there is little evidence that something unexpected is happening. In this table, we also
show the outcomes of a Shapiro test for normality [30], to test for a log-normal distri-
bution. Internal counter number 11 gives most evidence for rejecting log-normality, but
after compensating the p-value of 0.0187 by 17 tests with the Bonferroni correction, it
is clear that nothing unexpected is happening.

6 Relating costs and function points

We have now established that there are no differences between the distributions of the
number of function points counted by different counters. In further analyses, those
function point counts are usually used in different statistical models. One of the inter-
esting models is the relation between costs and function points, or in other words, the
productivity.

It is known from research that there is a functional relationship between the size
of a system and the costs involved in building the system. Normally, there is a log-
log relation between function points and costs [31]. If the counting practices of the
individual counters play an important role then these qualitative effects must be incor-
porated in the estimation process as dummy variables. We statistically tested whether
the improvement in fit achieved by including dummy variables in the model is suffi-
ciently large to conclude that the inclusion of the dummy variables is profitable. If not,
the parsimonious model without dummy variables must be favored, which indicates
differences between counters.
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no model

log(costs;) = o + Blog(FP;) + €;

log(costse;) = ae + Slog(FPe;) + €e;
log(costse;) = a + Be log(FPe;) + €ei
log(costsei) = ae + Pe log(FPe;) + €ci
log(costsa;) = aq + Blog(FPa;) + €qi
log(costsq;) = a+ Balog(FPu;) + €ai
log(costsq;) = g + Balog(FPa;) + €qi

no AIC BIC RSS  F'-test Shapiro kurtosis
490.14 50135 86.53 0.0290 0.3752
489.40 50434 85.76 0.0993 0.0071  0.4764
490.84 505.79 86.16 0.2562 0.0114 0.4442
483.10 501.78 83.50 0.0043 0.0083 0.4726
466.46 481.41 79.65 0.0000 0.0088 0.5754
470.80 485.75 80.77 0.0000 0.0141  0.5864
463.78 482.46 78.45 0.0000 0.0042 0.5111

~N NN AW -

~N NN AW =

Table 7: Various models for the relation between costs and function points. The
ANOVA F'-test was done with regard to the first model. Models 2—4 vary for being
counted by an external counter or not. Models 5-7 vary for being after project 149 or
not.

Formally, the relation between function points and costs is expressed as
log(costs;) = a + Blog(FP;) + ¢;

with costs; the cost of project i, FP; the number of function points of project ¢, ¢;
a normally distributed error per project and « and (3 as model parameters. We tested
whether the impact of function point counters should be added to this model. If it needs
to be added this shows that there are differences between counters.

For testing we used both AIC (Akaike’s Information Criterion) and BIC (Bayesian
Information Criterion) as model selection criteria. Both criteria penalize model com-
plexity while in the penalty term of BIC the sample size is included. With small sample
sizes AIC favors models with fewer parameters compared to BIC. The latter is more
commonly used in sociology, while AIC is very popular in econometrics. Both criteria
will usually identify good models for observed data but sometimes fail in this respect,
for example by selecting a model with too many or too few parameters. It therefore is
advocated to use the two criteria together. When both criteria agree on the best model,
this provides reassurance of the choice. Given the underlying assumptions, and simply
stated, AIC seeks a model that minimizes the error with the true model, while BIC
seeks for the true model, the model on which the data is actually based. A more de-
tailed analysis of AIC and BIC is given in Kuha [21] and Burnham and Anderson [4].
Because we want to find a true model and know if functions point counters are part of
it, we will prefer BIC here. Another reason in favor of BIC is the size of our data set.
For larger data sets AIC penalizes less and allows more parameters with the danger of
overfitting or uninterpretable models.

For all the models we will show the AIC, BIC and residual sum of squares (RSS)
[30]. For these three criteria, a lower value indicates a better model, while a higher
value indicates a model that is worse. Next to that, we will show the results of a

16



int1l3 — wooo ® ® o ® o oo @ oo ° ® o o0 o

int7 - o o oo w o
ext3 — @® °
.
Q
3
c
=1
Q
(5]
ext2 o © @ 00 ® W WM GO0 W O OO AD 0000OW 0D

extl — ° °
others — oo @
T T T T T T T
0 50 100 150 200 250 300
Time

Figure 5: Numbered subsequent projects are counted by different counters.

more formal ANOVA F'-test [30] that compares different models and gives a p-value.
Because the residuals are not entirely normally distributed, as shown by a Shapiro test
for normality, and a kurtosis unequal to 0, the p-values from the F'-test are not exact and
probably a bit too low. However, the F'-test is reasonably robust [11], so the p-values
still give an indication.

Adding all 17 function point counters to the model introduces lots of parameters,
which does not give us a better model, but instead gives us a model that is over-fitted.
We therefore focus on a distinction in two different groups, namely the internal and
external counters.

In Table 7 we show the results of introducing different parameters for internal and
external counters in the model. In this table, the following notation is used for each
model between cost and function points. Variables «, and 3. take two values, the one
used depending on whether the project is counted by externals. Variables «, and 3,
take two values, the one used depending on whether the project is after project 149 or
not. The project number is identified by 7, and the combinations ei and a7 are used
to show the aspects contained in the model (e: for externally counted projects being
treated different; a: for late projects being treated different). The normally distributed
error term is denoted by e.

Model 1 is the model with no impact from the function point counters. Model 2
has different parameters for the value of o, model 3 for the § and model 4 for both
parameters. It appears that model 4 is the best model on all criteria, as it has a lower
AIC, BIC and RSS, and also a low p-value for an F'-test comparing it to model 1.
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no model
5 log(costsqi) = aq + Blog(FPy;) + €ai
8 log(costsaei) = aq + e + Blog(FPaei) + €qei
9 log(costsaei) = g + Belog(FPuei) + €qei
10 log(costsaei) = g + e + Be l0g(FPaci) + €aei
11 log(costsae;) = Qe + S10g(FPaci) + €aci
12 log(costsaei) = qae + Be l0g(FPyei) + €qei
13 log(costsaei) = ae + Bae l0g(FPaei) + €aei

no AIC BIC RSS F-testto5 [F-testto7 Shapiro kurtosis
5 | 466.46 48141 79.65 -0.0317  0.0088  0.5754
8 | 46835 487.03 79.62 0.7324 0.0106  0.5625
9 | 467.71 486.40 79.45 0.3896 0.0136  0.5441
10 | 462.17 484.59 77.55 0.0169 0.0597 0.0125  0.5618
11 | 46691 489.33 78.74 0.1741 0.0121  0.5715
12 | 460.12 486.27 76.54 0.0070 0.0233  0.0161  0.5577
13 | 463.28 49691 76.33 0.0243 0.0809 0.0146  0.5187

Table 8: Various models for the relation between costs and function points. The
ANOVA F'-test was done with regard to models 5 and 7 (with negative values indi-
cating the first model was assumed to be better).

no model
5 log(costsai) = aq + Blog(FPy;) + €ai
14 log(costseei) = aq + Blog(FPga;) + € + €afi
15 log(costsafi) = aq + Blog(FPy;) + €5 + €qayi
no AIC BIC RSS  F-test Shapiro kurtosis
51 48048 49539 472.84 0.0088 0.5754
14 | 48248 501.12 472.84 0.9997 0.0088 0.5754
15 | 481.09 499.72 471.09 0.2378 0.0458 0.5002

Table 9: Models testing for random effects. Note that the base AIC and BIC of
model 5 in this implementation is different, and the RSS is estimated as -2 times the
log-likelihood.

At first sight, this would indicate that external counters count different from internal
counters. That would be surprising given the outcomes of the tests in the previous
sections.

An explanation is given by taking into account that our data set was gathered during
a time of software process improvement, during which the relation between cost and
duration may have changed. In Figure 5 we show the position in time of the projects
that were counted for the three external counters, and two internal counters. It appears
that external counter number 2, who counted most projects of all external counters,
mainly counted projects after project 150. Other counters, such as internal counter 1
mainly counted projects during the beginning of our data set. Clearly, there is a rela-
tionship between project time and function point counter.

To address this property of the data, we distinguish between projects after project
149, and the ones before. We will introduce different parameters as with the internal
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Figure 6: Visualization of the linear model for different groups. The dotted line shows
the fitted line without the split taking place. For the plots on the left it is for the model
without groups; for the plots on the right, it is the same as the solid line on the left of
the plot.

and external counters, but now for early and late projects. In Table 7, these are shown
as models 5 to 7. Now it appears that in terms of BIC, model 5 is the best model.
This model has different values for the 5 model parameter for early and late projects.
Model 7 is better in terms of AIC, and would be also a good choice, but as we are
seeking a true model, we prefer model 5 for now.

After we have added the difference between early and late projects to our model,
giving model number 5, we investigated the possibility of an even better model by tak-
ing potential differences between external and internal counters into account. For the
models shown in Table 8 variables «. and [, are either zero or have a value, depending
on whether the project is externally counted. Variables o, and 3,. denote four dif-
ferent parameters for the four situations (project among first 149 true/false and project
counted by externals true/false). None of the models shown in Table 8 scores better on

19



our preferred BIC criterion. Some models do score better on the other criteria, notably
model number 12. However, the p-values from the formal F'-test are not very convinc-
ing, given that the test is not completely valid and we tested lots of models. So we
conclude that model 5 is the best choice.

In Figure 6 we compared the different models visually. The earlier projects are
shown in the upper-left corner, and the late ones in lower-left corner. The solid line
is model number 1, which does not take time into account. The dotted lines are from
model number 7, where time is taken into account. Visually, the fit of model number 7
is a bit better, but not much. On the right-hand side of Figure 6, only the projects
counted by external counters are shown. On this side, the solid line is model number 7,
and the dotted line is from model number 13, which has different parameters for the
projects counted by externals and for early and late projects. While the lines do differ,
given the number of projects and the non-universal difference (the line is not both
lower and higher than model 7), it visually does not appear to be a better model than
model 7. Therefore, also after visual comparison, there are no signs of differences
between internal and external counters.

Instead of treating the impact of function point counters as fixed parameters, we
also investigated modeling them as giving random systematic differences, which form
a normal distribution. In this way, if we add all function point counters to the model,
we only need to penalize for one extra parameter. Such models are called random-
effect models [30]. In Table 9, we show the outcomes of adding random, systematic
differences between counters to the model. In these models, variable €. denotes errors
based on external/internal counters, and €; denotes systematic errors per counter. In
model 14, we add systematic errors between internal and external counters, while in
model 15 we add systematic errors between function point counters. The models score
in terms of AIC and BIC worse than our current model number 5. Therefore, the
random effect models do not appear to be better than model number 5. So, there are no
signs of systematic, randomly distributed differences between counters.

In conclusion, the most likely true model we created is model 5. In this model, time
is taken into account, but function point counters are not. We therefore conclude that
there is no evidence for an impact of function point counters on the relation between
cost and function points.

7 Discussion

In an earlier analysis we carried out on a more limited data set, we originally concluded
that there were in fact differences between internal and external counters. Indeed, it
seemed that internal function point analysts counted more function points than external
function points analysts, thereby seemingly boosting productivity. This was exactly a
problem we were looking for, and some suspicious high counts from internal counters,
and low counts by external counters were inspected. After we had more data it turned
out that our early conclusions were caused by either a statistical anomaly, or, more
likely, that the external counters had not finished counting some of the larger projects.

Note that our research methodology is not a preferred design for researchers in
general. In fact, there has been no adaption of the design towards the research at all;
the data was just gathered in a real-world situation. For example, normally, one would
prefer to have a more or less equal number of measurements per counter and per counter
group. Next to that, one would prefer to have recounts of the same situation, instead of
studying data gathered on different projects. Finally, one would prefer not to have time
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test statistic(s) outcomes

1 | Differences in distribution between | KS-test Initially, 128 out of 136 tests (94%)
pairs of individual counters showed no differences, after 1 Bonfer-
roni correction O tests show statistical

evidence.

2 | Differences in location between | t-test Initially, 120 out of 136 tests (88%)
pairs of individual counters (sur- showed no differences, after Bonferroni
passed by #4) correction 1 test showed little statistical

evidence.

3 | Differences in location between all | Kruskal- no evidence (p = 0.3460)
counters Wallis  rank

sum test

4 | Differences in location between all | ANOVA F- | no evidence (p = 0.2092)
counters (assuming log-normal dis- | test

tributions)
5 | Differences in distribution between | KS-test no evidence (p = 0.449)
internal and external counters
6 | Differences in location between in- | t-test no evidence (p = 0.5647), 95% con-
ternal and external counters fidence interval between 27% lower for
internal counters to 19% higher for in-
ternal counters
7 | Differences in distribution between | KS-test Initially, 15 out of 17 tests (88%)
counter and all other counters showed no differences, after Bonferroni

correction no test showed differences.
8 | Differences in location between | U-test and t- | Initially, 29 out of 34 tests (85%)

counter and all other counters (sur- | test showed no differences, after Bonferroni

passed by #3 and #4) correction for 17 tests, only one test
showed difference.

9 | Log-normality of function point | Shapiro- Initially, 15 out of 17 tests (88%)

distribution per counter Wilk test showed no differences, after Bonferroni

correction no test showed differences.
10 | Function point counter and/or | AIC, BIC, | After adjusting for time, function point
counter group is not included best | RSS, F'-test counter behavior was not a factor that
cost-size model was included in the best model.

Table 10: A summary of important statistical tests that were performed.

effects that have to be compensated for.

It is a fact of life that data is imperfect. Using sometimes sophisticated means to
compensate for that is in our view a powerful tool to bring empirical software engi-
neering a step further. It is often not possible to construct experiments so that statisti-
cal analyses become standard or trivial. Instead when we gather data and reveal their
imperfections we should account for them and filter out patterns that help in under-
standing software engineering in a quantified manner. In conclusion, we showed that
also in a setting where recounts are out of the question, it is still possible to assess the
reliability of function point counts.

8 Conclusions

We showed that in the literature, differences between counts of the same project by
different function point counters give results that can differ more than 30%. For most
statistical purposes, however, this is not a problem if the errors are not systematic,
so that they should be compensated for during the analysis. Classically, differences
between counters were measured using recounts. We proposed a method to test for
systematic errors, without requiring any recounts. We used this method on a portfolio
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of 311 projects and 58143 function points in total.

In our case study, the function point counting practice turned out to be state-of-the-
art when it comes to inter-rater reliability: very little statistical evidence was found that
there were differences between counters or groups of counters. Given the abundance
of various tests we have presented, as summarized in Table 10, the sparse evidence that
was found is not unexpected, as doing many statistical tests will generally give some
false positives. For the difference between internal versus external counters, we showed
that if a difference would exist, it is likely too small to influence analyses based on the
data. We conclude that there is no real statistical evidence that there were systematic
errors being made by the function point counters.
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